1
|
Shao J, Lai C, Zheng Q, Luo Y, Li C, Zhang B, Sun Y, Liu S, Shi Y, Li J, Zhao Z, Guo L. Effects of dietary arsenic exposure on liver metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116147. [PMID: 38460405 DOI: 10.1016/j.ecoenv.2024.116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong 510176, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guangdong Province 527300, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jinglin Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zuguo Zhao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Lu Z, Zhao C, Yang J, Ma Y, Qiang M. Paternal exposure to arsenic and sperm DNA methylation of imprinting gene Meg3 in reproductive-aged men. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3055-3068. [PMID: 36152128 DOI: 10.1007/s10653-022-01394-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Prenatal exposure to arsenic and mercury have been associated with adverse pregnancy outcomes that might be in part mediated by dynamic modification of imprinting gene that are emerging mechanism. OBJECTIVES The objective of this study was to examine the impacts of paternal exposure to arsenic and co-exposure to arsenic and mercury on human sperm DNA methylation status of imprinting genes, respectively. METHODS A total of 352 male subjects (23-52 years old) were recruited and demographic data were obtained through questionnaires. Urinary arsenic and mercury levels were measured using hydride generation-atomic fluorescence spectrometer. Multivariate regression model was employed to investigate the relationship between urinary arsenic levels and sperm DNA methylation status at H19, Meg3 and Peg3, measured by pyrosequencing, and evaluating the interaction with mercury. RESULTS After adjusting potential confounds factors by multivariate regression model, the results indicated a significantly positive relationship between urinary arsenic levels and the methylation status of Meg3 at both mean level (β = + 0.125, p < 0.001) and all individual CpGs, i.e., CpG1 (β = + 0.094, p < 0.001), CpG2 (β = + 0.132, p < 0.001), CpG3 (β = + 0.121, p < 0.001), CpG4 (β = + 0.142, p < 0.001), CpG5 (β = + 0.111, p < 0.001), CpG6 (β = + 0.120, p < 0.001), CpG7 (β = + 0.143, p < 0.001), CpG8 (β = + 0.139, p < 0.001) of Meg3 DMRs. The interaction effects analysis indicated the interaction effects of arsenic and mercury on Meg3 were not existing. CONCLUSIONS Paternal nonoccupational exposure to arsenic induces the altered DNA methylation status of Meg3 in human sperm DNA. In addition, the interaction effects of arsenic and mercury on Meg3 were not existing. These findings would implicate the sensibility of sperm epigenome for environmental pollutions.
Collapse
Affiliation(s)
- Zhaoxu Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Children's Hospital Capital Institute of Pediatrics, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Graduate School of Peking Union Medical College, Beijing, 100005, China.
| | - Chuo Zhao
- School of Public Health, Hebei University, Baoding, 071000, Hebei, China
| | - Jia Yang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yufeng Ma
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mei Qiang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Joardar M, Mukherjee P, Das A, Mridha D, De A, Chowdhury NR, Majumder S, Ghosh S, Das J, Alam MR, Rahman MM, Roychowdhury T. Different levels of arsenic exposure through cooked rice and its associated benefit-risk assessment from rural and urban populations of West Bengal, India: a probabilistic approach with sensitivity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27249-x. [PMID: 37156951 DOI: 10.1007/s11356-023-27249-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Rice arsenic (As) contamination and its consumption poses a significant health threat to humans. The present study focuses on the contribution of arsenic, micronutrients, and associated benefit-risk assessment through cooked rice from rural (exposed and control) and urban (apparently control) populations. The mean decreased percentages of As from uncooked to cooked rice for exposed (Gaighata), apparently control (Kolkata), and control (Pingla) areas are 73.8, 78.5, and 61.3%, respectively. The margin of exposure through cooked rice (MoEcooked rice) < 1 signifies the existence of health risk for all the studied exposed and control age groups. The respective contributions of iAs (inorganic arsenic) in uncooked and cooked rice are nearly 96.6, 94.7, and 100% and 92.2, 90.2, and 94.2% from exposed, apparently control, and control areas. LCR analysis for the exposed, apparently control, and control populations (adult male: 2.1 × 10-3, 2.8 × 10-4, 4.7 × 10-4; adult female: 1.9 × 10-3, 2.1 × 10-4, 4.4 × 10-4; and children: 5.8 × 10-4, 4.9 × 10-5, 1.1 × 10-4) through cooked rice is higher than the recommended value, i.e., 1 × 10-6, respectively, whereas HQ > 1 has been observed for all age groups from the exposed area and adult male group from the control area. Adults and children from rural area showed that ingestion rate (IR) and concentration are the respective influencing factors towards cooked rice As, whereas IR is solely responsible for all age groups from urban area. A vital suggestion is to reduce the IR of cooked rice for control population to avoid the As-induced health risks. The average intake (μg/day) of micronutrients is in the order of Zn > Se for all the studied populations and Se intake is lower for the exposed population (53.9) compared to the apparently control (140) and control (208) populations. Benefit-risk assessment supported that the Se-rich values in cooked rice are effective in avoiding the toxic effect and potential risk from the associated metal (As).
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Payal Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Sharmistha Majumder
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Swetanjana Ghosh
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jagyashila Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
Das S, Ghosh A, Powell MA, Banik P. Meta-analyses of arsenic accumulation in Indica and Japonica rice grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58827-58840. [PMID: 36997784 DOI: 10.1007/s11356-023-26729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Arsenic (As) is a worldwide concern because of its toxic effects on crop yield and prevalence in the food chain. Rice is consumed by half of the world's population and is known to accumulate As. The present study reviews the available literatures on As accumulation in different subspecies of rice grains (indica, japonica and aromatic) and performs meta-analyses for grain size and texture; these data include 120 studies conducted over the last 15 years across different parts of the world. Aromatic rice varieties accumulate less As with its 95% confidence interval (CI) being 73.90 - 80.94 μg kg-1 which is significantly lower than the As accumulation by either indica or japonica rice varieties with their overall 95% CI being 135.48 - 147.78 μg kg-1 and 204.71 - 212.25 μg kg-1, respectively. Japonica rice varieties accumulate higher As than indica rice grains and within each subspecies polished and/or shorter rice grains accumulated significantly lower As compared to larger and/or unpolished grains; 95% CIs for the polished indica and japonica rice varieties are seen to be 96.33 - 111.11 μg kg-1 and 203.34 - 211.09 μg kg-1, respectively, whereas the same for unpolished varieties are seen to be 215.99 - 238.18 μg kg-1 and 215.27 - 248.63 μg kg-1, respectively. This shows that rice-based As bioaccumulation in humans could be lowered by increased use of aromatic or polished indica rice varieties, followed by the cultivation of shorter polished grains of japonica rice. These findings will be important to inform policy on rice cultivation and dietary uptake of As for a large portion of the global population.
Collapse
Affiliation(s)
- Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Abhik Ghosh
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Michael A Powell
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences (ALES), University of Alberta, Edmonton, CA, Canada
| | - Pabitra Banik
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India.
| |
Collapse
|
5
|
Esform A, Farkhondeh T, Samarghandian S, Rezaei M, Naghizadeh A. Environmental arsenic exposure and its toxicological effect on thyroid function: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:281-289. [PMID: 34090316 DOI: 10.1515/reveh-2021-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES This study was performed to review epidemiological evidence related to Arsenic (As) effects on the thyroid function by focusing on the serum thyroid hormone concentration. CONTENT As, one of the main pollutants, has been recognized as an endocrine-disrupting agent that may affect the function of thyroid as shown by experimental studies. SUMMARY This systematic study indicates the association between As exposure and thyroid dysfunction. The studies have shown an association between serum and urine concentration of arsenic and thyroid dysfunction. Most of them reported the association between increase in the serum or urine As levels and decrease in the triiodothyronine (T3) and thyroxine (T4), and also elevation in the thyrotropic hormone (TSH) levels. OUTLOOK Our findings related to the effects of As on the function of thyroid in humans are still limited and future studies should be done to address this question.
Collapse
Affiliation(s)
- Adeleh Esform
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maryam Rezaei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| |
Collapse
|
6
|
Identification of Soil Arsenic Contamination in Rice Paddy Field Based on Hyperspectral Reflectance Approach. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toxic heavy metals in soil negatively impact soil’s physical, biological, and chemical characteristics, and also human wellbeing. The traditional approach of chemical analysis procedures for assessing soil toxicant element concentration is time-consuming and expensive. Due to accessibility, reliability, and rapidity at a high temporal and spatial resolution, hyperspectral remote sensing within the Vis-NIR region is an indispensable and widely used approach in today’s world for monitoring broad regions and controlling soil arsenic (As) pollution in agricultural land. This study investigates the effectiveness of hyperspectral reflectance approaches in different regions for assessing soil As pollutants, as well as a basic review of space-borne earth observation hyperspectral sensors. Multivariate and various regression models were developed to avoid collinearity and improve prediction capabilities using spectral bands with the perfect correlation coefficients to access the soil As contamination in previous studies. This review highlights some of the most significant factors to consider when developing a remote sensing approach for soil As contamination in the future, as well as the potential limits of employing spectroscopy data.
Collapse
|
7
|
Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awasthi JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149477. [PMID: 34426348 DOI: 10.1016/j.scitotenv.2021.149477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption. In this review, we are trying to summarize the documents on the impact of As contamination and phytotoxicity in past two decades. The unique feature of this attempt is wide spectrum coverages of topics, and that makes it truly an interdisciplinary review. Aprat from the behaviour of As in rice field soil, we have documented the cellular and molecular response of rice plant upon exposure to As. The potential of various mitigation strategies with particular emphasis on using biochar, seed priming technology, irrigation management, transgenic variety development and other agronomic methods have been critically explored. The review attempts to give a comprehensive and multidiciplinary insight into the behaviour of As in Paddy -Water - Soil - Plate prospective from molecular to post-harvest phase. From the comprehensive literature review, we may conclude that considerable emphasis on rice grain, nutritional and anti-nutritional components, and grain quality traits under arsenic stress condition is yet to be given. Besides these, some emerging mitigation options like seed priming technology, adoption of nanotechnological strategies, applications of biochar should be fortified in large scale without interfering with the proper use of biodiversity.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Suman Samanta
- Division of Agricultural Physics, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sukamal Sarkar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, Maharashtra, India.
| | - Saikat Saha
- Nadia Krishi Vigyan Kendra, Bidhan Chandra Krishi Viswavidyalaya, Gayeshpur, Nadia 741234, West Bengal, India.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Alok Chandra Samal
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | | | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Koushik Bramhachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
8
|
Biswas B, Chakraborty A, Chatterjee D, Pramanik S, Ganguli B, Majumdar KK, Nriagu J, Kulkarni KY, Bansiwal A, Labhasetwar P, Bhowmick S. Arsenic exposure from drinking water and staple food (rice): A field scale study in rural Bengal for assessment of human health risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113012. [PMID: 34837872 DOI: 10.1016/j.ecoenv.2021.113012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a well-known carcinogen with emerging reports showing a range of health outcomes even for low to moderate levels of exposure. This study deals with arsenic exposure and associated increased lifetime cancer risk for populations in arsenic-endemic regions of rural Bengal, where arsenic-safe drinking water is being supplied at present. We found a median total exposure of inorganic arsenic to be 2. 9 μg/Kg BW/day (5th and 95th percentiles were 1.1 μg/Kg BW/day and 7.9 μg/Kg BW/day); with major contribution from cooked rice intake (2.4 µg/Kg BW/day). A significant number of households drank arsenic safe water but used arsenic-rich water for rice cooking. As a result, 67% participants had inorganic arsenic intake above the JEFCA threshold value of 3 μg/Kg BW/day for cancer risk from only rice consumption when arsenic contaminated water was used for cooking (median: 3.5 μg/Kg BW/day) compared to 29% participants that relied on arsenic-free cooking water (median: 1.0 µg/kg BW/day). Arsenic in urine samples of study participants ranged from 31.7 to 520 µg/L and was significantly associated with the arsenic intake (r = 0.76); confirming the preponderance of arsenic exposure from cooked rice. The median arsenic attributable cancer risks from drinking water and cooked rice were estimated to be 2.4 × 10-5 and 2.7 × 10-4 respectively, which further emphasized the importance of arsenic exposure from staple diet. Our results show that any mitigation strategy should include both drinking water and local staple foods in order to minimize the potential health risks of arsenic exposure.
Collapse
Affiliation(s)
- Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bhaswati Ganguli
- Department of Statistics, University of Calcutta, 35 Bullygunge Circular Road, Kolkata, West Bengal 700 019, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College and Hospital, Jadavpur, Kolkata, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Ketki Y Kulkarni
- Sophisticated Environmental Analytical Facility (SAEF), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Amit Bansiwal
- Sophisticated Environmental Analytical Facility (SAEF), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pawan Labhasetwar
- Water Technology & Management Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Bhattacharyya K, Sengupta S, Pari A, Halder S, Bhattacharya P, Pandian BJ, Chinchmalatpure AR. Characterization and risk assessment of arsenic contamination in soil-plant (vegetable) system and its mitigation through water harvesting and organic amendment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2819-2834. [PMID: 33411124 DOI: 10.1007/s10653-020-00796-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Field experiments with vegetables [cauliflower (Brassica oleracea var. botrytis), tomato (Solanum lycopersicum) and spinach (Spinacia oleracea)] were conducted at geogenically arsenic-contaminated Ghentugachi village in West Bengal, India, for two consecutive years to study arsenic accumulation by the selected vegetables and to explore the efficiencies of use of harvested/harnessed water and organic amendments (Mustard Cake, Vermicompost and Farm Yard Manure) in reducing arsenic load in soil-plant system. Results revealed that arsenic accumulations in the cauliflower head, spinach leaf and tomato fruit were in the range of 0.15-0.17, 2.73-3.00 and 0.08 mg kg-1. Organic amendment and pond water irrigation when applied either separately or together were found to be effective in reducing arsenic contamination in soil-plant system compared to irrigation with shallow tube well-drafted underground water. Vermicompost remained most successful among the organic amendments. Conjunctive use of surface (pond) and ground water also significantly reduced the level of arsenic in the system. The risk of dietary intake of arsenic through the selected vegetables was computed through % Provisional Tolerable Weekly Intake, Hazard Quotient and Target Cancer Risk. Cauliflower and tomato were found safe in the individual contribution to food chain, while consumption of spinach leaf (possessing 10.4-22.6% more arsenic than maximum tolerable limits) remained unsafe in all dietary risk measures.
Collapse
Affiliation(s)
- Kallol Bhattacharyya
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sudip Sengupta
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Arnab Pari
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sanjay Halder
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Parijat Bhattacharya
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - B J Pandian
- Water Technology Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Anil R Chinchmalatpure
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, 392012, India
| |
Collapse
|
10
|
Guo W, Zhang Z, Wang H, Qin H, Fu Z. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112493. [PMID: 33823409 DOI: 10.1016/j.jenvman.2021.112493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/07/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In this study, samples of daily foods, drinking waters, surface waters, and soils were collected and screened to investigate the external exposure of Sb and As from various intake pathways in typical Sb mining area. Biomarker samples of residents were analyzed to monitor internal exposure characteristic of Sb and As in human body. Exposure dosages of As and Sb and transfer of Sb and As from environment to human body were estimated based on the external and internal exposure. The following results were obtained: daily intakes of food accounted for major intakes of both Sb and As, and highlighted the significance of foods intakes from rice and vegetable. The results of Monte Carlo simulations showed that total daily intake of Sb(n = 1444)and As(n = 1131) approximately reached 1.08 × 10-2 mg/kg/d and 1.19 × 10-3 mg/kg/d, in which 98.82% and 63.07% of residents have exceeded the threshold dosages of Sb and As. The contaminants contents in biomarkers indicated that Sb exhibited the similar internal exposure as As, while the total transfer rate of Sb from environment to human were estimated as approximately 2.04-2.40 times lower than As. This study also suggested that drinking water is another important pathway with high bioavailability and male resident may present higher priority than female in uptake of Sb and As. The paper suggested the similarity and difference on bioavailability existed in Sb and its group V elements, As, that would provide the essential information on exposure of Sb and As in the typical Sb mine area.
Collapse
Affiliation(s)
- Wenjing Guo
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhiyong Zhang
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Hao Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hongjie Qin
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key Laboratory of Agro-Environment in Downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing, 210014, China
| | - Zhiyou Fu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
11
|
Hussain MM, Bibi I, Niazi NK, Shahid M, Iqbal J, Shakoor MB, Ahmad A, Shah NS, Bhattacharya P, Mao K, Bundschuh J, Ok YS, Zhang H. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145040. [PMID: 33581647 DOI: 10.1016/j.scitotenv.2021.145040] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination is a well-recognized environmental and health issue, threatening over 200 million people worldwide with the prime cases in South and Southeast Asian and Latin American countries. Rice is mostly cultivated under flooded paddy soil conditions, where As speciation and accumulation by rice plants is controlled by various geo-environmental (biotic and abiotic) factors. In contrast to other food crops, As uptake in rice has been found to be substantially higher due to the prevalence of highly mobile and toxic As species, arsenite (As(III)), under paddy soil conditions. In this review, we discussed the biogeochemical cycling of As in paddy soil-rice system, described the influence of critical factors such as pH, iron oxides, organic matter, microbial species, and pathways affecting As transformation and accumulation by rice. Moreover, we elucidated As interaction with organic and inorganic amendments and mineral nutrients. The review also elaborates on As (im)mobilization processes and As uptake by rice under the influence of different mineral nutrients and amendments in paddy soil conditions, as well as their role in mitigating As transfer to rice grain. This review article provides critical information on As contamination in paddy soil-rice system, which is important to develop suitable strategies and mitigation programs for limiting As exposure via rice crop, and meet the UN's key Sustainable Development Goals (SDGs: 2 (zero hunger), 3 (good health and well-being), 12 (responsible consumption and production), and 13 (climate action)).
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Muhammad Bilal Shakoor
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands; KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program, & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
12
|
Samal AC, Bhattacharya P, Biswas P, Maity JP, Bundschuh J, Santra SC. Variety-specific arsenic accumulation in 44 different rice cultivars (O. sativa L.) and human health risks due to co-exposure of arsenic-contaminated rice and drinking water. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124804. [PMID: 33333390 DOI: 10.1016/j.jhazmat.2020.124804] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/21/2020] [Accepted: 12/05/2020] [Indexed: 05/26/2023]
Abstract
Arsenic (carcinogenic) is a global health concern due to its presence in groundwater and subsequent accumulation in cultivated-rice via irrigation. The present work focused on the evaluation of arsenic concentration in groundwater, different cultivated-rice varieties (studied together for the first-time) and related health-risks. Arsenic in groundwater (0.26-0.73 mg/L) exceeded the World Health Organization limit for drinking water (0.01 mg/L). Arsenic concentration in rice-grains was found in the range: < 0.0003-2.6 mg/kg dry-weights, where 42 rice varieties (out of total 44) exceeded the Codex Alimentarius Commission limit of polished-rice (0.2 mg/kg). The variety-specific differential-response of arsenic-accumulation was observed (first-time report), where high yielding rice varieties (HYV) were more prone to accumulate arsenic in comparison to local varieties (LV), however, 'Radhunipagol' (an aromatic LV) exhibited as a moderate arsenic-accumulator (BCF = 2.8). The cumulative estimated-daily-intakes (EDICumulative) of arsenic in central-tendency-exposure were observed to be 0.029, 0.031 and 0.04 mg/kg-day among children, teenagers and adults, respectively. The EDICumulative for possible reasonable-maximum-exposure among the above mentioned subpopulation was 0.038, 0.04 and 0.05 mg/kg-day, respectively. The evaluated Cumulative Hazard Index and Individual Excess Lifetime Cancer Risk values suggested that the studied population is under extremely severe cancerous and noncancerous risks to arsenic co-exposures via drinking water and rice.
Collapse
Affiliation(s)
- Alok C Samal
- Department of Environmental Science, University of Kalyani, West Bengal 741235, India
| | - Piyal Bhattacharya
- Department of Environmental Science, Kanchrapara College, West Bengal 743145, India.
| | - Priyanka Biswas
- Department of Environmental Science, University of Kalyani, West Bengal 741235, India
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia
| | - Subhas C Santra
- Department of Environmental Science, University of Kalyani, West Bengal 741235, India
| |
Collapse
|
13
|
Das A, Majumder S, Barman S, Chatterjee D, Mukhopadhyay S, Ghosh P, Pal CN, Saha G. Influence of basin-wide geomorphology on arsenic distribution in Nadia district. ENVIRONMENTAL RESEARCH 2021; 192:110314. [PMID: 33038360 DOI: 10.1016/j.envres.2020.110314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 05/26/2023]
Abstract
The present study depicts the geospatial relation between basinal geomorphology and heterogeneous arsenic (As) distribution in the Bengal Delta Plain (BDP). The distribution pattern largely varies throughout the study area (higher: Karimpur-II AsT average 214.73 μgL-1; lower: Tehatta AsT average 27.84 μgL-1). Both safe (low As) and unsafe (high As) areas are identified within the single shallow aquifer (<50 m), where they are in close vicinity. Statistical analysis shows that Padma river basin is the most contaminated (AsT avg. 214.7 ± 160 μgL-1) and Churni-Ichhamati river basin (AsT avg. 108.54 ± 89.43 μgL-1) is the least contaminated with groundwater As. Moreover, the role of geomorphological features influencing the geospatial distribution of As has been studied and meandering features are found to correlate with high As wells (r2 = 0.52), whereas, natural levees are correlated with safer wells (r2 = 0.57). In the meandering features, the deposition of sedimentary organic matter (SOM) facilitates the reduction of As bearing Fe(III) oxy-hydroxides and subsequent higher As mobilization. In natural levees, surface derived labile organic matter (DOC and FOM, Fresh Organic Matter) from different land-use patterns (Habitation, degraded waterbodies, cattle dwelling, sanitation, etc.) is transported to shallow aquifers (notably protein rich leakage sewage). The fresh organic carbon transported to the shallow aquifers, thereby triggering As release by microbe-mediated reductive dissolution of hydrated Fe(III)-oxides (HFO). Iron reduction (mostly amorphous) is playing an important role in the release of As depending on basin-wise sedimentation pattern, local recharge, accumulation of silt/clay/micas at the top with corresponding reactive oxidation of organic carbon. These are important components and often helping the cyclic water-rock interaction of As causing such heterogeneous geospatial distribution. The delineation of aquifer with regard to safer and unsafe areas would immensely help to supply safe drinking water to the rural community.
Collapse
Affiliation(s)
- Ayan Das
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | - Santanu Majumder
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India; Department of Geology & Geophysics, Texas A&M University, College Station, TX, 77843-3115, USA
| | - Sandipan Barman
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India.
| | - Sutapa Mukhopadhyay
- Department of Geography, Visva-Bharati University, Santiniketan, Birbhum, West Bengal, India
| | - Pinaki Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal, India
| | - Chandra Nath Pal
- Department of Statistics, University of Kalyani, Kalyani, West Bengal, India
| | | |
Collapse
|
14
|
Liang C, Han Y, Ma L, Wu X, Huang K, Yan S, Li Z, Xia X, Pan W, Sheng J, Wang Q, Tong S, Cao Y, Tao F. Low levels of arsenic exposure during pregnancy and maternal and neonatal thyroid hormone parameters: The determinants for these associations. ENVIRONMENT INTERNATIONAL 2020; 145:106114. [PMID: 33035893 DOI: 10.1016/j.envint.2020.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The potential maternal and neonatal thyrotoxicity associated with exposure to arsenic during pregnancy is very limited and unclear. OBJECTIVES This study aimed to examine the associations between arsenic exposure levels in maternal and cord serum and maternal and neonatal thyroid hormone parameters in a prospective birth cohort study. METHODS The study including 2089 mother-neonate pairs was based upon Ma'an Shan birth cohort study in China. The exposure variables including maternal serum arsenic levels in the first, second and third trimester and average arsenic exposure level during pregnancy and cord serum arsenic level. Maternal serum TSH and FT4 levels in the first, second and third trimester and cord serum TSH and FT4 levels were determined using the electrochemiluminescence immunoassay with Cobas Elecsys 411. Linear mixed models were used to examine associations between arsenic exposure variables during pregnancy and maternal thyroid hormone parameters, and multiple linear regression analyses were used to examine associations between arsenic exposure during pregnancy and neonatal thyroid hormone parameters. Bayesian kernal machine regression (BKMR) analyses based on a kernel function were also used to examine the effects of exposure to metal mixtures (arsenic, mercury, cadmium and selenium). RESULTS The geometric means of arsenic exposure levels across 3 trimesters were 1.74 μg/L, 1.81 μg/L and 1.99 μg/L, respectively, and 1.90 μg/L in cord serum; the geometric means of maternal FT4 levels across 3 trimesters were 16.91 pmol/L, 11.91 pmol/L and 13.16 pmol/L, respectively, and 16.10 pmol/L in cord serum; the geometric means of maternal TSH levels across 3 trimesters were 1.27 μIU/mL, 2.32 μIU/mL and 2.08 μIU/mL, respectively, and 8.47 μIU/mL in cord serum. Maternal serum arsenic levels in the first, seond, third trimester and average arsenic exposure level during pregnancy were all not associated with maternal thyroid hormone parameters after adjustment for all the covariates, the adjusted β (95% CI) were -0.002 (-0.10 to 0.09), 0.05 (-0.05 to 0.16), -0.09 (-0.17 to 0.003) and -0.05 (-0.22 to 0.11) for maternal FT4, respectively; and -0.005 (-0.04 to 0.03), -0.003 (-0.04 to 0.03), -0.004 (-0.03 to 0.02) and -0.01 (-0.06 to 0.04) for maternal lnTSH, respectively. Maternal serum arsenic levels in the first, second trimester and average arsenic exposure level during pregnancy were all inversely associated with neonatal FT4 level after adjustment for all the confounders, the adjusted β (95% CI) were -0.19 (-0.31 to -0.07), -0.14 (-0.26 to -0.01), -0.22 (-0.42 to -0.02), respectively; and cord serum arsenic level was positively related with neonatal TSH level, the adjusted β (95% CI) were 0.04 (0.001 to 0.08). The adverse joint toxic effect of the four metals in maternal serum in the first trimester and in cord serum on neonatal thyroid hormone parameters were also found. CONCLUSIONS In this study, exposure to low levels of arsenic during pregnancy could directly affect neonatal thyroid hormone parameters without being mediated by maternal effect of exposure, and maternal serum arsenic levels in the first, second trimester and average arsenic exposure level during pregnancy and cord serum arsenic level may be risk factors affecting neonatal thyroid hormones. These findings indicate that neonates are more sensitive to the thyrotoxicity of arsenic exposure even at low levels. In addition, the adverse joint toxic effect of metal mixtures is also worthy of attention.
Collapse
Affiliation(s)
- Chunmei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yan Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liya Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Zhijuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Weijun Pan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan 243011, China
| | - Jie Sheng
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qunan Wang
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shilu Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Yunxia Cao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
15
|
Xue L, Zhao Z, Zhang Y, Liao J, Wu M, Wang M, Sun J, Gong H, Guo M, Li S, Zheng Y. Dietary exposure to arsenic and human health risks in western Tibet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138840. [PMID: 32417471 DOI: 10.1016/j.scitotenv.2020.138840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The health effects of drinking water exposure to inorganic arsenic are well known but are less well defined for dietary exposure. The rising concerns of arsenic risks from diet motivated this study of arsenic concentrations in highland barley, vegetables, meat, and dairy products to evaluate arsenic exposure source and to assess health risks among rural residents of Ngari area, western Tibet. Total arsenic and arsenic speciation were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography combined with ICP-MS (HPLC-ICP-MS) respectively. Average total arsenic concentrations of 0.18 ± 0.21 (n = 45, median: 0.07 mg·kg-1), 0.40 ± 0.57 (n = 17, median: 0.15 mg·kg-1), 0.21 ± 0.16 (n = 12, median: 0.17 mg·kg-1), and 0.18 ± 0.08 (n = 11, median: 0.22 mg·kg-1) were observed in highland barley, vegetables, meat, and dairy products, respectively. Inorganic arsenic was determined to be the main species of arsenic in highland barley, accounting for about 64.4 to 99.3% (average 83.3%) of total arsenic. Nearly half (44.4%) of the local residents had ingested >3.0 × 10-4 mg·kg-1·d-1 daily dose of arsenic from highland barley alone, above the maximum oral reference dose recommended by the United States Environmental Protection Agency (USEPA). The inorganic arsenic daily intake from highland barley was 3.6 × 10-4 mg·kg-1·d-1. Dietary exposure to inorganic arsenic alone increased the cancer risk probability to 5.4 in 10,000, assuming that the inorganic arsenic in highland barley has the same carcinogenic effects as that in water.
Collapse
Affiliation(s)
- Lili Xue
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenjie Zhao
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinfeng Zhang
- National Plateau Wetlands Research Center, The College of Wetlands, Southwest Forestry University, Kunming 650000, China
| | - Jie Liao
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wu
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingguo Wang
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China
| | - Jing Sun
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hongqiang Gong
- Tibet Center for Disease Control and Prevention, Lhasa 850000, China
| | - Min Guo
- Tibet Center for Disease Control and Prevention, Lhasa 850000, China
| | - Shehong Li
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
16
|
Chowdhury NR, Das A, Joardar M, De A, Mridha D, Das R, Rahman MM, Roychowdhury T. Flow of arsenic between rice grain and water: Its interaction, accumulation and distribution in different fractions of cooked rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138937. [PMID: 32402904 DOI: 10.1016/j.scitotenv.2020.138937] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 05/19/2023]
Abstract
Arsenic (As) contaminated water is a major threat to human health when used for drinking, cooking and irrigational purposes. Rice being consumed by 50% of the world's population, supplies considerable amount of As to the human body. Our study provides a detailed understanding of As distribution in each fraction of rice while cooking (viz. uncooked rice, cooking water, cooked rice and gruel/total discarded water), ultimately leading to a better explanation of As movement between rice grain and water. A significant decrease of As was observed in cooked rice (34-89% and 23-84% for sunned and parboiled rice respectively) when cooked with low-As containing water, <3 μg/l and moderate As-contaminated water, 36-58 μg/l (3-50% and 12-61% for sunned and parboiled rice respectively) with increasing selenium (Se) concentration. Movement of As from water to rice grain has been inferred with increasing water As (84-105 μg/l), which results in a significant increase of As in cooked rice (24-337% and 114% for sunned and parboiled rice, respectively) with decreasing Se concentration. Arsenic speciation study emphasizes the fact of similar reduction percentage of As (III), As (V) and total As in wet cooked rice when cooked with low-As containing water. The SAMOE value in 'risk thermometer' supports the higher risk of suffering from wet cooked rice (class 4) with increasing cooking water As concentration (class 3 to class 5).
Collapse
Affiliation(s)
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Reshmi Das
- Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Australia
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
17
|
He S, Wang X, Zheng C, Yan L, Li L, Huang R, Wang H. Enhanced arsenic depletion by rice plant from flooded paddy soil with soluble organic fertilizer application. CHEMOSPHERE 2020; 252:126521. [PMID: 32203780 DOI: 10.1016/j.chemosphere.2020.126521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
In this study, the promoting effect of soluble organic fertilizer (SOF) on arsenic (As) release and depletion by rice plant in flooded paddy soil was investigated. The increased soil DOC with SOF incorporation displayed a significantly positive correlation with As in soil solution (r = 0.415, p < 0.01). Porewater As with SOF addition was higher than control from 77 days. Soil As depletion by rice plant was enhanced by SOF application, with porewater As in SM + Rice + SOF being 49% lower than that in SM + Rice at harvest. Compared to SM + Rice, the averaged soil profile of As measured by diffusive gradients in thin films (DGT) declined by 4% in tillering stage and by 16% in grain-filling stage in SM + Rice + SOF. As a result, As accumulation in each rice plant was increased by 35% at the presence of SOF, with 92% of total As retained in roots. With SOF amendment, 8% of total As in the tested soil was removed by harvesting rice biomass including root. In this way, an estimated 184 mg As m-2 can be depleted from paddy soil at the end of one rice-growing season. These results revealed the potential of SOF in enhancing soil As depletion by rice plant under flooded condition, providing a cost-effective pathway for efficient cleanup of bioavailable As from rice paddies.
Collapse
Affiliation(s)
- Sixue He
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, China
| | - Xin Wang
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, China.
| | - Chujing Zheng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Lu Yan
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, China
| | - Liang Li
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, China
| | - Rui Huang
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Wang
- Key Laboratory of Environmental Heavy-Metal Contamination and Ecological Remediation, College of Resources and Environmental Science, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
18
|
Mao X, Hu X, Wang Y, Xia W, Zhao S, Wan Y. Temporal trend of arsenic in outdoor air PM 2.5 in Wuhan, China, in 2015-2017 and the personal inhalation of PM-bound arsenic: implications for human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21654-21665. [PMID: 32279249 DOI: 10.1007/s11356-020-08626-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Arsenic in fine air particulate matter (PM2.5) has been identified as an important factor responsible for the morbidity of lung cancer, which has increased sharply in many regions of China. Some reports in China have shown that arsenic in the air exceeds the ambient air quality standard value, while long-term airborne arsenic concentrations in central China and human exposure via inhalation of PM-bound arsenic (inhalable airborne PM) have not been well characterized. In this study, 579 outdoor air PM2.5 samples from Wuhan, a typical city in central China, were collected from 2015 to 2017, and arsenic was measured by inductively coupled plasma-mass spectrometry. Personal exposure to PM-bound arsenic via inhalation and urinary arsenic concentration were also measured. The concentrations of arsenic in PM2.5 were in the range of 0.42-61.6 ng/m3 (mean 8.48 ng/m3). The average concentration of arsenic in 2015 (10.7 ng/m3) was higher than that in 2016 (6.81 ng/m3) and 2017 (8.18 ng/m3), exceeded the standard value. The arsenic concentrations in spring and winter were higher than those in summer and autumn. No significant differences (p > 0.05) were found among different sites. The daily intake of arsenic inhalation based on PM10 samples collected by personal samplers (median, 10.8 ng/m3) was estimated. Urban residents inhaled higher levels of PM-bound arsenic than rural residents. Daily intake of arsenic via inhalation accounted for a negligible part (< 1%) of the total daily intake of arsenic (calculated based on excreted urinary arsenic); however, potential associations between the adverse effects (e.g., lung adenocarcinoma) and inhaled PM-bound arsenic require more attention, particularly for those who experience in long-term exposure. This study is the first report of a 3-year temporal trend of airborne PM2.5-bound arsenic in central China.
Collapse
Affiliation(s)
- Xiang Mao
- Institute of Environmental Health, Wuhan Center for Disease Control and Prevention, Wuhan, 430024, People's Republic of China
| | - Xun Hu
- Institute of Environmental Health, Wuhan Center for Disease Control and Prevention, Wuhan, 430024, People's Republic of China
| | - Yao Wang
- Institute of Environmental Health, Wuhan Center for Disease Control and Prevention, Wuhan, 430024, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Center for Disease Control and Prevention, Wuhan, 430024, People's Republic of China.
| |
Collapse
|
19
|
Halder D, Saha JK, Biswas A. Accumulation of essential and non-essential trace elements in rice grain: Possible health impacts on rice consumers in West Bengal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135944. [PMID: 31841839 DOI: 10.1016/j.scitotenv.2019.135944] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Rice is the major staple food to the population in rural West Bengal, India and Bangladesh. Depletion and excess accumulation of different trace elements, which are essential and non-essential to the human body, in rice can have a detrimental impact on the rice consumer. Therefore, this study has investigated the accumulation of different trace elements in rice consumed in rural households in West Bengal. The mean concentration (mg kg-1) of essential elements in rice follows the order of Fe (39.4) > Zn (9.79) > Mn (4.40) > Cu (3.26) > Se (0.28) > Co (0.03), while this order for non-essential elements is Pb (1.70) > As (0.34) > Ni (0.22) > Cd (0.04). In general, accumulation in rice is higher for elements that show higher mobility under reducing conditions (e.g. Fe, Mn, As, etc.) compared to elements with lower mobility under such conditions (e.g. Se, Cd, etc.). These orders of accumulation can be attributed to the irrigation practice of continuous flooding of the soil during rice cultivation and the abundance of these elements in the paddy soil itself. By combining these analytical results to the data obtained from questionnaire survey it is estimated that rice consumption can be either enough or a major source to fulfill the daily requirement of Fe, Cu, Se, Mn, and Zn necessary for different physiological functions in the human body for the population in rural Bengal. At the same time, it can be a potential route of As, Cd, Ni, and Pb exposure to develop their non-carcinogenic and carcinogenic health effects among the population. This study highlights that attempts should be made to reduce the accumulation of other non-essential elements together with As in rice grain to ensure the health safety of the people who rarely get a balanced diet and relay on rice consumption to meet the daily calorific intake in rural Bengal.
Collapse
Affiliation(s)
- Dipti Halder
- Division of Environmental Soil Science, Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh, India.
| | - Jayanta Kumar Saha
- Division of Environmental Soil Science, Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal, Madhya Pradesh, India
| | - Ashis Biswas
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh 462066, India
| |
Collapse
|
20
|
Thakre PK, Golla U, Biswas A, Tomar RS. Identification of Histone H3 and H4 Amino Acid Residues Important for the Regulation of Arsenite Stress Signaling in Saccharomyces cerevisiae. Chem Res Toxicol 2020; 33:817-833. [PMID: 32032493 DOI: 10.1021/acs.chemrestox.9b00471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenic is an environmental carcinogen that causes many diseases in humans, including cancers and organ failures, affecting millions of people in the world. Arsenic trioxide is a drug used for the treatment of acute promyelocytic leukemia (APL). In the present study, we screened the synthetic histone H3 and H4 library in the presence of arsenite to understand the role of histone residues in arsenic toxicity. We identified residues of histone H3 and H4 crucial for arsenite stress response. The residues H3T3, H3G90, H4K5, H4G13, and H4R95 are required for the activation of Hog1 kinase in response to arsenite exposure. We showed that a reduced level of Hog1 activation increases the intracellular arsenic content in these histone mutants through the Fps1 channel. We have also noticed the reduced expression of ACR3 exporter in the mutants. The growth defect of mutants caused by arsenite exposure was suppressed in hyperosmotic conditions, in a higher concentration of glucose, and upon deletion of the FPS1 gene. The arsenite sensitive histone mutants also showed a lack of H3K4 methylation and reduced H4K16 acetylation. Altogether, we have identified the key residues in histone H3 and H4 proteins important for the regulation of Hog1 signaling, Fps1 activity, and ACR3 expression during arsenite stress.
Collapse
Affiliation(s)
- Pilendra Kumar Thakre
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Upendarrao Golla
- Division of Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ashis Biswas
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences (EES), Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
21
|
Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri D, Kumar U, Mohanty S, Panneerselvam P, Chatterjee D, Satapathy BS, Pathak H. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134330. [PMID: 31522043 DOI: 10.1016/j.scitotenv.2019.134330] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 05/04/2023]
Abstract
Rice is one of the principal staple foods, essential for safeguarding the global food and nutritional security, but due to different natural and anthropogenic sources, it also acts as one of the biggest reservoirs of potentially toxic metal(loids) like As, Hg, Se, Pb and Cd. This review summarizes mobilization, translocation and speciation mechanism of these metal(loids) in soil-plant continuum as well as available cost-effective remediation measures and future research needs to eliminate the long-term risk to human health. High concentrations of these elements not only cause toxicity problems in plants, but also in animals that consume them and gradual deposition of these elements leads to the risk of bioaccumulation. The extensive occurrence of contaminated rice grains globally poses substantial public health risk and merits immediate action. People living in hotspots of contamination are exposed to higher health risks, however, rice import/export among different countries make the problem of global concern. Accumulation of As, Hg, Se, Pb and Cd in rice grains can be reduced by reducing their bioavailability, and controlling their uptake by rice plants. The contaminated soils can be reclaimed by phytoremediation, bioremediation, chemical amendments and mechanical measures; however these methods are either too expensive and/or too slow. Integration of innovative agronomic practices like crop establishment methods and improved irrigation and nutrient management practices are important steps to help mitigate the accumulation in soil as well as plant parts. Adoption of transgenic techniques for development of rice cultivars with low accumulation in edible plant parts could be a realistic option that would permit rice cultivation in soils with high bioavailability of these metal(loid)s.
Collapse
Affiliation(s)
- Rubina Khanam
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - A K Nayak
- ICAR - National Rice Research Institute, Cuttack, Odisha, India.
| | - Md Shahid
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Rahul Tripathi
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - S Vijayakumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | | | - Upendra Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Sangita Mohanty
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - P Panneerselvam
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | | | - B S Satapathy
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - H Pathak
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
22
|
Cao X, Lu Y, Wang C, Zhang M, Yuan J, Zhang A, Song S, Baninla Y, Khan K, Wang Y. Hydrogeochemistry and quality of surface water and groundwater in the drinking water source area of an urbanizing region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109628. [PMID: 31614301 DOI: 10.1016/j.ecoenv.2019.109628] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The water quality in drinking water source area is essential for human health. Due to rapid urbanization and industrialization, the pollutants, especially trace elements, are continuously discharged into aquatic environment and pose a risk to human health. An extensive investigation was carried out in drinking water source area in highly urbanized Tianjin of China. Long-term monitoring data of the water body was collected on conventional physical and chemical parameters (pH, ions, TOC etc.) and metallic elements (Hg, As Cd, Pb, Co, U etc.) from 2005 to 2017. Our results showed that CaMg-Cl-SO4 and CaMg-HCO3 were the two prominent hydrochemical materials, implying that the pollution of aquatic system was mainly caused by anthropogenic activities and mineral dissolution within terms of drinking water guidelines (national and international standards), the concentrations of arsenic (As) and iron (Fe) were beyond the quality standards. Multivariate statistical approaches were applied to assess the origins of the elements. The results showed that human activities, as well as endogenous release, contributed significantly to appearance of trace elements. A transformation from low-trophic state to high-trophic state was in progress from 2005 to 2017 in Yuqiao reservoir, and most of the water was not heavily polluted by trace elements. The health risk assessment suggested that As had the potential to cause carcinogenic harm to the local residents, with daily dietary ingestion as the most predominant pathway.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chenchen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yvette Baninla
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| | - Yichao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Allevato E, Stazi SR, Marabottini R, D'Annibale A. Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109701. [PMID: 31562999 DOI: 10.1016/j.ecoenv.2019.109701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 05/27/2023]
Abstract
Arsenic is a ubiquitous metalloid in the biosphere, and its origin can be either geogenic or anthropic. Four oxidation states (-3, 0, +3 and + 5) characterize organic and inorganic As- compounds. Although arsenic is reportedly a toxicant, its harmful effects are closely related to its chemical form: inorganic compounds are most toxic, followed by organic ones and finally by arsine gas. Although drinking water is the primary source of arsenic exposure to humans, the metalloid enters the food chain through its uptake by crops, the extent of which is tightly dependent on its phytoavailability. Arsenate is taken up by roots via phosphate carriers, while arsenite is taken up by a subclass of aquaporins (NIP), some of which involved in silicon (Si) transport. NIP and Si transporters are also involved in the uptake of methylated forms of As. Once taken up, its distribution is regulated by the same type of transporters albeit with mobility efficiencies depending on As forms and its accumulation generally occurs in the following decreasing order: roots > stems > leaves > fruits (seeds). Besides providing a survey on the uptake and transport mechanisms in higher plants, this review reports on measures able to reducing plant uptake and the ensuing transfer into edible parts. On the one hand, these measures include a variety of plant-based approaches including breeding, genetic engineering of transport systems, graft/rootstock combinations, and mycorrhization. On the other hand, they include agronomic practices with a particular focus on the use of inorganic and organic amendments, treatment of irrigation water, and fertilization.
Collapse
Affiliation(s)
- Enrica Allevato
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| | - Silvia Rita Stazi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy.
| | - Rosita Marabottini
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| | - Alessandro D'Annibale
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| |
Collapse
|
24
|
Khan KM, Parvez F, Zoeller RT, Hocevar BA, Kamendulis LM, Rohlman D, Eunus M, Graziano J. Thyroid hormones and neurobehavioral functions among adolescents chronically exposed to groundwater with geogenic arsenic in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:278-287. [PMID: 31075594 PMCID: PMC6544172 DOI: 10.1016/j.scitotenv.2019.04.426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Groundwater, the major source of drinking water in Bengal Delta Plain, is contaminated with geogenic arsenic (As) enrichment affecting millions of people. Children exposed to tubewell water containing As may be associated with thyroid dysfunction, which in turn may impact neurodevelopmental outcomes. However, data to support such relationship is sparse. The purpose of this study was to examine if chronic water As (WAs) from Holocene alluvial aquifers in this region was associated with serum thyroid hormone (TH) and if TH biomarkers were related to neurobehavioral (NB) performance in a group of adolescents. A sample of 32 healthy adolescents were randomly drawn from a child cohort in the Health Effects of Arsenic Longitudinal Study (HEALS) in Araihazar, Bangladesh. Half of these participants were consistently exposed to low WAs (<10 μg/L) and the remaining half had high WAs exposure (≥10 μg/L) since birth. Measurements included serum total triiodothyronine (tT3), free thyroxine (fT4), thyrotropin (TSH) and thyroperoxidase antibodies (TPOAb); concurrent WAs and urinary arsenic (UAs); and adolescents' NB performance. WAs and UAs were positively and significantly correlated with TPOAb but were not correlated with TSH, tT3 and fT4. After accounting for covariates, both WAs and UAs demonstrated positive but non-significant relationships with TSH and TPOAb and negative but non-significant relationships with tT3 and fT4. TPOAb was significantly associated with reduced NB performance indicated by positive associations with latencies in simple reaction time (b = 82.58; p < 0.001) and symbol digit (b = 276.85; p = 0.005) tests. TSH was significantly and negatively associated with match-to-sample correct count (b = -0.95; p = 0.05). Overall, we did not observe significant associations between arsenic exposure and TH biomarkers although the relationships were in the expected directions. We observed TH biomarkers to be related to reduced NB performance as hypothesized. Our study indicated a possible mechanism of As-induced neurotoxicity, which requires further investigations for confirmatory findings.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA.
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, USA
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, MA, USA
| | - Barbara A Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA
| | - Lisa M Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, IN, USA
| | - Diane Rohlman
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, IA, USA
| | | | - Joseph Graziano
- Department of Environmental Health, Mailman School of Public Health, Columbia University, New York, USA
| |
Collapse
|
25
|
Biswas A. A Systematic Review on Arsenic Bio-Availability in Human and Animals: Special Focus on the Rice-Human System. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019. [PMID: 31032526 DOI: 10.1007/398_2019_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The present systematic review synthesizes the diverse documentation of research on the occurrence of arsenic in soil-water systems and the human and animal bio-availability scenarios related to food chain contamination by arsenic. Humans and animals may drink arsenic-contaminated groundwater in addition to consuming foods that have been grown in arsenic-contaminated groundwater and soils. Rice grain is a potential arsenic carrier and the staple food in many parts of the world, particularly in Southeast Asian countries. Data have been summarized from 183 articles describing different aspects of arsenic flow in the food chain, that is, the soil-water-rice-human system and the water-crops-animals system and the bio-availability of arsenic to humans and animals. The phyto-availability of arsenic depends on the physicochemical and biological conditions of soil and water. In humans, the bio-accessibility of inorganic arsenic is 63-99%. Arsenic is more bio-available from rice than from other foods: different food materials differ in bio-accessible potential. Additionally, the review identifies trends in research on arsenic contamination and food chain flow considering arsenic species, toxicity assessment, and bio-accessibility studies. This systematic review provides a comprehensive assessment of the documented evidence to be used to guide future research on arsenic availability for the rice plant and subsequent availability to humans from cooked rice that can determine arsenic toxicity. The review also highlights how the focus of research on arsenic as a pollutant has changed in the past decades.
Collapse
Affiliation(s)
- Anirban Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
26
|
Upadhyay MK, Shukla A, Yadav P, Srivastava S. A review of arsenic in crops, vegetables, animals and food products. Food Chem 2019; 276:608-618. [DOI: 10.1016/j.foodchem.2018.10.069] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023]
|
27
|
Mandal U, Singh P, Kundu AK, Chatterjee D, Nriagu J, Bhowmick S. Arsenic retention in cooked rice: Effects of rice type, cooking water, and indigenous cooking methods in West Bengal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:720-727. [PMID: 30130735 DOI: 10.1016/j.scitotenv.2018.08.172] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the concentration of arsenic in paired raw and cooked rice prepared by individual households in arsenic-endemic rural area of West Bengal. The aim was to investigate how the cooking habits of rural villagers of West Bengal might influence the arsenic content of rice meals. It was found that the use of arsenic-rich groundwater for cooking could elevate the arsenic concentration in cooked rice (up to 129% above the raw sample), thereby enhancing the vulnerability of the rural population of West Bengal to arsenic exposure through rice consumption. The risk is heightened by the habit of drinking the stewed rice water (gruel) in the local communities. The cooking method employed, rice variety, background arsenic concentration in raw rice and cooking water arsenic concentration were found to be important predisposing factors that could affect the accumulation of arsenic in cooked form. The fundamental indigenous cooking practice followed by the villagers requires use of low-arsenic water for cooking as a necessary strategy to alleviate arsenic exposure in their staple food.
Collapse
Affiliation(s)
- Ujjal Mandal
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Payel Singh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India; Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Amit Kumar Kundu
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| |
Collapse
|
28
|
Long-term arsenite exposure induces testicular toxicity by redox imbalance, G2/M cell arrest and apoptosis in mice. Toxicology 2019; 411:122-132. [DOI: 10.1016/j.tox.2018.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023]
|
29
|
Liao N, Seto E, Eskenazi B, Wang M, Li Y, Hua J. A Comprehensive Review of Arsenic Exposure and Risk from Rice and a Risk Assessment among a Cohort of Adolescents in Kunming, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102191. [PMID: 30297612 PMCID: PMC6210429 DOI: 10.3390/ijerph15102191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
Abstract
Inorganic arsenic (iAs) is carcinogenic and highly concentrated in rice. Dietary exposure to iAs is concerning among adolescents due to their developmental stage and iAs’s long-latency effects. This paper aimed to assess iAs exposure from rice and related lifetime cancer risks (LCR) among adolescents in Kunming, China. A comprehensive literature review of iAs levels in rice and LCR in humans was also conducted. Average daily consumption of rice (ADC) was estimated from 267 adolescents (15–18 years). Rice samples obtained from 6 markets were analyzed for iAs concentration (AC). Estimated daily intake (EDI) of iAs was calculated using ADC, AC, and average body weight (BW). Lifetime Cancer Risk (LCR) was calculated using EDI and U.S. EPA derived iAs oral slope factor. The AC was 0.058 mg/kg and the average BW and ADC were 67.5 kg and 410 g/day for males and 55.5 kg and 337 g/day for females. The EDI and LCR were 3.52 × 10−4 mg/kg-BW/day and 5.28 × 10−4 for both males and females, with LCR 5 times above the U.S. LCR upper limit of 1.0 × 10−4. While the AC was below the Chinese maximum contaminant level of 0.2 mg/kg, study results indicated that Kunming adolescents may be at increased risk for iAs-related cancers.
Collapse
Affiliation(s)
- Noelle Liao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Edmund Seto
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98195, USA.
| | - Brenda Eskenazi
- Department of Maternal and Child Health, School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - May Wang
- Department of Community Health Sciences, School of Public Health, University of California, Los Angeles, CA 90095, USA.
| | - Yan Li
- Kunming Medical University, Kunming 650221, Yunnan, China.
| | - Jenna Hua
- Stanford Prevention Research Center, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
El-Masri HA, Hong T, Henning C, Mendez W, Hudgens EE, Thomas DJ, Lee JS. Evaluation of a Physiologically Based Pharmacokinetic (PBPK) Model for Inorganic Arsenic Exposure Using Data from Two Diverse Human Populations. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077004. [PMID: 30024383 PMCID: PMC6108830 DOI: 10.1289/ehp3096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Multiple epidemiological studies exist for some of the well-studied health endpoints associated with inorganic arsenic (iAs) exposure; however, results are usually expressed in terms of different exposure/dose metrics. Physiologically based pharmacokinetic (PBPK) models may be used to obtain a common exposure metric for application in dose-response meta-analysis. OBJECTIVE A previously published PBPK model for inorganic arsenic (iAs) was evaluated using data sets for arsenic-exposed populations from Bangladesh and the United States. METHODS The first data set was provided by the Health Effects of Arsenic Longitudinal Study cohort in Bangladesh. The second data set was provided by a study conducted in Churchill County, Nevada, USA. The PBPK model consisted of submodels describing the absorption, distribution, metabolism and excretion (ADME) of iAs and its metabolites monomethylarsenic (MMA) and dimethylarsenic (DMA) acids. The model was used to estimate total arsenic levels in urine in response to oral ingestion of iAs. To compare predictions of the PBPK model against observations, urinary arsenic concentration and creatinine-adjusted urinary arsenic concentration were simulated. As part of the evaluation, both water and dietary intakes of arsenic were estimated and used to generate the associated urine concentrations of the chemical in exposed populations. RESULTS When arsenic intake from water alone was considered, the results of the PBPK model underpredicted urinary arsenic concentrations for individuals with low levels of arsenic in drinking water and slightly overpredicted urinary arsenic concentrations in individuals with higher levels of arsenic in drinking water. When population-specific estimates of dietary intakes of iAs were included in exposures, the predictive value of the PBPK model was markedly improved, particularly at lower levels of arsenic intake. CONCLUSIONS Evaluations of this PBPK model illustrate its adequacy and usefulness for oral exposure reconstructions in human health risk assessment, particularly in individuals who are exposed to relatively low levels of arsenic in water or food. https://doi.org/10.1289/EHP3096.
Collapse
Affiliation(s)
- Hisham A El-Masri
- National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Durham, North Carolina, USA
| | - Tao Hong
- ICF International, Inc., Durham, North Carolina, USA
| | - Cara Henning
- ICF International, Inc., Durham, North Carolina, USA
| | | | - Edward E Hudgens
- National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Durham, North Carolina, USA
| | - David J Thomas
- National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Durham, North Carolina, USA
| | - Janice S Lee
- National Center for Environmental Assessment, ORD, EPA, Durham, North Carolina, USA
| |
Collapse
|
31
|
Liang CP, Chen JS, Chien YC, Chen CF. Spatial analysis of the risk to human health from exposure to arsenic contaminated groundwater: A kriging approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1048-1057. [PMID: 29426124 DOI: 10.1016/j.scitotenv.2018.01.294] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
A long-term groundwater quality survey in northeastern Taiwan's Lanyang Plain has revealed obvious contamination of the groundwater in some areas, with measured As concentrations in excess of the acceptable level of 10μg/L. Efforts for assessing the health risk associated with the intake of As through the drinking of contaminated groundwater are a necessary part of the important work of health risk management. However, the standard approach to assessing risks to human health does not adequately account for spatial heterogeneity in the measured As concentrations. Thus, this study applies two different kriging approaches to carry out a spatial analysis of the health risk associated with ingesting As through the drinking of groundwater in the Lanyang Plain. It is found that the indicator kriging (IK) approach, with occurrence probability threshold values of 0.4, 0.5 and 0.6 yields correct classification percentages of 75%, 68% and 61%, respectively, of unacceptable HQ zones. An HQ map prepared with the ordinary kriging (OK) approach shows a correct classification of unacceptable HQ zones of 80%. Considering that the OK approach does not require subjective selection of an occurrence probability threshold value as is the case with the IK approach and can yield a higher percentage of correct classification for unacceptable HQ zones, it is recommended as a more direct and reliable method for spatial analysis of human health risk due to arsenic exposure through the drinking of groundwater. The results show that the geographical distribution of unacceptable HQ zones is concentrated in the eastern part of the study area, which includes the high-population density townships. In other words, 34% of the people had access to groundwater where the HQ was >1. The results of this type of spatial health risk assessment can provide a basis for improving the decision-making process for health risk management.
Collapse
Affiliation(s)
- Ching-Ping Liang
- Department of Nursing, Fooyin University, Kaohsiung City 831, Taiwan.
| | - Jui-Sheng Chen
- Graduate Institute of Applied Geology, National Central University, Taoyuan City 320, Taiwan
| | - Yi-Chi Chien
- Department of Environmental Engineering and Science, Fooyin University, Kaohsiung City 831, Taiwan
| | - Ching-Fang Chen
- Graduate Institute of Applied Geology, National Central University, Taoyuan City 320, Taiwan
| |
Collapse
|
32
|
Aderibigbe AD, Stewart AG, Hursthouse AS. Seeking evidence of multidisciplinarity in environmental geochemistry and health: an analysis of arsenic in drinking water research. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:395-413. [PMID: 28236208 PMCID: PMC5797562 DOI: 10.1007/s10653-017-9919-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/03/2017] [Indexed: 05/05/2023]
Abstract
A multidisciplinary approach to research affords the opportunity of objectivity, creation of new knowledge and potentially a more generally acceptable solution to problems that informed the research in the first place. It increasingly features in national programmes supporting basic and applied research, but for over 40 years, has been the arena for many research teams in environmental geochemistry and health. This study explores the nature of multidisciplinary research in the earth and health sciences using a sample selected from co-authored articles reporting research on arsenic (As) in drinking water from 1979 to 2013. A total of 889 relevant articles were sourced using the online version of the science citation index-expanded (SCI-expanded). The articles were classified according to author affiliation and later by author discipline/research interests using the Revised Field of Science and Technology Frascati manual DSTI/EAS/STP/NESTI (2006) 19/FINAL and a decision algorithm. Few articles were published on the topic until 2000. More articles were published across all affiliations in the last 10 years of the review period (2004-2013) than in the first 10 years (1979-1988). Only 84 (~9%) articles fell within the "earth and health" only and "earth, health and other" categories when classification was undertaken by author affiliation alone. This suggests that level of collaboration between earth and health scientists in arsenic in drinking water research may be very low. By refining the classification further using author discipline/research interests, only 28 of the 84 articles appear to be co-authored by earth and health scientists alongside professionals in other fields. More than half of these 28 articles involved descriptive non-experimental, observational study designs, limited in direct causal hypotheses and mechanistic investigation. If collaborative research is to lead to the increased multidisciplinary research, early interaction should be encouraged between students from different disciplines. In order to achieve multidisciplinarity in practise, it is imperative that scientific communities and research agencies do more to encourage interaction and integration between researchers from different disciplines. This must develop from educational institutions seeing opportunities to improve graduate skills in an increasingly diverse research landscape.
Collapse
Affiliation(s)
- Abiodun D. Aderibigbe
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE UK
- Present Address: Department of Chemistry, Federal University of Technology, Akure, P.M.B. 704 Ondo state Nigeria
| | - Alex G. Stewart
- Cheshire and Merseyside Public Health England Centre, Liverpool, L1 1JF UK
- Present Address: College of Life and Environmental Science, University of Exeter, Exeter, UK
| | - Andrew S. Hursthouse
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE UK
| |
Collapse
|
33
|
Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J. Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:148-169. [PMID: 28850835 DOI: 10.1016/j.scitotenv.2017.08.216] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 05/03/2023]
Abstract
This paper reviews how active research in West Bengal has unmasked the endemic arsenism that has detrimental effects on the health of millions of people and their offspring. It documents how the pathways of exposure to this toxin/poison have been greatly expanded through intensive application of groundwater in agriculture in the region within the Green Revolution framework. A goal of this paper is to compare and contrast the similarities and differences in arsenic occurrence in West Bengal with those of other parts of the world and assess the unique socio-cultural factors that determine the risks of exposure to arsenic in local groundwater. Successful intervention options are also critically reviewed with emphasis on integrative strategies that ensure safe water to the population, proper nutrition, and effective ways to reduce the transfer of arsenic from soil to crops. While no universal model may be suited for the vast areas of the world affected with by natural contamination of groundwater with arsenic, we have emphasized community-specific sustainable options that can be adapted. Disseminating scientifically correct information among the population coupled with increased community level participation and education are recognized as necessary adjuncts for an engineering intervention to be successful and sustainable.
Collapse
Affiliation(s)
- Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Payel Singh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Priyanka Mondal
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute (CGCRI), Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
34
|
Sun HJ, Li SW, Li C, Wang WQ, Li HB, Ma LQ. Thyrotoxicity of arsenate and arsenite on juvenile mice at organism, subcellular, and gene levels under low exposure. CHEMOSPHERE 2017; 186:580-587. [PMID: 28813693 DOI: 10.1016/j.chemosphere.2017.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Arsenic contamination in drinking water is a worldwide issue, posing threat to human health. Arsenic is an endocrine system disruptor, however, limited information is available regarding its long-term effects on thyroid endocrine system at low exposure. In this study, we assessed the thyroid toxicity of arsenate (AsV) and arsenite (AsIII) at 10-100 μg L-1 in juvenile mice after 8-week of exposure via drinking water. After 1-2 week, AsV and AsIII had little influence on thyroxine (T4) level (56.3-64.7 μg L-1) in mouse blood compared to control mice at 57.3-60.7 μg L-1. However, after 4-8 weeks, 10 μg L-1 AsIII or AsV increased T4 levels to 83.8-88.8 μg L-1 compared to control treatment at 77.2-80.0 μg L-1, while 100 μg L-1 AsV or AsIII decreased T4 levels except for 100 μg L-1 AsIII for 8 weeks. Based on transmission electron microscopy, exposure to 100 μg L-1 AsIII or AsV for 8 weeks caused thyroid gland damage. In addition, exposure to AsV or AsIII at 10 or 100 μg L-1 impacted gene transcription of hypothalamic-pituitary-thyroid axis including thyroid stimulating hormone and iodothyronine deiodinases. Our data demonstrated that exposing to low levels of AsIII or AsV disrupted T4 homeostasis, influenced the related gene transcription and damaged the thyroid glands in juvenile mice.
Collapse
Affiliation(s)
- Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shi-Wei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wen-Qian Wang
- Medical College, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321007, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
35
|
Briki M, Zhu Y, Gao Y, Shao M, Ding H, Ji H. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:458. [PMID: 28823066 DOI: 10.1007/s10661-017-6153-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Mining and smelting areas in Hezhang have generated a large amount of heavy metals into the environment. For that cause, an evaluative study on human exposure to heavy metals including Co, Ni, Cu, Zn, Cr, As, Cd, Pb, Sb, Bi, Be, and Hg in hair and urine was conducted for their concentrations and correlations. Daily exposure and non-carcinogenic and carcinogenic risk were estimated. Sixty-eight scalp hair and 66 urine samples were taken from participants of different ages (6-17, 18-40, 41-60, and ≥ 65 years) living in the vicinity of an agricultural soil near mine and smelting areas. The results compared to the earlier studies showed an elevated concentration of Pb, Be, Bi, Co, Cr, Ni, Sb, and Zn in hair and urine. These heavy metals were more elevated in mining than in smelting. Considering gender differences, females were likely to be more affected than male. By investigating age differences in this area, high heavy metal concentrations in male's hair and urine existed in age of 18-40 and ≥ 66, respectively. However, females did not present homogeneous age distribution. Hair and urine showed a different distribution of heavy metals in different age and gender. In some cases, significant correlation was found between heavy metals in hair and urine (P > 0.05 and P > 0.01) in mining area. The estimated average daily intake of heavy metals in vegetables showed a great contribution compared to the soil and water. Non-carcinogenic and carcinogenic risk values of total pathways in mining and smelting areas were higher than 1 and exceeded the acceptable levels. Thus, the obtained data might be useful for further studies. They can serve as a basis of comparison and assessing the effect of simultaneous exposure from heavy metals in mining and smelting areas, and potential health risks from exposure to heavy metals in vegetables need more consideration.
Collapse
Affiliation(s)
- Meryem Briki
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yang Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China
| | - Mengmeng Shao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huaijian Ding
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China
| | - Hongbing Ji
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
36
|
Bjørklund G, Christophersen OA, Chirumbolo S, Selinus O, Aaseth J. Recent aspects of uranium toxicology in medical geology. ENVIRONMENTAL RESEARCH 2017; 156:526-533. [PMID: 28431380 DOI: 10.1016/j.envres.2017.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Uranium (U) is a chemo-toxic, radiotoxic and even a carcinogenic element. Due to its radioactivity, the effects of U on humans health have been extensively investigated. Prolonged U exposure may cause kidney disease and cancer. The geological distribution of U radionuclides is still a great concern for human health. Uranium in groundwater, frequently used as drinking water, and general environmental pollution with U raise concerns about the potential public health problem in several areas of Asia. The particular paleo-geological hallmark of India and other Southern Asiatic regions enhances the risk of U pollution in rural and urban communities. This paper highlights different health and environmental aspects of U as well as uptake and intake. It discusses levels of U in soil and water and the related health issues. Also described are different issues of U pollution, such as U and fertilizers, occupational exposure in miners, use and hazards of U in weapons (depleted U), U and plutonium as catalysts in the reaction between DNA and H2O2, and recycling of U from groundwater to surface soils in irrigation. For use in medical geology and U research, large databases and data warehouses are currently available in Europe and the United States.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Olle Selinus
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Hedmark University of Applied Sciences, Elverum, Norway
| |
Collapse
|
37
|
Planer-Friedrich B, Kühnlenz T, Halder D, Lohmayer R, Wilson N, Rafferty C, Clemens S. Thioarsenate Toxicity and Tolerance in the Model System Arabidopsis thaliana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7187-7196. [PMID: 28525265 DOI: 10.1021/acs.est.6b06028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thioarsenates form from arsenite under sulfate-reducing conditions, e.g., in rice paddy soils, and are structural analogues of arsenate. Even though rice is one of the most important sources of human arsenic intake, nothing is published about uptake, toxicity, or tolerance of thioarsenates in plants. Experiments using the model system Arabidopsis thaliana showed that monothioarsenate is less toxic than arsenite, but more toxic than arsenate at concentrations ≥25 μM As, reflected in stronger seedling growth inhibition on agar plates. Despite higher toxicity, total As accumulation in roots was lower upon exposure to monothioarsenate compared to arsenate, and a higher root efflux was confirmed. Root-shoot translocation was higher for monothioarsenate than for arsenate. Compared to the wild type (Col-0), both arsenate and monothioarsenate induced higher toxicity in phytochelatin (PC)-deficient mutants (cad1-3) as well as in glutathione biosynthesis (cad2) and PC transport (abcc12) mutants, demonstrating the important role of the PC pathway, not only for arsenate, but also for monothioarsenate detoxification. In Col-0, monothioarsenate induced relatively higher accumulation of PCs than arsenate. The observed differences in plant uptake, toxicity, and tolerance of thioarsenate vs oxyarsenate show that studying the effects of As on plants should include experiments with thiolated As species.
Collapse
Affiliation(s)
- Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), and ‡Department of Plant Physiology, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Tanja Kühnlenz
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), and ‡Department of Plant Physiology, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Dipti Halder
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), and ‡Department of Plant Physiology, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Regina Lohmayer
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), and ‡Department of Plant Physiology, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Nathaniel Wilson
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), and ‡Department of Plant Physiology, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Colleen Rafferty
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), and ‡Department of Plant Physiology, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Stephan Clemens
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), and ‡Department of Plant Physiology, University of Bayreuth , Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
38
|
Liang CP, Chien YC, Jang CS, Chen CF, Chen JS. Spatial Analysis of Human Health Risk Due to Arsenic Exposure through Drinking Groundwater in Taiwan's Pingtung Plain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14010081. [PMID: 28098817 PMCID: PMC5295332 DOI: 10.3390/ijerph14010081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Chronic arsenic (As) exposure continues to be a public health problem of major concern worldwide, affecting hundreds of millions of people. A long-term groundwater quality survey has revealed that 20% of the groundwater in southern Taiwan’s Pingtung Plain is clearly contaminated with a measured As concentration in excess of the maximum level of 10 µg/L recommended by the World Health Organization. The situation is further complicated by the fact that more than half of the inhabitants in this area continue to use groundwater for drinking. Efforts to assess the health risk associated with the ingestion of As from the contaminated drinking water are required in order to determine the priorities for health risk management. The conventional approach to conducting a human health risk assessment may be insufficient for this purpose, so this study adopts a geostatistical Kriging method to perform a spatial analysis of the health risk associated with ingesting As through drinking groundwater in the Pingtung Plain. The health risk is assessed based on the hazard quotient (HQ) and target cancer risk (TR) established by the U.S. Environmental Protection Agency. The results show that most areas where the HQ exceeds 1 are in the southwestern part of the study area. In addition, the high-population density townships of Daliao, Linyuan, Donggang, Linbian, Jiadong, and Fangliao presently have exceedingly high TR values that are two orders of magnitude higher than the acceptable standard. Thus, the use of groundwater for drinking in these townships should be strictly avoided. A map that delineates areas with high TR values and high population densities is provided. The findings broaden the scope of the spatial analysis of human health risk and provide a basis for improving the decision-making process.
Collapse
Affiliation(s)
- Ching-Ping Liang
- Department of Nursing, Fooyin University, Kaohsiung 831, Taiwan.
| | - Yi-Chi Chien
- Department of Environmental Engineering and Science, Fooyin University, Kaohsiung 831, Taiwan.
| | - Cheng-Shin Jang
- Department of Leisure and Recreation Management, Kainan University, Taoyuan 338, Taiwan.
| | - Ching-Fang Chen
- Graduate Institute of Applied Geology, National Central University, Taoyuan 320, Taiwan.
| | - Jui-Sheng Chen
- Graduate Institute of Applied Geology, National Central University, Taoyuan 320, Taiwan.
| |
Collapse
|
39
|
Sun HJ, Xiang P, Luo J, Hong H, Lin H, Li HB, Ma LQ. Mechanisms of arsenic disruption on gonadal, adrenal and thyroid endocrine systems in humans: A review. ENVIRONMENT INTERNATIONAL 2016; 95:61-68. [PMID: 27502899 DOI: 10.1016/j.envint.2016.07.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Due to its toxicity as a carcinogen and wide distribution in the environment, arsenic (As) exposure in humans is of public concern globally. Many studies have manifested that As exposure induces cancers besides pathological effects in humans. Animal studies showed that chronic As exposure induces serious neurological effects. Based on recent studies, researchers proposed that As, including arsenate (AsV) and arsenite (AsIII), is also an endocrine disruptor. This review discusses the mechanisms of As toxicity on three endocrine systems including gonadal, adrenal and thyroid endocrine systems. Arsenic methylation and oxidative stress are responsible for As-induced disorders of endocrine systems, however, strong binding of AsIII to thiols also play an important role. Some studies showed AsV toxicity on endocrine systems, but mechanistic investigation is lacking. Research is needed to look into their toxicity mechanisms to help cure the illnesses caused by As-induced endocrine system disorders.
Collapse
Affiliation(s)
- Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
40
|
Park JD, Choi SJ, Choi BS, Lee CR, Kim H, Kim YD, Park KS, Lee YJ, Kang S, Lim KM, Chung JH. Arsenic levels in the groundwater of Korea and the urinary excretion among contaminated area. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:458-463. [PMID: 27049535 DOI: 10.1038/jes.2016.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Drinking water is a main source of human exposure to arsenic. Hence, the determination of arsenic in groundwater is essential to assess its impact on public health. Here, we report arsenic levels in the groundwater of 722 sites covering all six major provinces of Korea. Water was sampled in two occasions (summer, 722 sites and winter, 636 sites) and the arsenic levels were measured with highly sensitive inductively coupled plasma-mass spectrometry method (limit of detection, 0.1 μg/l) to encompass the current drinking water standard (<10 μg/l). Seasonal variation was negligible, but the geographical difference was prominent. Total arsenic in groundwater ranged from 0.1 to 48.4 μg/l. A 88.0-89.0% of sites were <2.0 μg/l and the remaining ones generally did not exceed 10 μg/l (6.4-7.0%, 2.0-4.9 μg/l; 2.4-3.0%, 5.0-9.9 μg/l). However, some areas (1.0-9.2%) exhibited >10 μg/l. Notably, urinary arsenic excretion of people around these regions was markedly higher compared with non-contaminated areas (<5 μg/l) (79.7±5.2 μg/g (N=122) vs 68.4±5.4 μg/g (N=65) creatinine, P=0.052). All stratified analysis also revealed higher urinary excretion, where a statistically significant difference was noted for non-smokers (85.9±12.7 vs 54.0±6.3, P=0.030), suggesting that arsenic-contaminated groundwater may contribute to its systemic exposure.
Collapse
Affiliation(s)
- Jung-Duck Park
- College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Seong-Jin Choi
- College of Medicine, Chung-Ang University, Seoul, South Korea
- Inhalation Toxicology Center, Korea Institute of Toxicology, Daejeon, South Korea
| | - Byung-Sun Choi
- College of Medicine, Chung-Ang University, Seoul, South Korea
| | | | - Heon Kim
- College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yong-Dae Kim
- College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Kyung-Soo Park
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Young-Jo Lee
- College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Seojin Kang
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
41
|
Wu C, Zou Q, Xue SG, Pan WS, Huang L, Hartley W, Mo JY, Wong MH. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:27-33. [PMID: 26840513 DOI: 10.1016/j.envpol.2016.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/17/2015] [Accepted: 01/01/2016] [Indexed: 05/13/2023]
Abstract
Rice is one of the major pathways of arsenic (As) exposure in human food chain, threatening over half of the global population. Greenhouse pot experiments were conducted to examine the effects of Si application on iron (Fe) plaque formation, As uptake and rice grain As speciation in indica and hybrid rice genotypes with different radial oxygen loss (ROL) ability. The results demonstrated that Si significantly increased root and grain biomass. Indica genotypes with higher ROL induced greater Fe plaque formation, compared to hybrid genotypes and sequestered more As in Fe plaque. Silicon applications significantly increased Fe concentrations in iron plaque of different genotypes, but it decreased As concentrations in the roots, straws and husks by 28-35%, 15-35% and 32-57% respectively. In addition, it significantly reduced DMA accumulation in rice grains but not inorganic As accumulation. Rice of indica genotypes with higher ROL accumulated lower concentrations of inorganic As in grains than hybrid genotypes with lower ROL.
Collapse
Affiliation(s)
- Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Qi Zou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Sheng-Guo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Wei-Song Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Liu Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - William Hartley
- Crop and Environment Sciences Department, Harper Adams University, Newport, Shropshire, TF10 8NB, United Kingdom
| | - Jing-Yu Mo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Ming-Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Hong Kong Institute of Education, Tai Po, Hong Kong Special Administrative Region; School of Environment, Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Managing Water and Soils to Achieve Adaptation and Reduce Methane Emissions and Arsenic Contamination in Asian Rice Production. WATER 2016. [DOI: 10.3390/w8040141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Huang Y, Wang M, Mao X, Qian Y, Chen T, Zhang Y. Concentrations of Inorganic Arsenic in Milled Rice from China and Associated Dietary Exposure Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10838-10845. [PMID: 26641731 DOI: 10.1021/acs.jafc.5b04164] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Total arsenic (As) and inorganic As (Asi) in milled rice (n = 1653) collected from China were studied to evaluate the contamination level, distribution, and health risks. The mean concentrations of the total As and Asi were 116.5 and 90.9 μg/kg, respectively. There were significant differences (P < 0.01) between the 11 provinces, and 1.1% of samples exceeded the maximum contaminant level established by Chinese legislation. According to the exposure assessment method of probabilistic simulation, all values of the target hazard quotients (THQs) for chronic noncarcinogenic risks (skin lesions as the point of departure) were below 1, suggesting that the Chinese population will not encounter a significant noncarcinogenic risk. However, the mean values of margin of exposure (MOE) for lung cancer risks ranging from 3.86 to 8.54 were under 100 for all age groups and genders of the Chinese population; moreover, MOE values for some major rice-producing and -consuming countries, such as Japan, Thailand, Bangladesh, and the United States, were all also below 100. More attention should be paid to carcinogenic risks from rice Asi intake, and some control measures to reduce rice Asi intake should be taken.
Collapse
Affiliation(s)
- Yatao Huang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, and Laboratory of Risk Assessment for Processed Agro-food Quality and Safety, Ministry of Agriculture (Beijing), Beijing 100193, China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China
| | - Tianjin Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China
| | - Ying Zhang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
44
|
Bhowmick S, Kundu AK, Adhikari J, Chatterjee D, Iglesias M, Nriagu J, Guha Mazumder DN, Shomar B, Chatterjee D. Assessment of toxic metals in groundwater and saliva in an arsenic affected area of West Bengal, India: A pilot scale study. ENVIRONMENTAL RESEARCH 2015; 142:328-36. [PMID: 26188634 DOI: 10.1016/j.envres.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 05/13/2023]
Abstract
Communities in many parts of the world are unintentionally exposed to arsenic (As) and other toxic metals through ingestion of local drinking water and foods. The concentrations of individual toxic metals often exceed their guidelines in drinking water but the health risks associated with such multiple-metal exposures have yet to receive much attention. This study examines the co-occurrence of toxic metals in groundwater samples collected from As-rich areas of Nadia district, West Bengal, India. Arsenic in groundwater (range: 12-1064 µg L(-1); mean ± S.D: 329±294 µg L(-1)) was the most important contaminant with concentrations well above the WHO guideline of 10 µg L(-1). Another important toxic metal in the study area was manganese (Mn) with average concentration of 202±153 µg L(-1), range of 18-604 µg L(-1). The average concentrations (µg L(-1)) of other elements in groundwater were: Cr (5.6±5.9), Mo (3.5±2.1), Ni (8.3±8.7), Pb (2.9±1.3), Ba (119±43), Zn (56±40), Se (0.60±0.33), U (0.50±0.74). Saliva collected from the male participants of the area had mean concentrations of 6.3±7.0 µg As L(-1) (0.70-29 µg L(-1)), 5.4±5.5 µg Mn L(-1) (0.69-22 µg L(-1)), 2.6±3.1 µg Ni L(-1) (0.15-13 µg L(-1)), 0.78±1.0µg Cr L(-1) (<DL-5.9 µg L(-1)), 0.94±0.90 µg Pb L(-1) (<DL-4.2 µg L(-1)), 0.56±0.37 µg Se L(-1) (0.11-1.5 µg L(-1)) and 194±54 µg Zn L(-1) (112-369 µg L(-1)). The high concentrations of salivary As and Mn are believed to be indicative of intake from the groundwater. The clustering of salivary As and Mn in principal component analysis further indicated influence of the common exposure source. Zinc and selenium comprised a separate component presumably reflecting the local deficiencies in intakes of these essential elements from drinking water and foodstuff. Thus the study reveals that the concentration of other metals beside As must be monitored in drinking water before implementation of any policies to provide safe water to the affected communities.
Collapse
Affiliation(s)
- Subhamoy Bhowmick
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India; Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Amit Kumar Kundu
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Jishnu Adhikari
- Department of Microbiology, Vijaygarh Jyotish Ray College, 8/2 Bejoygarh, Jadavpur, Kolkata 700032, India
| | - Debankur Chatterjee
- JB Enviro Consultants PVT. LTD., "Utsab"10/B, Lake East 5th Road, Ground Floor, Santoshpur, Jadavpur, Kolkata 700075, India
| | - Monica Iglesias
- Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | | | - Basem Shomar
- Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India.
| |
Collapse
|
45
|
Stanton BA, Caldwell K, Congdon CB, Disney J, Donahue M, Ferguson E, Flemings E, Golden M, Guerinot ML, Highman J, James K, Kim C, Lantz RC, Marvinney RG, Mayer G, Miller D, Navas-Acien A, Nordstrom DK, Postema S, Rardin L, Rosen B, SenGupta A, Shaw J, Stanton E, Susca P. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic. Curr Environ Health Rep 2015; 2:329-37. [PMID: 26231509 PMCID: PMC4522277 DOI: 10.1007/s40572-015-0057-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.
Collapse
Affiliation(s)
- Bruce A Stanton
- Center for the Environmental Health Sciences, Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sinha B, Bhattacharyya K. Arsenic toxicity in rice with special reference to speciation in Indian grain and its implication on human health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1435-1444. [PMID: 25060647 DOI: 10.1002/jsfa.6839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/14/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Rice is a potentially important route of human exposure to arsenic, especially in populations with rice-based diets. However, arsenic toxicity varies greatly with species. The initial purpose of the present study was to evaluate arsenic speciation in rice. RESULTS It appeared very clear from the present study that inorganic arsenic shared maximum arsenic load in rice straw while in grains it is considerably low. As species recovered from rice grain and straw are principally As(III) and As(V) with a small amount of dimethylarsenic acid (DMA) and almost non-detectable monomethylarsonic acid (MMA) and arsenobetain (AsB). Discussion of the health risk of As in rice has largely been based on its inorganic arsenic content because these species have generally been considered to be more toxic than MMA and DMA and can be directly compared to As in drinking water, assuming equal bioavailability of inorganic As in the rice matrix and in water. The maximum dietary risk of exposure to inorganic arsenic through transplanted boro paddy in the present experiment was calculated to be almost 1706% of the provisional tolerable weekly intake for an adult of 60 kg body weight. CONCLUSION As species recovered from boro rice grain and straw are principally As(III) and As(V) with a small amount of DMA and almost non-detectable MMA and AsB. Reductions in total As load through organic amendments in boro rice grain and straw samples were manifested predominately through reduced accumulations of inorganic As species [As(III) and As(V)], between which As(V) accounted for the larger share.
Collapse
|
47
|
González-Horta C, Ballinas-Casarrubias L, Sánchez-Ramírez B, Ishida MC, Barrera-Hernández A, Gutiérrez-Torres D, Zacarias OL, Saunders RJ, Drobná Z, Mendez MA, García-Vargas G, Loomis D, Stýblo M, Del Razo LM. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:4587-601. [PMID: 25918912 PMCID: PMC4454927 DOI: 10.3390/ijerph120504587] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/11/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
Abstract
Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.
Collapse
Affiliation(s)
- Carmen González-Horta
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | | | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - María C Ishida
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - Angel Barrera-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico D. F. 07360, Mexico.
| | | | - Olga L Zacarias
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico.
| | - R Jesse Saunders
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Zuzana Drobná
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Michelle A Mendez
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Gonzalo García-Vargas
- Facultad de Medicina, Universidad Juárez del Estado de Durango (UJED), Gómez Palacio, Durango 35050, Mexico.
| | - Dana Loomis
- IARC Monographs Section, IARC/WHO, Lyon Cedex 69372, France.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Mexico D. F. 07360, Mexico.
| |
Collapse
|
48
|
Halder D, Biswas A, Šlejkovec Z, Chatterjee D, Nriagu J, Jacks G, Bhattacharya P. Arsenic species in raw and cooked rice: implications for human health in rural Bengal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:200-208. [PMID: 25129156 DOI: 10.1016/j.scitotenv.2014.07.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
This study compares the concentrations of total and different species of arsenic (As) in 29 pairs of raw and cooked rice samples collected from households in an area of West Bengal affected by endemic arsenicism. The aim is to investigate the effects of indigenous cooking practice of the rural villagers on As accumulation and speciation in cooked rice. It is found that inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). Cooking of rice with water low in As (<10 μg L(-1)) significantly decreases the total and inorganic As content in cooked rice compared to raw rice. Arsenic concentration is mainly decreased during boiling of rice grains with excess water. Washing of rice grains with low As water has negligible effect on grain As concentration. The study suggests that rice cooking with low As water by the villagers is a beneficial risk reduction strategy. Despite reductions in As content in cooked rice because of cooking with low As water, the consumption of cooked rice represents a significant health threat (in terms of chronic As toxicity) to the study population.
Collapse
Affiliation(s)
- Dipti Halder
- KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal, India.
| | - Ashis Biswas
- KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden; Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Zdenka Šlejkovec
- Environmental Sciences Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Gunnar Jacks
- KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Division of Land and Water Resources Engineering, Department of Sustainable Development, Environmental Sciences and Engineering, KTH Royal Institute of Technology, Teknikringen 76, SE-100 44 Stockholm, Sweden
| |
Collapse
|
49
|
Escalating chronic kidney diseases of multi-factorial origin in Sri Lanka: causes, solutions, and recommendations. Environ Health Prev Med 2014. [PMID: 25239006 DOI: 10.1007/s12199‐014‐0395‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During the last two decades, Sri Lanka, located close to the equator, has experienced an escalating incidence of chronic kidney disease (CKD) of unknown aetiology (CKDue) in dry zonal areas. Similar incidences of unusual CKDs have been reported in the dry zonal, agricultural areas of several other equatorial countries. In Sri Lanka, the incidence of CKDue is highest in the North Central Province (NCP), where approximately 45 % of the country's paddy fields are located. However, in recent years, the disease has spread into areas adjacent to as well as distant from the NCP. The cause of CKD in Sri Lanka is unknown, and may likely due to interactions of different potential agents; thus, CKD is of multi-factorial origin (CKD-mfo). These factors include, the negative effects from overuse of agrochemicals. Nevertheless, the potential interactions and synergism between probable agents have not been studied. This systematic review discusses the proposed hypotheses and causes of CKD-mfo in Sri Lanka, and ways to decrease the incidence of this disease and to eradicate it, and provide some recommendations. During the past decade, a number of groups have investigated this disorder using different methodologies and reported various correlations, but failed to find a cause. Research has focussed on the contamination of water with heavy metals, agrochemicals, hard water, algae, ionicity, climate change, and so forth. Nevertheless, the levels of any of the pollutants or conditions reported in water in NPC are inconsistent not correlated with the prevalence of the disease, and are too low to be the sole cause of CKD-mfo. Meanwhile, several nephrotoxins prevalent in the region, including medications, leptospirosis, toxic herbs, illicit alcohol, locally grown tobacco, and petrochemicals, as well as the effects of changed habits occured over the past four decades have not been studied to date. Taken together, the geographical distribution and overall findings indicate that combinations of factors and/or their interactions are likely to precipitate CKD-mfo, which kills more than 5,000 people annually in Sri Lanka; most victims are middle-aged male farmers. Much anecdotal evidence from this region suggests that consumption of contaminated water is the most likely source of this deadly disease. Although the aetiology is unknown, prevention of this "environmentally acquired" disease seems relatively straightforward. Solutions include (a) preventing environmental pollution, (b) stopping the irresponsible use and decreasing the usage of agrochemicals, and encouraging the use of environmentally friendly agricultural methods, (c) taking proper precautions when using agrochemicals and safe disposal of their containers, (d) changing the risky behaviour of farmers and educating them to preserve the environment, and (e) providing clean potable water to all affected regions. Implementing a well-coordinated, in-depth, region-wide, broad-based research study together with a long-term effective surveillance programme across the country is essential to curbing this disease. Unless firm actions are taken promptly, more than three million healthy people in the country, live in agricultural regions, are at risk for contracting CKD-mfo and succumb to premature deaths, which are preventable.
Collapse
|
50
|
Escalating chronic kidney diseases of multi-factorial origin in Sri Lanka: causes, solutions, and recommendations. Environ Health Prev Med 2014; 19:375-94. [PMID: 25239006 DOI: 10.1007/s12199-014-0395-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/04/2014] [Indexed: 10/24/2022] Open
Abstract
During the last two decades, Sri Lanka, located close to the equator, has experienced an escalating incidence of chronic kidney disease (CKD) of unknown aetiology (CKDue) in dry zonal areas. Similar incidences of unusual CKDs have been reported in the dry zonal, agricultural areas of several other equatorial countries. In Sri Lanka, the incidence of CKDue is highest in the North Central Province (NCP), where approximately 45 % of the country's paddy fields are located. However, in recent years, the disease has spread into areas adjacent to as well as distant from the NCP. The cause of CKD in Sri Lanka is unknown, and may likely due to interactions of different potential agents; thus, CKD is of multi-factorial origin (CKD-mfo). These factors include, the negative effects from overuse of agrochemicals. Nevertheless, the potential interactions and synergism between probable agents have not been studied. This systematic review discusses the proposed hypotheses and causes of CKD-mfo in Sri Lanka, and ways to decrease the incidence of this disease and to eradicate it, and provide some recommendations. During the past decade, a number of groups have investigated this disorder using different methodologies and reported various correlations, but failed to find a cause. Research has focussed on the contamination of water with heavy metals, agrochemicals, hard water, algae, ionicity, climate change, and so forth. Nevertheless, the levels of any of the pollutants or conditions reported in water in NPC are inconsistent not correlated with the prevalence of the disease, and are too low to be the sole cause of CKD-mfo. Meanwhile, several nephrotoxins prevalent in the region, including medications, leptospirosis, toxic herbs, illicit alcohol, locally grown tobacco, and petrochemicals, as well as the effects of changed habits occured over the past four decades have not been studied to date. Taken together, the geographical distribution and overall findings indicate that combinations of factors and/or their interactions are likely to precipitate CKD-mfo, which kills more than 5,000 people annually in Sri Lanka; most victims are middle-aged male farmers. Much anecdotal evidence from this region suggests that consumption of contaminated water is the most likely source of this deadly disease. Although the aetiology is unknown, prevention of this "environmentally acquired" disease seems relatively straightforward. Solutions include (a) preventing environmental pollution, (b) stopping the irresponsible use and decreasing the usage of agrochemicals, and encouraging the use of environmentally friendly agricultural methods, (c) taking proper precautions when using agrochemicals and safe disposal of their containers, (d) changing the risky behaviour of farmers and educating them to preserve the environment, and (e) providing clean potable water to all affected regions. Implementing a well-coordinated, in-depth, region-wide, broad-based research study together with a long-term effective surveillance programme across the country is essential to curbing this disease. Unless firm actions are taken promptly, more than three million healthy people in the country, live in agricultural regions, are at risk for contracting CKD-mfo and succumb to premature deaths, which are preventable.
Collapse
|