1
|
Bakos V, Lóránt B, Murray AK, Feil EJ, Gaze WH, Plósz BG. Antimicrobial risk assessment-Aggregating aquatic chemical and resistome emissions. WATER RESEARCH 2024; 271:122929. [PMID: 39709883 DOI: 10.1016/j.watres.2024.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Urban water systems receive and emit antimicrobial chemicals, resistant bacterial strains, and resistance genes (ARGs), thus representing "antimicrobial hotspots". Currently, regional environmental risk assessment (ERA) is carried out using drug consumption data and threshold concentrations derived based on chemical-specific minimum inhibitory concentration values. A legislative proposal by the European Commission released in 2022 addresses the need to include selected ARGs besides the chemical concentration-based ERAs. The questions arise as to (A) how to improve chemical concentration-based risk assessment and (B) how to integrate resistome-related information with chemical-based risk - the main focal areas of this study. A tiered chemical risk prediction method is proposed by considering effluents of sewer networks and water resource recovery facilities (WRRFs). To improve predicted environmental concentrations (PEC in recipient water bodies), the impact of antimicrobial bio- and re-transformation in WRRFs is assessed using reliable global data. To combine chemical and genetic risks, a new parameter, i.e., the gene response efficiency (GRE) is proposed. A regression analysis show four orders of magnitude differences in GRE values amongst the seven antimicrobial classes studied. Higher GRE values in wastewater are obtained for antimicrobials with relatively low consumption rate levels.
Collapse
Affiliation(s)
- Vince Bakos
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA27AY, UK; Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp, 3, Budapest 1111, Hungary.
| | - Bálint Lóránt
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp, 3, Budapest 1111, Hungary
| | - Aimee K Murray
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| | - Edward J Feil
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA27AY, UK
| | - William H Gaze
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| | - Benedek G Plósz
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA27AY, UK; SWING - Department of Built Environment, Oslo Metropolitan Uni., St Olavs Plass, Oslo 0130, Norway.
| |
Collapse
|
2
|
Bertram MG, Ågerstrand M, Thoré ESJ, Allen J, Balshine S, Brand JA, Brooks BW, Dang Z, Duquesne S, Ford AT, Hoffmann F, Hollert H, Jacob S, Kloas W, Klüver N, Lazorchak J, Ledesma M, Maack G, Macartney EL, Martin JM, Melvin SD, Michelangeli M, Mohr S, Padilla S, Pyle G, Saaristo M, Sahm R, Smit E, Steevens JA, van den Berg S, Vossen LE, Wlodkowic D, Wong BBM, Ziegler M, Brodin T. EthoCRED: a framework to guide reporting and evaluation of the relevance and reliability of behavioural ecotoxicity studies. Biol Rev Camb Philos Soc 2024. [PMID: 39394884 DOI: 10.1111/brv.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Behavioural analysis has been attracting significant attention as a broad indicator of sub-lethal toxicity and has secured a place as an important subdiscipline in ecotoxicology. Among the most notable characteristics of behavioural research, compared to other established approaches in sub-lethal ecotoxicology (e.g. reproductive and developmental bioassays), are the wide range of study designs being used and the diversity of endpoints considered. At the same time, environmental hazard and risk assessment, which underpins regulatory decisions to protect the environment from potentially harmful chemicals, often recommends that ecotoxicological data be produced following accepted and validated test guidelines. These guidelines typically do not address behavioural changes, meaning that these, often sensitive, effects are not represented in hazard and risk assessments. Here, we propose a new tool, the EthoCRED evaluation method, for assessing the relevance and reliability of behavioural ecotoxicity data, which considers the unique requirements and challenges encountered in this field. This method and accompanying reporting recommendations are designed to serve as an extension of the "Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)" project. As such, EthoCRED can both accommodate the wide array of experimental design approaches seen in behavioural ecotoxicology, and could be readily implemented into regulatory frameworks as deemed appropriate by policy makers of different jurisdictions to allow better integration of knowledge gained from behavioural testing into environmental protection. Furthermore, through our reporting recommendations, we aim to improve the reporting of behavioural studies in the peer-reviewed literature, and thereby increase their usefulness to inform chemical regulation.
Collapse
Affiliation(s)
- Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Marlene Ågerstrand
- Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8c, Stockholm, 114 18, Sweden
| | - Eli S J Thoré
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Laboratory of Adaptive Biodynamics, Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and Environment, University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
- TRANSfarm, Science, Engineering, and Technology Group, KU Leuven, Bijzondereweg 12, Bierbeek, 3360, Belgium
| | - Joel Allen
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience, & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Jack A Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London, NW1, 4RY, UK
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, 76798-7266, Texas, USA
| | - ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Sabine Duquesne
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK
| | - Frauke Hoffmann
- Department of Chemical and Product Safety, The German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, 60438, Germany
| | - Stefanie Jacob
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
| | - Nils Klüver
- Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig, 04318, Germany
| | - Jim Lazorchak
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. EPA, 26 Martin Luther King Drive West, Cincinnati, 45268, Ohio, USA
| | - Mariana Ledesma
- Swedish Chemicals Agency (KemI), Löfströms allé 5, Stockholm, 172 66, Sweden
| | - Gerd Maack
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Erin L Macartney
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Biological Sciences North (D26), Sydney, 2052, Australia
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, John Hopkins Drive, Sydney, 2006, Australia
| | - Jake M Martin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm, 114 18, Sweden
- School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, 3216, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Edmund Rice Drive, Southport, 4215, Australia
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, 4111, Australia
| | - Silvia Mohr
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, 109 T.W. Alexander Drive, Durham, 27711, North Carolina, USA
| | - Gregory Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada
| | - Minna Saaristo
- Environment Protection Authority Victoria, EPA Science, 2 Terrace Way, Macleod, 3085, Australia
| | - René Sahm
- German Environment Agency (UBA), Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
- Department of Freshwater Ecology in Landscape Planning, University of Kassel, Gottschalkstraße 24, Kassel, 34127, Germany
| | - Els Smit
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Jeffery A Steevens
- Columbia Environmental Research Center, U.S. Geological Survey (USGS), 4200 New Haven Road, Columbia, 65201, Missouri, USA
| | - Sanne van den Berg
- Wageningen University and Research, P.O. Box 47, Wageningen, 6700 AA, the Netherlands
| | - Laura E Vossen
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Ulls väg 26, Uppsala, 756 51, Sweden
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, 289 McKimmies Road, Melbourne, 3083, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Melbourne, 3800, Australia
| | - Michael Ziegler
- Eurofins Aquatic Ecotoxicology GmbH, Eutinger Strasse 24, Niefern-Öschelbronn, 75223, Germany
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, Tübingen, 72076, Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, Umeå, 907 36, Sweden
| |
Collapse
|
3
|
Meng L, Zhou B, Liu H, Chen Y, Yuan R, Chen Z, Luo S, Chen H. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174201. [PMID: 38936709 DOI: 10.1016/j.scitotenv.2024.174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
Collapse
Affiliation(s)
- Lingxuan Meng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Yuefang Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Choudhury A, Ojha PK, Ray S. Hazards of antiviral contamination in water: Dissemination, fate, risk and their impact on fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135087. [PMID: 38964042 DOI: 10.1016/j.jhazmat.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
5
|
Oldenkamp R, Hamers T, Wilkinson J, Slootweg J, Posthuma L. Regulatory Risk Assessment of Pharmaceuticals in the Environment: Current Practice and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:611-622. [PMID: 36484757 DOI: 10.1002/etc.5535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
How can data on the occurrence of pharmaceuticals and personal care products (PPCPs) in the environment and the quality of ecosystems exposed to PPCPs be used to determine whether current regulatory risk assessment schemes are effective? This is one of 20 "big questions" concerning PPCPs in the environment posed in a landmark review paper in 2012. Ten years later, we review the developments around this question, focusing on the first P in PPCPs, that is, pharmaceuticals, or more specifically the active ingredients included in them (active pharmaceutical ingredients, APIs). We illustrate how extensive data on both the occurrence of APIs and the ecotoxicological sensitivity of aquatic species to them can be used in a retrospective risk assessment. In the Netherlands, current regulatory risk assessment schemes offer insufficient protection against direct ecotoxicological effects from APIs: the toxic pressure exerted by the 39 APIs included in our study exceeds the policy-related protective threshold of 0.05 (the "95%-protection level") in at least 13% of sampled surface waters. In general, anti-inflammatory and antirheumatic products (e.g., diclofenac, ibuprofen) contributed most to the overall toxic pressure, followed by sex hormones and modulators of the genital system (e.g., ethinylestradiol) and psychoanaleptics (e.g., caffeine). We formulated three open questions for future research. The first relates to improving the availability and accessibility of good-quality ecotoxicity data on pharmaceuticals for the global scientific, regulatory, and general public. The second relates to the adaptation of regulatory risk assessment frameworks for developing regions of the world. The third relates to the integration of effect-based and ecological approaches into regulatory risk assessment practice. Environ Toxicol Chem 2024;43:611-622. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rik Oldenkamp
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo Hamers
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John Wilkinson
- Environment and Geography Department, University of York, York, UK
| | - Jaap Slootweg
- RIVM, Centre for Sustainability, Environment and Health, Bilthoven, The Netherlands
| | - Leo Posthuma
- RIVM, Centre for Sustainability, Environment and Health, Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Henke AN, Chilukuri S, Langan LM, Brooks BW. Reporting and reproducibility: Proteomics of fish models in environmental toxicology and ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168455. [PMID: 37979845 DOI: 10.1016/j.scitotenv.2023.168455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Environmental toxicology and ecotoxicology research efforts are employing proteomics with fish models as New Approach Methodologies, along with in silico, in vitro and other omics techniques to elucidate hazards of toxicants and toxins. We performed a critical review of toxicology studies with fish models using proteomics and reported fundamental parameters across experimental design, sample preparation, mass spectrometry, and bioinformatics of fish, which represent alternative vertebrate models in environmental toxicology, and routinely studied animals in ecotoxicology. We observed inconsistencies in reporting and methodologies among experimental designs, sample preparations, data acquisitions and bioinformatics, which can affect reproducibility of experimental results. We identified a distinct need to develop reporting guidelines for proteomics use in environmental toxicology and ecotoxicology, increased QA/QC throughout studies, and method optimization with an emphasis on reducing inconsistencies among studies. Several recommendations are offered as logical steps to advance development and application of this emerging research area to understand chemical hazards to public health and the environment.
Collapse
Affiliation(s)
- Abigail N Henke
- Department of Biology, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA
| | | | - Laura M Langan
- Department of Environmental Science, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA.
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA.
| |
Collapse
|
7
|
Viaene KPJ, De Schamphelaere KAC, Van Sprang P. Extrapolation of Metal Toxicity Data for the Rotifer Brachionus calyciflorus Using an Individual-Based Population Model. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:324-337. [PMID: 37888879 DOI: 10.1002/etc.5779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Ecological risk assessment (ERA) of metals typically starts from standardized toxicity tests, the data from which are then extrapolated to derive safe concentrations for the envisioned protection goals. Because such extrapolation in conventional ERA lacks ecological realism, ecological modeling is considered as a promising new approach for extrapolation. Many published population models are complex, that is, they include many processes and parameters, and thus require an extensive dataset to calibrate. In the present study, we investigated how individual-based models based on a reduced version of the Dynamic Energy Budget theory (DEBkiss IBM) could be applied for metal effects on the rotifer Brachionus calyciflorus. Data on survival over time and reproduction at different temperatures and food conditions were used to calibrate and evaluate the model for copper effects. While population growth and decline were well predicted, the underprediction of population density and the mismatch in the onset of copper effects were attributed to the simplicity of the approach. The DEBkiss IBM was applied to toxicity datasets for copper, nickel, and zinc. Predicted effect concentrations for these metals based on the maximum population growth rate were between 0.7 and 3 times higher in all but one case (10 times higher) than effect concentrations based on the toxicity data. The size of the difference depended on certain characteristics of the toxicity data: both the steepness of the concentration-effect curve and the relative sensitivity of lethal and sublethal effects played a role. Overall, the present study is an example of how a population model with reduced complexity can be useful for metal ERA. Environ Toxicol Chem 2024;43:324-337. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Ghent, Belgium
| | | |
Collapse
|
8
|
Nolen RM, Prouse A, Russell ML, Bloodgood J, Díaz Clark C, Carmichael RH, Petersen LH, Kaiser K, Hala D, Quigg A. Evaluation of fatty acids and carnitine as biomarkers of PFOS exposure in biota (fish and dolphin) from Galveston Bay and the northwestern Gulf of Mexico. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109817. [PMID: 38101762 DOI: 10.1016/j.cbpc.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant that elicits a wide range of toxic effects in exposed biota. Coastal zones in highly urbanized or industrial areas are particularly vulnerable to PFOS pollution. At present, information is lacking on biomarkers to assess PFOS effects on aquatic wildlife. This study investigated the efficacy of l-carnitine (or carnitine) and fatty acids as biomarkers of PFOS exposure in aquatic biota. The levels of PFOS, total and free carnitine, and 24 fatty acids (measured as fatty acid methyl esters or FAMEs) were measured in the liver, and muscle or blubber, of fish and dolphins sampled from Galveston Bay and the northern Gulf of Mexico (nGoM). Overall, bottlenose dolphins (Tursiops truncatus) had the highest hepatic PFOS levels. Galveston Bay fish, gafftopsail catfish (Bagre marinus), red drum (Sciaenops ocellatus), and spotted seatrout (Cynoscion nebulosus), had hepatic PFOS levels ∼8-13× higher than nGoM pelagic fish species, red snapper (Lutjanus campechanus) and yellowfin tuna (Thunnus albacares). The multivariate analysis of PFOS liver body-burdens and biomarkers found carnitine to be a more modal biomarker of PFOS exposure than FAMEs. Significant positive correlation of hepatic PFOS levels with total carnitine was evident for biota from Galveston Bay (fish only), and a significant correlation between PFOS and total and free carnitine was evident for biota from the nGoM (fish and dolphins). Given the essential role of carnitine in mediating fatty acid β-oxidation, our results suggest carnitine to be a likely candidate biomarker of environmental PFOS exposure and indicative of potential dyslipidemia effects.
Collapse
Affiliation(s)
- Rayna M Nolen
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Mackenzie L Russell
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
| | - Jennifer Bloodgood
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; Stokes School of Marine and Environmental Sciences, University of South Alabama, 307 N University Blvd, Mobile, AL 36688, USA; Cornell Wildlife Health Lab, Cornell University College of Veterinary Medicine, 240 Farrier Rd, Ithaca, NY 14853, USA
| | - Cristina Díaz Clark
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
| | - Ruth H Carmichael
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; Stokes School of Marine and Environmental Sciences, University of South Alabama, 307 N University Blvd, Mobile, AL 36688, USA
| | - Lene H Petersen
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Karl Kaiser
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
| | - David Hala
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA; Department of Ecology and Conservation Biology, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
| |
Collapse
|
9
|
Pandelides Z, Arblaster J, Conder J. Establishing Chronic Toxicity Effect Levels for Zebrafish (Danio rerio) Exposed to Perfluorooctane Sulfonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:7-18. [PMID: 37850740 DOI: 10.1002/etc.5768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Zebrafish (Danio rerio) are among the aquatic species most sensitive to perfluorooctane sulfonate (PFOS). Environmental regulatory agencies and researchers use effect benchmarks from laboratory zebrafish PFOS toxicity studies in PFOS-spiked water to calculate PFOS aquatic life criteria. Threshold values as low as 0.7 µg/L (identified in an early, limited scope study) have been used in criteria derivation and site-specific aquatic ecological risk assessments. The present study reviews PFOS effects benchmarks for lethality, growth, and reproduction endpoints from more than 20 zebrafish toxicity studies, including a recent multigenerational study conducted by the United States Army Corps of Engineers Engineer Research & Development Center. Our review of 12 key studies examining long-term, chronic exposures (including multigenerational exposures of 300 days or more) indicated that 0.7 µg/L should not be used as a conservative screening threshold given that effects could not be repeated at this concentration by the recent enhanced multigenerational study. Based on this finding and multiple chronic sublethal studies on PFOS in zebrafish, chronic effects on lethality, growth, and reproduction occur at concentrations two orders of magnitude higher than 0.7 µg/L. Overall, the present review indicates a no-effect screening level of 31 µg/L and a low-effect screening level of 96 µg/L should be used to develop PFOS aquatic life criteria and to inform site-specific ecological risk assessments that are charged with evaluating risks to freshwater fish. Environ Toxicol Chem 2024;43:7-18. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Jason Conder
- Geosyntec Consultants, Costa Mesa, California, USA
| |
Collapse
|
10
|
Gust KA, Erik Mylroie J, Kimble AN, Wilbanks MS, Steward CSC, Chapman KA, Jensen KM, Kennedy AJ, Krupa PM, Waisner SA, Pandelides Z, Garcia-Reyero N, Erickson RJ, Ankley GT, Conder J, Moore DW. Survival, Growth, and Reproduction Responses in a Three-Generation Exposure of the Zebrafish (Danio rerio) to Perfluorooctane Sulfonate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:115-131. [PMID: 38018867 PMCID: PMC11131580 DOI: 10.1002/etc.5770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
A prior multigenerational perfluorooctane sulfonic acid (PFOS) exposure investigation in zebrafish reported adverse effects at 0.734 µg/L, among the lowest aquatic effect levels for PFOS reported to date. The present three-generation PFOS exposure quantified survival, growth, reproduction, and vitellogenin (VTG; egg yolk protein) responses in zebrafish, incorporating experimental design and procedural improvements relative to the earlier study. Exposures targeting 0.1, 0.6, 3.2, 20, and 100 µg/L in parental (P) and first filial (F1) generations lasted for 180 days post fertilization (dpf) and the second filial generation (F2) through 16 dpf. Survival decreased significantly in P and F2 generation exposures, but not in F1, at the highest PFOS treatment (100 µg/L nominal, 94-205 µg/L, measured). Significant adverse effects on body weight and length were infrequent, of low magnitude, and occurred predominantly at the highest exposure treatment. Finally, PFOS had no significant effects on P or F1 egg production and survival or whole-body VTG levels in P or F1 male fish. Overall, the predominance and magnitude of adverse PFOS effects at <1 µg/L reported in prior research were largely nonrepeatable in the present study. In contrast, the present study indicated a threshold for ecologically relevant adverse effects in zebrafish at 117 µg/L (SE 8 µg/L, n = 10) for survival and 47 µg/L (SE 11 µg/L, n = 19) for all statistically significant negative effects observed. Environ Toxicol Chem 2024;43:115-131. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Kurt A. Gust
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - J. Erik Mylroie
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Ashley N. Kimble
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Mitchell S. Wilbanks
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | | | - Kacy A. Chapman
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Kathleen M. Jensen
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Alan J. Kennedy
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Paige M. Krupa
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Scott A. Waisner
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | | | - Natalia Garcia-Reyero
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| | - Russell J. Erickson
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Gerald T. Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Jason Conder
- Geosyntec Consultants, Costa Mesa, California, USA
| | - David W. Moore
- Environmental Laboratory, Engineer Research and Development Center, US Army, Vicksburg, Mississippi, USA
| |
Collapse
|
11
|
Wang C, Li M, Gui W, Shi H, Wang P, Chen J, Fent K, Zhang K, Dai J, Li X, Zhao Y. Prednisolone Accelerates Embryonic Development of Zebrafish via Glucocorticoid Receptor Signaling at Low Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15794-15805. [PMID: 37812749 DOI: 10.1021/acs.est.3c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Synthetic glucocorticoids have been widely detected in aquatic ecosystems and may pose a toxicological risk to fish. In the present study, we described multiple end point responses of zebrafish to a commonly prescribed glucocorticoid, prednisolone (PREL), at concentrations between 0.001 and 9.26 μg/L. Of 23 end points monitored, 7 were affected significantly. Significant increases in the frequency of yolk extension formation, spontaneous contraction, heart rate, and ocular melanin density and significant decreases of ear-eye distance at PREL concentrations of 0.001 μg/L and above clearly pointed to the acceleration of embryonic development of zebrafish by PREL. Further confirmation came from the alterations in somite numbers, head-trunk angle, and yolk sac size, as well as outcomes obtained via RNA sequencing, in which signaling pathways involved in tissue/organ growth and development were highly enriched in embryos upon PREL exposure. In addition, the crucial role of glucocorticoid receptor (GR) for PREL-induced effects was confirmed by both, the coexposure to antagonist mifepristone (RU486) and GR-/- mutant zebrafish experiments. We further demonstrated similar accelerations of embryonic development of zebrafish upon exposure to 11 additional glucocorticoids, indicating generic adverse effect characteristics. Overall, our results revealed developmental alterations of PREL in fish embryos at low concentrations and thus provided novel insights into the understanding of the potential environmental risks of glucocorticoids.
Collapse
Affiliation(s)
- Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanying Gui
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xi Li
- Center of Clinical Research, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
12
|
Rohner S, Gramer M, Wiesweg I, Scherf-Clavel O, Wohlsein P, Schmelz M, Siebert U, Richter F, Gernert M. Present in the Aquatic Environment, Unclear Evidence in Top Predators-The Unknown Effects of Anti-Seizure Medication on Eurasian Otters ( Lutra lutra) from Northern Germany. TOXICS 2023; 11:338. [PMID: 37112566 PMCID: PMC10142713 DOI: 10.3390/toxics11040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Emerging contaminants are produced globally at high rates and often ultimately find their way into the aquatic environment. These include substances contained in anti-seizure medication (ASM), which are currently appearing in surface waters at increasing concentrations in Germany. Unintentional and sublethal, chronic exposure to pharmaceuticals such as ASMs has unknown consequences for aquatic wildlife. Adverse effects of ASMs on the brain development are documented in mammals. Top predators such as Eurasian otters (Lutra lutra) are susceptible to the bioaccumulation of environmental pollutants. Still little is known about the health status of the otter population in Germany, while the detection of various pollutants in otter tissue samples has highlighted their role as an indicator species. To investigate potential contamination with pharmaceuticals, Eurasian otter brain samples were screened for selected ASMs via high-performance liquid chromatography and mass spectrometry. Via histology, brain sections were analyzed for the presence of potential associated neuropathological changes. In addition to 20 wild otters that were found dead, a control group of 5 deceased otters in human care was studied. Even though none of the targeted ASMs were detected in the otters, unidentified substances in many otter brains were measured. No obvious pathology was observed histologically, although the sample quality limited the investigations.
Collapse
Affiliation(s)
- Simon Rohner
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Martina Gramer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Ivo Wiesweg
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | | | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Martin Schmelz
- Aktion Fischotterschutz e.V, Otter-Zentrum Hankensbüttel, 29386 Hankensbüttel, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| |
Collapse
|
13
|
Jiang R, Wang M, Xie T, Chen W. Site-specific ecological effect assessment at community level for polymetallic contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130531. [PMID: 36495636 DOI: 10.1016/j.jhazmat.2022.130531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Current ecological risk assessment (ERA) is based more on book-keeping than on science especially for terrestrial ecosystems due to the lack of relevance to real field. Accordingly, site-specific ecological effect assessment is critical for ERA, especially at high tiers. This study developed procedures to assess ecological effect at community level based on field data. As a case study, we assessed ecological effect of polymetallic contamination in soil in the surrounding of an abandoned mining and smelting site in Hunan, China. Firstly, Zn was identified as the dominant contaminant in soil and slope gradient (SG) and pH as environmental impact factors using distance-based redundancy analysis(db-RDA). Secondly, sensitive endpoints were screened using correlation analysis between Zn and parameters of plant community composition and functional traits. Thirdly, exposure-effect curves between Zn and screened endpoints were developed by taking SG and pH as covariates using Bayesian kernel machine regression analysis (BKMR), based on which half-effect concentrations (EC50s) and 10 %-effect concentrations (EC10s) of soil Zn for each endpoint were calculated. Finally, site-specific hazardous concentrations (HC50s) of Zn were estimated. It was revealed site-specific EC50s and EC10s for soil Zn ranged 80.5-201 mg kg-1 and 342-893 mgkg-1, respectively, and HC50s based on EC10s and EC50s ranged 104-110 mg kg-1 and 595-612 mg kg-1, respectively, which are more specific and inclusive than those obtained based on crop and vegetable seed germination and seedling growth toxicity experiments.
Collapse
Affiliation(s)
- Rong Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tian Xie
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Bejarano AC, Adams JE, McDowell J, Parkerton TF, Hanson ML. Recommendations for improving the reporting and communication of aquatic toxicity studies for oil spill planning, response, and environmental assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106391. [PMID: 36641886 DOI: 10.1016/j.aquatox.2022.106391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Standardized oil toxicity testing is important to ensure comparability of study results, and to generate information to support oil spill planning, response, and environmental assessments. Outcomes from toxicity tests are useful in the development, improvement and validation of effects models, and new or revised knowledge could be integrated into existing databases and related tools. To foster transparency, facilitate repeatability and maximize use and impact, outcomes from toxicity tests need to be clearly reported and communicated. This work is part of a series of reviews to support the modernization of the "Chemical Response to Oil Spills: Ecological Effects Research Forum" protocols focusing on technological advances and best toxicity testing practices. Thus, the primary motivation of the present work is to provide guidance and encourage detailed documentation of aquatic toxicity studies. Specific recommendations are provided regarding key reporting elements (i.e., experimental design, test substance and properties, test species and response endpoints, media preparation, exposure conditions, chemical characterization, reporting metric corresponding to the response endpoint, data quality standards, and statistical methods, and raw data), which along with a proposed checklist can be used to assess the completeness of reporting elements or to guide study conduct. When preparing journal publications, authors are encouraged to take advantage of the Supplementary Material section to enhance dissemination and access to key data and information that can be used by multiple end-users, including decision-makers, scientific support staff and modelers. Improving reporting, science communication, and access to critical information enable users to assess the reliability and relevance of study outcomes and increase incorporation of results gleaned from toxicity testing into tools and applications that support oil spill response decisions. Furthermore, improved reporting could be beneficial for audiences outside the oil spill response community, including peer reviewers, journal editors, aquatic toxicologists, researchers in other disciplines, and the public.
Collapse
Affiliation(s)
- Adriana C Bejarano
- Shell Global Solutions US Inc., 150 North Dairy Ashford Road, Houston, TX 77079, USA.
| | - Julie E Adams
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Sumpter JP, Runnalls TJ, Johnson AC, Barcelo D. A 'Limitations' section should be mandatory in all scientific papers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159395. [PMID: 36257434 DOI: 10.1016/j.scitotenv.2022.159395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
It is unusual, and can be difficult, for scientists to reflect in their publications on any limitations their research had. This is a consequence of the extreme pressure that scientists are under to 'publish or perish'. The inevitable consequence is that much published research is not as good as it could, and should, be, leading to the current 'reproducibility crisis'. Approaches to address this crisis are required. Our suggestion is to include a 'Limitations' section in all scientific papers. Evidence is provided showing that such a section must be mandatory. Adding a 'Limitations' section to scientific papers would greatly increase honesty, openness and transparency, to the considerable benefit of both the scientific community and society in general. This suggestion is applicable to all scientific disciplines. Finally, we apologise if our suggestion has already been made by others.
Collapse
Affiliation(s)
- John P Sumpter
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic ITecnol'ogic de La Universitat de Girona, C/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
| |
Collapse
|
16
|
Anderson J, Prosser RS. Potential risk to aquatic biota from aerial application of firefighting water additives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120651. [PMID: 36395903 DOI: 10.1016/j.envpol.2022.120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The frequency and severity of forest fires is increasing due to climate change. Consequently, there will be an increased use of forest firefighting additives, which increase the ability of water to extinguish fires and prevent reignition. Increased use will potentially result in increased exposure to aquatic ecosystems within forests. This study examined the toxicity of nine firefighting water additives that are currently on the market to three species of freshwater invertebrates that occupy different niches within freshwater ecosystems. The toxicity of the water additives varied up to three orders of magnitude. Pelagic and epibenthic invertebrates are affected at lower rates of application than endobenthic invertebrates. A field relevant application rate of three of the nine water additives tested represent a hazard to freshwater ecosystems under varies exposure scenarios represented by the depth of a theoretical water body (15-200 cm). This study highlights the importance of application buffers around water bodies and the selection of water additives that pose the lowest hazard to freshwater ecosystem, assuming that the efficacy of the additives in extinguishing fires is similar.
Collapse
Affiliation(s)
- J Anderson
- University of Guelph, School of Environmental Sciences, Guelph, Ontario, Canada
| | - R S Prosser
- University of Guelph, School of Environmental Sciences, Guelph, Ontario, Canada.
| |
Collapse
|
17
|
Bertram MG, Martin JM, McCallum ES, Alton LA, Brand JA, Brooks BW, Cerveny D, Fick J, Ford AT, Hellström G, Michelangeli M, Nakagawa S, Polverino G, Saaristo M, Sih A, Tan H, Tyler CR, Wong BB, Brodin T. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol Rev Camb Philos Soc 2022; 97:1346-1364. [PMID: 35233915 PMCID: PMC9543409 DOI: 10.1111/brv.12844] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Jake M. Martin
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Lesley A. Alton
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Jack A. Brand
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear PlaceWacoTexas76798‐7266U.S.A.
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceZátiší 728/IIVodnany389 25Czech Republic
| | - Jerker Fick
- Department of ChemistryUmeå UniversityLinnaeus väg 10UmeåVästerbottenSE‐907 36Sweden
| | - Alex T. Ford
- Institute of Marine SciencesUniversity of PortsmouthWinston Churchill Avenue, PortsmouthHampshirePO1 2UPU.K.
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences West (D26)SydneyNSW2052Australia
| | - Giovanni Polverino
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia35 Stirling HighwayPerthWA6009Australia
- Department of Ecological and Biological SciencesTuscia UniversityVia S.M. in Gradi n.4ViterboLazio01100Italy
| | - Minna Saaristo
- Environment Protection Authority VictoriaEPA Science2 Terrace WayMacleodVictoria3085Australia
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Hung Tan
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterDevonEX4 4QDU.K.
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| |
Collapse
|
18
|
Dujon AM, Boutry J, Tissot S, Meliani J, Guimard L, Rieu O, Ujvari B, Thomas F. A review of the methods used to induce cancer in invertebrates to study its effects on the evolution of species and ecosystem functioning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine M. Dujon
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Sophie Tissot
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Jordan Meliani
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Lena Guimard
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Océane Rieu
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Beata Ujvari
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| |
Collapse
|
19
|
Martinez AS, Underwood AJ, Christofoletti RA, Pardal A, Fortuna MA, Marcelo-Silva J, Morais GC, Lana PC. On the science of marine environmental impact assessments in Brazil: A reply to Choueri et al. (2022). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:155229. [PMID: 35421498 DOI: 10.1016/j.scitotenv.2022.155229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Aline S Martinez
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil.
| | - Antony J Underwood
- Marine Ecology Laboratories A11, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Ronaldo A Christofoletti
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil
| | - André Pardal
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil; Center for Natural and Human Sciences, Federal University of ABC (CCNH/UFABC), Rua Santa Adélia, 166, Santo André, SP 09210-170, Brazil
| | - Monique A Fortuna
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil
| | - João Marcelo-Silva
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP 11070-100, Brazil
| | - Gisele C Morais
- Laboratório de Bentos, Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-mar, s/n, Pontal do Paraná, PR 83255-976, Brazil
| | - Paulo C Lana
- Laboratório de Bentos, Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira-mar, s/n, Pontal do Paraná, PR 83255-976, Brazil
| |
Collapse
|
20
|
Xu M, Yang H, Liu G, Tang Y, Li W. In Silico Prediction of Chemical Aquatic Toxicity by Multiple Machine Learning and Deep Learning Approaches. J Appl Toxicol 2022; 42:1766-1776. [PMID: 35653511 DOI: 10.1002/jat.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Fish is one of the model animals used to evaluate the adverse effects of a chemical exposed to the ecosystem. However, its low throughput and relevantly high expense make it impossible to test all new chemicals in manufacture. Hence using in silico models to prioritize compounds to be tested has been widely applied in environmental risk assessment and drug discovery. In this study, we constructed the local predictive models for four fish species, including bluegill sunfish, rainbow trout, fathead minnow, and sheepshead minnow, and the global models with all four fish data. A total of 1874 unique compounds with their labels, i.e. toxic (LC50 < 10 ppm) or nontoxic were collected from ECOTOX and literature. Both conventional machine learning methods and the deep learning architecture, graph convolutional network (GCN), were used to build predictive models. The classification accuracy of the best local model for each fish species was higher than 0.83. For the global models, two strategies including consistency prediction and probability threshold were adopted to improve the predictive capability at the cost of limiting applicability domain. For 63% of compounds in domain, the accuracy was around 0.97. By comparison of the deep learning and machine learning methods, we found that the single-task GCN showed specific advantages in performance and multi-task GCN showed no advantages over the conventional machine learning methods. The data and models are available on GitHub (https://github.com/ChemPredict/ChemicalAquaticToxicity).
Collapse
Affiliation(s)
- Minjie Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hongbin Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Baussant T, Arnberg M, Lyng E, Ramanand S, Bamber S, Berry M, Myrnes Hansen I, Van Oevelen D, Van Breugel P. Identification of tolerance levels on the cold-water coral Desmophyllum pertusum (Lophelia pertusa) from realistic exposure conditions to suspended bentonite, barite and drill cutting particles. PLoS One 2022; 17:e0263061. [PMID: 35192627 PMCID: PMC8863230 DOI: 10.1371/journal.pone.0263061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Cold-water coral (CWC) reefs are numerous and widespread along the Norwegian continental shelf where oil and gas industry operate. Uncertainties exist regarding their impacts from operational discharges to drilling. Effect thresholds obtained from near-realistic exposure of suspended particle concentrations for use in coral risk modeling are particularly needed. Here, nubbins of Desmophyllum pertusum (Lophelia pertusa) were exposed shortly (5 days, 4h repeated pulses) to suspended particles (bentonite BE; barite BA, and drill cuttings DC) in the range of ~ 4 to ~ 60 mg.l-1 (actual concentration). Physiological responses (respiration rate, growth rate, mucus-related particulate organic carbon OC and particulate organic nitrogen ON) and polyp mortality were then measured 2 and 6 weeks post-exposure to assess long-term effects. Respiration and growth rates were not significantly different in any of the treatments tested compared to control. OC production was not affected in any treatment, but a significant increase of OC:ON in mucus produced by BE-exposed (23 and 48 mg.l-1) corals was revealed 2 weeks after exposure. Polyp mortality increased significantly at the two highest DC doses (19 and 49 mg.l-1) 2 and 6 weeks post-exposure but no significant difference was observed in any of the other treatments compared to the control. These findings are adding new knowledge on coral resilience to short realistic exposure of suspended drill particles and indicate overall a risk for long-term effects at a threshold of ~20 mg.l-1.
Collapse
Affiliation(s)
| | - Maj Arnberg
- NORCE Norwegian Research Centre AS, Randaberg, Norway
| | - Emily Lyng
- NORCE Norwegian Research Centre AS, Randaberg, Norway
| | | | - Shaw Bamber
- NORCE Norwegian Research Centre AS, Randaberg, Norway
| | - Mark Berry
- NORCE Norwegian Research Centre AS, Randaberg, Norway
| | - Ingrid Myrnes Hansen
- Ecotone AS, Trondheim, Norway
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Dick Van Oevelen
- Department of Estuarine and Delta Systems, NIOZ – Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands
| | - Peter Van Breugel
- Department of Estuarine and Delta Systems, NIOZ – Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands
| |
Collapse
|
22
|
Duis K, Junker T, Coors A. Review of the environmental fate and effects of two UV filter substances used in cosmetic products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151931. [PMID: 34863752 DOI: 10.1016/j.scitotenv.2021.151931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Sunscreens containing UV filters, such as octocrylene (OCR) and butyl-methoxydibenzoylmethane (BMDBM), have been increasingly used to protect human skin against UV radiation. Both substances have been detected in monitoring studies in the freshwater and marine environment, and there has been concern about potential effects on aquatic organisms. In the present work, the environmental fate and occurrence, bioaccumulation and ecotoxicity including endocrine effects of OCR and BMDBM are reviewed focusing on the aquatic environment. The two UV filters have low water solubilities and a high sorption potential. The available data indicate that OCR is poorly biodegradable. BMDBM lacks anaerobic and inherent biodegradability. However, it was biodegraded to variable degrees in simulation studies. Measured concentrations in the freshwater and marine environment were found to vary considerably between sites, depending on the extent of recreational activities or wastewater discharges. While the bioconcentration factor of OCR in fish is below the threshold value for bioaccumulation according to EU REACH, the available data for BMDBM do not allow a definitive conclusion on its bioaccumulation potential. Analysis of the aquatic toxicity data showed that data quality was often limited, e.g. in the case of effect concentrations substantially exceeding maximum achievable dissolved concentrations. Up to their limit of water solubility, OCR and BMDBM showed no toxicity to microorganisms, algae, and corals, and no acute toxicity to daphnids and fish. In chronic daphnid tests, OCR was highly toxic, whereas BMDBM lacked toxicity. Reliable water-sediment toxicity tests are required to further evaluate possible effects on benthic invertebrates. The available data do not provide evidence for endocrine effects of the two UV filters on fish. In order to assess potential environmental risks caused by OCR and BMDBM, a validated exposure model for estimating direct emission of UV filters into the aquatic environment and data from systematic, longer-term monitoring studies are needed.
Collapse
Affiliation(s)
- Karen Duis
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, 65439 Flörsheim, Germany.
| | - Thomas Junker
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, 65439 Flörsheim, Germany
| | - Anja Coors
- ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, 65439 Flörsheim, Germany
| |
Collapse
|
23
|
Eldridge RJ, de Jourdan BP, Hanson ML. A Critical Review of the Availability, Reliability, and Ecological Relevance of Arctic Species Toxicity Tests for Use in Environmental Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:46-72. [PMID: 34758147 PMCID: PMC9304189 DOI: 10.1002/etc.5247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 05/26/2023]
Abstract
There is a pressing need to understand the impact of contaminants on Arctic ecosystems; however, most toxicity tests are based on temperate species, and there are issues with reliability and relevance of bioassays in general. Together this may result in an underestimation of harm to Arctic organisms and contribute to significant uncertainty in risk assessments. To help address these concerns, a critical review to assess reported effects for these species, quantify methodological and endpoint relevance gaps, and identify future research needs for testing was performed. We developed uniform criteria to score each study, allowing an objective comparison across experiments to quantify their reliability and relevance. We scored a total of 48 individual studies, capturing 39 tested compounds, 73 unique Arctic test species, and 95 distinct endpoints published from 1975 to 2021. Our analysis shows that of 253 test substance and species combinations scored (i.e., a unique toxicity test), 207 (82%) failed to meet at least one critical study criterion that contributes to data reliability for use in risk assessment. Arctic-focused toxicity testing needs to ensure that exposures can be analytically confirmed, include environmentally realistic exposure scenarios, and report test methods more thoroughly. Significant data gaps were identified as related to standardized toxicity testing with Arctic species, diversity of compounds tested with these organisms, and the inclusion of ecologically relevant sublethal and chronic endpoints assessed in Arctic toxicity testing. Overall, there needs to be ongoing improvement in test conduction and reporting in the scientific literature to support effective risk assessments in an Arctic context. Environ Toxicol Chem 2022;41:46-72. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Rebecca J. Eldridge
- Huntsman Marine Science CentreSt. AndrewsNew BrunswickCanada
- Department of Environment and GeographyUniversity of ManitobaWinnipegManitobaCanada
| | | | - Mark L. Hanson
- Department of Environment and GeographyUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
24
|
Burns EE, Davies IA. Coral Ecotoxicological Data Evaluation for the Environmental Safety Assessment of Ultraviolet Filters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3441-3464. [PMID: 34758162 PMCID: PMC9299478 DOI: 10.1002/etc.5229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
There is growing interest in the environmental safety of ultraviolet (UV) filters found in cosmetic and personal care products (CPCPs). The CPCP industry is assessing appropriate environmental risk assessment (ERA) methods to conduct robust environmental safety assessments for these ingredients. Relevant and reliable data are needed for ERA, particularly when the assessment is supporting regulatory decision-making. In the present study, we apply a data evaluation approach to incorporate nonstandard toxicity data into the ERA process through an expanded range of reliability scores over commonly used approaches (e.g., Klimisch scores). The method employs an upfront screening followed by a data quality assessment based largely on the Criteria for Reporting and Evaluating Ecotoxicity Data (CRED) approach. The method was applied in a coral case study in which UV filter toxicity data was evaluated to identify data points potentially suitable for higher tier and/or regulatory ERA. This is an optimal case study because there are no standard coral toxicity test methods, and UV filter bans are being enacted based on findings reported in the current peer-reviewed data set. Eight studies comprising nine assays were identified; four of the assays did not pass the initial screening assessment. None of the remaining five assays received a high enough reliability score (Rn ) to be considered of decision-making quality (i.e., R1 or R2). Four assays were suitable for a preliminary ERA (i.e., R3 or R4), and one assay was not reliable (i.e., R6). These results highlight a need for higher quality coral toxicity studies, potentially through the development of standard test protocols, to generate reliable toxicity endpoints. These data can then be used for ERA to inform environmental protection and sustainability decision-making. Environ Toxicol Chem 2021;40:3441-3464. © 2021 Personal Care Products Council. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
25
|
Johnson AC, Sumpter JP, Depledge MH. The Weight-of-Evidence Approach and the Need for Greater International Acceptance of Its Use in Tackling Questions of Chemical Harm to the Environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2968-2977. [PMID: 34347903 DOI: 10.1002/etc.5184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
As we attempt to manage chemicals in the environment we need to be sure that our research efforts are being directed at the substances of greatest threat. All too often we focus on a chemical of concern and then cast around for evidence of its effects in an unstructured way. Risk assessment based on laboratory ecotoxicity studies, combined with field chemical measurements, can only take us so far. Uncertainty about the range and sufficiency of evidence required to take restorative action often puts policymakers in a difficult situation. We review this conundrum and reflect on how the "Hill criteria," used widely by epidemiologists, have been applied to a weight-of-evidence approach (a term sometimes used interchangeably with ecoepidemiology) to build a case for causation. While using a set of such criteria to address sites of local environmental distress has been embraced by the US Environmental Protection Agency, we urge a wider adoption of weight-of-evidence approaches by policymakers, regulators, and scientists worldwide. A simplified series of criteria is offered. Progress will require a sustained commitment to long-term wildlife and chemical monitoring over a sufficient geographic spread. Development of a comprehensive monitoring network, coupled with assembling evidence of harm in a structured manner, should be the foundation for protecting our ecosystems and human health. This will enable us to not only judge the success or failure of our efforts but also diagnose underlying causes. Environ Toxicol Chem 2021;40:2968-2977. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Andrew C Johnson
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - John P Sumpter
- Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Michael H Depledge
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| |
Collapse
|
26
|
Sumpter JP, Runnalls TJ, Donnachie RL, Owen SF. A comprehensive aquatic risk assessment of the beta-blocker propranolol, based on the results of over 600 research papers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148617. [PMID: 34182447 DOI: 10.1016/j.scitotenv.2021.148617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive aquatic environmental risk assessment (ERA) of the human pharmaceutical propranolol was conducted, based on all available scientific literature. Over 200 papers provided information on environmental concentrations (77 of which provided river concentrations) and 98 dealt with potential environmental effects. The median concentration of propranolol in rivers was 7.1 ng/L (range of median values of individual studies 0.07 to 89 ng/L), and the highest individual value was 590 ng/L. Sixty-eight EC50 values for 35 species were available. The lowest EC50 value was 0.084 mg/L. A species sensitivity distribution (SSD) provided an HC50 value of 6.64 mg/L and an HC5 value of 0.22 mg/L. Thus, there was a difference of nearly 6 orders of magnitude between the median river concentration and the HC50 value, and over 4 orders of magnitude between the median river concentration and the HC5 value. Even if an assessment factor of 100 was applied to the HC5 value, to provide considerable protection to all species, the safety margin is over 100-fold. However, nearly half of all papers reporting effects of propranolol did not provide an EC50 value. Some reported that very low concentrations of propranolol caused effects. The lowest concentration reported to cause an effect - in fact, a range of biochemical and physiological effects on mussels - was 0.3 ng/L. In none of these 'low concentration' papers was a sigmoidal concentration-response relationship obtained. Although inclusion of data from these papers in the ERA cause a change in the conclusion reached, we are sceptical of the repeatability of these 'low concentration' results. We conclude that concentrations of propranolol present currently in rivers throughout the world do not constitute a risk to aquatic organisms. We discuss the need to improve the quality of ecotoxicology research so that more robust ERAs acceptable to all stakeholders can be completed.
Collapse
Affiliation(s)
- John P Sumpter
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| | - Rachel L Donnachie
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom; Now at Imperial College London, Exhibition Road, South Kensington, London SW7 2A2, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| |
Collapse
|
27
|
Ojoghoro JO, Scrimshaw MD, Sumpter JP. Steroid hormones in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148306. [PMID: 34157532 DOI: 10.1016/j.scitotenv.2021.148306] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 05/16/2023]
Abstract
Steroid hormones are extremely important natural hormones in all vertebrates. They control a wide range of physiological processes, including osmoregulation, sexual maturity, reproduction and stress responses. In addition, many synthetic steroid hormones are in widespread and general use, both as human and veterinary pharmaceuticals. Recent advances in environmental analytical chemistry have enabled concentrations of steroid hormones in rivers to be determined. Many different steroid hormones, both natural and synthetic, including transformation products, have been identified and quantified, demonstrating that they are widespread aquatic contaminants. Laboratory ecotoxicology experiments, mainly conducted with fish, but also amphibians, have shown that some steroid hormones, both natural and synthetic, can adversely affect reproduction when present in the water at extremely low concentrations: even sub-ng/L. Recent research has demonstrated that mixtures of different steroid hormones can inhibit reproduction even when each individual hormone is present at a concentration below which it would not invoke a measurable effect on its own. Limited field studies have supported the conclusions of the laboratory studies that steroid hormones may be environmental pollutants of significant concern. Further research is required to identify the main sources of steroid hormones entering the aquatic environment, better describe the complex mixtures of steroid hormones now known to be ubiquitously present, and determine the impacts of environmentally-realistic mixtures of steroid hormones on aquatic vertebrates, especially fish. Only once that research is completed can a robust aquatic risk assessment of steroid hormones be concluded.
Collapse
Affiliation(s)
- J O Ojoghoro
- Department of Botany, Faculty of Science, Delta State University Abraka, Delta State, Nigeria
| | - M D Scrimshaw
- Division of Environmental Science, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - J P Sumpter
- Division of Environmental Science, Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| |
Collapse
|
28
|
Berry KLE, Hess S, Clark TD, Wenger AS, Hoogenboom MO, Negri AP. Effects of suspended coal particles on gill structure and oxygen consumption rates in a coral reef fish. MARINE POLLUTION BULLETIN 2021; 169:112459. [PMID: 34022563 DOI: 10.1016/j.marpolbul.2021.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Large quantities of coal are transported through tropical regions; however, little is known about the sub-lethal effects of coal contamination on tropical marine organisms, including fish. Here, we measured aerobic metabolism and gill morphology in a planktivorous coral reef damselfish, Acanthochromis polyacanthus to elucidate the sub-lethal effects of suspended coal particles over a range of coal concentrations and exposure durations. Differences in the standard oxygen consumption rates (MO2) between control fish and fish exposed to coal particles (38 and 73 mg L-1) were minimal and generally not dose dependent; however, the MO2 of fish exposed to 38 mg coal L-1 (21 days) and 73 mg coal L-1 (31 days) were both significantly higher than the MO2 of control fish. Chronic coal exposure (31 days) altered gill structure in the higher coal treatments (73 and 275 mg L-1), with fish exposed to 275 mg L-1 exhibiting significant reductions in gill mucous and thinning of lamellar and filament epithelium. These findings contribute to our limited understanding of the potential impacts of coal on tropical reef species; however, most of the observed effects occurred at high coal concentrations that are unlikely under most coal spill scenarios. Future studies should investigate other contamination scenarios such as the impacts of chronic exposures to lower concentrations of coal.
Collapse
Affiliation(s)
- K L E Berry
- AIMS@JCU, James Cook University, Australian Institute of Marine Science, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, Queensland 4810, Australia.
| | - S Hess
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - T D Clark
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria 3216, Australia
| | - A S Wenger
- School of Earth and Environmental Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - M O Hoogenboom
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - A P Negri
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| |
Collapse
|
29
|
Makaras T, Stankevičiūtė M, Šidagytė-Copilas E, Virbickas T, Razumienė J. Acclimation effect on fish behavioural characteristics: determination of appropriate acclimation period for different species. JOURNAL OF FISH BIOLOGY 2021; 99:502-512. [PMID: 33783817 DOI: 10.1111/jfb.14740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In the present study, the authors investigated the effect of acclimation duration (up to 4 h) on behavioural characteristics of taxonomically and functionally different fish species, i.e., the migratory rheophilic salmonids rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), and the non-migratory eurytopic European perch (Perca fluviatilis) and three-spined stickleback (Gasterosteus aculeatus). Specifically, the authors explored fish behavioural patterns based on specific endpoints (average, maximum and angular velocity) during the acclimation period, and determined the acclimation period suitable for the tested fish species. The performed behavioural data analysis showed that the minimum time needed to adjust fish activity to a more stable (baseline) level should be at least 2 h for O. mykiss and S. salar and 1 h for G. aculeatus. Nonetheless, P. fluviatilis behaviour did not show significant changes during the 4 h acclimation. The results of this study revealed that the effect of the acclimation duration on such rheophilic species as O. mykiss and S. salar was greater than that on the eurytopic species P. fluviatilis and G. aculeatus, indicating that acclimation period is important in managing fish stress before behavioural observations. For all species, the highest variability was found in the endpoint of maximum velocity, and the lowest in that of angular velocity. This study showed that before starting actual toxicity testing experiments, it is important to determine an appropriate, species-specific acclimation period.
Collapse
Affiliation(s)
- Tomas Makaras
- Nature Research Centre, Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
30
|
Thoré ESJ, Brendonck L, Pinceel T. Neurochemical exposure disrupts sex-specific trade-offs between body length and behaviour in a freshwater crustacean. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105877. [PMID: 34090246 DOI: 10.1016/j.aquatox.2021.105877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Ongoing pollution of aquatic ecosystems with neurochemical compounds warrants an improved understanding of how this affects key organisms. Neurochemicals are shown to alter the behaviour of common study species but it remains difficult to translate these results to biologically meaningful predictions across taxa. This is partly because studies on species with non-generic life-history strategies such as many freshwater crustaceans are currently underrepresented. Here, we use a laboratory experiment to assess baseline behavioural variation (spontaneous activity level and geotaxic behaviour) in the freshwater fairy shrimp Branchipodopsis wolfi and how this is affected by chronic exposure to an environmentally-relevant concentration of the anxiolytic pharmaceutical fluoxetine. The more conspicuously coloured and larger females of the species were overall less active and more benthic than males. Moreover, amongst females, vertical activity was negatively associated with size, while an opposite relationship was found for males. These trade-offs are likely part of an antipredator strategy to reduce the probability of being detected by visual hunters, but disappeared after exposure to fluoxetine. This is of particular interest since it is an effective proof of principle that neurochemicals may impact ecologically-relevant trade-offs between conspicuous morphology and antipredator behaviour. In natural ecosystems, such disturbed antipredator behavioural responses could have far-reaching fitness consequences.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
31
|
Coastal Remote Sensing: Merging Physical, Chemical, and Biological Data as Tailings Drift onto Buffalo Reef, Lake Superior. REMOTE SENSING 2021. [DOI: 10.3390/rs13132434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
On the Keweenaw Peninsula of Lake Superior, two stamp mills (Mohawk and Wolverine) discharged 22.7 million metric tonnes (MMT) of tailings (1901–1932) into the coastal zone off the town of Gay. Migrating along the shoreline, ca. 10 MMT of the tailings dammed stream and river outlets, encroached upon wetlands, and contaminated recreational beaches. A nearly equal amount of tailings moved across bay benthic environments into critical commercial fish spawning and rearing grounds. In the middle of the bay, Buffalo Reef is important for commercial and recreational lake trout and lake whitefish production (ca. 32% of the commercial catch in Keweenaw Bay, 22% along southern Lake Superior). Aerial photographs (1938–2016) and five LiDAR and multispectral over-flights (2008–2016) emphasize: (1) the enormous amounts of tailings moving along the beach; and (2) the bathymetric complexities of an equal amount migrating underwater across the shelf. However, remote sensing studies encounter numerous specific challenges in coastal environments. Here, we utilize a combination of elevation data (LiDAR digital elevation/bathymetry models) and in situ studies to generate a series of physical, chemical, and biological geospatial maps. The maps are designed to help assess the impacts of historical mining on Buffalo Reef. Underwater, sand mixtures have complicated multispectral bottom reflectance substrate classifications. An alternative approach, in situ simple particle classification, keying off distinct sand end members: (1) allows calculation of tailings (stamp sand) percentages; (2) aids indirect and direct assays of copper concentrations; and (3) permits determinations of density effects on benthic macro-invertebrates. The geospatial mapping shows how tailings are moving onto Buffalo Reef, the copper concentrations associated with the tailings, and how both strongly influence the density of benthic communities, providing an excellent example for the International Maritime Organization on how mining may influence coastal reefs. We demonstrate that when large amounts of mine tailings are discharged into coastal environments, temporal and spatial impacts are progressive, and strongly influence resident organisms. Next steps are to utilize a combination of hi-resolution LiDAR and sonar surveys, a fish-monitoring array, and neural network analysis to characterize the geometry of cobble fields where fish are successful or unsuccessful at producing young.
Collapse
|
32
|
Thoré ESJ, Philippe C, Brendonck L, Pinceel T. Towards improved fish tests in ecotoxicology - Efficient chronic and multi-generational testing with the killifish Nothobranchius furzeri. CHEMOSPHERE 2021; 273:129697. [PMID: 33517116 DOI: 10.1016/j.chemosphere.2021.129697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
As many freshwaters are chemically polluted, one of the challenges for policy makers is to determine the potential impact of these pollutants on ecosystems and to define safe concentrations. Common practice is the use of ecotoxicological assays to assess the response of model organisms from different trophic levels such as algae, invertebrates and fish during exposure to dilutions of a specific compound. Ideally, ecotoxicological assessments of (pseudo-)persistent chemicals should be performed across the life-cycle or even multiple generations for an accurate risk assessment. Multigenerational tests with fish are, however, impractical and costly given the long lifespan and generation time of classic model species. Here, we suggest a framework for more relevant, time- and cost-efficient fish-based testing in ecotoxicology and align it with accredited test guidelines. Next, we introduce an upcoming fish model, the turquoise killifish Nothobranchius furzeri, and show how it facilitates such research agendas due to a short lifespan and generation time. Through a review of fish-based exposure studies with a set of reference toxicants, we position N. furzeri as a sensitive species, suitable for screening effects of different pollutant types. Ultimately, we perform a cost-benefit analysis and propose a plan of action for the introduction of N. furzeri into accredited test guidelines.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
33
|
Mitchelmore CL, Burns EE, Conway A, Heyes A, Davies IA. A Critical Review of Organic Ultraviolet Filter Exposure, Hazard, and Risk to Corals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:967-988. [PMID: 33528837 PMCID: PMC8048829 DOI: 10.1002/etc.4948] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 05/12/2023]
Abstract
There has been a rapid increase in public, political, and scientific interest regarding the impact of organic ultraviolet (UV) filters to coral reefs. Such filters are found in sunscreens and other consumer products and enter the aquatic environment via direct (i.e., recreational activities, effluents) or indirect (i.e., land runoff) pathways. This review summarizes the current state of the science regarding the concentration of organic UV filters in seawater and sediment near coral reef ecosystems and in coral tissues, toxicological data from early and adult life stages of coral species, and preliminary environmental risk characterizations. Up to 14 different organic UV filters in seawater near coral reefs have been reported across 12 studies, with the majority of concentrations in the nanograms per liter range. Nine papers report toxicological findings from no response to a variety of biological effects occurring in the micrograms per liter to milligrams per liter range, in part given the wide variations in experimental design and coral species and/or life stage used. This review presents key findings; scientific data gaps; flaws in assumptions, practice, and inference; and a number of recommendations for future studies to assess the environmental risk of organic UV filters to coral reef ecosystems. Environ Toxicol Chem 2021;40:967-988. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Carys L. Mitchelmore
- University of Maryland Center for Environmental ScienceChesapeake Biological Laboratory, SolomonsMarylandUSA
| | | | - Annaleise Conway
- University of Maryland Center for Environmental ScienceChesapeake Biological Laboratory, SolomonsMarylandUSA
| | - Andrew Heyes
- University of Maryland Center for Environmental ScienceChesapeake Biological Laboratory, SolomonsMarylandUSA
| | | |
Collapse
|
34
|
Dionne E, Hanson ML, Anderson JC, Brain RA. Chronic toxicity of technical atrazine to the fathead minnow (Pimephales promelas) during a full life-cycle exposure and an evaluation of the consistency of responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142589. [PMID: 33065508 DOI: 10.1016/j.scitotenv.2020.142589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Fathead minnows (Pimephales promelas) were continuously exposed to the herbicide atrazine (0.15, 0.25, 0.46, 0.99, and 2.0 mg a.i./L, plus dilution water and solvent controls) for a complete life cycle (274 days). Concentrations of atrazine up to 2.0 mg a.i./L did not significantly reduce hatching success, larval survival at 30 or 60 days post-hatch, or reproduction (eggs/spawn, total eggs, spawns/female, or eggs/female) in the F0 generation. However, at 60 days of exposure, total length and total survival to study completion were significantly reduced in ≥0.46 mg a.i./L and ≥ 0.99 mg a.i./L treatments, respectively. In the F1 generation, hatchability of embryos at ≥0.25 mg a.i./L (range 74-82%) was significantly less than that of pooled control organisms (86%). Following 30 days' post-hatch exposure, F1 survival was not significantly different from pooled control for any treatment. Finally, tissues representing major life stages had bioconcentration factors ranging from 3.7× (F1 embryos, <24 h) to 8.5× (F0 adults), indicating little to no evidence of bioconcentration. We developed a series of questions to assess the consistency of observed responses in order to place the data in context with the wider available and relevant literature (e.g., Observed between studies? Observed between species? Observed at lower levels of biological organization?). The analysis for consistency supports the conclusion that atrazine does not pose a significant chronic risk to freshwater fish in terms of growth, reproduction, or survivorship at concentrations of up to at least 100 μg/L.
Collapse
Affiliation(s)
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Julie C Anderson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
35
|
Thoré ESJ, Van Hooreweghe F, Philippe C, Brendonck L, Pinceel T. Generation-specific and interactive effects of pesticide and antidepressant exposure in a fish model call for multi-stressor and multigenerational testing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105743. [PMID: 33460950 DOI: 10.1016/j.aquatox.2021.105743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Ecological risks of a pollutant are typically assessed via short-term exposure of model organisms to that single compound. Such tests are informative, but cannot ascertain effects of long-term and multigenerational mixed-stressor exposure with which organisms are often confronted in their natural environment. Therefore, full life-cycle and multigenerational tests are needed. Yet, these are hampered due to long lifespans and generation times of many standard laboratory species, in particular for vertebrates such as fish. With a typical lifespan of 6 months and a generation time of about 3 months, the turquoise killifish (Nothobranchius furzeri) may be an ideal model for multigenerational testing. In this study, we assessed the impact of full life-cycle exposure to the emerging pollutant fluoxetine (0, 0.5 μg/L) in combination with chronic exposure during adulthood to the pesticide 3,4-dichloroaniline (0, 50, 100 μg/L) over two successive generations of N. furzeri. Overall, both life-history and behaviour were affected by exposure to fluoxetine and 3,4-DCA. Inhibitory effects of single chemical exposure on growth and fecundity were generation-dependent, while enhanced swimming acceleration and feeding in response to fluoxetine were dependent on the presence of 3,4-DCA. Together, these findings show the relevance of a multi-stressor approach across successive generations. Although full life-cycle and multigenerational tests are typically assumed to be impractical and costly for fish, we deliver an effective demonstration that such studies are possible within a timespan of less than 6 months with the killifish N. furzeri as a model organism.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Floor Van Hooreweghe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, 2520, Potchefstroom, South Africa.
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium; Centre for Environmental Management, University of the Free State, P. O. Box 339, 9300, Bloemfontein, South Africa.
| |
Collapse
|
36
|
Heintz MM, Haws LC. Correspondence to the Editor Regarding Guillette et al. 2020, Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River Striped Bass (Morone saxatilis) are associated with biomarkers of altered immune and liver function. ENVIRONMENT INTERNATIONAL 2021; 146:106299. [PMID: 33395943 DOI: 10.1016/j.envint.2020.106299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Affiliation(s)
- M M Heintz
- ToxStrategies, Inc., Asheville, NC, United States.
| | - L C Haws
- DABT, ToxStrategies, Inc., Austin, TX 78759, United States
| |
Collapse
|
37
|
Katsiadaki I, Schwarz TI, Cousins ARO, Scott AP. The Uptake of Ethinyl-Estradiol and Cortisol From Water by Mussels ( Mytilus spp.). Front Endocrinol (Lausanne) 2021; 12:794623. [PMID: 34975764 PMCID: PMC8714933 DOI: 10.3389/fendo.2021.794623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Previous toxicokinetic studies have shown that mussels (Mytilus spp.) can readily absorb the three main mammalian sex steroids, estradiol (E2), testosterone (T) and progesterone (P) from water. They also have a strong ability to store E2 and the 5α-reduced metabolites of T and P in the form of fatty acid esters. These esters were shown to have half-lives that were measured in weeks (i.e. they were not subject to fast depuration). The present study looked at the toxicokinetic profile of two other common steroids that are found in water, the potent synthetic oestrogen, (ethinyl-estradiol) (EE2; one of the two components of 'the pill'), and cortisol, a natural stress steroid in vertebrates. In the first three hours of uptake, tritiated EE2 was found to be taken up at a similar rate to tritiated E2. However, the levels in the water plateaued sooner than E2. The ability of the animals to both esterify and sulphate EE2 was found to be much lower than E2, but nevertheless did still take place. After 24 h of exposure, the majority of radiolabelled EE2 in the animals was present in the form of free steroid, contrary to E2, which was esterified. This metabolism was reflected in a much lower half-life (of only 15 h for EE2 in the mussels as opposed to 8 days for E2 and >10 days for T and P). Intriguingly, hardly any cortisol (in fact none at all in one of the experiments) was absorbed by the mussels. The implications of this finding in both toxicokinetic profiling and evolutionary significance (why cortisol might have evolved as a stress steroid in bony fishes) are discussed.
Collapse
Affiliation(s)
- Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, United Kingdom
- *Correspondence: Ioanna Katsiadaki,
| | - Tamar I. Schwarz
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, United Kingdom
| | - Alex R. O. Cousins
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Lowestoft, United Kingdom
| | - Alexander P. Scott
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, United Kingdom
| |
Collapse
|
38
|
Swart E, Goodall T, Kille P, Spurgeon DJ, Svendsen C. The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115633. [PMID: 33254656 DOI: 10.1016/j.envpol.2020.115633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution can disrupt the interactions between animals and their symbiotic bacteria, which can lead to adverse effects on the host even in the absence of direct chemical toxicity. It is therefore crucial to understand how environmental pollutants affect animal microbiomes, especially for those chemicals that are designed to target microbes. Here, we study the effects of two biocidal nanoparticles (NPs) (Ag and CuO) on the soil bacterial community and the resident gut microbiome of the earthworm Eisenia fetida over a 28-day period using metabarcoding techniques. Exposures to NPs were conducted following OECD test guidelines and effects on earthworm reproduction and juvenile biomass were additionally recorded in order to compare effects on the host to effects on microbiomes. By employing a full concentration series, we were able to link pollutants to microbiome effects in high resolution. Multivariate analysis, differential abundance analysis and species sensitivity distribution analysis showed that Ag-NPs are more toxic to soil bacteria than CuO-NPs. In contrast to the strong effects of CuO-NPs and Ag-NPs on the soil bacterial community, the earthworm gut microbiome is largely resilient to exposure to biocidal NPs. Despite this buffering effect, CuO-NPs did negatively affect the relative abundance of some earthworm symbionts, including 'Candidatus Lumbricincola'. Changes in the soil bacterial community and the earthworm microbiome occur at total copper concentrations often found or modelled to occur in agricultural fields, demonstrating that soil bacterial communities and individual taxa in the earthworm microbiome may be at risk from environmental copper exposure including in nanomaterial form.
Collapse
Affiliation(s)
- Elmer Swart
- UK Centre for Ecology and Hydrology, Maclean Building Benson Lane, Wallingford, OX10 8BB, United Kingdom.
| | - Tim Goodall
- UK Centre for Ecology and Hydrology, Maclean Building Benson Lane, Wallingford, OX10 8BB, United Kingdom
| | - Peter Kille
- School of Biosciences, Cardiff University, Sir Martin Evans Building Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - David J Spurgeon
- UK Centre for Ecology and Hydrology, Maclean Building Benson Lane, Wallingford, OX10 8BB, United Kingdom
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Maclean Building Benson Lane, Wallingford, OX10 8BB, United Kingdom.
| |
Collapse
|
39
|
Thoré ESJ, Brendonck L, Pinceel T. Conspecific density and environmental complexity impact behaviour of turquoise killifish (Nothobranchius furzeri). JOURNAL OF FISH BIOLOGY 2020; 97:1448-1461. [PMID: 32845514 DOI: 10.1111/jfb.14512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Fish models are essential for research in many biological and medical disciplines. With a typical lifespan of only 6 months, the Turquoise killifish (Nothobranchius furzeri) was recently established as a time- and cost-efficient model to facilitate whole-life and multigenerational studies in several research fields, including behavioural ecotoxicology. Essential information on the behavioural norm and on how laboratory conditions affect behaviour, however, is deficient. In the current study, we examined the impact of the social and structural environment on a broad spectrum of behavioural endpoints in N. furzeri. While structural enrichment affected only fish boldness and exploratory behaviour, fish rearing density affected the total body length, locomotor activity, boldness, aggressiveness and feeding behaviour of N. furzeri individuals. Overall, these results contribute to compiling a behavioural baseline for N. furzeri that increases the applicability of this new model species. Furthermore, our findings will fuel the development of improved husbandry protocols to maximize the welfare of N. furzeri in a laboratory setting.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
40
|
Miller ME, Hamann M, Kroon FJ. Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS One 2020; 15:e0240792. [PMID: 33064755 PMCID: PMC7567360 DOI: 10.1371/journal.pone.0240792] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/03/2020] [Indexed: 11/19/2022] Open
Abstract
Microplastic (MP) contamination has been well documented across a range of habitats and for a large number of organisms in the marine environment. Consequently, bioaccumulation, and in particular biomagnification of MPs and associated chemical additives, are often inferred to occur in marine food webs. Presented here are the results of a systematic literature review to examine whether current, published findings support the premise that MPs and associated chemical additives bioaccumulate and biomagnify across a general marine food web. First, field and laboratory-derived contamination data on marine species were standardised by sample size from a total of 116 publications. Second, following assignment of each species to one of five main trophic levels, the average uptake of MPs and of associated chemical additives was estimated across all species within each level. These uptake data within and across the five trophic levels were then critically examined for any evidence of bioaccumulation and biomagnification. Findings corroborate previous studies that MP bioaccumulation occurs within each trophic level, while current evidence around bioaccumulation of associated chemical additives is much more ambiguous. In contrast, MP biomagnification across a general marine food web is not supported by current field observations, while results from the few laboratory studies supporting trophic transfer are hampered by using unrealistic exposure conditions. Further, a lack of both field and laboratory data precludes an examination of potential trophic transfer and biomagnification of chemical additives associated with MPs. Combined, these findings indicate that, although bioaccumulation of MPs occurs within trophic levels, no clear sign of MP biomagnification in situ was observed at the higher trophic levels. Recommendations for future studies to focus on investigating ingestion, retention and depuration rates for MPs and chemical additives under environmentally realistic conditions, and on examining the potential of multi-level trophic transfer for MPs and chemical additives have been made.
Collapse
Affiliation(s)
- Michaela E. Miller
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
- Division of Research and Innovation, AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- * E-mail: ,
| | - Mark Hamann
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Frederieke J. Kroon
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
- Division of Research and Innovation, AIMS@JCU, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
41
|
de Ruijter VN, Redondo-Hasselerharm PE, Gouin T, Koelmans AA. Quality Criteria for Microplastic Effect Studies in the Context of Risk Assessment: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11692-11705. [PMID: 32856914 PMCID: PMC7547869 DOI: 10.1021/acs.est.0c03057] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 05/03/2023]
Abstract
In the literature, there is widespread consensus that methods in plastic research need improvement. Current limitations in quality assurance and harmonization prevent progress in our understanding of the true effects of microplastic in the environment. Following the recent development of quality assessment methods for studies reporting concentrations in biota and water samples, we propose a method to assess the quality of microplastic effect studies. We reviewed 105 microplastic effect studies with aquatic biota, provided a systematic overview of their characteristics, developed 20 quality criteria in four main criteria categories (particle characterization, experimental design, applicability in risk assessment, and ecological relevance), propose a protocol for future effect studies with particles, and, finally, used all the information to define the weight of evidence with respect to demonstrated effect mechanisms. On average, studies scored 44.6% (range 20-77.5%) of the maximum score. No study scored positively on all criteria, reconfirming the urgent need for better quality assurance. Most urgent recommendations for improvement relate to avoiding and verifying background contamination, and to improving the environmental relevance of exposure conditions. The majority of the studies (86.7%) evaluated on particle characteristics properly, nonetheless it should be underlined that by failing to provide characteristics of the particles, an entire experiment can become irreproducible. Studies addressed environmentally realistic polymer types fairly well; however, there was a mismatch between sizes tested and those targeted when analyzing microplastic in environmental samples. In far too many instances, studies suggest and speculate mechanisms that are poorly supported by the design and reporting of data in the study. This represents a problem for decision-makers and needs to be minimized in future research. In their papers, authors frame 10 effects mechanisms as "suggested", whereas 7 of them are framed as "demonstrated". When accounting for the quality of the studies according to our assessment, three of these mechanisms remained. These are inhibition of food assimilation and/or decreased nutritional value of food, internal physical damage, and external physical damage. We recommend that risk assessment addresses these mechanisms with higher priority.
Collapse
Affiliation(s)
- Vera N. de Ruijter
- Aquatic
Ecology and Water Quality Management group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Paula E. Redondo-Hasselerharm
- Aquatic
Ecology and Water Quality Management group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Todd Gouin
- TG
Environmental Research, Sharnbrook, Bedfordshire MK44 1PL, U.K.
| | - Albert A. Koelmans
- Aquatic
Ecology and Water Quality Management group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
42
|
Thoré ESJ, Philippe C, Brendonck L, Pinceel T. Antidepressant exposure reduces body size, increases fecundity and alters social behavior in the short-lived killifish Nothobranchius furzeri. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115068. [PMID: 32806394 DOI: 10.1016/j.envpol.2020.115068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Social and mating behavior are fundamental fitness determinants in fish. Although fish are increasingly exposed to pharmaceutical compounds that may alter expression of such behavior, potential effects are understudied. Here, we examine the impact of lifelong exposure to two concentrations (0.7 and 5.3 μg/L) of the antidepressant fluoxetine on fecundity and social behavior (i.e. sociability and male-male aggression) in the turquoise killifish, Nothobranchius furzeri. When exposed to the highest concentration of fluoxetine (5.3 μg/L), fish were smaller at maturation but they more frequently engaged in mating. In addition, in both fluoxetine treatments females roughly doubled their overall fecundity while egg fertilization rates were the same for exposed and unexposed fish. Although aggression of male fish was not impacted by fluoxetine exposure, exposed male fish (5.3 μg/L) spent more time in the proximity of a group of conspecifics, which implies an increased sociability in these individuals. Overall, the results of this study indicate that exposure to fluoxetine may result in disrupted male sociability, increased mating frequency and an increased reproductive output in fish populations.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium; Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
43
|
Näslund J, Asker N, Fick J, Larsson DGJ, Norrgren L. Naproxen affects multiple organs in fish but is still an environmentally better alternative to diclofenac. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105583. [PMID: 32835849 DOI: 10.1016/j.aquatox.2020.105583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The presence of diclofenac in the aquatic environment and the risks for aquatic wildlife, especially fish, have been raised in several studies. One way to manage risks without enforcing improved wastewater treatment would be to substitute diclofenac (when suitable from a clinical perspective) with another non-steroidal anti-inflammatory drug (NSAID) associated with less environmental risk. While there are many ecotoxicity-studies of different NSAIDs, they vary extensively in set-up, species studied, endpoints and reporting format, making direct comparisons difficult. We previously published a comprehensive study on the effects of diclofenac in the three-spined stickleback (Gasterosteus aculeatus). Our present aim was to generate relevant effect data for another NSAID (naproxen) using a very similar setup, which also allowed direct comparisons with diclofenac regarding hazards and risks. Sticklebacks were therefore exposed to naproxen in flow-through systems for 27 days. Triplicate aquaria with 20 fish per aquarium were used for each concentration (0, 18, 70, 299 or 1232 μg/L). We investigated bioconcentration, hepatic gene expression, jaw lesions, kidney and liver histology. On day 21, mortalities in the highest exposure concentration group unexpectedly reached ≥ 25 % in all three replicate aquaria, leading us to terminate and sample that group the same day. On the last day (day 27), the mortality was also significantly increased in the second highest exposure concentration group. Increased renal hematopoietic hyperplasia was observed in fish exposed to 299 and 1232 μg/L. This represents considerably higher concentrations than those expected in surface waters as a result of naproxen use. Such effects were observed already at 4.6 μg/L in the experiment with diclofenac (lowest tested concentration). Similar to the responses to diclofenac, a concentration-dependent increase in both relative hepatic gene expression of c7 (complement component 7) and jaw lesions were observed, again at concentrations considerably higher than expected in surface waters. Naproxen bioconcentrated less than diclofenac, in line with the observed effect data. An analysis of recent sales data and reported concentrations in treated sewage effluent in Sweden suggest that despite higher dosages used for naproxen, a complete substitution would only be expected to double naproxen emissions. In summary, naproxen and diclofenac produce highly similar effects in fish but the environmental hazards and risks are clearly lower for naproxen. Hence, if there are concerns for environmental risks to fish with diclofenac, a substitution would be advisable when naproxen presents an adequate alternative from a clinical point-of-view.
Collapse
Affiliation(s)
- Johanna Näslund
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Leif Norrgren
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
44
|
Erickson RA, Rattner BA. Moving Beyond p < 0.05 in Ecotoxicology: A Guide for Practitioners. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1657-1669. [PMID: 32539165 DOI: 10.1002/etc.4800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Statistical inferences play a critical role in ecotoxicology. Historically, null hypothesis significance testing (NHST) has been the dominant method for inference in ecotoxicology. As a brief and informal definition of NHST, researchers compare (or "test") an experimental treatment or observation against a hypothesis of no relationship (the "null hypothesis") using the collected data to see if the observed values are statistically "significant" given predefined error rates. The resulting probability of observing a value equal to or greater than the observed value assuming the null hypothesis is true is the p value. Criticisms of NHST have existed for almost a century and have recently grown to the point where statisticians, including the American Statistical Association (ASA), have felt the need to clarify the role of NHST and p values beyond their current common use. These limitations also exist in ecotoxicology. For example, a review of the 2010 Environmental Toxicology & Chemistry (ET&C) volume that found many authors did not correctly report p values. We repeated this review looking at the 2019 volume of ET&C. Incorrect reporting of p values still occurred almost a decade later. Problems with NHST and p values highlight the need for statistical inferences besides NHST, something long known in ecotoxicology and the broader scientific and statistical communities. Furthermore, concerns such as these led the executive director of the ASA to recommend against use of "statistical significance" in 2019. In light of these criticisms, ecotoxicologists require alternative methods. We describe some alternative methods including confidence intervals, regression analysis, dose-response curves, Bayes factors, survival analysis, and model selection. Lastly, we provide insights for what ecotoxicology might look like in a post-p value world. Environ Toxicol Chem 2020;39:1657-1669. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Richard A Erickson
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Barnett A Rattner
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland
| |
Collapse
|
45
|
Constantine LA, Green JW, Schneider SZ. Ibuprofen: Fish Short-Term Reproduction Assay with Zebrafish (Danio rerio) Based on an Extended OECD 229 Protocol. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1534-1545. [PMID: 32367592 DOI: 10.1002/etc.4742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
A study was conducted to understand the potential for ibuprofen to impact the hypothalamus-pituitary-gonadal endocrine axis resulting in disruption of fish reproduction. The Good Laboratory Practice study was conducted according to the Organisation for Economic Co-operation and Development 229 Protocol, Fish Short-Term Reproduction Assay, and extended an additional 4 d to evaluate hatching success in the F1 generation. Test organisms were exposed to nominal test concentrations of 0.5, 2.4, 11.5, 55.3, and 265.4 µg ibuprofen/L and a negative control (dilution water). To strengthen the statistical power of the study, twice the number of replicates were used in the negative control versus individual treatment levels. A 21-d pre-exposure to identify groups of actively spawning fish was immediately followed by a 36-d exposure. Results for apical endpoints of survival, growth, and reproduction (fecundity and fertility), as well as the biomarker vitellogenin in the F0 generation and time to hatch and hatching success in the F1 generation are presented. Based on mean measured exposure concentrations and effects on fecundity in the F0 generation and hatching success in the F1 generation, overall no-observed-effect concentration and lowest-observed-effect concentration for the present study were 55.2 and 265.9 µg ibuprofen/L, respectively. Results from the present study indicate a lack of endocrine-mediated reproductive effects in zebrafish at environmentally relevant concentrations of ibuprofen. Environ Toxicol Chem 2020;39:1534-1545. © 2020 SETAC.
Collapse
Affiliation(s)
| | - John W Green
- John W. Green Ecostatistical Consulting, Newark, Delaware, USA
| | | |
Collapse
|
46
|
Colvin KA, Lewis C, Galloway TS. Current issues confounding the rapid toxicological assessment of oil spills. CHEMOSPHERE 2020; 245:125585. [PMID: 31855760 DOI: 10.1016/j.chemosphere.2019.125585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Oil spills of varying magnitude occur every year, each presenting a unique challenge to the local ecosystem. The complex, changeable nature of oil makes standardised risk assessment difficult. Our review of the state of science regarding oil's unique complexity; biological impact of oil spills and use of rapid assessment tools, including commercial toxicity kits and bioassays, allows us to explore the current issues preventing effective, rapid risk assessment of oils. We found that despite the advantages to monitoring programmes of using well validated standardised tests, which investigate impacts across trophic levels at environmentally relevant concentrations, only a small percentage of the available tests are specialised for use within the marine environment, or validated for the assessment of crude oil toxicity. We discuss the use of rapid tests at low trophic levels in addition to relevant sublethal toxicity assays to allow the characterisation of oil, dispersant and oil and dispersant mixture toxicity. We identify novel, passive dosing techniques as a practical and reproducible means of improving the accuracy and maintenance of nominal concentrations. Future work should explore the possibility of linking this tiered testing system with ecosystem models to allow the prediction and risk assessment of the entire ecosystem.
Collapse
Affiliation(s)
- Katherine A Colvin
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK.
| | - Ceri Lewis
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK
| | - Tamara S Galloway
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
47
|
Johnson AC, Jin X, Nakada N, Sumpter JP. Learning from the past and considering the future of chemicals in the environment. Science 2020; 367:384-387. [DOI: 10.1126/science.aay6637] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Knowledge of the hazards and associated risks from chemicals discharged to the environment has grown considerably over the past 40 years. This improving awareness stems from advances in our ability to measure chemicals at low environmental concentrations, recognition of a range of effects on organisms, and a worldwide growth in expertise. Environmental scientists and companies have learned from the experiences of the past; in theory, the next generation of chemicals will cause less acute toxicity and be less environmentally persistent and bioaccumulative. However, researchers still struggle to establish whether the nonlethal effects associated with some modern chemicals and substances will have serious consequences for wildlife. Obtaining the resources to address issues associated with chemicals in the environment remains a challenge.
Collapse
Affiliation(s)
- Andrew C. Johnson
- Centre for Ecology and Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - Xiaowei Jin
- China National Environment Monitoring Centre, Anwai Dayangfang No. 8, Chaoyang District, Beijing, China
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - John P. Sumpter
- Institute for the Environment, Health and Societies, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| |
Collapse
|
48
|
Shruti VC, Kutralam-Muniasamy G. Bioplastics: Missing link in the era of Microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134139. [PMID: 32380615 DOI: 10.1016/j.scitotenv.2019.134139] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Concerns about microplastics (MPs) environmental behavior and accumulation are growing at global scale and meanwhile, the attention to employ bioplastics for replacing conventional plastics is increasing. The research priority for a better understanding of the fate and potential impacts of MPs from bioplastics is of utmost importance. However, the investigations on the effects of bioplastics in terms of MPs are still limited and largely unknown. In this discussion, the current knowledge of MPs is timely highlighted to incorporate biodegradable MPs in the ongoing researches. Recent studies have identified that some biodegradable MPs exhibit same effect as conventional type MPs. Furthermore, we performed a simple degradation experiment and found that polyhydroxyalkanoate films formed MPs in water environment alike other biodegradable and conventional plastics sharing common research interests. In an effort to promote investigations, we recommend the knowledge gaps identified on bioplastics MPs: understanding the timeframe of disintegration and degradation of developing bioplastics; ensuring degradability and less persistence; promoting toxicity tests and potential effects on a wide variety of organisms; promoting attempts to assess the impacts on ecosystems; evaluating the interaction of microorganisms and MPs; working towards identifying novel disposal and collection methods from public to ease recycling and degradation processes.
Collapse
Affiliation(s)
- V C Shruti
- Centro Mexicano para la Producción más Limpia (CMP+L), Instituto Politécnico Nacional (IPN), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340 México, D.F., Mexico
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
49
|
Fu J, Yang T, Wang W, Xu S. Effect of selenium antagonist lead-induced damage on Th1/Th2 imbalance in the peripheral blood lymphocytes of chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:74-82. [PMID: 30889402 DOI: 10.1016/j.ecoenv.2019.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Lead (Pb) is a type of toxic metal that can hurt the immune system. Selenium (Se) can reduce the damage caused by heavy metals. To investigate the effects of Se against Pb on bird immune cells, as well as the immunotoxin mechanism of Pb, Se supplementation and/or Pb poisoning chicken models were established. One hundred eighty 1-year-old broiler chickens were randomly divided into four groups (n = 6). The four groups were the control group, the selenium-rich group (Se group), the Pb supplementation group (Pb group) and the Se and Pb compound group (Se + Pb group). The peripheral blood lymphocytes of chickens were collected to test the selenoproteins and cytokine mRNA levels at 30 and 60 d. Determination of the content of Se and Pb in the serum, principal component analysis and ingenuity pathway analysis were performed at the two time points. As a result, Pb exposure increased the content of Pb, activating the Th1/Th2 pathway in peripheral blood lymphocytes. Additionally, this experiment showed that Se supplementation and Pb exposure could influence the mRNA levels of selenoproteins and cytokines in the peripheral blood lymphocytes of chickens. However, all of the parameters that we detected in the experiment indicated that Se supplementation could alleviate the increase of selenoproteins and cytokine mRNA levels and the Th1/Th2 imbalance induced by Pb in peripheral blood lymphocytes. In summary, Se can alleviate the toxic effects caused by Pb in the peripheral blood lymphocytes of chickens, suggesting the antagonism between Se and Pb.
Collapse
Affiliation(s)
- Jiaxing Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianshu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
50
|
Belanger SE, Carr GJ. SSDs revisited: part II-practical considerations in the development and use of application factors applied to species sensitivity distributions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1526-1541. [PMID: 30994956 DOI: 10.1002/etc.4444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/25/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Application factors are routinely applied in the extrapolation of laboratory aquatic toxicity data to ensure protection from exposure to chemicals in the natural environment. The magnitude of the application factor is both a scientific and a policy decision, but in any case, it should be rooted in scientific knowledge so as to not be arbitrary. Information-rich chemicals are often subjected to species sensitivity distribution (SSD) analysis to transparently describe certain aspects of assessment uncertainty and are normally subjected to much smaller application factors than screening information data sets. We describe a new set of tools useful to assess the quality of SSDs. Twenty-two data sets and 19 chemicals representing agrochemicals, biocides, surfactants, metals, and common wastewater contaminants were compiled to demonstrate how the tools can be used. "Add-one-in" and "leave-one-out" simulations were used to investigate SSD robustness and develop quantitative evidence for the use of application factors. Theoretical new toxicity data were identified for add-one-in simulations based on the expected probabilities necessary to lower the hazardous concentration to 5% of a species (HC5) by a factor of 2, 3, 5, or 10. Simulations demonstrate the basis for application factors in the range of 1 to 5 for well-studied chemicals with high-quality SSDs. Leave-one-out simulations identify the fact that the most influential values in the SSD come from the extremes of the sensitive and tolerant toxicity values. Mesocosm and field data consistently demonstrate that HC5s are conservative, further justifying the use of small application factors for high-quality SSDs. Environ Toxicol Chem 2019;38:1526-1541. © 2019 SETAC.
Collapse
Affiliation(s)
- S E Belanger
- Environmental Stewardship and Sustainability, The Procter & Gamble Company, Mason, Ohio, USA
| | - G J Carr
- Data & Modeling Sciences, The Procter & Gamble Company, Mason, Ohio, USA
| |
Collapse
|