1
|
Li C, Tian Z, Li X, Sun Y, Tian J, Wu Y, Cai J, He Y, Sanganyado E, Li P, Liang B, Liu W. Toxicogenomic assessment of hydroxylated metabolites of PBDEs on cetaceans: An in vitro study. CHEMOSPHERE 2024; 366:143350. [PMID: 39326706 DOI: 10.1016/j.chemosphere.2024.143350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Despite their ban, polybrominated diphenyl ethers (PBDEs) are frequently detected in various environmental compartments including marine and coastal ecosystems due to their persistence, bio-accumulative, high production volumes, and widespread use. One of the major concerns from PBDEs is the transformation products, such as hydroxylated polybrominated diphenyl ethers (OH-BDEs), which are more bioactive than the parent compounds. For example, 6-hydroxy-2,2',4',4-tetrabromodiphenyl ether (6-OH-BDE-47) is a typical metabolite of PBDEs and cause endocrine system disruption, developmental toxicity, and neurotoxicity in different species. Despite being widely detected in marine environments, investigations on the toxicological mechanisms of 6-OH-BDE-47 in cetaceans remain scarce. High concentrations of PBDEs accumulate in cetaceans due to the long lifespan and large fat reserve. The accumulated PBDEs have become the major source of OH-BDEs in cetaceans. We exposed immortalized fibroblast cell lines from the skin of pygmy killer whales (PKW-LWHT) and Indo-Pacific finless porpoises (FP-LWHT) to 6-OH-BDE-47 and analyzed changes in cellular function using transcriptomic data, along with enzymatic activity. Exposure to the body-relevant body burdens of 6-OH-BDE-47 (250 and 500 ng mL-1) significantly decreased cell viability. Differentially expressed genes in FP-LWHT exposed to 6-OH-BDE-47 were primarily enriched in the pathways associated with steroid metabolism. Total cholesterol was decreased by 6-OH-BDE-47, whereas low-density lipoprotein cholesterol and triglyceride levels were significantly increased in FP-LWHT cells. In contrast, glycolysis was the main enriched function of differentially expressed genes in PKW-LWHT cells exposed to 6-OH-BDE-47, and the enzyme activity of phosphofructokinase and hexokinase was upregulated. Thus, even though the cell viability of both cell lines from these two species was significantly suppressed by 6-OH-BDE-47, the cellular response or affected cellular function was different between the Pygmy killer whale and the Indo-Pacific Finless Porpoise, suggesting a diverse response towards OH-BDEs exposure.
Collapse
Affiliation(s)
- Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xinying Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yuqi Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jingting Cai
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yijie He
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE2 4PB, UK
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Vogs C, Lindqvist D, Wai Tang S, Gugescu L, Alenius H, Wincent E. Transcriptomic and functional effects from a chemical mixture based on the exposure profile in Baltic Sea salmon, on metabolic and immune functions in zebrafish embryo. ENVIRONMENT INTERNATIONAL 2024; 192:109018. [PMID: 39341037 DOI: 10.1016/j.envint.2024.109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
The Baltic Sea is one of the world's most contaminated seas with long-standing adverse health status of its wildlife such as the Baltic Sea salmon, resulting in reduced fecundity and increased mortality. While adverse health effects have been reported among wild fish from the Baltic Sea, the toxicity mechanisms underlying these adversities, and the chemical effect drivers mediating them are poorly understood. To address this knowledge gap, we utilized the zebrafish (Danio rerio) embryo model to determine molecular and functional effects brought on by exposure to a technical mixture including 9 organohalogen compounds detected in serum from wild-caught Baltic Sea salmon. To align with the salmon exposure scenario, an internal dose regimen was opted to establish same relative proportions of the compounds in the zebrafish (whole body) as observed in the salmon serum. Through transcriptomic profiling, we identified dose-dependent effects on immune system and metabolism as two critical functions overlapping with adverse effects observed in wild fish from the Baltic Sea. We then determined likely effect drivers by comparing gene responses of the mixture with those of individual mixture components. Aligned with our transcriptome results, the number of total macrophages was reduced and the zebrafish's ability to respond to a tissue damage suppressed in a dose-dependent manner. This study brings forth a key advancement in delineating the impact of chemical pollutants on the health of wild fish in the Baltic Sea.
Collapse
Affiliation(s)
- Carolina Vogs
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden; Division of Pharmacology and Toxicology, Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE 750 07, Uppsala, Sweden.
| | - Dennis Lindqvist
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden; Department of Environmental Science, Stockholm University, SE 106 91, Stockholm, Sweden.
| | - Sheung Wai Tang
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden
| | - Lydia Gugescu
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden.
| | - Harri Alenius
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden; Human Microbiome Research, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland.
| | - Emma Wincent
- Unit of System Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE 171 77, Stockholm, Sweden.
| |
Collapse
|
3
|
Lee J, König M, Braun G, Escher BI. Water Quality Monitoring with the Multiplexed Assay MitoOxTox for Mitochondrial Toxicity, Oxidative Stress Response, and Cytotoxicity in AREc32 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5716-5726. [PMID: 38503264 PMCID: PMC10993414 DOI: 10.1021/acs.est.3c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Mitochondria play a key role in the energy production of cells, but their function can be disturbed by environmental toxicants. We developed a cell-based mitochondrial toxicity assay for environmental chemicals and their mixtures extracted from water samples. The reporter gene cell line AREc32, which is frequently used to quantify the cytotoxicity and oxidative stress response of water samples, was multiplexed with an endpoint of mitochondrial toxicity. The disruption of the mitochondrial membrane potential (MMP) was quantified by high-content imaging and compared to measured cytotoxicity, predicted baseline toxicity, and activation of the oxidative stress response. Mitochondrial complex I inhibitors showed highly specific effects on the MMP, with minor effects on cell viability. Uncouplers showed a wide distribution of specificity on the MMP, often accompanied by specific cytotoxicity (enhanced over baseline toxicity). Mitochondrial toxicity and the oxidative stress response were not directly associated. The multiplexed assay was applied to water samples ranging from wastewater treatment plant (WWTP) influent and effluent and surface water to drinking and bottled water from various European countries. Specific effects on MMP were observed for the WWTP influent and effluent. This new MitoOxTox assay is an important complement for existing in vitro test batteries for water quality testing and has potential for applications in human biomonitoring.
Collapse
Affiliation(s)
- Jungeun Lee
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Maria König
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Georg Braun
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University, Schnarrenbergstr.
94-96, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Wang N, Zhang Z, Wang Y, Zhang L, Sun A, Liu H, Shi X. Comparative antioxidant and metabolomic analysis for the identification of differential response of mussel (Mytilus coruscus) to four succinate dehydrogenase inhibitor fungicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16819-16831. [PMID: 38324158 DOI: 10.1007/s11356-024-32309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Succinate dehydrogenase inhibitor fungicides (SDHIs) are frequently detected in the marine environment. However, studies on the toxicity of SDHIs to marine organisms, Mytilus coruscus (M. coruscus), are poorly reported. Therefore, the antioxidant activities and metabolomic response of four SDHIs, namely, boscalid (BC), thifluzamide (TF), fluopyram (FO), and bixafen (BIX), to (M. coruscus), were comprehensively investigated. The antioxidant activity of BC and TF was significantly increased (p<0.05), whereas those of FO and BIX were significantly decreased. Furthermore, metabolite discriminations among M. coruscus to four SDHIs were illustrated by an untargeted metabolomics approach. A total of 52, 50, 93, and 129 differential metabolites were obtained for BC, TF, FO, and BIX. KEGG of the different metabolites show that the four SDHIs had differential effects on the metabolic pathways of M. coruscus. The current study demonstrated four SDHIs triggered glucose metabolism, lipid metabolism, tricarboxylic acid cycle, and oxidative phosphorylation processes and caused the disruption of nutrient and energy conversion processes in mussels. Finally, five biomarkers were screened by analyzing common differential metabolites that emerged from the four SDHI exposures, which could be used for risk assessment of marine ecosystem exposure to SDHIs. Our results demonstrated the use of metabolomics to understand the potential mechanisms of toxicity of four SDHIs to mussels and to identify potential targets for future targeted risk assessment.
Collapse
Affiliation(s)
- Ningbo Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Yinan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Liuquan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
| |
Collapse
|
5
|
Gustafsson J, Legradi J, Lamoree MH, Asplund L, Leonards PEG. Metabolite alterations in zebrafish embryos exposed to hydroxylated polybrominated diphenyl ethers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159269. [PMID: 36208744 DOI: 10.1016/j.scitotenv.2022.159269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are formed by metabolism from the flame retardants polybrominated diphenyl ethers (PBDEs). In the aquatic environment, they are also produced naturally. OH-PBDEs are known for their potential to disrupt energy metabolism, the endocrine system, and the nervous system. This is the first study focusing on the effects of OH-PBDEs at the metabolite level in vivo. The aim of the current study was to investigate the metabolic effects of exposure to OH-PBDEs using metabolomics, and to identify potential biomarker(s) for energy disruption of OH-PBDEs. Zebrafish (Danio rerio) embryos were exposed to two different concentrations of 6-OH-BDE47 and 6-OH-BDE85 and a mixture of these two compounds. In total, 342 metabolites were annotated and 79 metabolites were affected in at least one exposure. Several affected metabolites, e.g. succinic acid, glutamic acid, glutamine, tyrosine, tryptophan, adenine, and several fatty acids, could be connected to known toxic mechanisms of OH-PBDEs. Several phospholipids were strongly up-regulated with up to a six-fold increase after exposure to 6-OH-BDE47, a scarcely described effect of OH-PBDEs. Based on the observed metabolic effects, a possible connection between disruption of the energy metabolism, neurotoxicity and potential immunotoxicity of OH-PBDEs was suggested. Single compound exposures to 6-OH-BDE47 and 6-OH-BDE85 showed little overlap in the affected metabolites. This shows that compounds of similar chemical structure can induce different metabolic effects, possibly relating to their different toxic mechanisms. There were inter-concentration differences in the metabolic profiles, indicating that the metabolic effects were concentration dependent. After exposure to the mixture of 6-OH-BDE47 and 6-OH-BDE85, a new metabolic profile distinct from the profiles obtained from the single compounds was observed. Succinic acid was up-regulated at the highest, but still environmentally relevant, concentration of 6-OH-BDE47, 6-OH-BDE85, and the mixture. Therefore, succinic acid is suggested as a potential biomarker for energy disruption of OH-PBDEs.
Collapse
Affiliation(s)
- Johan Gustafsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden; Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Jessica Legradi
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| | - Lillemor Asplund
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Jia D, Miao W, Huang M, Huang X, Yi Z. Investigations on the binding properties of hydroxylated polybrominated diphenyl ethers with lysozyme using the multispectral techniques and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121864. [PMID: 36137501 DOI: 10.1016/j.saa.2022.121864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
As a kind of phenolic chemical with endocrine disrupting potency, hydroxylated polybrominated diphenyl ethers (OH-PBDEs) cause a latent threat to human health from their residue in the environment. Their binding efficiency with lysozyme (LYSO) was studied by molecular simulation combined with fluorescence, UV-vis absorption and circular dichroism (CD), so as to assess their toxicity at the molecular level. Molecular docking data indicate that van der Waals force is the principal interaction force between OH-PBDEs and LYSO. The binding site for 5'-OH-BDE-25 in LYSO is ascertained as the active site, which interaction with the TRP63 and TRP108 residues of LYSO to take shape a strong face-to-face stacked rank (F-shaped). Both 4'-OH-BDE-99 and 3'-OH-BDE-154 display a certain degree of deviation from the active site. Nevertheless, their F-shaped interaction with TRP63 conduce to bind LYSO and stabilize the docking conformation. Combined with dynamics simulation and spectral analysis, the secondary structure of LYSO can be induced by the three kinds of OH-PBDEs. CD spectrum shows that the combination of LYSO and OH-PBDEs will make α- Helix content increased. The combination of OH-PBDEs and LYSO touch upon a static quenching mechanism as a result of steady state fluorescence. The energy decomposition analysis exhibited that LYSO-OH-PBDEs binding site was stable by van der Waals and hydrophobic interaction. As enzyme activity experiments demonstrate that OH-PBDEs can inhibit the activity of LYSO, which is helpful to clarify the molecular toxicity mechanism of OH-PBDEs.
Collapse
Affiliation(s)
- Dan Jia
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Wangli Miao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaomei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
7
|
Contamination Status of Pet Cats in Thailand with Organohalogen Compounds (OHCs) and Their Hydroxylated and Methoxylated Derivatives and Estimation of Sources of Exposure to These Contaminants. Animals (Basel) 2022; 12:ani12243520. [PMID: 36552442 PMCID: PMC9774237 DOI: 10.3390/ani12243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
In this study, we analyzed serum samples of pet cats from Thailand and estimated the contribution to organohalogen compounds (OHCs) exposure through cat food and house dust intake. BDE-209 was predominant in cat sera and accounted for 76% of all polybrominated diphenyl ethers (PBDEs). Decabromodiphenyl ether (BDE-209) is a major contaminant in dry cat food and house dust, which has been estimated to be a source of exposure for Thai pet cats. BDE-209 is a major contaminant of OHCs in dry cat food and house dust, which was estimated to be a source of exposure for Thai pet cats. On the other hand, the level of contamination by PCBs was lower than in other countries. Analysis of pet foods suggested that BDE-209 in pet cat serum was attributable to the consumption of dry cat food. On the other hand, house dust also contained high concentrations of BDE-209. Thus, high levels of BDE-209 in pet cat sera can be attributed to the consumption of dry cat food and house dust. These results suggest that pet cats are routinely exposed to non-negligible levels of OHCs.
Collapse
|
8
|
Lindqvist D, Wincent E. Kinetics and toxicity of an environmentally relevant mixture of halogenated organic compounds in zebrafish embryo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106311. [PMID: 36201873 DOI: 10.1016/j.aquatox.2022.106311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Persistent and semi-persistent halogenated compounds cause health problems for the animals occupying the upper level of the food web in the Baltic Sea. Atlantic salmon (Salmo salar), being a top piscivore in the Baltic Sea, has been observed to carry a large body burden of halogenated toxins. Here, a mixture of nine halogenated compounds belonging to different groups was created, based on the observed composition of halogenated toxins in salmon serum. The toxicokinetic properties of the compounds were studied in zebrafish (Danio rerio) embryos to achieve the same proportions between the internal doses of the compounds in the zebrafish as in the salmon. Toxicity was evaluated for the compounds dosed individually as well as in a mixture. Perfluorooctanesulfonic acid (PFOS) was the dominant compound in the salmon and was observed to be the driving force for effects on swimbladder inflation caused by the mixture with a 50% effect concentration of 4.8 µM nominal dose, or 1300 µMD based on the area under the internal concentration-time curve (AUC). The driving compound for other severe effects caused by the mixture, including lethality, spinal deformity, and edemas, was the hydroxylated polybrominated diphenyl ether 6-OH-BDE47, which was observed to have a 50% lethality concentration of 93 nM, corresponding to 94 µMD based on internal dose (AUC). The individual compounds were observed to act additively on most of the documented outcomes when dosed as a mixture.
Collapse
Affiliation(s)
- Dennis Lindqvist
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
9
|
Hou M, Jin Q, Na G, Cai Y, Shi Y. Emissions, Isomer-Specific Environmental Behavior, and Transformation of OBS from One Major Fluorochemical Manufacturing Facility in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8103-8113. [PMID: 35686732 DOI: 10.1021/acs.est.2c01287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS), a novel alternative to perfluorooctane sulfonic acid (PFOS), has been widely used in various fields in China and has certain toxic effects similar to PFOS. This study monitored OBS and 15 legacy PFASs in surface water, sediment, soil, and crucian carp near a fluorochemical manufacturing factory (FMF) in Suqian, China, focusing on the emission, isomer-specific environmental fate, and transformation of OBS. One to four orders of magnitude higher concentrations of OBS than other polyfluoroalkyl substances (PFASs) in all samples indicate that industrial emission is an important point source of OBS in the surrounding environment. The concentrations of OBS in surface water, sediment, and soil decreased exponentially as the distance from the FMF increases. The proportions of OBS-c, the dominant isomer, increased in the order: water (75.5 ± 6.4%), sediment (85.7 ± 10%), fish (muscle: 94.1 ± 0.99%; blood: 93.5 ± 1.4%), suggesting its preferential accumulation in sediment and fish than other isomers. Mono-hydroxylated transformation products of OBS were first identified in water, sediment, and fish, suggesting its hydroxylation may exist in the real environment. The transformation of OBS may explain its significantly lower bioaccumulation than PFOS in fish. However, considering the higher BAF of OBS than the regulatory bioaccumulation criterion and the possible stronger toxicity of its transformation products, further studies on its bioaccumulation and transformation are warranted.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangshui Na
- Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Tang W, Liu W, Wang Z, Hong H, Chen J. Machine learning models on chemical inhibitors of mitochondrial electron transport chain. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128067. [PMID: 34920224 DOI: 10.1016/j.jhazmat.2021.128067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Chemicals can induce adverse effects in humans by inhibiting mitochondrial electron transport chain (ETC) such as disrupting mitochondrial membrane potential, enhancing oxidative stress and causing some diseases. Thus, identifying ETC inhibitors (ETCi) is important to chemical risk assessment and protecting the public health. However, it is not feasible to identify all ETCi with experimental methods. Quantitative structure-activity relationship (QSAR) modeling is a promising method to rapidly and effectively identify ETCi. In this study, QSAR models for predicting ETCi were developed using machine learning methods. A clustering-based under-sampling (CBUS) method was developed to handle the imbalance issue in training sets. Structure-activity landscapes were generated and analyzed for training sets generated by the CBUS method. The consensus QSAR models constructed with CBUS achieved satisfactory performances (balanced accuracy = 0.852) in 100 iterations of five-fold cross validations, indicating the models can effectively classify ETCi. The classification model was further employed to screen chemicals in the Inventory of Existing Chemical Substances of China and 13 chemicals were identified as ETCi. Fifteen structural alerts for ETCi were identified in this study. These results demonstrated that the model and structural alerts are useful to screen ETCi.
Collapse
Affiliation(s)
- Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenjia Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
11
|
Song M, Wang Y, Chen Z, Gao H, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated genotoxicity of 2,2',4,4'-tetrabromobiphenyl ether in mammalian cells. CHEMOSPHERE 2022; 291:132784. [PMID: 34742755 DOI: 10.1016/j.chemosphere.2021.132784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated biphenyl ethers (PBDEs) are a group of persistent organic pollutants with endocrine-disrupting, neurotoxic, tumorigenic and DNA-damaging activities. They are hydroxylated by human liver microsomal CYP enzymes, however, their mutagenicity remains unknown. In this study, 2,2',4,4'-tetrabromobiphenyl ether (BDE-47, relatively abundant in human tissues) was investigated for micronuclei induction and DNA damage in mammalian cells. The results indicated that BDE-47 up to 80 μM under a 6 h/18 h (exposure/recovery, covering 2 cell cycles) regime did not induce micronuclei in V79-Mz and V79-derived cell lines expressing human CYP1A1 or 1A2, while it was moderately positive in human CYP2B6-, 2E1-and 3A4-expressing cell lines (V79-hCYP2B6, V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4-hOR, respectively). Following 24 h exposure, BDE-47 induced micronuclei in V79-hCYP2E1-hSULT1A1 and V79-hCYP3A4 cells at increased potencies. In the human hepatoma (HepG2) cells BDE-47 (48 h exposure) was inactive up to 40 μM, however, pretreatment of the cells with ethanol (0.2%, v:v, inducer of CYP2E1) or rifampicin (10 μM, inducer of CYP3A4) led to significant micronuclei formation by BDE-47; pretreatment with bisphenol AF (100 nM) also potentiated BDE-47-induced micronuclei formation (which was blocked by a CYP2E1 inhibitor trans-1,2-dichloroethylene or a CYP3A inhibitor (ketoconazole). Immunofluorescent staining of centromere protein B with the micronuclei formed by BDE-47 in HepG2 cells pretreated with ethanol or rifampicin demonstrated selective formation of centromere-containing micronuclei. The increased phosphorylation of both histones H2AX and H3 in HepG2 by BDE-47 also indicated an aneugenic potential. Therefore, this study suggests that BDE-47 is an aneugen activated by several human CYP enzymes.
Collapse
Affiliation(s)
- Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yujian Wang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zhihong Chen
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hongbin Gao
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China; Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Sun J, Barrett H, Hall DR, Kutarna S, Wu X, Wang Y, Peng H. Ecological Role of 6OH-BDE47: Is It a Chemical Offense Molecule Mediated by Enoyl-ACP Reductases? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:451-459. [PMID: 34914355 DOI: 10.1021/acs.est.1c05718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although hydroxylated polybrominated diphenyl ethers (OH-BDEs) are among the most abundant natural organobromine compounds, the fundamental biological rationale for marine organisms to produce OH-BDEs remains elusive. Herein, we demonstrated that natural OH-BDEs exerted strong antibacterial activities against Escherichia coli by inhibiting enoyl-[acyl-carrier-protein] reductase (FabI), while anthropogenic OH-BDEs were inactive. Distinct from E. coli, OH-BDE-producing marine γ-proteobacteria including Marinomonas mediterranea MMB-1 (MMB-1) and Pseudoalteromonas luteoviolacea 2ta16 (Pl2ta16) exhibited resistance to 6OH-BDE47. An alternative enoyl-[acyl-carrier-protein] (ACP) reductase, FabV, was detected in all three OH-BDE-producing marine γ-proteobacteria. Thermal stability and protein affinity purification studies revealed that 6OH-BDE47 did not bind to recombinant or endogenous FabV of MMB-1 or Pl2ta16, demonstrating that FabV was the primary mechanism for OH-BDE-producing marine γ-proteobacteria to be resistant to 6OH-BDE47. To further confirm if the laboratory results were evidenced in the field, the 16S rRNA sequencing and metagenomics data from seven field-collected marine sponges were analyzed. Notably, the two Clade 4 sponges containing high concentrations of 6OH-BDE47 exhibited a distinct microbiome community structure compared to the other analyzed clades. Correspondingly, FabV was found to be selectively enriched in the same Clade 4 sponges. The merged evidence from the laboratory experiments and field studies demonstrated that 6OH-BDE47 may act as a chemical offense molecule in marine sponges.
Collapse
Affiliation(s)
- Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Steven Kutarna
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Xiaoqin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 70A3317, United States
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
13
|
Gustafsson J, Förlin L, Karlson AML, Bignert A, Dahlgren H, Parkkonen J, Asplund L. Correlating seasonal changes of naturally produced brominated compounds to biomarkers in perch from the Baltic Sea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105984. [PMID: 34627023 DOI: 10.1016/j.aquatox.2021.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs), naturally produced by algae and cyanobacteria in the Baltic Sea, are potent disrupters of energy metabolism as well as endocrine disruptors and neurotoxins. In this study, European perch (Perca fluviatilis) from the Baltic Sea were sampled from May until October. OH-PBDEs and ten biomarkers were measured in each individual (n = 84 over 18 sampling time points) to study potential correlations between exposure to OH-PBDEs and changes in biomarkers. Several biomarkers showed significant non-linear seasonal variation. In the perch, ethoxyresorufin-O-deethylase (EROD) activity, plasma lactate concentration, and plasma glucose concentration showed a significant positive log-linear correlation with OH-PBDEs, whereas lipid percentage and liver somatic index showed a significant negative log-linear correlation with OH-PBDEs. These results strengthen the concern that OH-PBDEs could cause negative health effects for fish in the Baltic Sea.
Collapse
Affiliation(s)
- Johan Gustafsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | - Lars Förlin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Agnes M L Karlson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anders Bignert
- Department of Environmental Monitoring and Research, Swedish Museum of Natural History, Stockholm, Sweden
| | - Henrik Dahlgren
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jari Parkkonen
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Asplund
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Chen Q, Lian X, An J, Geng N, Zhang H, Challis JK, Luo Y, Liu Y, Su G, Xie Y, Li Y, Liu Z, Shen Y, Giesy JP, Gong Y. Life Cycle Exposure to Environmentally Relevant Concentrations of Diphenyl Phosphate (DPhP) Inhibits Growth and Energy Metabolism of Zebrafish in a Sex-Specific Manner. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13122-13131. [PMID: 34523920 DOI: 10.1021/acs.est.1c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to commercial uses and environmental degradation of aryl phosphate esters, diphenyl phosphate (DPhP) is frequently detected in environmental matrices and is thus of growing concern worldwide. However, information on potential adverse effects of chronic exposure to DPhP at environmentally realistic concentrations was lacking. Here, we investigated the effects of life cycle exposure to DPhP on zebrafish at environmentally relevant concentrations of 0.8, 3.9, or 35.6 μg/L and employed a dual-omics approach (metabolomics and transcriptomics) to characterize potential modes of action. Exposure to DPhP at 35.6 μg/L for 120 days resulted in significant reductions in body mass and length of male zebrafish, but did not cause those same effects to females. Predominant toxicological mechanisms, including inhibition of oxidative phosphorylation, down-regulation of fatty acid oxidation, and up-regulation of phosphatidylcholine degradation, were revealed by integrated dual-omics analysis and successfully linked to adverse outcomes. Activity of succinate dehydrogenase and protein content of carnitine O-palmitoyltransferase 1 were significantly decreased in livers of male fish exposed to DPhP, which further confirmed the proposed toxicological mechanisms. This study is the first to demonstrate that chronic, low-level exposure to DPhP can retard growth via inhibiting energy output in male zebrafish.
Collapse
Affiliation(s)
- Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaolong Lian
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jingjing An
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yaxin Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon S7N 5B4, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas 76798-7266, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yufeng Gong
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| |
Collapse
|
15
|
Wei J, Xiang L, Cai Z. Emerging environmental pollutants hydroxylated polybrominated diphenyl ethers: From analytical methods to toxicology research. MASS SPECTROMETRY REVIEWS 2021; 40:255-279. [PMID: 32608069 DOI: 10.1002/mas.21640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are of particular concern due to their ubiquitous distribution and adverse health effects. Significant progress has been made in the characterization of OH-PBDEs by using mass spectrometry (MS). In this review, we summarize applications of MS-based techniques in detection, environmental and biota distribution, and potential health risk effects, hoping to unfold an overall picture on account of current knowledge of OH-PBDEs. The analytical methodologies are discussed from sample pretreatment to MS analysis. The methods including gas chromatography-MS (GC-MS), liquid chromatography-MS (LC-MS), and ion mobility spectrometry-MS (IMS-MS) are discussed. GC-MS is the most frequently adopted method in the analysis of OH-PBDEs due to its excellent chromatographic resolution, high sensitivity, and strong ability for unknown identification. LC-MS has been widely used for its high sensitivity and capability of direct analysis. As a newly developed technique, IMS-MS provides high specificity, which greatly facilitates the identification of isomers. OH-PBDEs pervasively existed in both abiotic and biotic samples, including humans, animals, and environmental matrices. Multiple adverse health effects have been reported, such as thyroid hormone disruption, estrogen effects, and neurotoxicity. The reported potential pathological mechanisms are also reviewed. Additionally, MS-based metabolomics, lipidomics, and proteomics have been shown as promising tools to unveil the molecular mechanisms of the toxicity of OH-PBDEs. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
16
|
Ingle ME, Mínguez-Alarcón L, Carignan CC, Stapleton HM, Williams PL, Ford JB, Moravek MB, Hauser R, Meeker JD. Exploring reproductive associations of serum polybrominated diphenyl ether and hydroxylated brominated diphenyl ether concentrations among women undergoing in vitro fertilization. Hum Reprod 2021; 35:1199-1210. [PMID: 32424407 DOI: 10.1093/humrep/deaa063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Are serum concentrations of polybrominated diphenyl ethers (PBDEs) and hydroxylated brominated diphenyl ethers (OH-BDEs) associated with IVF endpoints? SUMMARY ANSWER Positive associations were observed for BDE153 and several OH-BDEs with IVF endpoints. WHAT IS KNOWN ALREADY PBDEs have been voluntarily phased out of production in the USA and EU due to their persistence and toxicity to humans and ecosystems. PBDEs have been associated with implantation failure among women undergoing IVF, yet some animal studies suggest greater toxicity from their metabolites, OH-BDEs. STUDY DESIGN, SIZE, DURATION We evaluated a subset of 215 women (contributing 330 IVF cycles) enrolled between 2005 and 2016 in a longitudinal cohort based at Massachusetts General Hospital Fertility Center. PARTICIPANTS/MATERIALS, SETTING, METHODS The following PBDEs were quantified: 47, 99, 100, 153 and 154 and the following OH-BDEs: 3-OH-BDE47, 5-OH-BDE47, 6-OH-BDE47 and 4-OH-BDE49. Clinical endpoints of IVF treatments were abstracted from electronic medical records. Associations of log-transformed PBDEs and OH-BDEs with IVF outcomes were assessed using multivariable generalized mixed models and cluster weighted generalized estimating equation models adjusted for lipids, age, BMI, race, year of sample collection, IVF protocol and FSH levels. Outcomes were adjusted to represent a percent change in outcome with an increase equal to the magnitude of the difference between the 75th and 25th percentiles for each specific compound (interquartile range (IQR) increase). MAIN RESULTS AND THE ROLE OF CHANCE Detection frequencies were highest for congeners 47 and 153 (82% ≥ method detection limit (MDL)) and metabolites 3 and 5-OH-BDE47 and 4-OH-BDE49 (92% > MDL). PBDE and OH-BDE geometric mean concentrations declined by up to 80% between participants recruited in 2005 and those recruited in 2016. An IQR increase of BDE153 was associated with an increase in the probability of implantation (relative risk (RR) = 1.26, 95% CI: 1.16, 1.36), clinical pregnancy (RR = 1.32, 95% CI: 1.19, 1.46) and live birth (RR = 1.34; 95% CI: 1.15, 1.54). An IQR increase in 3 and 5-OH-BDE47 was associated with increased probabilities of implantation (RR = 1.52; 95% CI: 1.11, 2.09), clinical pregnancy (RR = 1.66; 95% CI: 1.17, 2.36), and live birth (RR = 1.61; 95% CI: 1.07, 2.40). When models were stratified by race (White (86%)/Other race (14%)), associations remained positive for White women, yet inverse associations were observed for Other race women. An IQR increase in BDE47 was associated with a 46% decreased probability of clinical pregnancy (95% CI: 0.31, 0.95) for Other race women. LIMITATIONS, REASONS FOR CAUTION Despite the long half-lives of PBDEs and OH-BDEs, exposure misclassification is possible for women who underwent multiple treatment cycles over several months or years. It is also possible another medium, such as follicular fluid would be optimal to characterize exposure. We also tested associations for multiple congeners and metabolites with multiple outcomes. WIDER IMPLICATIONS OF THE FINDINGS Detections of serum concentrations of PBDEs and OH-BDEs were highest in the early years of the study and suggests that the phase-out of these compounds has contributed to a decrease in exposure. The negative associations found for PBDEs and IVF outcomes among other race women suggests the potential for racial disparity. Potential racial disparities in PBDE exposure and exploration of alternative flame retardants with reproductive health outcomes should be the focus of future investigations. STUDY FUNDING/COMPETING INTEREST(S) Funding for this research was supported by the National Institutes of Environmental Health Sciences (NIEHS) [R01 ES009718, ES022955, ES000002 and 009718T32ES007069]. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Mary E Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Courtney C Carignan
- Department of Food Science and Nutrition, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | | | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molly B Moravek
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | |
Collapse
|
17
|
Deng Y, Song P, Chen X, Huang Y, Hong L, Jin Q, Ji J. 3-Bromopyruvate-Conjugated Nanoplatform-Induced Pro-Death Autophagy for Enhanced Photodynamic Therapy against Hypoxic Tumor. ACS NANO 2020; 14:9711-9727. [PMID: 32806075 DOI: 10.1021/acsnano.0c01350] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Autophagy triggered by reactive oxygen species (ROS) in photodynamic therapy (PDT) generally exhibits an anti-apoptotic effect to promote cell survival. Herein, an innovative supramolecular nanoplatform was fabricated for enhanced PDT by converting the role of autophagy from pro-survival to pro-death. The respiration inhibitor 3-bromopyruvate (3BP), which can act as an autophagy promoter and hypoxia ameliorator, was integrated into photosensitizer chlorin e6 (Ce6)-encapsulated nanoparticles to combat hypoxic tumor. 3BP could inhibit respiration by down-regulating HK-II and GAPDH expression to significantly reduce intracellular oxygen consumption rate, which could relieve tumor hypoxia for enhanced photodynamic cancer therapy. More importantly, the autophagy level was significantly elevated by the combination of 3BP and PDT determined by Western blot, immunofluorescent imaging, and transmission electron microscopy. It was very surprising that excessively activated autophagy promoted cell apoptosis, leading to the changeover of autophagy from pro-survival to pro-death. Therefore, PDT combined with 3BP could achieve efficient cell proliferation inhibition and tumor regression. Furthermore, hypoxia-inducible factor-1α (HIF-1α) could be down-regulated after tumor hypoxia was relieved by 3BP. Tumor metastasis could then be effectively inhibited by eliminating primary tumors and down-regulating HIF-1α expression. These results provide an inspiration for future innovative approaches of cancer therapy by triggering pro-death autophagy.
Collapse
Affiliation(s)
- Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Pengyu Song
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|
18
|
Tang W, Chen J, Hong H. Discriminant models on mitochondrial toxicity improved by consensus modeling and resolving imbalance in training. CHEMOSPHERE 2020; 253:126768. [PMID: 32464767 DOI: 10.1016/j.chemosphere.2020.126768] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Humans and animals may be exposed to tens of thousands of natural and synthetic chemicals during their lifespan. It is difficult to assess risk for all the chemicals with experimental toxicity tests. An alternative approach is to use computational toxicology methods such as quantitative structure-activity relationship (QSAR) modeling. Mitochondrial toxicity is involved in many diseases such as cancer, neurodegeneration, type 2 diabetes, cardiovascular diseases and autoimmune diseases. Thus, it is important to rapidly and efficiently identify chemicals with mitochondrial toxicity. In this study, five machine learning algorithms and twelve types of molecular fingerprints were employed to generate QSAR discriminant models for mitochondrial toxicity. A threshold moving method was adopted to resolve the imbalance issue in the training data. Consensus of the models by an averaging probability strategy improved prediction performance. The best model has correct classification rates of 81.8% and 88.3% in ten-fold cross validation and external validation, respectively. Substructures such as phenol, carboxylic acid, nitro and arylchloride were found informative through analysis of information gain and frequency of substructures. The results demonstrate that resolving imbalance in training and building consensus models can improve classification rates for mitochondrial toxicity prediction.
Collapse
Affiliation(s)
- Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
19
|
Bidleman TF, Andersson A, Haglund P, Tysklind M. Will Climate Change Influence Production and Environmental Pathways of Halogenated Natural Products? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6468-6485. [PMID: 32364720 DOI: 10.1021/acs.est.9b07709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thousands of halogenated natural products (HNPs) pervade the terrestrial and marine environment. HNPs are generated by biotic and abiotic processes and range in complexity from low molecular mass natural halocarbons (nHCs, mostly halomethanes and haloethanes) to compounds of higher molecular mass which often contain oxygen and/or nitrogen atoms in addition to halogens (hHNPs). nHCs have a key role in regulating tropospheric and stratospheric ozone, while some hHNPs bioaccumulate and have toxic properties similar those of anthropogenic-persistent organic pollutants (POPs). Both chemical classes have common sources: biosynthesis by marine bacteria, phytoplankton, macroalgae, and some invertebrate animals, and both may be similarly impacted by alteration of production and transport pathways in a changing climate. The nHCs scientific community is advanced in investigating sources, atmospheric and oceanic transport, and forecasting climate change impacts through modeling. By contrast, these activities are nascent or nonexistent for hHNPs. The goals of this paper are to (1) review production, sources, distribution, and transport pathways of nHCs and hHNPs through water and air, pointing out areas of commonality, (2) by analogy to nHCs, argue that climate change may alter these factors for hHNPs, and (3) suggest steps to improve linkage between nHCs and hHNPs science to better understand and predict climate change impacts.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology & Environmental Science, UmU, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, UmU, SE-905 71 Hörnefors, Sweden
| | - Peter Haglund
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| |
Collapse
|
20
|
Ji F, Zhu Z, Zhang M, Zhang H, Zhu L, Cai X, Liu W, Song J, Li M, Cai Z. 6-OH-BDE-47 exposure-induced Parkinson's disease pathology in Sprague Dawley rat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135184. [PMID: 32000351 DOI: 10.1016/j.scitotenv.2019.135184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
6-Hydroxy-BDE-47 (6-OH-BDE-47) is an important in vivo metabolite derived from 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a ubiquitous environmental pollutant. The chemical has been widely detected in environmental and biological samples. However, as a potential neurotoxin, whether 6-OH-BDE-47 could promote the development of typical neurodegenerative diseases such as Parkinson's disease (PD) is still unknown. Here, we tested the potential PD-related neurotoxic effect of 6-OH-BDE-47 in rat. The chemical with levels of 0.1, 1 and 10 µg was stereotaxically injected into the right midbrain regions of rat where contain abundant dopaminergic neurons. The resulting deteriorated motor function and decreased levels of striatal dopamine and nigrostriatal tyrosine hydroxylase indicate the dopaminergic neuron loss after the injection. Proteomics study revealed that protein degradation pathways were affected. Western blot analysis confirmed that 6-OH-BDE-47 could inhibit ubiquitination and autophagy, resulting in the increased formation of α-synuclein (α-syn) aggregate, an important pathological hallmark of PD. Overall, our study demonstrated that the 6-OH-BDE-47 administration could induce motor defect by impairing dopaminergic system and promote α-syn aggregation by inhibiting ubiquitination and autophagy, suggesting that the occurrence of 6-OH-BDE-47 in brain could be a risk for developing PD.
Collapse
Affiliation(s)
- Fenfen Ji
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhou Zhu
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Mengtao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huan Zhang
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xiaodong Cai
- Department of Functional Neurology & Neurosurgery, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenlan Liu
- The Central Laboratory and Shenzhen Key Laboratory of Neurosurgery, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Juxian Song
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
21
|
Duell ER, Milzarek TM, El Omari M, Linares-Otoya LJ, Schäberle TF, König GM, Gulder TAM. Identification, cloning, expression and functional interrogation of the biosynthetic pathway of the polychlorinated triphenyls ambigol A–C from Fischerella ambigua 108b. Org Chem Front 2020. [DOI: 10.1039/d0qo00707b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biosynthetic pathway to the ambigols A–C from Fischerella ambigua 108b has been identified, cloned, heterologously expressed and functionally studied, including in-depth analysis of the biaryl coupling biochemistry in vivo and in vitro.
Collapse
Affiliation(s)
- Elke R. Duell
- Biosystems Chemistry
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM)
- Technical University of Munich
- 85748 Garching
- Germany
| | - Tobias M. Milzarek
- Biosystems Chemistry
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM)
- Technical University of Munich
- 85748 Garching
- Germany
| | - Mustafa El Omari
- Institute for Pharmaceutical Biology
- University of Bonn
- 53115 Bonn
- Germany
| | - Luis J. Linares-Otoya
- Institute for Insect Biotechnology
- Justus Liebig University of Giessen
- 35392 Giessen
- Germany
- Department of Bioresources
| | - Till F. Schäberle
- Institute for Insect Biotechnology
- Justus Liebig University of Giessen
- 35392 Giessen
- Germany
- Department of Bioresources
| | | | - Tobias A. M. Gulder
- Biosystems Chemistry
- Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM)
- Technical University of Munich
- 85748 Garching
- Germany
| |
Collapse
|
22
|
Nomiyama K, Eguchi A, Takaguchi K, Yoo J, Mizukawa H, Oshihoi T, Tanabe S, Iwata H. Targeted metabolome analysis of the dog brain exposed to PCBs suggests inhibition of oxidative phosphorylation by hydroxylated PCBs. Toxicol Appl Pharmacol 2019; 377:114620. [PMID: 31195005 DOI: 10.1016/j.taap.2019.114620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 01/23/2023]
Abstract
Canis lupus familiaris (domestic dog) possess a high capacity to metabolize higher-chlorinated polychlorinated biphenyls (PCBs) to thyroid hormone (TH)-like hydroxylated PCB metabolites (OH-PCBs). As a result, the brain could be at high risk of toxicity caused by OH-PCBs. To evaluate the effect of OH-PCBs on dog brain, we analyzed OH-PCB levels in the brain and the metabolome of the frontal cortex following exposure to a mixture of PCBs (CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187, and 202). 4-OH-CB202 and 4-OH-CB107 were major OH-PCBs in the brain of PCB-exposed dogs. These OH-PCBs were associated with metabolites involved in urea cycle, proline-related compounds, and purine, pyrimidine, glutathione, and amino-acid metabolism in dog brain. Moreover, adenosine triphosphate levels in the PCBs exposure group were significantly lower than in the control group. These results suggest that OH-PCB exposure is associated with a disruption in TH homeostasis, generation of reactive oxygen species, and/or disruption of oxidative phosphorylation (OXPHOS) in brain cells. Among them, OXPHOS disturbance could be associated with both disruptions in cellular amino-acid metabolism and urea cycle. Therefore, an OXPHOS activity assay was performed to evaluate the disruption of OXPHOS by OH-PCBs. The results indicated that 4-OH-CB107 inhibits the function of Complexes III, IV, and V of the electron transport chain, suggesting that 4-OH-CB107 inhibit these complexes in OXPHOS. The neurotoxic effects of PCB exposure may be mediated through mitochondrial toxicity of OH-PCBs in the brain.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Akifumi Eguchi
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1, -33 Chiba-city, Japan
| | - Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Hazuki Mizukawa
- Laboratory of Environmental Analytical Chemistry, Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566, Japan
| | - Tomoko Oshihoi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
23
|
Bidleman TF, Andersson A, Brugel S, Ericson L, Haglund P, Kupryianchyk D, Lau DCP, Liljelind P, Lundin L, Tysklind A, Tysklind M. Bromoanisoles and methoxylated bromodiphenyl ethers in macroalgae from Nordic coastal regions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:881-892. [PMID: 31032511 DOI: 10.1039/c9em00042a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Marine macroalgae are used worldwide for human consumption, animal feed, cosmetics and agriculture. In addition to beneficial nutrients, macroalgae contain halogenated natural products (HNPs), some of which have toxic properties similar to those of well-known anthropogenic contaminants. Sixteen species of red, green and brown macroalgae were collected in 2017-2018 from coastal waters of the northern Baltic Sea, Sweden Atlantic and Norway Atlantic, and analyzed for bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). Target compounds were quantified by gas chromatography-low resolution mass spectrometry (GC-LRMS), with qualitative confirmation in selected species by GC-high resolution mass spectrometry (GC-HRMS). Quantified compounds were 2,4-diBA, 2,4,6-triBA, 2'-MeO-BDE68, 6-MeO-BDE47, and two tribromo-MeO-BDEs and one tetrabromo-MeO-BDE with unknown bromine substituent positions. Semiquantitative results for pentabromo-MeO-BDEs were also obtained for a few species by GC-HRMS. Three extraction methods were compared; soaking in methanol, soaking in methanol-dichloromethane, and blending with mixed solvents. Extraction yields of BAs did not differ significantly (p > 0.05) with the three methods and the two soaking methods gave equivalent yields of MeO-BDEs. Extraction efficiencies of MeO-BDEs were significantly lower using the blend method (p < 0.05). For reasons of simplicity and efficiency, the soaking methods are preferred. Concentrations varied by orders of magnitude among species: ∑2BAs 57 to 57 700 and ∑5MeO-BDEs < 10 to 476 pg g-1 wet weight (ww). Macroalgae standing out with ∑2BAs >1000 pg g-1 ww were Ascophyllum nodosum, Ceramium tenuicorne, Ceramium virgatum, Fucus radicans, Fucus serratus, Fucus vesiculosus, Saccharina latissima, Laminaria digitata, and Acrosiphonia/Spongomorpha sp. Species A. nodosum, C. tenuicorne, Chara virgata, F. radicans and F. vesiculosus (Sweden Atlantic only) had ∑5MeO-BDEs >100 pg g-1 ww. Profiles of individual compounds showed distinct differences among species and locations.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ganci AP, Vane CH, Abdallah MAE, Moehring T, Harrad S. Legacy PBDEs and NBFRs in sediments of the tidal River Thames using liquid chromatography coupled to a high resolution accurate mass Orbitrap mass spectrometer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1355-1366. [PMID: 30677996 DOI: 10.1016/j.scitotenv.2018.12.268] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Surface sediment samples (n = 45) were collected along a 110 km transect of the river Thames in October 2011, starting from Teddington Lock out through the industrial area of London to the southern North Sea. Several legacy and novel brominated flame retardants (NBFRs) were analysed, including 13 polybrominated diphenyl ethers (PBDEs) (congeners 17, 28, 47, 99, 100, 153, 154, 183, 196, 197, 206, 207 and 209), hexabromocyclododecane (HBCDDs), tetrabromobisphenol A (TBBPA), hexabromobenzene (HBB), 2,4,6-tribromophenol (TBP), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB or TBB), bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP or TBPH), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), pentabromoethylbenzene (PBEB), anti/syn-dechlorane plus (a/s-DP), 2,2',4,4',5,5'-hexabromobiphenyl (BB153) and α-,β-1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (α-,β-DBE-DBCH or TBECH). A novel analysis method based on liquid chromatographic separation, followed by high resolution accurate mass detection using the Orbitrap platform was used for quantification. Results revealed that BDE-209 had the highest concentrations (<0.1 to 540 μg kg-1 dw) and detection frequency, accounting for 95% of all PBDE congeners measured. Indicative evidence of debromination of the PentaBDE technical mixture was observed through elevated relative abundance of BDE-28 in sediment compared to the Penta-BDE formulation. NBFRs were detected at comparable levels to PBDEs (excluding BDE-209), which indicates increasing use of the former. Spatial trend analysis showed that samples from industrial areas had significantly higher concentrations of Σ12PBDEs, ΣHBCDDs, TBBPA, BEH-TEBP, BTBPE and TBP. Three locations showed high concentrations of HBCDDs with diastereomer patterns comparable to the technical mixture, which indicate recent input sources to the sediment.
Collapse
Affiliation(s)
- Aristide P Ganci
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, United Kingdom.
| | - Christopher H Vane
- British Geological Survey, Centre for Environmental Geochemistry, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Mohamed A-E Abdallah
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Thomas Moehring
- Thermo Fisher Scientific (GmbH) Bremen, Hanna-Kunath-Str. 11, 28199 Bremen, Germany
| | - Stuart Harrad
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
25
|
Determination of Hydroxylated Polybrominated Diphenyl Ethers in Blood from Baltic Grey Seals. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00084-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Chen L, Hu C, Lok-Shun Lai N, Zhang W, Hua J, Lam PKS, Lam JCW, Zhou B. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:17-26. [PMID: 29729565 DOI: 10.1016/j.envpol.2018.04.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/03/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Contamination from lower brominated PBDEs is ubiquitous in the environments. However, their effects on gut microbiota and intestinal health have not yet been investigated. This study exposed adult zebrafish to an environmentally realistic concentration of pentaBDE mixture (DE-71) at 5.0 ng/L for 7 days, after which metagenomic sequencing of the intestinal microbiome was conducted and host physiological activities in the intestine and liver were also examined. The results showed that acute exposure to DE-71 significantly shifted the gut microbial community in a sex-specific manner. Certain genera (e.g., Mycoplasma, Ruminiclostridium, unclassified Firmicutes sensu stricto, and Fusobacterium) disappeared from the DE-71-exposed intestines, resulting in decreased bacterial diversity. Bacterial metabolic functions in guts were also affected by DE-71, namely those covering energy metabolism, virulence, respiration, cell division, cell signaling, and stress response. In addition, measurement of diverse sensitive biomarkers showed that the health of male intestines was remarkably compromised by the DE-71 exposure, as indicated by the disruption to its neural signaling (serotonin), epithelial barrier integrity (tight junction protein 2), inflammatory response (interleukin 1β), oxidative stress and antioxidant capacity, as well as detoxifying potential (ethoxyresorufin-O-deethylase activity). However, female intestines maintained intact physiological activities. Compared to the direct impact on intestines, a latent effect of DE-71 was observed in livers. Co-occurrence network analysis demonstrated that the gut bacteria vigorously interacted to establish the fittest community under DE-71 stress by promoting the reproduction of favorable genera, while diminishing the survival of unfavorable ones. Significant correlations between the zebrafish gut microbiota and physiological activities (e.g., oxidative stress, detoxification, neurotransmission, and epithelial integrity) were also observed. Overall, this study has demonstrated, for the first time, the high susceptibility of gut microbiota and intestinal health of zebrafish to DE-71, thus warranting more work to reveal its mode of toxicity.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Nelson Lok-Shun Lai
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
27
|
Wang F, Fang M, Hinton DE, Chernick M, Jia S, Zhang Y, Xie L, Dong W, Dong W. Increased coiling frequency linked to apoptosis in the brain and altered thyroid signaling in zebrafish embryos (Danio rerio) exposed to the PBDE metabolite 6-OH-BDE-47. CHEMOSPHERE 2018; 198:342-350. [PMID: 29421749 PMCID: PMC7006228 DOI: 10.1016/j.chemosphere.2018.01.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 05/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardants that are ubiquitously detected in the environment and associated with adverse health outcomes. 6-OH-BDE-47 is a metabolite of the flame retardant, 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), and there is increasing concern regarding its developmental neurotoxicity and endocrine disrupting properties. In this study, we report that early life exposure in zebrafish (Danio rerio) embryos to 6-OH-BDE-47 (50 and 100 nM) resulted in higher coiling frequency and significantly increased apoptotic cells in the brain. These effects were partially rescued by overexpression of thyroid hormone receptor β (THRβ) mRNA. Moreover, exposure to 100 nM 6-OH-BDE-47 significantly reduced the number of hypothalamic 5-hydroxytryptamine (5-HT, serotonin)-immunoreactive (5-HT-ir) neurons and the mRNA expression of tryptophan hydroxylase 2 (TPH2). These results indicate that 6-OH-BDE-47 affected thyroid hormone regulation through THRβ and negatively impacted the nervous system, in turn, affecting coiling behavior. Correlations of these endpoints suggest that coiling frequency could be used as an indicator of neurotoxicity in embryos.
Collapse
Affiliation(s)
- Feng Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, 028000, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Shenglan Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yingdan Zhang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Wenjing Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, 028000, China; Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
28
|
Xie L, Gomes T, Solhaug KA, Song Y, Tollefsen KE. Linking mode of action of the model respiratory and photosynthesis uncoupler 3,5-dichlorophenol to adverse outcomes in Lemna minor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:98-108. [PMID: 29455116 DOI: 10.1016/j.aquatox.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Standard chemical toxicity testing guidelines using aquatic plant Lemna minor have been developed by several international standardisation organisations. Although being highly useful for regulatory purposes by focusing on traditional adverse endpoints, these tests provide limited information about the toxic mechanisms and modes of action (MoA). The present study aimed to use selected functional assays in L. minor after exposure to 3,5-dichlorophenol (3,5-DCP) as a model to characterise the toxic mechanisms causing growth inhibition and lethality in primary producers. The results demonstrated that 3,5-DCP caused concentration-dependent effects in chloroplasts and mitochondria. Uncoupling of oxidative phosphorylation (OXPHOS), reduction in chlorophyll (Chlorophyll a and b) content, reproduction rate and frond size were the most sensitive endpoints, followed by formation of reactive oxygen species (ROS), lipid peroxidation (LPO), reduction of carotenoid content and impairment of photosynthesis efficiency. Suppression of photosystem II (PSII) efficiency, electron transport rate (ETR), chlorophyll (a and b) contents and oxidative phosphorylation (OXPHOS) were closely correlated while ROS production and LPO were negative correlated with ETR, carotenoid content and growth parameters. A network of conceptual Adverse Outcome Pathways (AOPs) was developed to decipher the causal relationships between molecular, cellular, and apical adverse effects occurring in L. minor to form a basis for future studies with similar compounds.
Collapse
Affiliation(s)
- Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| | - Knut Asbjørn Solhaug
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
29
|
Ermilova I, Stenberg S, Lyubartsev AP. Quantum chemical and molecular dynamics modelling of hydroxylated polybrominated diphenyl ethers. Phys Chem Chem Phys 2017; 19:28263-28274. [PMID: 29028067 DOI: 10.1039/c7cp03471g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 19 hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been studied using density functional theory (DFT) and molecular dynamics simulations with the purpose of investigating eventual correlations between their physicochemical properties and toxic action. Dissociation constants (pKa), solvation free energies and octanol-water partition coefficients (log P) have been computed. Additionally, metadynamics simulations of OH-PBDEs passing through a lipid bilayer have been carried out for four OH-PBDE species. No correlations between computed pKa values and toxicity data have been found. Medium correlations were found between partition coefficients and the ability of OH-PBDEs to alter membrane potential in cell cultures, which is attributed to higher uptake of molecules with larger log P parameters. It was also demonstrated that in lipid bilayers, OH-PBDE molecules differ in their orientational distributions and can adopt different conformations which can affect the uptake of these molecules and influence the pathways of their toxic action.
Collapse
Affiliation(s)
- Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm University, SE 106 91, Stockholm, Sweden.
| | | | | |
Collapse
|
30
|
Bidleman TF, Brorström-Lundén E, Hansson K, Laudon H, Nygren O, Tysklind M. Atmospheric Transport and Deposition of Bromoanisoles Along a Temperate to Arctic Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10974-10982. [PMID: 28885011 DOI: 10.1021/acs.est.7b03218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bromoanisoles (BAs) arise from O-methylation of bromophenols, produced by marine algae and invertebrates. BAs undergo sea-air exchange and are transported over the oceans. Here we report 2,4-DiBA and 2,4,6-TriBA in air and deposition on the Swedish west coast (Råö) and the interior of arctic Finland (Pallas). Results are discussed in perspective with previous measurements in the northern Baltic region in 2011-2013. BAs in air decreased from south to north in the order Råö > northern Baltic > Pallas. Geometric mean concentrations at Pallas increased significantly (p < 0.05) between 2002 and 2015 for 2,4-DiBA but not for 2,4,6-TriBA. The logarithm of BA partial pressures correlated significantly to reciprocal air temperature at the coastal station Råö and over the Baltic, but only weakly (2,4-DiBA) or not significantly (2,4,6-TriBA) at inland Pallas. Deposition fluxes of BAs were similar at both sites despite lower air concentrations at Pallas, due to greater precipitation scavenging at lower temperatures. Proportions of the two BAs in air and deposition were related to Henry's law partitioning and source regions. Precipitation concentrations were 10-40% of those in surface water of Bothnian Bay, northern Baltic Sea. BAs deposited in the bay catchment likely enter rivers and provide an unexpected source to northern estuaries. BAs may be precursors to higher molecular weight compounds identified by others in Swedish inland lakes.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| | - Eva Brorström-Lundén
- Swedish Environmental Research Institute (IVL) , Aschebergsgatan 44, SE-411 33 Gothenburg, Sweden
| | - Katarina Hansson
- Swedish Environmental Research Institute (IVL) , Aschebergsgatan 44, SE-411 33 Gothenburg, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU) , SE-901 83 Umeå, Sweden
| | - Olle Nygren
- Building Office, Umeå University , SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| |
Collapse
|
31
|
Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation. Int J Mol Sci 2017; 18:ijms18050970. [PMID: 28467386 PMCID: PMC5454883 DOI: 10.3390/ijms18050970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/31/2022] Open
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been detected in humans and wildlife. Using in vitro models, we recently showed that OH-PBDEs disrupt oxidative phosphorylation (OXPHOS), an essential process in energy metabolism. The goal of the current study was to determine the in vivo effects of OH-PBDE reported in marine wildlife. To this end, we exposed zebrafish larvae to 17 OH-PBDEs from fertilisation to 6 days of age, and determined developmental toxicity as well as OXPHOS disruption potential with a newly developed assay of oxygen consumption in living embryos. We show here that all OH-PBDEs tested, both individually and as mixtures, resulted in a concentration-dependant delay in development in zebrafish embryos. The most potent substances were 6-OH-BDE47 and 6'-OH-BDE49 (No-Effect-Concentration: 0.1 and 0.05 µM). The first 24 h of development were the most sensitive, resulting in significant and irreversible developmental delay. All substances increased oxygen consumption, an effect indicative of OXPHOS disruption. Our results suggest that the induced developmental delay may be caused by disruption of OXPHOS. Though further studies are needed, our findings suggest that the environmental concentrations of some OH-PBDEs found in Baltic Sea wildlife in the Baltic Sea may be of toxicological concern.
Collapse
|
32
|
Chibwe L, Titaley IA, Hoh E, Massey Simonich SL. Integrated Framework for Identifying Toxic Transformation Products in Complex Environmental Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2017; 4:32-43. [PMID: 35600207 PMCID: PMC9119311 DOI: 10.1021/acs.estlett.6b00455] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Complex environmental mixtures consist of hundreds to thousands of unknown and unregulated organic compounds that may have toxicological relevance, including transformation products (TPs) of anthropogenic organic pollutants. Non-targeted analysis and suspect screening analysis offer analytical approaches for potentially identifying these toxic transformation products. However, additional tools and strategies are needed in order to reduce the number of chemicals of interest and focus analytical efforts on chemicals that may pose risks to humans and the environment. This brief review highlights recent developments in this field and suggests an integrated framework that incorporates complementary instrumental techniques, computational chemistry, and toxicity analysis, for prioritizing and identifying toxic TPs in the environment.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Ivan A. Titaley
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, CA, 92182, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
33
|
Liu D, Wu SM, Zhang Q, Guo M, Cheng J, Zhang SH, Yao C, Chen JQ. Occurrence, spatial distribution, and ecological risks of typical hydroxylated polybrominated diphenyl ethers in surface sediments from a large freshwater lake of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5773-5780. [PMID: 28050763 DOI: 10.1007/s11356-016-8341-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/25/2016] [Indexed: 06/06/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been frequently observed in marine aquatic environments; however, little information is available on the occurrence of these compounds in freshwater aquatic environments, including freshwater lakes. In this study, we investigated the occurrence and spatial distribution of typical OH-PBDEs, including 2'-OH-BDE-68, 3-OH-BDE-47, 5-OH-BDE-47, and 6-OH-BDE-47 in surface sediments of Taihu Lake. 3-OH-BDE-47 was the predominant congener, followed by 5-OH-BDE-47, 2'-OH-BDE-68, and 6-OH-BDE-47. Distributions of these compounds are drastically different between sampling site which may be a result of differences in nearby point sources, such as the discharge of industrial wastewater and e-waste leachate. The positive correlation between ∑OH-PBDEs and total organic carbon (TOC) was moderate (r = 0.485, p < 0.05), and site S3 and S15 were excluded due to point source pollution, suggesting that OH-PBDEs concentrations were controlled by sediment TOC content, as well as other factors. The pairwise correlations between the concentrations of these compounds suggest that these compounds may have similar input sources and environmental behavior. The target compounds in the sediments of Lake Taihu pose low risks to aquatic organisms. Results show that OH-PBDEs in Lake Taihu are largely dependent on pollution sources. Because of bioaccumulation and subsequent harmful effects on aquatic organisms, the concentrations of OH-PBDEs in freshwater ecosystems are of environmental concern.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road(s), Nanjing, 211816, China
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, No. 8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Sheng-Min Wu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, No. 8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Qin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, No. 8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, No. 8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Jie Cheng
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310013, China
| | - Sheng-Hu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, No. 8 Jiangwangmiao Street, Nanjing, 210042, China.
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road(s), Nanjing, 211816, China.
| | - Jian-Qiu Chen
- Department of Environmental Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
34
|
Macaulay LJ, Chernick M, Chen A, Hinton DE, Bailey JM, Kullman SW, Levin ED, Stapleton HM. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:36-48. [PMID: 27329031 PMCID: PMC5535307 DOI: 10.1002/etc.3535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/08/2016] [Accepted: 06/18/2016] [Indexed: 05/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their metabolites (e.g., hydroxylated BDEs [OH-BDEs]) are contaminants frequently detected together in human tissues and are structurally similar to thyroid hormones. Thyroid hormones partially mediate metamorphic transitions between life stages in zebrafish, making this a critical developmental window that may be vulnerable to chemicals disrupting thyroid signaling. In the present study, zebrafish were exposed to 6-OH-BDE-47 (30 nM; 15 μg/L) alone, or to a low-dose (30 μg/L) or high-dose (600 μg/L) mixture of PentaBDEs, 6-OH-BDE-47 (0.5-6 μg/L), and 2,4,6-tribromophenol (5-100 μg/L) during juvenile development (9-23 d postfertilization) and evaluated for developmental endpoints mediated by thyroid hormone signaling. Fish were sampled at 3 time points and examined for developmental and skeletal morphology, apical thyroid and skeletal gene markers, and modifications in swimming behavior (as adults). Exposure to the high-dose mixture resulted in >85% mortality within 1 wk of exposure, despite being below reported acute toxicity thresholds for individual congeners. The low-dose mixture and 6-OH-BDE-47 groups exhibited reductions in body length and delayed maturation, specifically relating to swim bladder, fin, and pigmentation development. Reduced skeletal ossification was also observed in 6-OH-BDE-47-treated fish. Assessment of thyroid and osteochondral gene regulatory networks demonstrated significantly increased expression of genes that regulate skeletal development and thyroid hormones. Overall, these results indicate that exposures to PBDE/OH-BDE mixtures adversely impact zebrafish maturation during metamorphosis. Environ Toxicol Chem 2017;36:36-48. © 2016 SETAC.
Collapse
Affiliation(s)
- Laura J. Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - David E. Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Jordan M. Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 USA
| | - Seth W. Kullman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695 USA
| | - Edward D. Levin
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
- Corresponding author: Heather Stapleton, Nicholas School of the Environment, Duke University, Box 90328 LSRC A220, Durham, NC 27708, Phone: 919-613-8717, Fax: (919) 684-8741.,
| |
Collapse
|
35
|
Zhou Y, Chen Q, Du X, Yin G, Qiu Y, Ye L, Zhu Z, Zhao J. Occurrence and trophic magnification of polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in freshwater fish from Dianshan Lake, Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:932-938. [PMID: 27707599 DOI: 10.1016/j.envpol.2016.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 05/21/2023]
Abstract
In this study, polybrominated diphenyl ethers (PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were analyzed in eleven freshwater fish species from Dianshan Lake, Shanghai, China. The highest concentrations of PBDEs and MeO-PBDEs were found in snakehead, with mean values of 38 ng g-1 lw and 4.2 ng g-1 lw, respectively. BDE-47 was the predominant congener of PBDEs, followed by BDE-154. Congener pattern variation of PBDEs was observed among different fish species, implying differences in biotransformation potential among fish. Yellow catfish showed highest concentrations of BDE-99, -153 and -183, suggesting that it is more resistant to debromination than any other fish analyzed in the present study. Trophic magnification factors were in the range of 1.35-1.81 for all the PBDE congeners, but not for 2'-MeO-BDE-68. Negative relationship was observed between PBDEs concentration and sample size (length and weight), indicating fish size dilution effect.
Collapse
Affiliation(s)
- Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Qiaofeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ge Yin
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lu Ye
- Jiading District Environmental Monitoring Station, Shanghai 201822, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
36
|
Peng Y, Xia P, Zhang J, Villeneuve DL, Zhang J, Wang Z, Wei S, Yu H, Zhang X. Toxicogenomic Assessment of 6-OH-BDE47-Induced Developmental Toxicity in Chicken Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12493-12503. [PMID: 27749045 DOI: 10.1021/acs.est.6b04467] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are analogs of PBDEs with hundreds of possible structures and are frequently detected in the environment. However, the in vivo evidence on the toxicity of OH-PBDEs is still very limited. Here, the developmental toxicity of 6-OH-BDE47, a predominant congener of OH-PBDEs detected in the environment, in chicken embryos was assessed using a toxicogenomic approach. Fertilized chicken eggs were dosed via in ovo administration of 0.006 to 0.474 nmol 6-OH-BDE47/g egg followed by 18 days of incubation. Significant embryo lethality (LD50 = 1.940 nmol/g egg) and increased hepatic somatic index (HSI) were caused by 6-OH-BDE47 exposure. The functional enrichment of differentially expressed genes (DEGs) was associated with oxidative phosphorylation, generation of precursor metabolites and energy, and electron transport chains, which suggest that 6-OH-BDE47 exposure may disrupt the embryo development by altering the function of energy production in mitochondria. Moreover, aryl hydrocarbon receptor (AhR)-mediated responses including up-regulation of CYP1A4 were observed in the livers of embryos exposed to 6-OH-BDE47. Overall, this study confirmed the embryo lethality by 6-OH-BDE47 and further improved the mechanistic understanding of OH-PBDEs-caused toxicity. Ecological risk assessment via application of both no-observed-effect level (NOEL) and the sensitive NOTEL (transcriptional NOEL) suggested that OH-PBDEs might cause ecological risk to wild birds.
Collapse
Affiliation(s)
- Ying Peng
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, PR China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, PR China
| | - Junjiang Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, PR China
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division, United States Environmental Protection Agency , Duluth, Minnesota 55804, United States
| | - Jiamin Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, PR China
| | - Zhihao Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, PR China
| | - Si Wei
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, PR China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, PR China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, PR China
| |
Collapse
|
37
|
Bidleman TF, Agosta K, Andersson A, Haglund P, Liljelind P, Hegmans A, Jantunen LM, Nygren O, Poole J, Ripszam M, Tysklind M. Sea-air exchange of bromoanisoles and methoxylated bromodiphenyl ethers in the Northern Baltic. MARINE POLLUTION BULLETIN 2016; 112:58-64. [PMID: 27575397 DOI: 10.1016/j.marpolbul.2016.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Halogenated natural products in biota of the Baltic Sea include bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). We identified biogenic 6-MeO-BDE47 and 2'-MeO-BDE68 in Baltic water and air for the first time using gas chromatography - high resolution mass spectrometry. Partial pressures in air were related to temperature by: log p/Pa=m/T(K)+b. We determined Henry's law constants (HLCs) of 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA) from 5 to 30°C and revised our assessment of gas exchange in the northern Baltic. The new water/air fugacity ratios (FRs) were lower, but still indicated net volatilization in May-June for 2,4-DiBA and May - September for 2,4,6-TriBA. The net flux (negative) of BAs from Bothnian Bay (38,000km2) between May - September was revised from -1319 to -532kg. FRs of MeO-BDEs were >1, suggesting volatilization, although this is tentative due to uncertainties in their HLCs and binding to dissolved organic carbon.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | - Kathleen Agosta
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Peter Haglund
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Per Liljelind
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Alyse Hegmans
- Department of Environmental Science, Royal Roads University, Victoria, BC, V9B 5Y2, Canada
| | - Liisa M Jantunen
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 Eighth Line, Egbert, ON L0L 1N0, Canada
| | - Olle Nygren
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Justen Poole
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Matyas Ripszam
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
38
|
Polybrominated diphenylethers (PBDEs) and their hydroxylated metabolites (OH-PBDEs) in female serum from Dalian, China. Int J Hyg Environ Health 2016; 219:816-822. [DOI: 10.1016/j.ijheh.2016.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 11/29/2022]
|
39
|
Fu Z, Wang Y, Chen J, Wang Z, Wang X. How PBDEs Are Transformed into Dihydroxylated and Dioxin Metabolites Catalyzed by the Active Center of Cytochrome P450s: A DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8155-8163. [PMID: 27363260 DOI: 10.1021/acs.est.6b00524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Predicting metabolism of chemicals and potential toxicities of relevant metabolites remains a vital and difficult task in risk assessment. Recent findings suggested that polybrominated diphenyl ethers (PBDEs) can be transformed into dihydroxylated and dioxin metabolites catalyzed by cytochrome P450 enzymes (CYPs), whereas the mechanisms pertinent to these transformations remain largely unknown. Here, by means of density functional theory (DFT) calculations, we probed the metabolic pathways of 2,2',4,4'-tetraBDE (BDE-47) using the active center model of CYPs (Compound I). Results show that BDE-47 is first oxidized to monohydroxylated products (HO-BDEs), wherein a keto-enol tautomerism is identified for rearrangement of the cyclohexenone intermediate. Dihydroxylation with HO-BDEs as precursors, has a unique phenolic H-abstraction and hydroxyl rebound pathway that is distinct from that for monohydroxylation, which accounts for the absence of epoxides in in vitro studies. Furthermore, we found only dihydroxylated PBDEs with heterophenyl -OH substituents ortho- and meta- to the ether bond serve as precursors for dioxins, which are evolved from aryl biradical coupling of diketone intermediates that are produced from dehydrogenation of the dihydroxylated PBDEs by Compound I. This study may enlighten the development of computational models that afford mechanism-based prediction of the xenobiotic biotransformation catalyzed by CYPs.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Xingbao Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
40
|
Zhou Y, Yin G, Asplund L, Qiu Y, Bignert A, Zhu Z, Zhao J, Bergman Å. A novel pollution pattern: Highly chlorinated biphenyls retained in Black-crowned night heron (Nycticorax nycticorax) and Whiskered tern (Chlidonias hybrida) from the Yangtze River Delta. CHEMOSPHERE 2016; 150:491-498. [PMID: 26705146 DOI: 10.1016/j.chemosphere.2015.11.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 05/22/2023]
Abstract
Contamination of organochlorine pesticides (OCPs), polychlorinated diphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and their methylated counterparts (MeO-PBDEs) were determined in Black-crowned night heron (Nycticorax nycticorax) and Whiskered tern (Chlidonias hybrida) from two drinking water sources, e.g. Tianmu lake and East Tai lake in Yangtze River Delta, China. A novel PCBs contamination pattern was detected, including 11% and 6.9% highly chlorinated biphenyls (PCBs with eight to ten chlorines) in relation to total PCB concentrations in the Black-crowned night heron and Whiskered tern eggs, respectively. The predominating OCPs detected in the present study were 4,4'-DDE, with concentration range 280-650 ng g(-1) lw in Black-crowned night heron and 240-480 ng g(-1) lw in Whiskered tern, followed by β-HCH and Mirex. 6-MeO-BDE-90 and 6-MeO-BDE-99 are the two predominant congeners of MeO-PBDEs whereas 6-OH-BDE-47 contributes mostly to the OH-PBDEs in both species. Contamination level was considered as median or low level compared global data.
Collapse
Affiliation(s)
- Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Analytical and Toxicology Chemistry Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ge Yin
- Analytical and Toxicology Chemistry Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Lillemor Asplund
- Analytical and Toxicology Chemistry Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Anders Bignert
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Åke Bergman
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Analytical and Toxicology Chemistry Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden; Swedish Toxicology Sciences Research Center, Forskargatan 20, SE-15136 Södertälje, Sweden
| |
Collapse
|
41
|
Krieger LK, Szeitz A, Bandiera SM. Evaluation of hepatic biotransformation of polybrominated diphenyl ethers in the polar bear (Ursus maritimus). CHEMOSPHERE 2016; 146:555-564. [PMID: 26745384 DOI: 10.1016/j.chemosphere.2015.11.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
Polar bears are at the top of the Arctic marine food chain and are subject to exposure and bioaccumulation of environmental chemicals of concern such as polybrominated diphenyl ethers (PBDEs), which were widely used as flame retardants. The aim of the present study was to evaluate the in vitro oxidative metabolism of 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and 2,2',4,4',5-pentabrominated diphenyl ether (BDE-99) by polar bear liver microsomes. The identification and quantification of the hydroxy-brominated diphenyl ethers formed were assessed using an ultra-high performance liquid chromatography-tandem mass spectrometry-based method. Incubation of BDE-47 with archived individual liver microsomes, prepared from fifteen polar bears from northern Canada, produced a total of eleven hydroxylated metabolites, eight of which were identified using authentic standards. The major metabolites were 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether and 5'-hydroxy-2,2',4,4'-tetrabromodiphenyl ether. Incubation of BDE-99 with polar bear liver microsomes produced a total of eleven hydroxylated metabolites, seven of which were identified using authentic standards. The major metabolites were 2,4,5-tribromophenol and 4-hydroxy-2,2',3,4',5-pentabromodiphenyl ether. Among the CYP specific antibodies tested, anti-rat CYP2B was found to be the most active in inhibiting the formation of hydroxylated metabolites of both BDE-47 and BDE-99, indicating that CYP2B was the major CYP enzyme involved in the oxidative biotransformation of these two congeners. Our study shows that polar bears are capable of forming multiple hydroxylated metabolites of BDE-47 and BDE-99 in vitro and demonstrates the role of CYP2B in the biotransformation and possibly in the toxicity of BDE-47 and BDE-99 in polar bears.
Collapse
Affiliation(s)
- Lisa K Krieger
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - András Szeitz
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Stelvio M Bandiera
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
42
|
Dahlberg AK, Chen VL, Larsson K, Bergman Å, Asplund L. Hydroxylated and methoxylated polybrominated diphenyl ethers in long-tailed ducks (Clangula hyemalis) and their main food, Baltic blue mussels (Mytilus trossulus × Mytilus edulis). CHEMOSPHERE 2016; 144:1475-1483. [PMID: 26495833 DOI: 10.1016/j.chemosphere.2015.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Long-tailed ducks (Clangula hyemalis) that breed in northern Europe and western Siberia and commonly winter in the Baltic Sea, are threatened by a significant population decrease. The ducks are, by primarily feeding on Baltic blue mussels (Mytilus trossulus × Mytilus edulis) while wintering in the Baltic Sea, potentially subjected to high levels of toxic hydroxylated polybrominated diphenyl ethers (OH-PBDEs). To assess long-tailed ducks exposure to polybrominated phenols (PBPs), polybrominated anisoles (PBAs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs), their methylated counterparts (MeO-PBDEs) and polybrominated diphenyl ethers (PBDEs), livers of ten long-tailed ducks wintering in the Baltic Sea were analysed. Pattern and levels of analytes in long-tailed ducks (liver) and blue mussels sampled in March and May at nine sites in the Baltic Sea were compared. The geometric mean concentration (ng/g l.w.) in livers of long-tailed ducks and Baltic blue mussels were: Σ(2)PBPs: 0.57 and 48; Σ(2)PBAs: 0.83 and 11; Σ(7)OH-PBDEs: 6.1 and 45; Σ(7)MeO-PBDEs: 3.8 and 69; Σ(7)PBDEs: 8.0 and 7.2, respectively. Based on an estimated daily intake of 450 g fresh blue mussel meat, long-tailed ducks daily dietary intake of brominated substances while foraging in the Baltic Sea in March-May was estimated to; 390 ng Σ(2)PBPs, 90 ng Σ(2)PBAs, 370 ng Σ(7)OH-PBDEs, 590 ng Σ(7)MeO-PBDEs and 59 ng Σ(7)PBDEs. The low levels of PBPs, PBAs, OH-PBDEs and MeO-PBDEs in the long-tailed duck livers compared to blue mussel, despite a continuous daily intake, suggest that these compounds are poorly retained in long-tailed ducks.
Collapse
Affiliation(s)
- Anna-Karin Dahlberg
- Analytical and Toxicological Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vivian Lindberg Chen
- Analytical and Toxicological Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kjell Larsson
- Kalmar Maritime Academy, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Åke Bergman
- Analytical and Toxicological Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; Swedish Toxicology Sciences Research Center (Swetox), Forskargatan 20, SE-151 36 Södertälje, Sweden
| | - Lillemor Asplund
- Analytical and Toxicological Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
43
|
Dahlberg AK, Bignert A, Legradi J, Legler J, Asplund L. Anthropogenic and naturally produced brominated substances in Baltic herring (Clupea harengus membras) from two sites in the Baltic Sea. CHEMOSPHERE 2016; 144:2408-2414. [PMID: 26613358 DOI: 10.1016/j.chemosphere.2015.10.134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/23/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
In the eutrophicated Baltic Sea, several naturally produced hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have been found in marine biota. OH-PBDEs are toxic to adult and developing zebrafish and shown to be potent disruptors of oxidative phosphorylation (OXPHOS). Disturbed OXPHOS can result in altered energy metabolism and weight loss. In herring, the concentration of OH-PBDEs (i.e. 2'-OH-BDE68 and 6-OH-BDE47) has increased during the period 1980-2010 in the Baltic Proper. Over the same time period, the condition and fat content in Baltic herring have decreased. Given the toxicity and increasing trends of OH-PBDEs in Baltic herring it is important to further assess the exposure to OH-PBDEs in Baltic herring. In this study, the concentrations of OH-PBDEs and related brominated substances i.e. polybrominated phenols (PBPs), polybrominated anisoles (PBAs), methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and polybrominated diphenyl ethers (PBDEs) were measured in herring sampled in the northern Baltic Proper (Askö, n = 12) and the southern Bothnian Sea (Ängskärsklubb, n = 12). The geometric mean (GM) concentrations (ng/g l.w.) at Askö and Ängskärsklubb were; Σ2PBPs: 4.3 and 9.6, Σ(2)PBAs: 34 and 20, Σ(6)OH-PBDEs: 9.4 and 10, Σ(7)MeO-PBDEs: 42 and 150, Σ(6)PBDEs: 54 and 27, respectively. 6-OH-BDE47 dominated the OH-PBDE profile and comprised 87% (Askö) and 91% (Ängskärsklubb) of the ΣOH-PBDEs. At Ängskärsklubb the mean concentration of ΣMeO-PBDEs (150 ng/g l.w.) was 15 times higher than ΣOH-PBDEs. As other fish species are known to metabolically transform MeO-PBDEs to OH-PBDEs, high levels of MeO-PBDEs can be of concern as a precursor for more toxic OH-PBDEs in herring and their roe.
Collapse
Affiliation(s)
- Anna-Karin Dahlberg
- Analytical and Toxicological Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anders Bignert
- Contaminant Research Group, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden
| | - Jessica Legradi
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Juliette Legler
- Institute for Environmental Studies, VU University Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Lillemor Asplund
- Analytical and Toxicological Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
44
|
Dahlgren E, Lindqvist D, Dahlgren H, Asplund L, Lehtilä K. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain. CHEMOSPHERE 2016; 144:1597-604. [PMID: 26517387 DOI: 10.1016/j.chemosphere.2015.10.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 05/26/2023]
Abstract
Brominated aromatic compounds (BACs) are widely distributed in the marine environment. Some of these compounds are highly toxic, such as certain hydroxylated polybrominated diphenyl ethers (OH-PBDEs). In addition to anthropogenic emissions through use of BACs as e.g. flame retardants, BACs are natural products formed by marine organisms such as algae, sponges, and cyanobacteria. Little is known of the transfer of BACs from natural producers and further up in the trophic food chain. In this study it was observed that total sum of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and OH-PBDEs increased in concentration from the filamentous red alga Ceramium tenuicorne, via Gammarus sp. and three-spined stickleback (Gasterosteus aculeatus) to perch (Perca fluviatilis). The MeO-PBDEs, which were expected to bioaccumulate, increased in concentration accordingly up to perch, where the levels suddenly dropped dramatically. The opposite pattern was observed for OH-PBDEs, where the concentration exhibited a general trend of decline up the food web, but increased in perch, indicating metabolic demethylation of MeO-PBDEs. Debromination was also indicated to occur when progressing through the food chain resulting in high levels of tetra-brominated MeO-PBDE and OH-PBDE congeners in fish, while some penta- and hexa-brominated congeners were observed to be the dominant products in the alga. As it has been shown that OH-PBDEs are potent disruptors of oxidative phosphorylation and that mixtures of different congener may act synergistically in terms of this toxic mode of action, the high levels of OH-PBDEs detected in perch in this study warrants further investigation into potential effects of these compounds on Baltic wildlife, and monitoring of their levels.
Collapse
Affiliation(s)
- Elin Dahlgren
- Legal Affairs, Swedish Environmental Protection Agency, SE-10648, Stockholm, Sweden
| | - Dennis Lindqvist
- Department of Environmental Science and Analytic Chemistry, Stockholm University, Sweden
| | - Henrik Dahlgren
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Sweden
| | - Lillemor Asplund
- Department of Environmental Science and Analytic Chemistry, Stockholm University, Sweden.
| | - Kari Lehtilä
- The School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Sweden
| |
Collapse
|
45
|
Peng H, Chen C, Cantin J, Saunders DMV, Sun J, Tang S, Codling G, Hecker M, Wiseman S, Jones PD, Li A, Rockne KJ, Sturchio NC, Giesy JP. Untargeted Screening and Distribution of Organo-Bromine Compounds in Sediments of Lake Michigan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:321-330. [PMID: 26618527 DOI: 10.1021/acs.est.5b04709] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Previously unreported natural and synthetic organo-bromine compounds (NSOBCs) have been found to contribute more than 99% of total organic bromine (TOB) in environmental matrices. We recently developed a novel untargeted method (data-independent precursor isolation and characteristic fragment, DIPIC-Frag) and identified ∼2000 NSOBCs in two sediments from Lake Michigan. In this study, this method was used to investigate the distributions of these NSOBCs in 23 surficial samples and 24 segments of a sediment core from Lake Michigan. NSOBCs were detected in all 23 surficial samples and exhibited 10- to 100-fold variations in peak abundance among locations. The pattern of distributions of NSOBCs was correlated with depth of the water column (r(2) = 0.61, p < 0.001). Hierarchical cluster analysis showed that sediments in close proximity exhibited similar profiles of NSOBCs. Distributions of NSOBCs in 24 segments of a sediment core dated from 1766 to 2008 were investigated, and samples from similar depths exhibited similar profiles of NSOBCs. NSOBCs were grouped into four clusters (soft-cluster analysis) with different temporal trends of abundances. 515 and 768 of the NSOBCs were grouped into cluster 1 and cluster 3 with increasing temporal trends, especially since 1950, indicating that abundances of these compounds might have been affected by human activities.
Collapse
Affiliation(s)
- Hui Peng
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Chunli Chen
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
- Key Laboratory of Poyang Lake Environment and Resource Utilization of MOE; School of Resources, Environmental and Chemical Engineering, Nanchang University , Nanchang 330047, China
| | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - David M V Saunders
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Jianxian Sun
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Garry Codling
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C8, Canada
| | - An Li
- School of Public Health, University of Illinois , Chicago, Illinois 60612, United States
| | - Karl J Rockne
- Department of Civil and Materials Engineering, University of Illinois , 842 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neil C Sturchio
- Department of Geological Sciences, University of Delaware , 255 Academy Street, Newark, Delaware 19716 United States
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
- Zoology Department, Center for Integrative Toxicology, Michigan State University , 1129 Farm Lane Road, East Lansing, Michigan 48824, United States
- School of Biological Sciences, University of Hong Kong , Hong Kong Special Administrative Region, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210093, People's Republic of China
- Biology Department, Hong Kong Baptist University , Hong Kong, SAR China
| |
Collapse
|
46
|
Macaulay LJ, Chen A, Rock KD, Dishaw LV, Dong W, Hinton DE, Stapleton HM. Developmental toxicity of the PBDE metabolite 6-OH-BDE-47 in zebrafish and the potential role of thyroid receptor β. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:38-47. [PMID: 26433919 PMCID: PMC4618599 DOI: 10.1016/j.aquatox.2015.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 05/13/2023]
Abstract
6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) is both a polybrominated diphenyl ether (PBDE) flame retardant metabolite and a marine natural product. It has been identified both as a neurotoxicant in cell-based studies and as a developmental toxicant in zebrafish. However, hydroxylated PBDE metabolites are also considered thyroid hormone disruptors due to their structural similarity to endogenous thyroid hormones. The purpose of this study was to evaluate the effects of 6-OH-BDE-47 on a developmental pathway regulated by thyroid hormones in zebrafish. Morphological measurements of development (head trunk angle, otic vesicle length, and eye pigmentation) were recorded in embryos at 30h post fertilization (hpf) and detailed craniofacial morphology was examined in 4 day old larvae using cartilage staining. Exposure to 6-OH-BDE-47 resulted in severe developmental delays. A 100nM concentration resulted in a 26% decrease in head trunk angle, a 54% increase in otic vesicle length, and a 42% decrease in eye pigmentation. Similarly, altered developmental morphology was observed following thyroid receptor β morpholino knockdown, exposure to the thyroid hormone triiodothyronine (T3) or to thyroid disrupting chemicals (TDC; iopanoic acid and propylthiouracil). The threshold for lower jaw deformities and craniofacial cartilage malformations was at doses greater than 50nM. Of interest, these developmental delays and effects were rescued by microinjection of TRβ mRNA during the 1-2 cell stage. These data indicate that OH-BDEs can adversely affect early life development of zebrafish and suggest they may be impacting thyroid hormone regulation in vivo through downregulation of the thyroid hormone receptor.
Collapse
Affiliation(s)
- Laura J Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kylie D Rock
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura V Dishaw
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Wu Dong
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
47
|
Dahlgren E, Enhus C, Lindqvist D, Eklund B, Asplund L. Induced production of brominated aromatic compounds in the alga Ceramium tenuicorne. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18107-18114. [PMID: 26178826 DOI: 10.1007/s11356-015-4907-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
In the Baltic Sea, high concentrations of toxic brominated aromatic compounds have been detected in all compartments of the marine food web. A growing body of evidence points towards filamentous algae as a natural producer of these chemicals. However, little is known about the effects of environmental factors and life history on algal production of brominated compounds. In this study, several congeners of methoxylated polybrominated diphenyl ethers (MeO-PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and brominated phenols (BPs) were identified in a naturally growing filamentous red algal species (Ceramium tenuicorne) in the Baltic Sea. The identified substances displayed large seasonal variations in the alga with a concentration peak in July. Production of MeO-/OH-PBDEs and BPs by C. tenuicorne was also established in isolated clonal material grown in a controlled laboratory setting. Based on three replicates, herbivory, as well as elevated levels of light and salinity in the culture medium, significantly increased the production of 2,4,6-tribromophenol (2,4,6-TBP). Investigation of differences in production between the isomorphic female, male and diploid clonal life stages of the alga grown in the laboratory revealed a significantly higher production of 2,4,6-TBP in the brackish water female gametophytes, compared to the corresponding marine gametophytes. Even higher concentrations of 2,4,6-TBP were produced by marine male gametophytes and sporophytes.
Collapse
Affiliation(s)
- Elin Dahlgren
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| | | | - Dennis Lindqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Britta Eklund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Lillemor Asplund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
48
|
Kerrigan JF, Engstrom DR, Yee D, Sueper C, Erickson PR, Grandbois M, McNeill K, Arnold WA. Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems. PLoS One 2015; 10:e0138805. [PMID: 26466159 PMCID: PMC4605494 DOI: 10.1371/journal.pone.0138805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022] Open
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are a new class of contaminants of emerging concern, but the relative roles of natural and anthropogenic sources remain uncertain. Polybrominated diphenyl ethers (PBDEs) are used as brominated flame retardants, and they are a potential source of OH-BDEs via oxidative transformations. OH-BDEs are also natural products in marine systems. In this study, OH-BDEs were measured in water and sediment of freshwater and coastal systems along with the anthropogenic wastewater-marker compound triclosan and its photoproduct dioxin, 2,8-dichlorodibenzo-p-dioxin. The 6-OH-BDE 47 congener and its brominated dioxin (1,3,7-tribromodibenzo-p-dioxin) photoproduct were the only OH-BDE and brominated dioxin detected in surface sediments from San Francisco Bay, the anthropogenically impacted coastal site, where levels increased along a north-south gradient. Triclosan, 6-OH-BDE 47, 6-OH-BDE 90, 6-OH-BDE 99, and (only once) 6’-OH-BDE 100 were detected in two sediment cores from San Francisco Bay. The occurrence of 6-OH-BDE 47 and 1,3,7-tribromodibenzo-p-dioxin sediments in Point Reyes National Seashore, a marine system with limited anthropogenic impact, was generally lower than in San Francisco Bay surface sediments. OH-BDEs were not detected in freshwater lakes. The spatial and temporal trends of triclosan, 2,8-dichlorodibenzo-p-dioxin, OH-BDEs, and brominated dioxins observed in this study suggest that the dominant source of OH-BDEs in these systems is likely natural production, but their occurrence may be enhanced in San Francisco Bay by anthropogenic activities.
Collapse
Affiliation(s)
- Jill F. Kerrigan
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Daniel R. Engstrom
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| | - Donald Yee
- San Francisco Estuary Institute, Oakland, California, United States of America
| | - Charles Sueper
- Pace Analytical Services Inc., Minneapolis, Minnesota, United States of America
| | - Paul R. Erickson
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Matthew Grandbois
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - William A. Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
49
|
Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11829-47. [PMID: 26393637 PMCID: PMC4586710 DOI: 10.3390/ijerph120911829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/01/2023]
Abstract
The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings.
Collapse
|
50
|
Lu J, Shao J, Liu H, Wang Z, Huang Q. Formation of Halogenated Polyaromatic Compounds by Laccase Catalyzed Transformation of Halophenols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8550-8557. [PMID: 26147794 DOI: 10.1021/acs.est.5b02399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Laccases are a type of extracellular enzyme produced by fungi, bacteria, and plants. Laccase can catalyze one-electron oxidation of a variety of phenolic compounds using molecular oxygen as the electron acceptor. In this study, transformation of halophenols (XPs) in laccase-catalyzed oxidation processes was explored. We first examined the intrinsic reaction kinetics and found that the transformation of XPs appeared first order to the concentrations of both XPs and laccase. A numerical model was developed to describe the role of humic acid (HA) in this process. It was demonstrated that HA could reverse the oxidation of XPs by acting as the inner filtrator of XP radical intermediates formed upon reactions between the substrates and laccase. The extent of such reversion was proportional to HA concentration. MS analysis in combination with quantum chemistry computation suggested that coupling products were generated. XPs coupled to each via C-C or C-O-C pathways, generating hydroxyl polyhalogenated biphenyl ethers (OH-PCDEs) and hydroxyl polyhalogenated biphenyls, respectively. Many of these polyhalogenated products are known to be hazardous to the ecosystem and human health, but they are not synthetic chemicals. This study shed light on their genesis in the environmental media.
Collapse
Affiliation(s)
- Junhe Lu
- †College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shao
- †College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- ‡School of Environment, Nanjing University, Nanjing 210093, China
| | - Zunyao Wang
- ‡School of Environment, Nanjing University, Nanjing 210093, China
| | - Qingguo Huang
- §Department of Crop and Soil Sciences, University of Georgia, Griffin, 30223, United States
| |
Collapse
|