1
|
Kubendiran B, Kurakula U, Baskar S, Medishetty R, Kole GK. Salts of trans-3-Styryl Pyridine: The Effect of N-Quaternization on Solid-State Photoreactivity, and Photochemical Crystal Melting. Chem Asian J 2024:e202401323. [PMID: 39714385 DOI: 10.1002/asia.202401323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Investigating solid-state photoreactivity, driven by crystal packing, has been a major enduring research theme in Crystal Engineering. Trans-3-styryl pyridine (3-StPy), an unsymmetric olefin, is photo-stable. However, when converted to a series of salts, they exhibited solid-state photoreactivity under UV irradiation. Crystal structures of 3-StPy, its protonated salts, namely, (3-StPyH)(HSO4) ⋅ H2O (1), (3-StPyH)(CF3CO2) (2), and (3-StPyH)(p-Tol-SO3) (3), and methylated salt (3-StPyMe)I (4) were determined by X-ray diffraction. 3-StPy molecules were found not to align in the parallel arrangement required to undergo solid-state [2+2] photocycloaddition reaction; however, upon protonation and methylation, the unsymmetric 3-StPyH+ and [3-StPyMe]+ cations aligned in a head-to-tail parallel arrangement, predominantly governed by the cation⋅⋅⋅π interactions. Various structural features, e. g., the patterns of hydrogen bonding, etc. have been addressed, and established by Hirshfeld surface analysis. The salt with p-tolyl sulfonate anion (3) with Z'>1 represents a rare crystal class. It was also noted that the crystals of 1 and 2 melted into a liquid state upon photodimerization reaction. UV-vis absorption and fluorescence properties have been explored. The electronic structures of 3-StPy, 3-StPyH+, [3-StPyMe]+, and the dimer [3,3'-MPyPhCB]2+ cations have been elucidated by DFT calculations, and the effect of N-quaternization on crystal structures and photophysical properties has been discussed.
Collapse
Affiliation(s)
- Banu Kubendiran
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Uma Kurakula
- Department of Chemistry, Indian Institute of Technology Bhilai, 491001, Durg, Chhattisgarh, India
| | - Shyamvarnan Baskar
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| | - Raghavender Medishetty
- Department of Chemistry, Indian Institute of Technology Bhilai, 491001, Durg, Chhattisgarh, India
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, 491001, Durg, Chhattisgarh, India
| | - Goutam Kumar Kole
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
2
|
Zhang L, Du Q, Zhang Z, Chen J, Liu Y, Luo X, Wang Z, Wu Z. Being Smarter, Azobenzene-Containing Biomaterial Showing Triple Stimuli-Responsive Phase Change Property to Light, Humidity and Force at Room Temperature. Adv Healthc Mater 2024; 13:e2402081. [PMID: 39363799 DOI: 10.1002/adhm.202402081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Indexed: 10/05/2024]
Abstract
Multiple stimuli-responsiveness is an attractive property that is studied in physical chemistry and materials chemistry. While, multiple stimuli-responsive phase change in an isothermal way is rarely addressed for functional materials at room temperature. In this study, one azobenzene-containing surfactant AZO is designed for the fabrication of triple stimuli-responsive phase change biomaterial (Alg-AZO) through the electrostatic complexation with natural alginate. Thanks to the photoisomerization ability, molecular flexibility and hydrophilicity of AZO, together with the tailoring effect of alginate on AZO, Alg-AZO could perform reversible isothermal phase transition between liquid crystalline and isotropic liquid states under the stimuli of either light or humidity at room temperature. Furthermore, the humidity-induced isotropic state can also fast transit to ordered state under shear force, owing to the π-π interactions between planar trans-AZO in Alg-AZO material. With good biocompatibility, self-healing property and in vivo wound healing promoting capacity that is promoted by light, humidity and force, Alg-AZO would be suitable for working as a new smart biomaterial in biological and biomedical areas. This work provides a designing strategy for gaining multiple stimuli-responsive smart materials based on biomacromolecules, and also opening a new opportunity for gaining self-healing biomaterials capable of working in various conditions.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qianyao Du
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ziying Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jia Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Wu Y, Dong L, Tang S, Liu X, Han Y, Zhang S, Liu K, Feng W. An Innovative Azobenzene-Based Photothermal Fabric with Excellent Heat Release Performance for Wearable Thermal Management Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404310. [PMID: 39252649 DOI: 10.1002/smll.202404310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Azobenzene (azo)-based photothermal energy storage systems have garnered great interest for their potential in solar energy conversion and storage but suffer from limitations including rely on solvents and specific wavelengths for charging process, short storage lifetime, low heat release temperature during discharging, strong rigidity and poor wearability. To address these issues, an azo-based fabric composed of tetra-ortho-fluorinated photo-liquefiable azobenzene monomer and polyacrylonitrile fabric template is fabricated using electrospinning. This fabric excels in efficient photo-charging (green light) and discharging (blue light) under visible light range, solvent-free operation, long-term energy storage (706 days), and good capacity of releasing high-temperature heat (80-95 °C) at room temperature and cold environments. In addition, the fabric maintains high flexibility without evident loss of energy-storage performance upon 1500 bending cycles, 18-h washing or 6-h soaking. The generated heat from charged fabric is facilitated by the Z-to-E isomerization energy, phase transition latent heat, and the photothermal effect of 420 nm light irradiation. Meanwhile, the temperature of heat release can be personalized for thermal management by adjusting the light intensity. It is applicable for room-temperature thermal therapy and can provide heat to the body in cold environments, that presenting a promising candidate for wearable personal thermal management.
Collapse
Affiliation(s)
- Yudong Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Liqi Dong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Shuxin Tang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Xiao Liu
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Yulin Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, P. R. China
| | - Songge Zhang
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Kai Liu
- Division of Environment and Resources, College of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Liang R, Yuan B, Zhang F, Feng W. Azopyridine Polymers in Organic Phase Change Materials for High Energy Density Photothermal Storage and Controlled Release. Angew Chem Int Ed Engl 2024:e202419165. [PMID: 39564601 DOI: 10.1002/anie.202419165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Azo-compounds molecules and phase change materials offer potential applications for sustainable energy systems through the storage and controllable release photochemical and phase change energy. Developing novel and highly efficient Azo-based solar thermal fuels (STFs) for photothermal energy storage and synergistic cooperation with organic phase change materials present significant challenges. Herein, three types of (ortho-, meta-, and para-) azopyridine polymers hinged with flexible alkyl chain are synthesized, in which meta-azopyridine polymer exhibits striking photothermal storage capacity of 430 J/g, providing a feasibility solution for developing high energy density Azo-based STFs. Furthermore, a stable two-phase hybrid system was innovatively constructed by combining the meta-azopyridine polymer with organic phase change materials leveraging hydrogen bonds and van der Waals interactions to collectively harness phase change energy and photothermal energy. The organic phase change material not only supplies additional phase change latent heat but also serves as a solvent, offering abundant free volume for the photo-induced isomerization of the azopyridine chromophores, which successfully circumvents the low charging efficiency in the condensed state and reliance on solvent-assisted charging in traditional Azo-based STFs. This study demonstrates the energy distribution and utilization for household consumers and the photothermal-assisted insulation strategy, achieving more extensive potential implementation for STFs.
Collapse
Affiliation(s)
- Rihui Liang
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
| | - Bo Yuan
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
| | - Fei Zhang
- Institute of Flexible Electronics Technology of, Tsinghua University, Zhejiang, 314000, China
| | - Wei Feng
- Beijing University of Chemical Technology Institute of Advanced Technology and Equipment, Beijing, 100029, China
- Tianjin University, School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, 300072, China
| |
Collapse
|
5
|
Chakraborty S, Nguyen HPQ, Usuba J, Choi JY, Sun Z, Raju C, Sigelmann G, Qiu Q, Cho S, Tenney SM, Shulenberger KE, Schmidt-Rohr K, Park J, Han GGD. Self-Activated Energy Release Cascade from Anthracene-Based Solid-State Molecular Solar Thermal Energy Storage Systems. Chem 2024; 10:3309-3322. [PMID: 39830017 PMCID: PMC11737636 DOI: 10.1016/j.chempr.2024.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We introduce donor-acceptor substituted anthracenes as effective molecular solar thermal energy storage compounds that operate exclusively in the solid state. The donor-acceptor anthracenes undergo visible light-induced [4+4] cycloaddition reaction, producing metastable cycloadducts, dianthracenes with quaternary carbons, and storing photon energy. The triggered cycloreversion of dianthracenes to anthracenes discharges the stored energy as heat in the order of 100 kJ/mol (200 J/g). The series of compounds displays remarkable self-heating, or cascading heat release, upon the initial triggering. Such self-activated energy release is enabled by the large energy storage in dianthracenes, low activation energy for their thermal reversion, and effective heat transfer to unreacted molecules in the solid state. This process mirroring the self-ignition of fossil fuels opens up opportunities to use dianthracenes as effective and renewable solid-state fuels that can release energy rapidly and completely upon initial activation.
Collapse
Affiliation(s)
- Subhayan Chakraborty
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Han P Q Nguyen
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO 80309, USA
| | - Zhenhuan Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Cijil Raju
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Gustavo Sigelmann
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Sungwon Cho
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Stephanie M Tenney
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO 80309, USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
6
|
Wang Y, Sheng L, Xu B, Shi J, Chen Z. Study on Thermophysical Properties and Phase Change Regulation Mechanism of Optically-Controlled Phase Change Materials: Synthesis, Crystal Structure and Molecular Dynamics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404184. [PMID: 39128134 DOI: 10.1002/smll.202404184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Indexed: 08/13/2024]
Abstract
Optically-controlled phase change materials, which are prepared by introducing molecular photoswitches into traditional phase change materials (PCMs), can convert and store solar energy into photochemical enthalpy and phase change enthalpy. However, the thermophysical properties of optically controlled PCMs, which are crucial in the practical, are rarely paid attention to. 4-(phenyldiazenyl)phenyl decanoate (Azo-A-10) is experimentally prepared as an optically-controlled PCMs, whose energy storage density is 210.0 kJ·kg-1, and the trans single crystal structure is obtained. The density, phase transition temperature, thermal conductivity, and other parameters in trans state are measured experimentally. Furthermore, a microscopic model of Azo-A-10 is established, and the thermophysical properties are analyzed based on molecular dynamics. The results show that the microstructure parameter (order parameters) and thermophysical properties (density, radial distribution function, self-diffusion coefficient, phase change temperature, and thermal conductivity) of partially or completely isomerized Azo-A-10, which are challenging to observe in experiments, can be predicted by molecular dynamics simulation. The optically-controlled phase change mechanism can be clarified according to the differences in microstructure. The optically-controlled switchability of thermophysical properties of an optically-controlled PCM is analyzed. This study provides ideas for the improvement, development, and application of optically-controlled PCMs in the future.
Collapse
Affiliation(s)
- Yi Wang
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Lisha Sheng
- College of Energy and Electrical Engineering, Hohai University, Nanjing, 210098, P. R. China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Juan Shi
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China
- Jiangsu Province Key Laboratory of Solar Energy Science and Technology, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
7
|
Nguyen HPQ, Mukherjee A, Usuba J, Wan J, Han GGD. Large and long-term photon energy storage in diazetidines via [2+2] photocycloaddition. Chem Sci 2024:d4sc05374e. [PMID: 39483249 PMCID: PMC11520292 DOI: 10.1039/d4sc05374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
We report a series of p-functionalized phenylbenzoxazoles that offer remarkable energy storage, exceeding 300 J g-1, for the first time among intermolecular cycloaddition-based molecular solar thermal energy storage systems. The [2 + 2] photocycloaddition of phenylbenzoxazoles generates diazetidine cycloadducts that store energy for up to 23 years in the solid state and release energy upon triggered cycloreversion. The solid-state phase transition contributes to increasing overall energy storage densities, and the dearomative cycloaddition process is revealed to be critical for maximizing the intrinsic energy storage capacities. The solvent-assisted cycloreversion is also used to accelerate the energy release from the emerging molecular scaffold.
Collapse
Affiliation(s)
- Han P Q Nguyen
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Anurag Mukherjee
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Joshua Wan
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
8
|
Pani I, Hardt M, Glikman D, Braunschweig B. Photo-induced drug release at interfaces with arylazopyrazoles. Chem Sci 2024:d4sc04837g. [PMID: 39464617 PMCID: PMC11503751 DOI: 10.1039/d4sc04837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Smart responsive materials have spurred the progress in high-precision drug delivery. Enormous attention has been given to characterizing drug release in bulk aqueous solutions, however, aqueous-hydrophobic interfaces are vital components of biological systems which serve as the point of entry into cells. These interfaces are involved in many key biomolecular interactions, and while the potential for drug molecules to adsorb to these interfaces is recognized, their specific role in the context of drug release remains largely unexplored. We present a fundamental investigation on the release of encapsulated drugs at the air-water interface as a representative model to mimic the organic/aqueous interface of cells. Combining the advantages of light as an external stimulus and the superiority of arylazopyrazoles (AAP) over conventional azobenzene photoswitches, we report a micellar nanocarrier for the capture and release of the chemotherapeutic drug doxorubicin. Using a powerful combination of interface-sensitive techniques such as the Langmuir-Blodgett technique, surface tensiometry, and the interface-specific vibrational sum-frequency generation spectroscopy, we demonstrate the photoresponsive release of doxorubicin encapsulated in the micelles of AAP photosurfactants to the air-water interface. Complementary fluorescence measurements corroborate additional drug release in bulk aqueous solutions.
Collapse
Affiliation(s)
- Ipsita Pani
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Michael Hardt
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Dana Glikman
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), University of Münster Corrensstraße 28-30 Münster 48149 Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry, Center for Soft Nanoscience (SoN), University of Münster Corrensstraße 28-30 Münster 48149 Germany
| |
Collapse
|
9
|
Raju C, Nguyen HPQ, Han GGD. Emerging solid-state cycloaddition chemistry for molecular solar thermal energy storage. Chem Sci 2024; 15:d4sc05723f. [PMID: 39397823 PMCID: PMC11465107 DOI: 10.1039/d4sc05723f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Recently discovered designs of solid-state molecular solar thermal energy storage systems are illustrated, including alkenes, imines, and anthracenes that undergo reversible [2 + 2] and [4 + 4] photocycloadditions for photon energy storage and release. The energy storage densities of various molecular designs, from 6 kJ mol-1 to 146 kJ mol-1 (or up to 318 J g-1), are compared and summarized, along with effective strategies for engineering their crystal packing structures that facilitate solid-state reactions. Many promising molecular scaffolds introduced here highlight the potential for achieving successful solid-state solar energy storage, guiding further discoveries and the development of new molecular systems for applications in solid-state solar thermal batteries.
Collapse
Affiliation(s)
- Cijil Raju
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Han P Q Nguyen
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
10
|
Fei L, Hölzel H, Wang Z, Hillers-Bendtsen AE, Aslam AS, Shamsabadi M, Tan J, Mikkelsen KV, Wang C, Moth-Poulsen K. Two-way photoswitching norbornadiene derivatives for solar energy storage. Chem Sci 2024:d4sc04247f. [PMID: 39421198 PMCID: PMC11474437 DOI: 10.1039/d4sc04247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Molecular photoswitches of norbornadiene (NBD) derivatives have been effectively applied in molecular solar-thermal energy storage (MOST) by photoisomerization of NBD to a quadricyclane (QC) state. However, a challenge of the NBD-based MOST system is the lack of a reversible two-way photoswitching process, limiting conversion from QC to thermal and catalytic methods. Here we design a series of NBD derivatives with a combination of acceptor and donor units to achieve two-way photoswitching, which can optically release energy by back-conversion from QC to NBD. Highly efficient photoconversion yields from NBD to QC and QC to NBD are up to 99% and 82%, respectively. The energy storage density of two-way photoswitching NBD is up to 312 J g-1 and optically controlled two-way photoswitching devices are demonstrated for the first time both in flow and in thin films, which illustrate a promising approach for fast and robust energy release in both solution and solid state.
Collapse
Affiliation(s)
- Liang Fei
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Helen Hölzel
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14 08019 Barcelona Spain
| | - Zhihang Wang
- School of Engineering, College of Science and Engineering, University of Derby Markeaton Street Derby DE22 3AW UK
| | | | - Adil S Aslam
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
| | - Monika Shamsabadi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
| | - Jialing Tan
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Kasper Moth-Poulsen
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE Eduard Maristany 10-14 08019 Barcelona Spain
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology Gothenburg 41296 Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC Bellaterra 08193 Barcelona Spain
- Catalan Institution for Research & Advanced Studies, ICREA Pg. Lluís Companys 23 Barcelona Spain
| |
Collapse
|
11
|
Liang S, Yuan C, Nie C, Liu Y, Zhang D, Xu WC, Liu C, Xu G, Wu S. Photocontrolled Reversible Solid-Fluid Transitions of Azopolymer Nanocomposites for Intelligent Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408159. [PMID: 39082060 DOI: 10.1002/adma.202408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Indexed: 10/04/2024]
Abstract
Intelligent polymer nanocomposites are multicomponent and multifunctional materials that show immense potential across diverse applications. However, to exhibit intelligent traits such as adaptability, reconfigurability and dynamic properties, these materials often require a solvent or heating environment to facilitate the mobility of polymer chains and nanoparticles, rendering their applications in everyday settings impractical. Here intelligent azopolymer nanocomposites that function effectively in a solvent-free, room-temperature environment based on photocontrolled reversible solid-fluid transitions via switching flow temperatures (Tfs) are shown. A range of nanocomposites is synthesized through the grafting of Au nanoparticles, Au nanorods, quantum dots, or superparamagnetic nanoparticles with photoresponsive azopolymers. Leveraging the reversible cis-trans photoisomerization of azo groups, the azopolymer nanocomposites transition between solid (Tf above room temperature) and fluid (Tf below room temperature) states. Such photocontrolled reversible solid-fluid transitions empower the rewriting of nanopatterns, correction of nanoscale defects, reconfiguration of complex multiscale structures, and design of intelligent optical devices. These findings highlight Tf-switchable polymer nanocomposites as promising candidates for the development of intelligent nanomaterials operative in solvent-free, room-temperature conditions.
Collapse
Affiliation(s)
- Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chenrui Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yazhi Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dachuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chengwei Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guofeng Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Davenport AM, Marshall CR, Nishiguchi T, Kadota K, Andreeva AB, Horike S, Brozek CK. Size-Dependent Spin Crossover and Bond Flexibility in Metal-Organic Framework Nanoparticles. J Am Chem Soc 2024; 146:23692-23698. [PMID: 39145699 DOI: 10.1021/jacs.4c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Size reduction offers a synthetic route to tunable phase change behavior. Preparing materials as nanoparticles causes drastic modulations to critical temperatures (Tc), hysteresis widths, and the "sharpness" of first-order versus second-order phase transitions. A microscopic picture of the chemistry underlying this size dependence in phenomena ranging from melting to superconductivity remains debated. As a case study with broad implications, we report that size-dependent spin crossover (SCO) in nanocrystals of the metal-organic framework (MOF) Fe(1,2,3-triazolate)2 arises from metal-linker bonds becoming more labile in smaller particles. In comparison to the bulk material, differential scanning calorimetry indicates a ∼ 30-40% reduction in Tc and ΔH in the smallest particles. Variable-temperature vibrational spectroscopy reveals a diminished long-range structural cooperativity, while X-ray diffraction evidence an over 3-fold increase in the thermal expansion coefficients. This "phonon softening" provides a molecular mechanism for designing size-dependent behavior in framework materials and for understanding phase changes in general.
Collapse
Affiliation(s)
- Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Checkers R Marshall
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kentaro Kadota
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Anastasia B Andreeva
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
13
|
Sunny AS, Cleven EC, Kumar P, Venkataramani S, Walls JD, Ramamurthy V. Structure, Dynamics, and Reactivity of Encapsulated Molecules in Restricted Spaces: Arylazoisoxazoles within an Octa Acid Capsule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17638-17655. [PMID: 39110852 DOI: 10.1021/acs.langmuir.4c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this study, a well-defined organic capsule assembled from two octa acid (OA) molecules acting as host and select arylazoisoxazoles (AAIO) acting as guests were employed to demonstrate that confined molecules have restricted freedom that translates into reaction selectivity in both ground and excited states. The behavior of these AAIO guests in confined capsules was found to be different from that found in both crystals, where there is very little freedom, and in isotropic solvents, where there is complete freedom. Through one-dimensional (1D) and two-dimensional (2D) 1H NMR spectroscopic experiments, we have established a relationship between structure, dynamics and reactivity of molecules confined in an OA capsule. Introduction of CF3 and CH3 substitution at the 4-position of the aryl group of AAIO reveals that in addition to space confinement, weak interactions between the guest and the OA capsule control the dynamics and reactivity of guest molecules. 1H NMR studies revealed that there is a temperature-dependence to guest molecules tumbling (180° rotation along the capsular short axis) within an OA capsule. While 1H NMR points to the occurrence of tumbling motion, MD simulations and simulation of the temperature-dependent NMR signals provide an insight into the mechanism of tumbling within OA capsules. Thermal and photochemical isomerization of AAIO were found to occur within an OA capsule just as in organic solvents. The observed selectivity noted during thermal and photo induced isomerization of OA encapsulated AAIOs can be qualitatively understood in terms of the well-known concepts due to Bell-Evans-Polanyi (BEP principle), Hammond and Zimmerman.
Collapse
Affiliation(s)
- Amal Sam Sunny
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Elliott C Cleven
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Knowledge City, Manauli 140306, Punjab, India
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | |
Collapse
|
14
|
Jones BE, Blayo C, Greenfield JL, Fuchter MJ, Cowieson N, Evans RC. Understanding X-ray-induced isomerisation in photoswitchable surfactant assemblies. Beilstein J Org Chem 2024; 20:2005-2015. [PMID: 39161710 PMCID: PMC11331535 DOI: 10.3762/bjoc.20.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Dynamic, responsive materials can be built using photosurfactants (PS) that self-assemble into ordered nanostructures, such as micelles or liquid crystals. These PS contain photoswitchable groups, such as azobenzene (Azo) or, more recently, arylazopyrazoles (AAPs), which change shape and polarity on photoisomerisation between the E and Z states, thus changing the self-assembled structure. Small-angle X-ray scattering (SAXS) is a powerful technique to probe the morphology of PS and can be used to measure the mechanisms of structural changes using in-situ light irradiation with rapid, time-resolved data collection. However, X-ray irradiation has been shown previously to induce Z-to-E isomerisation of Azo-PS, which can lead to inaccuracies in the measured photostationary state. Here, we investigate the effect of light and X-ray irradiation on micelles formed from two different PS, containing either an Azo or AAP photoswitch using SAXS with in-situ light irradiation. The effect of X-ray irradiation on the Z isomer is shown to depend on the photoswitch, solvent, concentration and morphology. We use this to create guidelines for future X-ray experiments using photoswitchable molecules, which can aid more accurate understanding of these materials for application in solar energy storage, catalysis or controlled drug delivery.
Collapse
Affiliation(s)
- Beatrice E Jones
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Camille Blayo
- School of Chemistry, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
| | - Jake L Greenfield
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 7SL, United Kingdom
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 7SL, United Kingdom
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Rachel C Evans
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS, United Kingdom
| |
Collapse
|
15
|
Chen J, Zhang G, Wu Z, Wu Q, Chang J, Liang Q, Zhang L, Luo X, Liu Y, Zeng W. Photoresponsive heparin ionic complexes toward controllable therapeutic efficacy of anticoagulation. Int J Biol Macromol 2024; 275:133631. [PMID: 38964688 DOI: 10.1016/j.ijbiomac.2024.133631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Controllable heparin-release is of great importance and necessity for the precise anticoagulant regulation. Efforts have been made on designing heparin-releasing systems, while, it remains a great challenge for gaining the external-stimuli responsive heparin-release in either intravenous or catheter delivery. In this study, an azobenzene-containing ammonium surfactant is designed and synthesized for the fabrication of photoresponsive heparin ionic complexes through the electrostatic complexation with heparin. Under the assistance of photoinduced trans-cis isomerization of azobenzene, the obtained heparin materials perform reversible athermal phase transition between ordered crystalline and isotropic liquid state at room temperature. Compared to the ordered state, the formation of isotropic state can effectively improve the dissolving of heparin from ionic materials in aqueous condition, which realizes the photo-modulation on the concentration of free heparin molecules. With good biocompatibility, such a heparin-releasing system addresses photoresponsive anticoagulation in both in vitro and in vivo biological studies, confirming its great potential clinical values. This work provides a new designing strategy for gaining anticoagulant regulation by light, also opening new opportunities for the development of photoresponsive drugs and biomedical materials based on biomolecules.
Collapse
Affiliation(s)
- Jia Chen
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Guoqiang Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Quanxin Wu
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Jiahao Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Qikai Liang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yun Liu
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China.
| | - Weishen Zeng
- Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China.
| |
Collapse
|
16
|
Dang T, Zhang ZY, Li T. Visible-Light-Activated Heteroaryl Azoswitches: Toward a More Colorful Future. J Am Chem Soc 2024; 146:19609-19620. [PMID: 38991225 DOI: 10.1021/jacs.4c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Azobenzenes (Ph-N═N-Ph) are known as the most widely studied molecular photoswitches, and the recent rise of azoheteroarenes (Het-N═N-Ph or Het-N═N-Het) offers great opportunities to advance this already mature field. A common limitation is that azo-switches generally require harmful UV light for activation, which hinders their application across various fields. Despite great efforts in developing visible-light azobenzenes over the past few decades, the potential of visible-light heteroaryl azoswitches remains largely unexplored. This Perspective summarizes the state-of-the-art advancements in visible-light heteroaryl azoswitches, covering molecular design strategies, the structure-property relationship, and potential applications. We highlight the distinctive advantages of azoheteroarenes over azobenzenes in the research and development of visible-light switches. Furthermore, we discuss the opportunities and challenges in this emerging field and propose potential solutions to address crucial issues such as spectral red-shift and thermal half-life. Through this Perspective paper, we aim to provide inspiration for further exploration in this field, in anticipation of the growing prosperity and bright future of visible-light azoheteroarene photoswitches.
Collapse
Affiliation(s)
- Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Volker A, Steen JD, Crespi S. A fiber-optic spectroscopic setup for isomerization quantum yield determination. Beilstein J Org Chem 2024; 20:1684-1692. [PMID: 39076298 PMCID: PMC11285046 DOI: 10.3762/bjoc.20.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
A spectroscopic setup for isomerization quantum yield determination is reported. The setup combines fiber-coupled LEDs, a commercially calibrated thermopile detector for measurement of the photon flux, and a fiber-coupled UV-vis spectrometer. By solving the rate equations numerically, isomerization quantum yields can be obtained from the UV-vis absorption spectra. We show that our results for the prototypical photoswitch azobenzene are in excellent agreement with the literature. The analysis of the errors showed that the quantum yields determined using this method are in the same order of magnitude as when using actinometry, thus demonstrating the reliability of our setup.
Collapse
Affiliation(s)
- Anouk Volker
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jorn D Steen
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Stefano Crespi
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
18
|
Dolai A, Bhunia S, Manna K, Bera S, Box SM, Bhattacharya K, Saha R, Sarkar S, Samanta S. Visible-Light-Sensitive Photoliquefiable Arylazoisoxazoles for the Solar Energy Conversion, Storage and Controlled-Release of Heat at Room Temperature or Lower Temperatures. CHEMSUSCHEM 2024; 17:e202301700. [PMID: 38329884 DOI: 10.1002/cssc.202301700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
The photoswitchable MOlecular Solar Thermal (MOST) energy storage systems that are capable of exhibiting high energy storage densities are found to suffer from the poor cyclability, the use of less abundant UV light of the solar spectrum, or reduced charging/discharging rates and poor photoconversions in solid states. Herein, we have designed and readily synthesized a novel set of para-thioalkyl substituted arylazoisoxazoles, that undergo high trans-cis and cis-trans photoconversions under visible light, and show fast charging/discharging and impressive cyclability. Remarkably, the presence of C6-or C10-thioalkyl chainin photochromes permitted reversible solid-liquid phase transition with the formation of cis-enriched charged states by 400 nm light irradiation and trans-enriched discharged states by 530 nm light at various temperatures (10-35 °C). The solid-to-liquid phase transition enabled storage of the latent heat in addition to the isomerization energy, resulting in a high net energy storage density of 189-196 J/g, which are substantially higher than that of many recently reported azobenzene-based MOST compounds (100-161 J/g). Using a high-resolution infrared camera, we further demonstrated that a brief irradiation of green light can be employed to readily release the trapped photon energy as heat. Our results suggest that the arylazoisoxazole with C6-thioalkyl chain at para-position can serve as an effective and eco-friendly photoliquefiable MOST material.
Collapse
Affiliation(s)
- Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Sk Majid Box
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| | - Kallol Bhattacharya
- Department of Applied Optics & Photonics, University of Calcutta, Sector-III, Salt Lake, Kolkata, 700 106, India
| | - Ritabrata Saha
- College of Medicine & Sagore Dutta Hospital, Kamarhati, Kolkata, 700058
| | - Subhasish Sarkar
- College of Medicine & Sagore Dutta Hospital, Kamarhati, Kolkata, 700058
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, West Bengal, India
| |
Collapse
|
19
|
Weber RR, Stindt CN, van der Harten AMJ, Feringa BL. Push-Pull Bis-Norbornadienes for Solar Thermal Energy Storage. Chemistry 2024; 30:e202400482. [PMID: 38519425 DOI: 10.1002/chem.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The norbornadiene/quadricyclane (NBD/QC) photoswitch pair represents a promising system for application in molecular solar thermal energy storage (MOST). Often, the NBD derivatives have very limited overlap with the solar spectrum, and substitution to redshift the absorption leads to a decrease in the gravimetric energy density. Dimeric systems mitigate this factor because two switches can 'share' a substituent. Here, we present five new NBD dimers with red-shifted absorption spectra. One dimer features the most red-shifted absorption onset (539 nm) and a significantly red-shifted absorption maximum (404 nm) for NBD systems reported so far, without compromising thermal half-life. Promising properties for high-performance MOST applications are demonstrated, such as high absorption onsets reaching 539 nm, and energy densities of 379 kJ/kg, while still maintaining long half-lives of the metastable isomer, up to 23 hours at 25 °C.
Collapse
Affiliation(s)
- Roza R Weber
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - A M J van der Harten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
20
|
Kumar H, Parthiban G, Velloth A, Saini J, De R, Pal SK, Hazra KS, Venkataramani S. Arylazo-3,5-diphenylpyrazole Derivatives: Molecular Probes Exhibiting Reversible Light-induced Phase Transitions for Energy Storage and Direct Photolithographic Patterning. Chemistry 2024:e202401836. [PMID: 38818932 DOI: 10.1002/chem.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
We report azopyrazole photoswitches decorated with variable N-alkyl and alkoxy chains (for hydrophobic interactions) and phenyl substituents on the pyrazoles (enabling π-π stacking), showing efficient bidirectional photoswitching and reversible light-induced phase transition (LIPT). Extensive spectroscopic, microscopic, and diffraction studies and computations confirmed the manifestation of molecular-level interactions and photoisomerization into macroscopic changes leading to the LIPT phenomena. Using differential scanning calorimetric (DSC) studies, the energetics associated with those accompanying processes were estimated. The long half-lives of Z isomers, high energy contents for isomerization and phase transitions, and the stability of phases over an extended temperature range (-60 to 80 °C) make them excellent candidates for energy storage and release applications. Remarkably, the difference in the solubility of the distinct phases in one of the derivatives allowed us to utilize it as a photoresist in photolithography applications on diverse substrates.
Collapse
Affiliation(s)
- Himanshu Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Gayathri Parthiban
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Jyoti Saini
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Kiran Shankar Hazra
- Institute of Nano Science and Technology, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, 140 306, Manauli, Punjab, India
| |
Collapse
|
21
|
Kumar Gaur A, Gupta D, Narayanan Nampoothiry D, Velloth A, Kaur R, Kaur N, Venkataramani S. Azopyridinium Ionic Photoswitches: Tuning Half-Lives of Z Isomers from Seconds to Days in Water. Chemistry 2024:e202401239. [PMID: 38818941 DOI: 10.1002/chem.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Herein, we describe water-soluble heteroaryl azopyridinium ionic photoswitches (HAPIPs). We aim to combine variations in five-membered heterocycles, their substitutions, N-alkyl groups at pyridinium nitrogen, the position of pyridinium center relative to azo group, counterions, and solvents, in achieving better photoswitching. Through these studies, we successfully tuned the half-life of Z isomers of the resultant HAPIPs between seconds to days in water. Extensive spectroscopic studies and density functional theory (DFT) computations unravelled the factors responsible for thermal relaxation behavior. Considering the versatility of these photoswitches, the tunability of half-lives and photoswitching in aqueous medium allows the scope of applications in several fields.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Dhanyaj Narayanan Nampoothiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Ramanpreet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Navneet Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, 140306, Punjab, India
| |
Collapse
|
22
|
Jones B, Greenfield JL, Cowieson N, Fuchter MJ, Evans RC. Light-Driven Hexagonal-to-Cubic Phase Switching in Arylazopyrazole Lyotropic Liquid Crystals. J Am Chem Soc 2024; 146:12315-12319. [PMID: 38683357 PMCID: PMC11082889 DOI: 10.1021/jacs.4c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Photoinduced manipulation of the nanoscale molecular structure and organization of soft materials can drive changes in the macroscale properties. Here we demonstrate the first example of a light-induced one- to three-dimensional mesophase transition at room temperature in lyotropic liquid crystals constructed from arylazopyrazole photosurfactants in water. We exploit this characteristic to use light to selectively control the rate of gas (CO2) diffusion across a prototype lyotropic liquid crystal membrane. Such control of phase organization, dimensionality, and permeability unlocks the potential for stimuli-responsive analogues in technologies for controlled delivery.
Collapse
Affiliation(s)
- Beatrice
E. Jones
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, U.K.
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Jake L. Greenfield
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 7SL, U.K.
- Institut
für Organische Chemie, Universität
Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nathan Cowieson
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Matthew J. Fuchter
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 7SL, U.K.
| | - Rachel C. Evans
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, U.K.
| |
Collapse
|
23
|
Nogal N, Guisán S, Dellemme D, Surin M, de la Escosura A. Selectivity in the chiral self-assembly of nucleobase-arylazopyrazole photoswitches along DNA templates. J Mater Chem B 2024; 12:3703-3709. [PMID: 38505984 DOI: 10.1039/d4tb00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The control of supramolecular DNA assembly through external stimuli such as light represents a promising approach to control bioreactions, and modulate hybridization or delivery processes. Here, we report on the design of nucleobase-containing arylazopyrazole photoswitches that undergo chiral organization upon self-assembly along short DNA templates. Chiroptical spectroscopy shows that the specific nucleobases allow selectivity in the resulting supramolecular DNA complexes, and UV light irradiation triggers partial desorption of the arylazopyrazole photoswitches. Molecular modeling studies reveal the differences of binding modes between the two configurations in the templated assembly. Remarkably, our results show that the photoswitching behaviour controls the self-assembly process along DNA, opening the way to potential applications as nano- and biomaterials.
Collapse
Affiliation(s)
- Noemí Nogal
- Departament of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | - Santiago Guisán
- Departament of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
| | - David Dellemme
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons - UMONS, 20 Place du Parc, Mons B-7000, Belgium.
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center for Innovation in Materials and Polymers, University of Mons - UMONS, 20 Place du Parc, Mons B-7000, Belgium.
| | - Andrés de la Escosura
- Departament of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
24
|
Chen J, Kou Y, Zhang S, Zhang X, Liu H, Yan H, Shi Q. Spatiotemporal Utilization of Latent Heat in Erythritol-based Phase Change Materials as Solar Thermal Fuels. Angew Chem Int Ed Engl 2024; 63:e202400759. [PMID: 38375575 DOI: 10.1002/anie.202400759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Solar thermal fuels (STFs) have been particularly concerned as sustainable future energy due to their impressive ability to store solar energy in chemical bonds and controllably release thermal energy. However, currently studied STFs mainly focus on molecule-based materials with high photochemical activity, toxicity, and compromised features, which greatly restricts their applications in practical scenarios of solar energy utilization. Herein, we present a novel erythritol-based composite phase change material (PCM) as a new type of STFs with an outstanding capability to store solar energy as latent heat in its stable supercooling state and release thermal energy as needed. This composite PCM with stored thermal energy can be maintained stably at room temperature and subsequently release latent heat as high as 224.9 J/g during the crystallization process triggered by thermal stimuli. Remarkably, solar energy can be converted into latent heat stored in the composite PCM over months. Through mechanical stimulations, the released latent heat can increase the temperature of the composite up to 91 °C. This work presents a new concept of using spatiotemporal storage and release of latent heat in PCMs for solar energy utilization, making it a potential candidate as STFs for developing future clean energy techniques.
Collapse
Affiliation(s)
- Jie Chen
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Kou
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Shihui Zhang
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Xinyu Zhang
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanqing Liu
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huiming Yan
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Quan Shi
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Technology Innovation Center for Energy Materials Thermodynamics, Liaoning Province Key Laboratory of Thermochemistry for Energy Materials, Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
25
|
Rodriguez J, Lam K, Anwar TB, Bardeen CJ. Robust Supercooled Liquid Formation Enables All-Optical Switching Between Liquid and Solid Phases of TEMPO. ACS OMEGA 2024; 9:11266-11272. [PMID: 38497006 PMCID: PMC10938447 DOI: 10.1021/acsomega.3c06717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 03/19/2024]
Abstract
Organic molecules that undergo supercooling can provide the basis for novel stimuli-responsive materials, but the number of such compounds is limited. Results in this paper show that the stable organic radical 2,2,6,6-tetramethyl-1-piperidine-1-oxyl (TEMPO) can form a stable supercooled liquid (SCL). Upon melting and cooling back to room temperature, the TEMPO SCL can persist for months, even after mild physical agitation. Its high vapor pressure can enable crystal growth at remote locations within the sample container over the course of days. Optical, electron paramagnetic resonance, and birefringence measurements show no evidence of new chemical species or partially ordered phases in the supercooled liquid. TEMPO's free radical character permits absorption of visible light that can drive photothermal melting to form the SCL, while a single nanosecond light pulse can initiate recrystallization of the SCL at some later time. This capability enables all-optical switching between the solid and the SCL phases. The physical origin of TEMPO's remarkable stability as an SCL remains an open question, but these results suggest that organic radicals comprise a new class of molecules that can form SCLs with potentially useful properties.
Collapse
Affiliation(s)
- Jacob
B. Rodriguez
- Materials
Science and Engineering, University of California,
Riverside, Riverside, California 92521, United States
| | - Kevin Lam
- Department
of Chemistry University of California, Riverside, Riverside, California 92521, United States
| | - Touhid Bin Anwar
- Department
of Chemical and Environmental Engineering University of California, Riverside, Riverside, California 92521, United States
| | - Christopher J. Bardeen
- Materials
Science and Engineering, University of California,
Riverside, Riverside, California 92521, United States
- Department
of Chemistry University of California, Riverside, Riverside, California 92521, United States
- Department
of Chemical and Environmental Engineering University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
26
|
Ghate PP, Hanson KM, Lam K, Al-Kaysi RO, Bardeen CJ. Generating Stable Nitrogen Bubble Layers on Poly(methyl methacrylate) Films by Photolysis of 2-Azidoanthracene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4054-4062. [PMID: 38353460 DOI: 10.1021/acs.langmuir.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
2-Azidoanthracene (2N3-AN) can act as a photochemical source of N2 gas when dissolved in an optically transparent polymer such as poly(methyl methacrylate) (PMMA). Irradiation at 365 or 405 nm of a 150 μm-thick polymer film submerged in water causes the rapid appearance of a surface layer of bubbles. The rapid appearance of surface bubbles cannot be explained by normal diffusion of N2 through the polymer and likely results from internal gas pressure buildup during the reaction. For an azide concentration of 0.1 M and a light intensity of 140 mW/cm2, the yield of gas bubbles is calculated to be approximately 40%. The dynamics of bubble growth depend on the surface morphology, light intensity, and 2N3-AN concentration. A combination of nanoscale surface roughness, high azide concentration, and high light intensity is required to attain the threshold N2 gas density necessary for rapid, high-yield bubble formation. The N2 bubbles adhered to the PMMA surface and survived for days under water. The ability to generate stable gas bubbles "on demand" using light permits the demonstration of photoinduced flotation and patterned bubble arrays.
Collapse
Affiliation(s)
- Pranaya P Ghate
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Kerry M Hanson
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Kevin Lam
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Rabih O Al-Kaysi
- College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center (Nanomedicine), Ministry of National Guard Health Affairs, Riyadh 11426, Kingdom of Saudi Arabia
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
27
|
Hu H, Liu Y, Li J, Zhang C, Gao C, Sun C, Du Y, Hu B. Phenolylazoindole scaffold for facilely synthesized and bis-functional photoswitches combining controllable fluorescence and antifungal properties using theoretical methods. Org Biomol Chem 2024; 22:1225-1233. [PMID: 38231009 DOI: 10.1039/d3ob01751f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Functionalization is a major challenge for the application of photoswitches. With the aim to develop novel bis-functional azo photoswitches with stationary photophysical properties, a series of phenolylazoindole derivatives were designed, synthesized, and characterized via NMR spectroscopy studies and high-resolution mass spectrometry (HRMS). Herein, UV/Vis and 1H NMR spectra revealed that the photostationary state (PSS) proportions for PSScis and PSStrans were 76-80% and 68-81%, respectively. Furthermore, the thermal half-lives (t1/2) of compounds A2-A4 and B2 ranged from 0.9 to 5.3 h, affected by the diverse substituents at the R1 and R2 positions. The results indicated that azo photoswitches based on the phenolylazoindole scaffold had stationary photophysical properties and wouldn't be excessively affected by modifying the functional groups. Compounds A4 and B2, which were modified with an aryl group, also exhibited fluorescence emission properties (the quantum yields of A4 and B2 were 2.32% and 13.34%) through the modification of the flexible conjugated structure (benzene) at the R2 position. Significantly, compound C1 was obtained via modification with a pharmacophore in order to acquire antifungal activities against three plant fungi, Rhizoctonia solani (R. solani), Botrytis cinerea (B. cinerea), and Fusarium graminearum (F. graminearum). Strikingly, the inhibitory activity of the cis-isomer of compound C1towards R. solani (53.3%) was significantly better than that of the trans-isomer (34.2%) at 50 μg mL-1. In order to further reveal the antifungal mechanism, molecular docking simulations demonstrated that compound C1 effectively integrates into the cavity of succinate dehydrogenase (SDH); the optically controlled cis-isomer showed a lower binding energy with SDH than that of the trans-isomer. This research confirmed that phenolylazoindole photoswitches can be appropriately applied as molecular regulatory devices and functional photoswitch molecules via bis-functionalization.
Collapse
Affiliation(s)
- Haoran Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Yu Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junqi Li
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Chong Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Chao Gao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Chengguo Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Yang Du
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Bingcheng Hu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
28
|
Xu X, Feng J, Li WY, Wang G, Feng W, Yu H. Azobenzene-containing polymer for solar thermal energy storage and release: Advances, challenges, and opportunities. Prog Polym Sci 2024; 149:101782. [DOI: 10.1016/j.progpolymsci.2023.101782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Gonzalez A, Qiu Q, Usuba J, Wan J, Han GGD. Photoinduced Solid-Liquid Phase Transition and Energy Storage Enabled by the Design of Linked Double Photoswitches. ACS MATERIALS AU 2024; 4:30-34. [PMID: 38221920 PMCID: PMC10786127 DOI: 10.1021/acsmaterialsau.3c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/16/2024]
Abstract
We demonstrate an effective design strategy of photoswitchable phase change materials based on the bis-azobenzene scaffold. These compounds display a solid phase in the E,E state and a liquid phase in the Z,Z state, in contrast to their monoazobenzene counterparts that exhibit less controlled phase transition behaviors that are largely influenced by their functional groups.
Collapse
Affiliation(s)
- Alejandra Gonzalez
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Qianfeng Qiu
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Junichi Usuba
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Joshua Wan
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Grace G. D. Han
- Department of Chemistry, Brandeis
University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
30
|
Xu X, Li C, Chen W, Feng J, Li WY, Wang G, Yu H. Visible light activated dendrimers for solar thermal energy storage and release below 0 °C. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:23723-23731. [DOI: 10.1039/d4ta04022h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Molecular solar thermal (MOST) fuels offer a closed-cycle and renewable energy storage strategy that can harvest photons within the chemical conformations and release heat on demand through reversible isomerization of molecular photoswitches.
Collapse
Affiliation(s)
- Xingtang Xu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chonghua Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wenjing Chen
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jie Feng
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wen-Ying Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Adrion DM, Karunaratne WV, Lopez SA. Multiconfigurational photodynamics simulations reveal the mechanism of photodecarbonylations of cyclopropenones in explicit aqueous environments. Chem Sci 2023; 14:13205-13218. [PMID: 38023495 PMCID: PMC10664470 DOI: 10.1039/d3sc03805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Gas-evolving photochemical reactions use light and mild conditions to access strained organic compounds irreversibly. Cyclopropenones are a class of light-responsive molecules used in bioorthogonal photoclick reactions; their excited-state decarbonylation reaction mechanisms are misunderstood due to their ultrafast (<100 femtosecond) lifetimes. We have combined multiconfigurational quantum mechanical (QM) calculations and non-adiabatic molecular dynamics (NAMD) simulations to uncover the excited-state mechanism of cyclopropenone and a photoprotected cyclooctyne-(COT)-precursor in gaseous and explicit aqueous environments. We explore the role of H-bonding with fully quantum mechanical explicitly solvated NAMD simulations for the decarbonylation reaction. The cyclopropenones pass through asynchronous conical intersections and have dynamically concerted photodecarbonylation mechanisms. The COT-precursor has a higher quantum yield of 55% than cyclopropenone (28%) because these trajectories prefer to break a σCC bond to avoid the strained trans-cyclooctene geometries. Our solvated simulations show an increased quantum yield (58%) for the systems studied here.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| | - Waruni V Karunaratne
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| |
Collapse
|
32
|
Qiu Q, Qi Q, Usuba J, Lee K, Aprahamian I, Han GGD. Visible light activated energy storage in solid-state Azo-BF 2 switches. Chem Sci 2023; 14:11359-11364. [PMID: 37886079 PMCID: PMC10599475 DOI: 10.1039/d3sc03465h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
We present here a group of Azo-BF2 photoswitches that store and release energy in response to visible light irradiation. Unmodified Azo-BF2 switches have a planar structure with a large π-conjugation system, which hinders E-Z isomerization when in a compacted state. To address this challenge, we modified the switches with one or two aliphatic groups, which altered the intermolecular interactions and arrangement of the photochromes in the solid state. The derivative with two substituents exhibited a non-planar configuration that provided particularly large conformational freedom, allowing for efficient isomerization in the solid phase. Our discovery highlights the potential of using double aliphatic functionalization as a promising approach to facilitate solid-state switching of large aromatic photoswitches. This finding opens up new possibilities for exploring various photoswitch candidates for molecular solar thermal energy storage applications.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qingkai Qi
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Junichi Usuba
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Karina Lee
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College Hanover NH 03755 USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
33
|
Chatterjee S, Molla S, Ahmed J, Bandyopadhyay S. Light-driven modulation of electrical conductance with photochromic switches: bridging photochemistry with optoelectronics. Chem Commun (Camb) 2023; 59:12685-12698. [PMID: 37814882 DOI: 10.1039/d3cc04269c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Photochromic conducting molecules have emerged because of their unique capacity to modulate electrical conductivity upon exposure to light, toggling between high and low conductive states. This unique amalgamation has unlocked novel avenues for the application of these materials across diverse areas in optoelectronics and smart materials. The fundamental mechanism underpinning this phenomenon is based on the light-driven isomerization of conjugated π-systems which influences the extent of conjugation. The photoisomerization process discussed here involves photochromic switches such as azobenzenes, diarylethenes, spiropyrans, dimethyldihydropyrenes, and norbornadiene. The change in the degree of conjugation alters the charge transport in both single molecules and bulk states in solid samples or solutions. This article discusses a number of recent examples of photochromic conducting systems and the challenges and potentials of the field.
Collapse
Affiliation(s)
- Sheelbhadra Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Sariful Molla
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Jakir Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
34
|
Mukherjee A, Seyfried MD, Ravoo BJ. Azoheteroarene and Diazocine Molecular Photoswitches: Self-Assembly, Responsive Materials and Photopharmacology. Angew Chem Int Ed Engl 2023; 62:e202304437. [PMID: 37212536 DOI: 10.1002/anie.202304437] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/23/2023]
Abstract
Aromatic units tethered with an azo (-N=N-) functionality comprise a unique class of compounds, known as molecular photoswitches, exhibiting a reversible transformation between their E- and Z-isomers in response to photo-irradiation. Photoswitches have been explored extensively in the recent past to prepare dynamic self-assembled materials, optoelectronic devices, responsive biomaterials, and more. Most of such materials involve azobenzenes as the molecular photoswitch and to date, SciFinder lists more than 7000 articles and 1000 patents. Subsequently, a great deal of effort has been invested to improve the photo-isomerization efficiency and related mesoscopic properties of azobenzenes. Recently, azoheteroarenes and cyclic azobenzenes, such as arylazopyrazoles, arylazoisoxazoles, arylazopyridines, and diazocines, have emerged as second generation molecular photoswitches beyond conventional azobenzenes. These photoswitches offer distinct photoswitching behavior and responsive properties which make them highly promising candidates for multifaceted applications ranging from photoresponsive materials to photopharmacophores. In this minireview, we introduce the structural refinement and photoresponsive properties of azoheteroarenes and diazocines and summarize the state-of-the-art on utilizing these photoswitches as responsive building blocks in supramolecular assembly, material science and photopharmacology, highlighting their versatile photochemical behavior, enhanced functionality, and latest applications.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
35
|
Sun W, Shangguan Z, Zhang X, Dang T, Zhang ZY, Li T. Solar Efficiency of Azo-Photoswitches for Energy Conversion: A Comprehensive Assessment. CHEMSUSCHEM 2023; 16:e202300582. [PMID: 37278140 DOI: 10.1002/cssc.202300582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Photoswitches can absorb solar photons and store them as chemical energy by photoisomerization, which is regarded as a promising strategy for photochemical solar energy storage. Although many efforts have been devoted to photoswitch discovery, the solar efficiency, a critical fundamental parameter assessing the solar energy conversion ability, has attracted little attention and remains to be studied comprehensively. Here we provide a systematic evaluation of the solar efficiency of typical azo-switches including azobenzenes and azopyrazoles, and gain a comprehensive understanding on its decisive factors. All the efficiencies are found below 1.0 %, far from the proposed limits for molecular solar thermal energy storage systems. Azopyrazoles exhibit remarkably higher solar efficiencies (0.59-0.94 %) than azobenzenes (0.11-0.43 %), benefiting from largely improved quantum yield and photoisomerization yield. Light filters can be used to improve the isomerization yield but inevitably narrow the usable range of solar spectrum, and these two contradictory effects ultimately reduce solar efficiencies. We envision this conflict could be resolved through developing azo-switches that afford high isomerization yields by absorbing wide-spectrum solar energy. We hope this work could promote more efforts to improve the solar efficiency of photoswitches, which is highly relevant to the prospect for future applications.
Collapse
Affiliation(s)
- Wenjin Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zhichun Shangguan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
36
|
Wilson GR, Park KC, Thaggard GC, Martin CR, Hill AR, Haimerl J, Lim J, Maldeni Kankanamalage BKP, Yarbrough BJ, Forrester KL, Fischer RA, Pellechia PJ, Smith MD, Garashchuk S, Shustova NB. Cooperative and Orthogonal Switching in the Solid State Enabled by Metal-Organic Framework Confinement Leading to a Thermo-Photochromic Platform. Angew Chem Int Ed Engl 2023; 62:e202308715. [PMID: 37486788 DOI: 10.1002/anie.202308715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo-thermo-responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli-responsive moieties within a metal-organic framework (MOF), leading to the preparation of a novel photo-thermo-responsive spiropyran-diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli-responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo-photochromism.
Collapse
Affiliation(s)
- Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Austin R Hill
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
37
|
Komura M, Sotome H, Miyasaka H, Ogawa T, Tani Y. Photoinduced crystal melting with luminescence evolution based on conformational isomerisation. Chem Sci 2023; 14:5302-5308. [PMID: 37234907 PMCID: PMC10207888 DOI: 10.1039/d3sc00838j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The phenomenon of crystal melting by light irradiation, known as photo-induced crystal-to-liquid transition (PCLT), can dramatically change material properties with high spatiotemporal resolution. However, the diversity of compounds exhibiting PCLT is severely limited, which hampers further functionalisation of PCLT-active materials and the fundamental understandings of PCLT. Here, we report on heteroaromatic 1,2-diketones as the new class of PCLT-active compounds, whose PCLT is based on conformational isomerisation. In particular, one of the diketones demonstrates luminescence evolution prior to crystal melting. Thus, the diketone crystal exhibits dynamic multistep changes in the luminescence colour and intensity during continuous ultraviolet irradiation. This luminescence evolution can be ascribed to the sequential PCLT processes of crystal loosening and conformational isomerisation before macroscopic melting. Single-crystal X-ray structural analysis, thermal analysis, and theoretical calculations of two PCLT-active and one inactive diketones revealed weaker intermolecular interactions for the PCLT-active crystals. In particular, we observed a characteristic packing motif for the PCLT-active crystals, consisting of an ordered layer of diketone core and a disordered layer of triisopropylsilyl moieties. Our results demonstrate the integration of photofunction with PCLT, provide fundamental insights into the melting process of molecular crystals, and will diversify the molecular design of PCLT-active materials beyond classical photochromic scaffolds such as azobenzenes.
Collapse
Affiliation(s)
- Mao Komura
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Takuji Ogawa
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Yosuke Tani
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
38
|
Gaur AK, Gupta D, Mahadevan A, Kumar P, Kumar H, Nampoothiry DN, Kaur N, Thakur SK, Singh S, Slanina T, Venkataramani S. Bistable Aryl Azopyrazolium Ionic Photoswitches in Water. J Am Chem Soc 2023; 145:10584-10594. [PMID: 37133353 DOI: 10.1021/jacs.2c13733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a new class of arylazopyrazolium-based ionic photoswitches (AAPIPs). These AAPIPs with different counter ions have been accessed through a modular synthetic approach in high yields. More importantly, the AAPIPs exhibit excellent reversible photoswitching and exceptional thermal stability in water. The effects of solvents, counter ions, substitutions, concentration, pH, and glutathione (GSH) have been evaluated using spectroscopic investigations. The results revealed that the bistability of studied AAPIPs is robust and near quantitative. The thermal half-life of Z isomers is extremely high in water (up to years), and it can be lowered electronically by the electron-withdrawing groups or highly basic pH.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Debapriya Gupta
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Anjali Mahadevan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Himanshu Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Dhanyaj Narayanan Nampoothiry
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Navneet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sandeep Kumar Thakur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sanjay Singh
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague 160 00, Czech Republic
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| |
Collapse
|
39
|
Arndt NB, Adolphs T, Arlinghaus HF, Heidrich B, Ravoo BJ. Arylazopyrazole-Modified Thiolactone Acrylate Copolymer Brushes for Tuneable and Photoresponsive Wettability of Glass Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5342-5351. [PMID: 37011284 DOI: 10.1021/acs.langmuir.2c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Photoswitches have long been employed in coatings for surfaces and substrates to harness light as a versatile stimulus to induce responsive behavior. We previously demonstrated the viability of arylazopyrazole (AAP) as a photoswitch in self-assembled monolayers (SAMs) on silicon and glass surfaces for photoresponsive wetting applications. We now aim to transfer the excellent photophysical properties of AAPs to polymer brush coatings. Compared to SAMs, polymer brushes offer enhanced stability and an increase of the thickness and density of the functional organic layer. In this work, we present thiolactone acrylate copolymer brushes which can be post-modified with AAP amines as well as hydrophobic acrylates, making use of the unique chemistry of the thiolactones. This strategy enables photoresponsive wetting with a tuneable range of contact angle change on glass substrates. We show the successful synthesis of thiolactone hydroxyethyl acrylate copolymer brushes by means of surface-initiated atom-transfer radical polymerization with the option to either prepare homogeneous brushes or to prepare micrometer-sized brush patterns by microcontact printing. The polymer brushes were analyzed by atomic force microscopy, time-of-flight secondary ion spectrometry, and X-ray photoelectron spectroscopy. Photoresponsive behavior imparted to the brushes by means of post-modification with AAP is monitored by UV/vis spectroscopy, and wetting behavior of homogeneous brushes is measured by static and dynamic contact angle measurements. The brushes show an average change in static contact angle of around 13° between E and Z isomer of the AAP photoswitch for at least five cycles, while the range of contact angle change can be fine-tuned between 53.5°/66.5° (E/Z) and 81.5°/94.8° (E/Z) by post-modification with hydrophobic acrylates.
Collapse
Affiliation(s)
- Niklas B Arndt
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Thorsten Adolphs
- Center for Soft Nanoscience and Physics Institute, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bastian Heidrich
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149 Münster, Germany
- Institute of Physical Chemistry, University of Münster, Corrensstraße 29, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, 48149 Münster, Germany
| |
Collapse
|
40
|
Rybak CJ, Andjaba JM, Fan C, Zeller M, Uyeda C. Dinickel-Catalyzed N═N Bond Rotation. Inorg Chem 2023; 62:5886-5891. [PMID: 37018479 DOI: 10.1021/acs.inorgchem.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Azoarenes function as molecular switches that can be triggered by external stimuli, such as heat, light, and electrochemical potential. Here, we show that a dinickel catalyst can induce cis/trans isomerization in azoarenes through a N═N bond rotation mechanism. Catalytic intermediates containing azoarenes bound in both the cis and trans forms are characterized. Solid-state structures reveal the importance of π-back-bonding interactions from the dinickel active site in lowering the N═N bond order and accelerating bond rotation. The scope of the catalytic isomerization includes high-performance acyclic, cyclic, and polymeric azoarene switches.
Collapse
Affiliation(s)
- Christopher J Rybak
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John M Andjaba
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Chengyi Fan
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
Fei L, Zhang ZY, Tan Y, Ye T, Dong D, Yin Y, Li T, Wang C. Efficient and Robust Molecular Solar Thermal Fabric for Personal Thermal Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209768. [PMID: 36738144 DOI: 10.1002/adma.202209768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Molecular solar thermal (MOST) materials, which can efficiently capture solar energy and release it as heat on demand, are promising candidates for future personal thermal management (PTM) applications, preferably in the form of fabrics. However, developing MOST fabrics with high energy-storage capacity and stable working performance remains a significant challenge because of the low energy density of the molecular materials and their leakage from the fabric. Here, an efficient and robust MOST fabric for PTM using azopyrazole-containing microcapsules with a deep-UV-filter shell is reported. The MOST fabric, which can co-harvest solar and thermal energy, achieves efficient photocharging and photo-discharging (>90% photoconversion), a high energy density of 2.5 kJ m-2 , and long-term storage sustainability at month scale. Moreover, it can undergo multiple cycles of washing, rubbing, and recharging without significant loss of energy-storage capacity. This MOST microcapsule strategy is easily used for the scalable production of a MOST fabric for solar thermal moxibustion. This achievement offers a promising route for the application of wearable MOST materials with high energy-storage performance and robustness in PTM.
Collapse
Affiliation(s)
- Liang Fei
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongsong Tan
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Ting Ye
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Dongfang Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunjie Yin
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Road, 214122, Wuxi, P. R. China
| |
Collapse
|
42
|
Qiu Q, Sun Z, Joubran D, Li X, Wan J, Schmidt-Rohr K, Han GGD. Optically Controlled Recovery and Recycling of Homogeneous Organocatalysts Enabled by Photoswitches. Angew Chem Int Ed Engl 2023; 62:e202300723. [PMID: 36688731 DOI: 10.1002/anie.202300723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
We address a critical challenge of recovering and recycling homogeneous organocatalysts by designing photoswitchable catalyst structures that display a reversible solubility change in response to light. Initially insoluble catalysts are UV-switched to a soluble isomeric state, which catalyzes the reaction, then back-isomerizes to the insoluble state upon completion of the reaction to be filtered and recycled. The molecular design principles that allow for the drastic solubility change over 10 times between the isomeric states, 87 % recovery by the light-induced precipitation, and multiple rounds of catalyst recycling are revealed. This proof of concept will open up opportunities to develop highly recyclable homogeneous catalysts that are important for the synthesis of critical compounds in various industries, which is anticipated to significantly reduce environmental impact and costs.
Collapse
Affiliation(s)
- Qianfeng Qiu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhenhuan Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Danielle Joubran
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xiang Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Joshua Wan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Grace G D Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
43
|
Zhang L, Liu H, Du Q, Zhang G, Zhu S, Wu Z, Luo X. Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206623. [PMID: 36534833 DOI: 10.1002/smll.202206623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene-based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low-grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g-1 by charging solid sample and 160.50 J g-1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene-based PPCMs with high gravimetric energy density by improving the photon energy storage.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Han Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qianyao Du
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guoqiang Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shanhui Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
44
|
Hosseinabadi HG, Nieto D, Yousefinejad A, Fattel H, Ionov L, Miri AK. Ink Material Selection and Optical Design Considerations in DLP 3D Printing. APPLIED MATERIALS TODAY 2023; 30:101721. [PMID: 37576708 PMCID: PMC10421610 DOI: 10.1016/j.apmt.2022.101721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Digital light processing (DLP) 3D printing has become a powerful manufacturing tool for the fast fabrication of complex functional structures. The rapid progress in DLP printing has been linked to research on optical design factors and ink selection. This critical review highlights the main challenges in the DLP printing of photopolymerizable inks. The kinetics equations of photopolymerization reaction in a DLP printer are solved, and the dependence of curing depth on the process optical parameters and ink chemical properties are explained. Developments in DLP platform design and ink selection are summarized, and the roles of monomer structure and molecular weight on DLP printing resolution are shown by experimental data. A detailed guideline is presented to help engineers and scientists to select inks and optical parameters for fabricating functional structures for multi-material and 4D printing applications.
Collapse
Affiliation(s)
- Hossein G. Hosseinabadi
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Daniel Nieto
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Ali Yousefinejad
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Hoda Fattel
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Leonid Ionov
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Amir K. Miri
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| |
Collapse
|
45
|
Thaggard GC, Leith GA, Sosnin D, Martin CR, Park KC, McBride MK, Lim J, Yarbrough BJ, Maldeni Kankanamalage BKP, Wilson GR, Hill AR, Smith MD, Garashchuk S, Greytak AB, Aprahamian I, Shustova NB. Confinement-Driven Photophysics in Hydrazone-Based Hierarchical Materials. Angew Chem Int Ed Engl 2023; 62:e202211776. [PMID: 36346406 DOI: 10.1002/anie.202211776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Austin R Hill
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
46
|
Usuba J, Han GG. Photoswitch designs for molecular solar thermal energy storage. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Tyagi G, Greenfield JL, Jones BE, Sharratt WN, Khan K, Seddon D, Malone LA, Cowieson N, Evans RC, Fuchter MJ, Cabral JT. Light Responsiveness and Assembly of Arylazopyrazole-Based Surfactants in Neat and Mixed CTAB Micelles. JACS AU 2022; 2:2670-2677. [PMID: 36590257 PMCID: PMC9795462 DOI: 10.1021/jacsau.2c00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
The self-assembly of an arylazopyrazole-based photosurfactant (PS), based on cetyltrimethylammonium bromide (CTAB), and its mixed micelle formation with CTAB in aqueous solution was investigated by small angle neutron and X-ray scattering (SANS/SAXS) and UV-vis absorption spectroscopy. Upon UV light exposure, PS photoisomerizes from E-PS (trans) to Z-PS (cis), which transforms oblate ellipsoidal micelles into smaller, spherical micelles with larger shell thickness. Doping PS with CTAB resulted in mixed micelle formation at all stoichiometries and conditions investigated; employing selectively deuterated PS, a monotonic variation in scattering length density and dimensions of the micellar core and shell is observed for all contrasts. The concentration- and irradiance-dependence of the E to Z configurational transition was established in both neat and mixed micelles. A liposome dye release assay establishes the enhanced efficacy of photosurfactants at membrane disruption, with E-PS exhibiting a 4-fold and Z-PS a 10-fold increase in fluorescence signal with respect to pure CTAB. Our findings pave the way for external triggering and modulation of the wide range of CTAB-based biomedical and material applications.
Collapse
Affiliation(s)
- Gunjan Tyagi
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
| | - Jake L. Greenfield
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Beatrice E. Jones
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 OFS, U.K.
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - William N. Sharratt
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Kasim Khan
- Department
of Biology, Lund University, 22100 Lund, Sweden
| | - Dale Seddon
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Lorna A. Malone
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - Nathan Cowieson
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - Rachel C. Evans
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 OFS, U.K.
| | - Matthew J. Fuchter
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - João T. Cabral
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
| |
Collapse
|
48
|
Imato K, Sasaki A, Ishii A, Hino T, Kaneda N, Ohira K, Imae I, Ooyama Y. Sterically Hindered Stiff-Stilbene Photoswitch Offers Large Motions, 90% Two-Way Photoisomerization, and High Thermal Stability. J Org Chem 2022; 87:15762-15770. [PMID: 36378160 DOI: 10.1021/acs.joc.2c01566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular photoswitches have been widely used as molecular machines in various fields due to the small structures and simple motions generated in reversible isomerization. However, common photoswitches, as represented by azobenzene (AB), cannot combine both large motions and high thermal stability, which are critically important for some practical applications in addition to high photoisomerization yields. Here, we focus on a promising photoswitch, stiff stilbene (SS), and its derivative, sterically hindered SS (HSS). The detailed investigation of their performance with a comparison to AB demonstrated that HSS is an outstanding photoswitch offering larger motions than AB and SS, ca. 90% photoisomerization in both E-to-Z and Z-to-E directions, and significantly high thermal stability with a half-life of ca. 1000 years at room temperature. The superior performance of HSS promises its use in various applications, even where previous photoswitches have troubles and are unavailable.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ayane Sasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Akira Ishii
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Taichi Hino
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Kazuki Ohira
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
49
|
Nieland E, Voss J, Mix A, Schmidt BM. Photoresponsive Dissipative Macrocycles Using Visible-Light-Switchable Azobenzenes. Angew Chem Int Ed Engl 2022; 61:e202212745. [PMID: 36165240 PMCID: PMC9828355 DOI: 10.1002/anie.202212745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Visible light can be used to shift dynamic covalent imine assemblies out of equilibrium. We studied a fluorinated azobenzene building block that reliably undergoes geometric isomerism upon irradiation. The building block was used in combination with two different amines, ethylenediamine and R,R-1,2-diaminocyclohexane, to create a library of imine macrocycles. Whereas the simple amine can be used to access a polymeric state and a defined bowl-shaped macrocycle, the chiral amine gives access to a rich network of macrocycles that undergo both isomerisation as well as interconversion between different macrocyclic species, thereby allowing for control over the number of monomers involved in the cyclo-oligomerization; 1 H- and 19 F-DOSY NMR, MALDI-MS measurements, and UV/Vis spectroscopy were used to study the processes.
Collapse
Affiliation(s)
- Esther Nieland
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Jona Voss
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Andreas Mix
- Institut für Anorganische Chemie und StrukturchemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
50
|
Kiyabu S, Girard P, Siegel DJ. Discovery of Salt Hydrates for Thermal Energy Storage. J Am Chem Soc 2022; 144:21617-21627. [DOI: 10.1021/jacs.2c08993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Steven Kiyabu
- Mechanical Engineering DepartmentUniversity of Michigan, Ann Arbor, Michigan48109, United States
| | - Patrick Girard
- Mechanical Engineering DepartmentUniversity of Michigan, Ann Arbor, Michigan48109, United States
| | - Donald J. Siegel
- Mechanical Engineering DepartmentUniversity of Michigan, Ann Arbor, Michigan48109, United States
- Walker Department of Mechanical Engineering, Texas Materials Institute, and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas78712-1591, United States
| |
Collapse
|