1
|
Wang Z, Jia Y, Wang X, Liu Y, Liu Q. Fe(II) Induced Porphyrin Nanoaggregates Assembled in the Liquid-Liquid Interface with Dual Enzyme-like Activity for Colorimetric Determination of Methimazole. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23825-23836. [PMID: 39467156 DOI: 10.1021/acs.langmuir.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The liquid-liquid interface offers a confined space to control the growth of nanomaterials. In this study, Fe(II) (water phase) induced Meso-tetra (4-carboxyphenyl) porphyrin (H2TCPP) (CHCl3, organic phase) into nanoaggregates (Fe-TCPP) in the liquid-liquid interface. By tuning the ratio of DMF in organic solvents, Fe(II) induced H2TCPP into two nanoaggregates (Fe-TCPP-1 and Fe-TCPP-2) with different morphologies via coordination interaction occurring at the water-CHCl3 interface. Interestingly, the Fe-TCPP nanoaggregates possess dual enzyme-like activity (peroxidase-like and oxidase-like activity). In particular, both Fe-TCPP-1 and Fe-TCPP-2 demonstrate a peroxidase-/oxidase-like activity under visible light irradiation that is higher than that in the dark. Comparatively, Fe-TCPP-2 exhibits enhanced peroxide-like (POD) activity together with oxidase-like (OXD) activity compared with that of Fe-TCPP-1 under the corresponding similar conditions. The excellent enzyme mimic activity of Fe-TCPP nanozymes is ascribed to the generated hydroxyl radicals (·OH) and superoxide anions (O2•-). Remarkably, the catalytic activity of Fe-TCPP-2 remains more than 90% even in the higher temperature range of 35-40 °C, which is significant for biological detection under physiological conditions. Based on the outstanding dual enzyme-like activity of Fe-TCPP-2, a colorimetric sensing platform for methimazole (an antithyroid medicine) has been developed, demonstrating a linear detection range of 10-100 μM and a detection limit of 4.44 μM.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Yuqi Jia
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Xiajuan Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, CAS, Beijing 100190, P R China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China
| |
Collapse
|
2
|
Wang T, Liu T, Li Z, Wu D, Zhao X, Zeng L. Ultrasmall gold-encapsulated mesoporous platinum to promote photodynamic/catalytic therapy through cascade enzyme-like reactions. J Colloid Interface Sci 2024; 680:117-128. [PMID: 39504742 DOI: 10.1016/j.jcis.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Mesoporous platinum (mPt) nanozyme possessed enzyme-like property of catalase (CAT) and peroxidase (POD), but the insufficient hydrogen peroxide (H2O2) concentration severely restricted its application in photodynamic therapy (PDT) and catalytic therapy. Herein, by depositing ultrasmall gold nanoparticles (AuNPs) and modifying photosensitizer IR808, a multifunctional nanozyme (mPt@Au-IR808) was designed to promote PDT/catalytic therapy through cascade enzyme-like reactions of glucose oxidase (GOx) and CAT/POD. In tumor microenvironment, the CAT-like oxygen (O2) generation improved the PDT efficacy, and the POD-like hydroxyl radical (·OH) generation achieved endogenous catalytic therapy. Using the GOx/CAT-like activities and endogenous H2O2, the yields of singlet oxygen and ·OH were significantly promoted. Furthermore, mPt@Au-IR808 showed higher photothermal conversion efficiency (41.2%) than mPt (36.1%). By combining the photothermal therapy and enhanced PDT/catalytic therapy, the developed mPt@Au-IR808 nanozyme showed excellent anti-tumor efficacy, which will be promising as cascade nanozyme to promote photo/catalytic therapy.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Tao Liu
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Zekai Li
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Di Wu
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Xiaolong Zhao
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China.
| | - Leyong Zeng
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding 071002, PR China.
| |
Collapse
|
3
|
Jia X, Wang Y, Qiao Y, Jiang X, Li J. Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy. Chem Soc Rev 2024. [PMID: 39431683 DOI: 10.1039/d4cs00404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yue Qiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jinghong Li
- Beijing Institute of Life Science and Technology, Beijing 102206, P. R. China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
4
|
Wang C, Wang L, Nallathambi V, Liu Y, Kresse J, Hübner R, Reichenberger S, Gault B, Zhan J, Eychmüller A, Cai B. Structural Regulation of Au-Pt Bimetallic Aerogels for Catalyzing the Glucose Cascade Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405200. [PMID: 39136065 DOI: 10.1002/adma.202405200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Indexed: 10/11/2024]
Abstract
Bimetallic nanostructures are promising candidates for the development of enzyme-mimics, yet the deciphering of the structural impact on their catalytic properties poses significant challenges. By leveraging the structural versatility of nanocrystal aerogels, this study reports a precise control of Au-Pt bimetallic structures in three representative structural configurations, including segregated, alloy, and core-shell structures. Benefiting from a synergistic effect, these bimetallic aerogels demonstrate improved peroxidase- and glucose oxidase-like catalytic performances compared to their monometallic counterparts, unleashing tremendous potential in catalyzing the glucose cascade reaction. Notably, the segregated Au-Pt aerogel shows optimal catalytic activity, which is 2.80 and 3.35 times higher than that of the alloy and core-shell variants, respectively. This enhanced activity is attributed to the high-density Au-Pt interface boundaries within the segregated structure, which foster greater substrate affinity and superior catalytic efficiency. This work not only sheds light on the structure-property relationship of bimetallic catalysts but also broadens the application scope of aerogels in biosensing and biological detections.
Collapse
Affiliation(s)
- Cui Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Lingwei Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Varatharaja Nallathambi
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
- Max-Planck-Institut for Sustainable Materials, Max-Planck-Str.1, 40237, Düsseldorf, Germany
| | - Yuanwu Liu
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Johannes Kresse
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Baptiste Gault
- Max-Planck-Institut for Sustainable Materials, Max-Planck-Str.1, 40237, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, London, SW72AZ, UK
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | | | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| |
Collapse
|
5
|
Wei FX, Yuan X, Jiang FQ, Wang Z, Deng YF, Xu CH, Fu LH, Lin BF. Hierarchical supramolecules composed of starch-based nanocluster aggregates with light-responsive mechanical strain for remotely rapid and precise actuation. Carbohydr Polym 2024; 340:122314. [PMID: 38858012 DOI: 10.1016/j.carbpol.2024.122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Hierarchical supramolecular systems, characterized by nanoscale sensitivity and macroscopic tangible changes, offer promising perspectives for the design of remotely controllable, rapid, and precise actuation materials, serving as a potential substitution for non-intelligent and complex actuation switches. Herein, we reported on the disassembly of orderly and rigid starch helical covalent structures, and their subsequent reassembly into a hierarchical supramolecular gel composed of nanocluster aggregates, integrating supramolecular interactions of three different scales. The incorporation of photo-sensitive FeIIITA, a complex of trivalent iron ions and tannic acid, significantly enhances the photo-responsive strain capacity of the hierarchical supramolecular gel. The supramolecular gel exhibits its features in a rapid light-responsive rate of hardness and viscosity, enabling the actuation of objects within 22 s under light exposure when employed as a remote actuation switch. Meanwhile, this actuation mechanism of the hierarchical supramolecular gel also has a promising perspective in precise control, identifying and actuating one of the two objects in distances of 0.8 mm even smaller scales. Our work provides a reliable reference for replacing complex actuation switches with intelligent materials for remote, rapid, and accurate actuation, and offers valuable insights for actuation in harsh and vacuum outdoor environments.
Collapse
Affiliation(s)
- Fu-Xiang Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xu Yuan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Feng-Qiong Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yong-Fu Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Chuan-Hui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Li-Hua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Bao-Feng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
Jiang C, Chen Y, Li X, Li Y. An intelligent NIR-IIb-responsive lanthanide@metal-organic framework core-shell nanocatalyst for combined deep-tumor therapy. J Mater Chem B 2024; 12:8626-8632. [PMID: 39189804 DOI: 10.1039/d4tb01321b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor photosensitizer loading capacity. Herein, we constructed an upconversion nanoparticle@Zr-based metal-organic framework@indocyanine green molecule (UCNPs@ZrMOF@ICG) nanocomposite to integrate 1532 nm light-triggered PDT and 808 nm light-mediated PTT. NaLnF4 nanoparticles are designed to emit upconversion luminescence (UCL) under 1532 nm laser excitation, which is consistent with the absorption spectra of the ZrMOF. Benefiting from the excellent energy transfer efficiency, the ZrMOF can absorb visible light from the UCNPs and then catalyze O2 into 1O2 for deep tissue PDT. To achieve combination therapy, the clinically approved ICG nanocomposite was introduced as a photothermal agent for PTT under 808 nm laser irradiation, and the photothermal conversion efficiency was calculated to be ∼28%. The designed nanosystems facilitate efficient deep-tissue tumor treatment by integrating PDT with PTT. Ultimately, this study creates a multifunctional nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.
Collapse
Affiliation(s)
- Chaoqun Jiang
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Yu Chen
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Xiaolong Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan 030032, China.
| | - Youbin Li
- School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| |
Collapse
|
7
|
Skládal P, Farka Z. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Mikrochim Acta 2024; 191:551. [PMID: 39167235 DOI: 10.1007/s00604-024-06615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
Collapse
Affiliation(s)
- Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice, 5, 625 00, Brno, Czech Republic
| |
Collapse
|
8
|
Paul V J, Sharma P, Shanavas A. Self-Assembled Nanobiomaterials for Combination Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4962-4974. [PMID: 38116786 DOI: 10.1021/acsabm.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nanotechnological interventions for cancer immunotherapy are a rapidly evolving paradigm with immense potential. Self-assembled nanobiomaterials present safer alternatives to their nondegradable counterparts and pose better functionalities in terms of controlled drug delivery and phototherapy to activate immunogenic cell death. In this Review, we discuss several classes of self-assembled nanobiomaterials based on polymers, lipids, peptides, hydrogel, metal organic frameworks, and covalent-organic frameworks with the ability to activate systemic immune response and convert a "cold" immunosuppressive tumor mass to a "hot" antitumor immune cell rich microenvironment. The unique aspects of these materials are underpinned, and their mechanisms of combinatorial immunotherapeutic action are discussed. Future challenges associated with their clinical translation are also highlighted.
Collapse
Affiliation(s)
- Johns Paul V
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Priyanka Sharma
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
9
|
Wang Y, Meng L, Zhao F, Zhao L, Gao W, Yu Q, Chen P, Sun Y. Harnessing External Irradiation for Precise Activation of Metal-Based Agents in Cancer Therapy. Chembiochem 2024; 25:e202400305. [PMID: 38825577 DOI: 10.1002/cbic.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/04/2024]
Abstract
Cancer is a significant global health issue. Platinum-based chemotherapy drugs, including cisplatin, are crucial in clinical anti-cancer treatment. However, these drugs have limitations such as drug resistance, non-specific distribution, and irreversible toxic and side effects. In recent years, the development of metal-based agents has led to the discovery of other anti-cancer effects beyond chemotherapy. Precise spatiotemporal controlled external irradiation can activate metal-based agents at specific sites and play a different role from traditional chemotherapy. These strategies can not only enhance the anti-cancer efficiency, but also show fewer side effects and non-cross-drug resistance, which are ideal approaches to solve the problems caused by traditional platinum-based chemotherapy drugs. In this review, we focus on various metal-based agent-mediated cancer therapies that are activated by three types of external irradiation: near-infrared (NIR) light, ultrasound (US), and X-ray, and give some prospects. We hope that this review will promote the generation of new kinds of metal-based anti-cancer agents.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Liling Meng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Fang Zhao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, 530021, China
| | - Limei Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Wei Gao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Qi Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
10
|
Wang D, Yao H, Ye J, Gao Y, Cong H, Yu B. Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404350. [PMID: 39149999 DOI: 10.1002/smll.202404350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Huanchen Yao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiashuo Ye
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Gao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
11
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
12
|
Wang Y, Xie F, Zhao L. Spatially Confined Nanoreactors Designed for Biological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310331. [PMID: 38183369 DOI: 10.1002/smll.202310331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Indexed: 01/08/2024]
Abstract
The applications of nanoreactors in biology are becoming increasingly significant and prominent. Specifically, nanoreactors with spatially confined, due to their exquisite design that effectively limits the spatial range of biomolecules, attracted widespread attention. The main advantage of this structure is designed to improve reaction selectivity and efficiency by accumulating reactants and catalysts within the chambers, thus increasing the frequency of collisions between reactants. Herein, the recent progress in the synthesis of spatially confined nanoreactors and their biological applications is summarized, covering various kinds of nanoreactors, including porous inorganic materials, porous crystalline materials with organic components and self-assembled polymers to construct nanoreactors. These design principles underscore how precise reaction control could be achieved by adjusting the structure and composition of the nanoreactors to create spatial confined. Furthermore, various applications of spatially confined nanoreactors are demonstrated in the biological fields, such as biocatalysis, molecular detection, drug delivery, and cancer therapy. These applications showcase the potential prospects of spatially confined nanoreactors, offering robust guidance for future research and innovation.
Collapse
Affiliation(s)
- Yating Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Fengjuan Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
13
|
Xu W, Qian Y, Qiao L, Li L, Xie Y, Sun Q, Quan Z, Li C. "Three Musketeers" Enhances Photodynamic Effects by Reducing Tumor Reactive Oxygen Species Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26590-26603. [PMID: 38742307 DOI: 10.1021/acsami.4c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) has been widely used in the treatment of a variety of tumors. Compared with other therapeutic methods, this treatment has the advantages of high efficiency, strong penetration, and controllable treatment range. PDT kills tumors by generating a large amount of reactive oxygen species (ROS), which causes oxidative stress in the tumor. However, this killing effect is significantly inhibited by the tumor's own resistance to ROS. This is because tumors can either deplete ROS by high concentration of glutathione (GSH) or stimulate autophagy to eliminate ROS-generated damage. Furthermore, the tumor can also consume ROS through the lactic acid metabolic pathway, ultimately hindering therapeutic progress. To address this conundrum, we developed a UCNP-based nanocomposite for enhanced PDT by reducing tumor ROS resistance. First, Ce6-doped SiO2 encapsulated UCNPs to ensure the efficient energy transfer between UCNPs and Ce6. Then, the biodegradable tetrasulfide bond-bridged mesoporous organosilicon (MON) was coated on the outer layer to load chloroquine (CQ) and α-cyano4-hydroxycinnamic acid (CHCA). Finally, hyaluronic acid was utilized to modify the nanomaterials to realize an active-targeting ability. The obtained final product was abbreviated as UCNPs@MON@CQ/CHCA@HA. Under 980 nm laser irradiation, upconverted red light from UCNPs excited Ce6 to produce a large amount of singlet oxygen (1O2), thus achieving efficient PDT. The loaded CQ and CHCA in MON achieved multichannel enhancement of PDT. Specifically, CQ blocked the autophagy process of tumor cells, and CHCA inhibited the uptake of lactic acid by tumor cells. In addition, the coated MON consumed a high level of intracellular GSH. In this way, these three functions complemented each other, just as the "three musketeers" punctured ROS resistance in tumors from multiple angles, and both in vitro and in vivo experiments had demonstrated the elevated PDT efficacy of nanomaterials.
Collapse
Affiliation(s)
- Wencheng Xu
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yanrong Qian
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Qianqian Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong 518057, P. R. China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
14
|
Tian J, Li B, Wu C, Li Z, Tang H, Song W, Qi GB, Tang Y, Ping Y, Liu B. Programmable Singlet Oxygen Battery for Automated Photodynamic Therapy Enabled by Pyridone-Pyridine Tautomer Engineering. J Am Chem Soc 2024. [PMID: 38753624 DOI: 10.1021/jacs.4c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The efficacy of photodynamic therapy is hindered by the hypoxic environment in tumors and limited light penetration depth. The singlet oxygen battery (SOB) has emerged as a promising solution, enabling oxygen- and light-independent 1O2 release. However, conventional SOB systems typically exhibit an "always-ON" 1O2 release, leading to potential 1O2 leakage before and after treatment. This not only compromises therapeutic outcomes but also raises substantial biosafety concerns. In this work, we introduce a programmable singlet oxygen battery, engineered to address all the issues discussed above. The concept is illustrated through the development of a tumor-microenvironment-responsive pyridone-pyridine switch, PyAce, which exists in two tautomeric forms: PyAce-0 (pyridine) and PyAce (pyridone) with different 1O2 storage half-lives. In its native state, PyAce remains in the pyridone form, capable of storing 1O2 (t1/2 = 18.5 h). Upon reaching the tumor microenvironment, PyAce is switched to the pyridine form, facilitating rapid and thorough 1O2 release (t1/2 = 16 min), followed by quenched 1O2 release post-therapy. This mechanism ensures suppressed 1O2 production pre- and post-therapy with selective and rapid 1O2 release at the tumor site, maximizing therapeutic efficacy while minimizing side effects. The achieved "OFF-ON-OFF" 1O2 therapy showed high spatiotemporal selectivity and was independent of the oxygen supply and light illumination.
Collapse
Affiliation(s)
- Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Chongzhi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honglin Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Guo-Bin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore 117585, Singapore
| |
Collapse
|
15
|
Wei F, Chen F, Wu S, Zha M, Liu J, Wong KL, Li K, Wong KMC. Ligand Regulation Strategy to Modulate ROS Nature in a Rhodamine-Iridium(III) Hybrid System for Phototherapy. Inorg Chem 2024; 63:5872-5884. [PMID: 38498970 DOI: 10.1021/acs.inorgchem.3c04350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The efficacy of photodynamic therapy (PDT) is highly dependent on the photosensitizer features. The reactive oxygen species (ROS) generated by photosensitizers is proven to be associated with immunotherapy by triggering immunogenic cell death (ICD) as well. In this work, we establish a rhodamine-iridium(III) hybrid model functioning as a photosensitizer to comprehensively understand its performance and potential applications in photodynamic immunotherapy. Especially, the correlation between the ROS generation efficiency and the energy level of the Ir(III)-based excited state (T1'), modulated by the cyclometalating (C∧N) ligand, is systematically investigated and correlated. We prove that in addition to the direct population of the rhodamine triplet state (T1) formed through the intersystem crossing process with the assistance of a heavy Ir(III) metal center, the fine-tuned T1' state could act as a relay to provide an additional pathway for promoting the cascade energy transfer process that leads to enhanced ROS generation ability. Moreover, type I ROS can be effectively produced by introducing sulfur-containing thiophene units in C∧N ligands, providing a stronger M1 macrophage-activation efficiency under hypoxia to evoke in vivo antitumor immunity. Overall, our work provides a fundamental guideline for the molecular design and exploration of advanced transition-metal-based photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Fangfang Wei
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Feng Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siye Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Menglei Zha
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiqiang Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Liu Y, Wang L, Zhang T, Wang C, Fan Y, Wang C, Song N, Zhou P, Yan CH, Tang Y. Tumor Microenvironment-Regulating Two-Photon Probe Based on Bimetallic Post-Coordinated MOF Facilitating the Dual-Modal and Deep Imaging-Guided Synergistic Therapies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12289-12301. [PMID: 38418381 DOI: 10.1021/acsami.3c18990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The intricate tumor microenvironment (TME) always brings about unsatisfactory therapeutic effects for treatments, although nanomedicines have been demonstrated to be highly beneficial for synergistic therapies to avoid the side effects caused by the complexity and heterogeneity of cancer. Developing nanotheranostics with the functionalities of both synergistic therapies and TME regulation is a good strategy but is still in its infancy. Herein, an "all-in-one" nanoplatform for integrated diagnosis and treatment, namely, Carrier@ICG@DOX@FA (CIDF), is constructed. Benefiting from the bimetallic coordination of Eu3+-HTHA (4,4,4-trifluoro-1-(9-hexylcarbazol-3-yl)-1,3-butanedione) and Fe3+ with the ligands in UiO-67, CIDF can simultaneously achieve two-photon fluorescence imaging, fluorescent lifetime imaging in deep tumors, and regulation of TME. Owing to its porosity, CIDF can encapsulate indocyanine green as photosensitizers and doxorubicin as chemotherapeutic agent, further realizing light-controlled drug release. Moreover, CIDF exhibited good biocompatibility and tumor targeting by coating with folic-acid-modified polymers. Both in vitro and in vivo experiments demonstrate the excellent therapeutic efficacy of CIDF through dual-modal-imaging-guided synergistic photothermal-, photodynamic-, and chemotherapy. CIDF provides a new paradigm for the construction of TME-regulated synergistic nanotheranostics and realizes the complete elimination of tumors without recurrence.
Collapse
Affiliation(s)
- Yanjun Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lu Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tong Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chunya Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yifan Fan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Congcong Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Nan Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Zhou
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chun-Hua Yan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| |
Collapse
|
17
|
Hu T, Jia L, Li H, Yang C, Yan Y, Lin H, Zhang F, Qu F, Guo W. An Intelligent and Soluble Microneedle Composed of Bi/BiVO 4 Schottky Heterojunction for Tumor Ct Imaging and Starvation/Gas Therapy-Promoted Synergistic Cancer Treatment. Adv Healthc Mater 2024; 13:e2303147. [PMID: 38206853 DOI: 10.1002/adhm.202303147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Phototherapy and sonodynamic therapy (SDT) are widely used for the synergistic treatment of tumors and have received considerable attention. However, an inappropriate tumor microenvironment, including pH, H2O2, oxygen, and glutathione levels, can reduce the therapeutic effects of synergistic phototherapy and SDT. Here, a novel Bi-based soluble microneedle (MN) is designed for the CT imaging of breast tumors and starvation therapy/gas therapy-enhanced phototherapy/SDT. The optimized Bi/BiVO4 Schottky heterojunction serves as the tip of the MN, which not only has excellent photothermal conversion ability and CT contrast properties, but its heterojunction can also avoid the rapid combination of electrons and hole pairs, thereby enhancing the photodynamic/sonodynamic effects. A degradable MN with excellent mechanical properties is fabricated by optimizing the ratios of poly(vinyl alcohol), poly(vinyl pyrrolidone), and sodium hyaluronate. Glucose oxidase (GOx) and diallyl trisulfide are loaded into the MN to achieve tumor starvation and gas therapy, respectively; And the controlled release of GOx and H2S can be achieved under ultrasound or near-infrared laser irradiation. The in vitro and in vivo results demonstrate that this multifunctional MN can achieve high therapeutic efficacy through starvation therapy/gas therapy-enhanced phototherapy/SDT. The designed multifunctional MN provides a prospective approach for synergistic phototherapy and SDT.
Collapse
Affiliation(s)
- Tingting Hu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Lu Jia
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Heng Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yuening Yan
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Huiming Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Feng Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Fengyu Qu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
18
|
Zhang H, Yuan W. Self-healable oxide sodium alginate/carboxymethyl chitosan nanocomposite hydrogel loading Cu 2+-doped MOF for enhanced synergistic and precise cancer therapy. Int J Biol Macromol 2024; 262:129996. [PMID: 38342271 DOI: 10.1016/j.ijbiomac.2024.129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
The limitations of traditional therapeutic methods such as chemotherapy serious restricted the application in tumor treatment, including poor targeting, toxic side effects and poor precision. It is important to develop non-chemotherapeutic systems to achieve precise and efficient tumor treatment. Therefore, a functional metal-organic framework material (MOF) with porphyrin core and doped with Cu2+ and surface-modified with polydopamine (PDA), namely PCN-224(Cu)@PDA (PCP) was designed and prepared. After loaded into the injectable and self-healable hydrogels by dynamic Schiff base bonding of oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMC), the multifunctional nanocomposite hydrogels were obtained, in which Cu2+ in MOF converts to Cu+ by reacting with glutathione (GSH) which reduces the tumor antioxidant activity to improve the CDT effect. The Cu2+/Cu+ induces Fenton-like reaction in tumor cells to produce a toxic hydroxyl radical (OH). PDA achieves photothermal conversion under NIR light for photothermal therapy (PTT), and porphyrin core as a ligand generates reactive oxygen species (ROS), presenting highly efficient photodynamic therapy (PDT). Injectable self-healing hydrogel as a loading platform can be in situ injected to tumor site to release PCP and endocytosed by tumor cells to achieve precise and synergistic CDT-PDT-PTT therapy.
Collapse
Affiliation(s)
- Hanyan Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
19
|
Liu Y, Cheng C, Zhao Z, Liu W, Qi L. MOF-polymer composites with well-distributed gold nanoparticles for visual monitoring of homocysteine. Analyst 2024; 149:1658-1664. [PMID: 38323490 DOI: 10.1039/d3an01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The distribution of gold nanoparticles (AuNPs) on the surface of a metal-organic framework (MOF) plays a crucial role in the catalytic performance of MOF-AuNP composites. This study describes how the physical adsorption (PH@AuNPs-on-U) and chemical modification of AuNPs on the surface of UiO-66-NH2 (U) affect the composites' catalytic efficiency. After 2-vinyl-4,4-dimethyl-2-oxazolin-5-one (VD) linked to poly(N-2-hydroxypropyl methacrylamide) (PH) with U (UVD-PH), UVD-PH@AuNPs composites were constructed with PH as the capping and reducing reagent. The composites exhibited higher peroxidase (POD)-like activity than PH@AuNPs-on-U for oxidising 3,3'5,5'-tetramethylbenzidine (TMB) with H2O2. The approach demonstrated that the proposed composite-based nanozymes could significantly enhance their catalytic activity and had a highly uniform distribution of PH@AuNPs on the surface of UVD. An assay with the nanozymes for visual detection of homocysteine (Hcy) was developed, displaying a good linear relationship (R2 = 0.998) ranging from 3.34 μM to 30.0 μM and a detection of limit of 0.3 μM. Additionally, the UVD-PH@AuNPs-TMB-H2O2 system successfully monitored serum Hcy after intraperitoneal injection in rats. This study paves a new way for developing MOF-AuNPs with highly uniform surface distribution of polymer@AuNPs to boost its catalytic activity and to detect drugs in real bio-samples.
Collapse
Affiliation(s)
- Yutong Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Cheng Cheng
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
20
|
Scheibel DM, Gitsov IPI, Gitsov I. Enzymes in "Green" Synthetic Chemistry: Laccase and Lipase. Molecules 2024; 29:989. [PMID: 38474502 DOI: 10.3390/molecules29050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymes play an important role in numerous natural processes and are increasingly being utilized as environmentally friendly substitutes and alternatives to many common catalysts. Their essential advantages are high catalytic efficiency, substrate specificity, minimal formation of byproducts, and low energy demand. All of these benefits make enzymes highly desirable targets of academic research and industrial development. This review has the modest aim of briefly overviewing the classification, mechanism of action, basic kinetics and reaction condition effects that are common across all six enzyme classes. Special attention is devoted to immobilization strategies as the main tools to improve the resistance to environmental stress factors (temperature, pH and solvents) and prolong the catalytic lifecycle of these biocatalysts. The advantages and drawbacks of methods such as macromolecular crosslinking, solid scaffold carriers, entrapment, and surface modification (covalent and physical) are discussed and illustrated using numerous examples. Among the hundreds and possibly thousands of known and recently discovered enzymes, hydrolases and oxidoreductases are distinguished by their relative availability, stability, and wide use in synthetic applications, which include pharmaceutics, food and beverage treatments, environmental clean-up, and polymerizations. Two representatives of those groups-laccase (an oxidoreductase) and lipase (a hydrolase)-are discussed at length, including their structure, catalytic mechanism, and diverse usage. Objective representation of the current status and emerging trends are provided in the main conclusions.
Collapse
Affiliation(s)
- Dieter M Scheibel
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
| | - Ioan Pavel Ivanov Gitsov
- Science and Technology, Medtronic Incorporated, 710 Medtronic Parkway, Minneapolis, MN 55432, USA
| | - Ivan Gitsov
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
- Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse, NY 13210, USA
| |
Collapse
|
21
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
22
|
Hao R, Zhang G, Zhang J, Zeng L. Ultrasmall Au/Pt-loaded biocompatible albumin nanospheres to enhance photodynamic/catalytic therapy via triple amplification of glucose-oxidase/catalase/peroxidase. J Colloid Interface Sci 2024; 654:212-223. [PMID: 37839238 DOI: 10.1016/j.jcis.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The weak catalytic activity of nanocatalysts and the insufficient endogenous hydrogen peroxide (H2O2) in tumor microenvironment (TME) seriously restricted the efficacy of catalytic therapy, and the non-degradability of inorganic nanocarriers was also unfavorable for their clinical applications. Herein, by depositing gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) with ultrasmall size and modifying photosensitizer (IR808), a biocompatible bovine serum albumin (BSA) nanoplatform (BSA@Au/Pt-IR808) with triple-amplification of enzyme activity was constructed to enhance photodynamic therapy (PDT) and catalytic therapy. Ultrasmall AuNPs possessed glucose oxidase (GOx)-like activity, by which the self-supplying H2O2 accelerated the dual-enzyme activity of peroxidase (POD) and catalase (CAT) of ultrasmall PtNPs, promoting the generation of hydroxyl radical (·OH) and singlet oxygen (1O2). Compared with BSA-IR808 and BSA@Pt, the yields of 1O2 and ·OH of BSA@Au/Pt-IR808 increased by 38.2% and 18.6%. Under the combination action of photothermal therapy (PTT)/PDT/catalytic therapy of BSA@Au/Pt-IR808, the cell viability significantly reduced to 12.8%, and the tumors were completely eliminated, demonstrating the enhanced PDT and catalytic therapy against breast cancer.
Collapse
Affiliation(s)
- Ran Hao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Gangwan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Jiahe Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
23
|
Xia M, Wang Q, Liu Y, Fang C, Zhang B, Yang S, Zhou F, Lin P, Gu M, Huang C, Zhang X, Li F, Liu H, Wang G, Ling D. Self-propelled assembly of nanoparticles with self-catalytic regulation for tumour-specific imaging and therapy. Nat Commun 2024; 15:460. [PMID: 38212655 PMCID: PMC10784296 DOI: 10.1038/s41467-024-44736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Targeted assembly of nanoparticles in biological systems holds great promise for disease-specific imaging and therapy. However, the current manipulation of nanoparticle dynamics is primarily limited to organic pericyclic reactions, which necessitate the introduction of synthetic functional groups as bioorthogonal handles on the nanoparticles, leading to complex and laborious design processes. Here, we report the synthesis of tyrosine (Tyr)-modified peptides-capped iodine (I) doped CuS nanoparticles (CuS-I@P1 NPs) as self-catalytic building blocks that undergo self-propelled assembly inside tumour cells via Tyr-Tyr condensation reactions catalyzed by the nanoparticles themselves. Upon cellular internalization, the CuS-I@P1 NPs undergo furin-guided condensation reactions, leading to the formation of CuS-I nanoparticle assemblies through dityrosine bond. The tumour-specific furin-instructed intracellular assembly of CuS-I NPs exhibits activatable dual-modal imaging capability and enhanced photothermal effect, enabling highly efficient imaging and therapy of tumours. The robust nanoparticle self-catalysis-regulated in situ assembly, facilitated by natural handles, offers the advantages of convenient fabrication, high reaction specificity, and biocompatibility, representing a generalizable strategy for target-specific activatable biomedical imaging and therapy.
Collapse
Grants
- 21936001, 21675001, 21976004, 32071374 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2022YFB3203801, 2022YFB3203804, 2022YFB3203800), Natural Science Foundation of Anhui Province (KJ2017A315), Leading Talent of “Ten Thousand Plan”-National High-Level Talents Special Support Plan, Program of Shanghai Academic Research Leader under the Science and Technology Innovation Action Plan (21XD1422100), Explorer Program of Science and Technology Commission of Shanghai Municipality (22TS1400700), start-up funds from Shanghai Jiao Tong University (22X010201631), Natural Science Foundation of Zhejiang Province (LR22C100001), Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20210900), CAS Interdisciplinary lnnovation Team (JCTD-2020-08), Postdoctoral Innovative Talent Support Program (BX20230220), Postdoctoral Foundation of China (2023M732244), Outstanding Innovative Research Team for Molecular Enzymology and Detection in Anhui Provincial Universities (2022AH010012), Anhui Province Outstanding Youth Fund (2008085J10), Anhui Provincial Education Department Natural Sciences Key Fund (KJ2021A0113), and Shanghai Municipal Science and Technology Commission (21dz2210100).
Collapse
Affiliation(s)
- Mengmeng Xia
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yamin Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
- World Laureates Association (WLA) Laboratories, 201203, Shanghai, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fu Zhou
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mingzheng Gu
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Canyu Huang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaojun Zhang
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, 310009, Hangzhou, China.
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China.
| | - Guangfeng Wang
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China.
- World Laureates Association (WLA) Laboratories, 201203, Shanghai, China.
| |
Collapse
|
24
|
Zhang W, Wang S, Ye W, Zhu Y, Li CA, Wang H, Dong C, Ma H, Yan M, An Z, Huang W, Deng R. Organic Excitonic State Management by Surface Metallic Coupling of Inorganic Lanthanide Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202312151. [PMID: 37909102 DOI: 10.1002/anie.202312151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
The ability to harness charges and spins for control of organic excitonic states is critical in developing high-performance organic luminophores and optoelectronic devices. Here we report a facile strategy to efficiently manipulate the electronic energy states of various organic phosphors by coupling them with inorganic lanthanide nanocrystals. We show that the metallic atoms exposed on the nanocrystal surface can introduce strong coupling effects to 9-(4-ethoxy-6-phenyl-1,3,5-triazin-2-yl)-9H-carbazole (OCzT) and some organic chromophores with carbazole functional groups when the organics are approaching the nanocrystals. This unconventional organic-inorganic hybridization enables a nearly 100 % conversion of the singlet excitation to fast charge transfer luminescence that does not exist in pristine organics, which broadens the utility of organic phosphors in hybrid systems.
Collapse
Affiliation(s)
- Wenxing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shan Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wenpeng Ye
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yiyuan Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Cheng-Ao Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - He Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Chaomin Dong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
25
|
Peng C, Yu Z, Wu W, Li J, Wang E. CuFe Layered Double Hydroxide as Self-Cascade Nanoreactor for Efficient Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38047886 DOI: 10.1021/acsami.3c11757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Nanozyme-induced reactive oxygen species (ROS)-dependent catalytic therapy has been developed into a powerful strategy against bacterial wound infections. However, the limited endogenous supply or instability of H2O2, the reliance on external stimuli for the generation of ROS, and the highly expressed glutathione (GSH) level make it a challenge to achieve high-performance therapeutic efficiency. In this work, a facile therapeutic strategy against bacterial infections with pristine CuFe layered double hydroxide (LDH) as the self-cascade nanoreactor is proposed without modification or additional energy input. CuFe LDH with an oxidase-like feature can catalyze the generation of multiple ROS, such as 1O2, ·O2-, and H2O2. And the self-generated H2O2 in the cascade nanoreactor could be further in situ transformed to ·OH owing to the peroxidase-like activity. As a result, the cell membrane of bacteria is destroyed, leading to death. Furthermore, its ultrahigh enzyme-like activity of CuFe LDH could effectively promote the breakdown of the biofilm structure. Additionally, the Cu2+-mediated GSH exhaustion of CuFe LDH further avoids the consumption of oxidized ROS and thereby significantly improves the sterilization effect. Finally, the as-prepared CuFe LDH with negligible side effects on normal tissues can be successfully used to eliminate the methicillin-resistant Staphylococcus aureus-infected wounds and accelerate their healing in the mouse model, which paves a new avenue as an antibacterial agent for clinical anti-infective treatment.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenting Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Zhang D, Liu D, Wang C, Su Y, Zhang X. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Adv Colloid Interface Sci 2023; 322:103037. [PMID: 37931381 DOI: 10.1016/j.cis.2023.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Inspired by natural catalytic compartments, various synthetic compartments that seclude catalytic reactions have been developed to understand complex multistep biosynthetic pathways, bestow therapeutic effects, or extend biosynthetic pathways in living cells. These emerging nanoreactors possessed many advantages over conventional biomedicine, such as good catalytic activity, specificity, and sustainability. In the past decade, a great number of efficient catalytic systems based on diverse nanoreactors (polymer vesicles, liposome, polymer micelles, inorganic-organic hybrid materials, MOFs, etc.) have been designed and employed to initiate in situ catalyzed chemical reactions for therapy. This review aims to present the recent progress in the development of catalytic systems based on nanoreactors for therapeutic applications, with a special emphasis on the principles and design strategies. Besides, the key components of nanoreactor-based catalytic systems, including nanocarriers, triggers or energy inputs, and products, are respectively introduced and discussed in detail. Challenges and prospects in the fabrication of therapeutic catalytic nanoreactors are also discussed as a conclusion to this review. We believe that catalytic nanoreactors will play an increasingly important role in modern biomedicine, with improved therapeutic performance and minimal side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yanhong Su
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
27
|
Mao X, Zhang X, Chao Z, Qiu D, Wei S, Luo R, Chen D, Zhang Y, Chen Y, Yang Y, Monchaud D, Ju H, Mergny JL, Lei J, Zhou J. A Versatile G-Quadruplex (G4)-Coated Upconverted Metal-Organic Framework for Hypoxic Tumor Therapy. Adv Healthc Mater 2023; 12:e2300561. [PMID: 37402245 DOI: 10.1002/adhm.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Given the complexity of the tumor microenvironment, multiple strategies are being explored to tackle hypoxic tumors. The most efficient strategies combine several therapeutic modalities and typically requires the development of multifunctional nanocomposites through sophisticated synthetic procedures. Herein, the G-quadruplex (G4)-forming sequence AS1411-A (d[(G2 T)4 TG(TG2 )4 A]) is used for both its anti-tumor and biocatalytic properties when combined with hemin, increasing the production of O2 ca. two-fold as compared to the parent AS1411 sequence. The AS1411-A/hemin complex (GH) is grafted on the surface and pores of a core-shell upconverted metal-organic framework (UMOF) to generate a UMGH nanoplatform. Compared with UMOF, UMGH exhibits enhanced colloidal stability, increased tumor cell targeting and improved O2 production (8.5-fold) in situ. When irradiated by near-infrared (NIR) light, the UMGH antitumor properties are bolstered by photodynamic therapy (PDT), thanks to its ability to convert O2 into singlet oxygen (1 O2 ). Combined with the antiproliferative activity of AS1411-A, this novel approach lays the foundation for a new type of G4-based nanomedicine.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, uB, Dijon, 21078, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Zhang X, Cui J, Liu J, Chen X, Chen M, Wang J. Dual ligand-assisted assembly of metal-organic frameworks on upconversion nanoparticles for NIR photodynamic therapy against hypoxic tumors. J Mater Chem B 2023; 11:9516-9524. [PMID: 37740397 DOI: 10.1039/d3tb01398g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The hypoxic nature of tumor microenvironments significantly impedes the effectiveness of photodynamic therapy (PDT). To address this challenge, we constructed a pioneering nanohybrid by integrating upconversion nanoparticles (UCNPs) and metal-organic frameworks (MOFs) through a dual-ligand-assisted assembly approach. We functionalized UCNPs with polyvinyl pyrrolidone (PVP) and branched polyethylenimine (PEI), enabling the in situ growth of MOFs on multiple UCNP-conjugates. This nanohybrid, termed UCM, possesses a unique heterogeneous structure that facilitates effective energy transfer from UCNPs to MOFs, enhancing NIR-activated PDT. A distinguishing feature of UCMs is biocatalytically active MOFs, which provide them with a peroxidase-like capability. This characteristic allows UCMs to utilize the excess H2O2 in the tumor microenvironment, ensuring continuous oxygen production essential for type II PDT. Our research indicates that UCMs not only amplify the efficacy of PDT but also address the therapeutic challenges in hypoxic tumor microenvironments by supplying in situ oxygen.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Chemistry, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jiasen Cui
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Jinhui Liu
- Department of Chemistry, Northeastern University, Box 332, Shenyang 110819, China.
| | - Xi Chen
- School and Hospital of Stomatology, Department of Oral Pathology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110001, China
| | - Mingli Chen
- Department of Chemistry, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
29
|
Zhang T, Lu N, Wang C, Jiang H, Zhang M, Zhang R, Zhong Y, Xing D. Artificial Peroxisome hNiPt@Co-NC with Tetra-enzyme Activities for Colorimetric Glutathione Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46738-46746. [PMID: 37756219 DOI: 10.1021/acsami.3c11840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Artificial peroxisome plays an important part in protocell system construction and disease therapy. However, it remains an enormous challenge to exploit a practicable artificial peroxisome with multiple and stable activities. Nanozymes with multienzyme mimetic activities stand out for artificial peroxisome preparation. Herein, a novel nanozyme─Co-nanoparticle-embedded N-enriched carbon nanocubes (Co,N-CNC) decorated by hollow NiPt nanospheres (hNiPt@Co-NC) with featured tetra-enzyme mimetic activities of natural peroxisome─was prepared. Due to the synergistic effect of hollow NiPt nanospheres (hNiPtNS) and cubic porous Co,N-CNC support, hNiPt@Co-NC exhibited oxidase (OXD), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD)-like activities with comparable catalytic efficiency, enabling it to be a competitive candidate for artificial peroxisome investigation. Based on the high OXD-mimetic activity of hNiPt@Co-NC, a facile colorimetric platform was proposed for reduced glutathione (GSH) detection with a wide linear range (0.1-5 μM, 5-100 μM) and a low detection limit (27 nM). Thus, the hNiPt@Co-NC with tetra-enzyme mimetic activities possessed bright prospects in diversified biotechnological applications, including artificial organelles, biosensing, and medical diagnostics.
Collapse
Affiliation(s)
- Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Nannan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230013, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Shi P, Sun X, Yuan H, Chen K, Bi S, Zhang S. Nanoscale Metal-Organic Frameworks Combined with Metal Nanoparticles and Metal Oxide/Peroxide to Relieve Tumor Hypoxia for Enhanced Photodynamic Therapy. ACS Biomater Sci Eng 2023; 9:5441-5456. [PMID: 37729521 DOI: 10.1021/acsbiomaterials.3c00509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved noninvasive tumor therapy that can selectively kill malignant tumor cells, with promising use in the treatment of various cancers. PDT is typically composed of three important parts: the specific wavelength of light, photosensitizer (PS), and oxygen. With the progressing investigation on PDT treatment, the most recent attention has focused on improving photodynamic efficiency. Tumor hypoxia has always been a critical factor hindering the efficacy of PDT. Nanoscale metal-organic frameworks (nMOF), the fourth generation of PS, present great potential in photodynamic therapy. In particular, nMOF combined with metal nanoparticles and metal oxide/peroxide has demonstrated unique properties for enhanced PDT. The metal and metal oxide nanoparticles can catalyze H2O2 to generate oxygen or automatically produces oxygen, alleviating the hypoxia and improving the photodynamic efficiency. Metal peroxide nanoparticles can spontaneously produce oxygen in water or under acidic conditions. Therefore, this Review summarizes the recent development of nMOF combined with metal nanoparticles (platinum nanoparticles and gold nanoparticles) and metal oxide/peroxide (manganese dioxide, ferric oxide, cerium oxide, calcium peroxide, and magnesium peroxide) for enhanced photodynamic therapy by alleviating tumor hypoxia. Finally, future perspectives of nMOF combined nanomaterials in PDT are put forward.
Collapse
Affiliation(s)
- Pengfei Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Xinran Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Haoming Yuan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Kaixiu Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Shusheng Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| |
Collapse
|
31
|
Sun Q, Chen W, Wang M, Zheng P, Gao M, Song F, Li C. A "Chase and Block" Strategy for Enhanced Cancer Therapy with Hypoxia-Promoted Photodynamic Therapy and Autophagy Inhibition Based on Upconversion Nanocomposites. Adv Healthc Mater 2023; 12:e2301087. [PMID: 37248635 DOI: 10.1002/adhm.202301087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 05/31/2023]
Abstract
The combination of hypoxia-promoted photodynamic therapy (PDT) and autophagy modulation has shown strong potential in the treatment of hypoxic tumors. Here, a novel design is put forward for synergistic PDT and autophagy inhibition to amplify the effect of cancer therapy by a "chase and block" strategy. Specifically, the organic photosensitive molecule (denoted FL) is encapsulated in a hydrophobic layer between multi-band emitted upconversion nanoparticles (UCNPs) and the amphiphilic polymer DSPE-PEG-COOH, allowing FL to fully exploit the luminescence spectrum of UCNPs under near-infrared (NIR) light irradiation. The FL is specifically activated by nitroreductase in the tumor microenvironment (TME), enabling hypoxia-promoted PDT and thus performing a "chase" strategy for cancer therapy. Additionally, the nanosystem is combined with an autophagy-inhibiting melittin pro-peptide (denoted as MEL), which could be triggered by the highly expressed legumain in tumor cells to inhibit the autophagy procedure by disrupting the lysosomal membrane, thus "blocking" the cancer cells from rescuing themselves and amplifying the killing effect of PDT. Both FL and MEL can be specifically activated by TME and the upconversion luminescence imaging of UCNPs offers a tracer function for the treatment. Therefore, UCNPs@FL-MEL might be an important reference for the design and development of future nanotherapeutic agents.
Collapse
Affiliation(s)
- Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Weilin Chen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Pan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Minghong Gao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, P. R. China
| |
Collapse
|
32
|
Garcia-Peiro JI, Bonet-Aleta J, Tamayo-Fraile ML, Hueso JL, Santamaria J. Platinum-based nanodendrites as glucose oxidase-mimicking surrogates. NANOSCALE 2023; 15:14399-14408. [PMID: 37609926 PMCID: PMC10500625 DOI: 10.1039/d3nr02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023]
Abstract
Catalytic conversion of glucose represents an interesting field of research with multiple applications. From the biotechnology point of view, glucose conversion leads to the fabrication of different added-value by-products. In the field of nanocatalytic medicine, the reduction of glucose levels within the tumor microenvironment (TME) represents an appealing approach based on the starvation of cancer cells. Glucose typically achieves high conversion rates with the aid of glucose oxidase (GOx) enzymes or by fermentation. GOx is subjected to degradation, possesses poor recyclability and operates under very specific reaction conditions. Gold-based materials have been typically explored as inorganic catalytic alternatives to GOx in order to convert glucose into building block chemicals of interest. Still, the lack of sufficient selectivity towards certain products such as gluconolactone, the requirement of high fluxes of oxygen or the critical size dependency hinder their full potential, especially in liquid phase reactions. The present work describes the synthesis of platinum-based nanodendrites as novel enzyme-mimicking inorganic surrogates able to convert glucose into gluconolactone with outstanding selectivity values above 85%. We have also studied the enzymatic behavior of these Pt-based nanozymes using the Michaelis-Menten and Lineweaver-Burk models and used the main calculation approaches available in the literature to determine highly competitive glucose turnover rates for Pt or Pt-Au nanodendrites.
Collapse
Affiliation(s)
- Jose I Garcia-Peiro
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Javier Bonet-Aleta
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Maria L Tamayo-Fraile
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Jose L Hueso
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesus Santamaria
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| |
Collapse
|
33
|
Luo T, Yang H, Wang R, Pu Y, Cai Z, Zhao Y, Bi Q, Lu J, Jin R, Nie Y, Shuai X. Bifunctional Cascading Nanozymes Based on Carbon Dots Promotes Photodynamic Therapy by Regulating Hypoxia and Glycolysis. ACS NANO 2023; 17:16715-16730. [PMID: 37594768 DOI: 10.1021/acsnano.3c03169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Photodynamic therapy (PDT) still faces great challenges with suitable photosensitizers, oxygen supply, and reactive oxygen species (ROS) accumulation, especially in the tumor microenvironment, feathering hypoxia, and high glucose metabolism. Herein, a carbon dots (CDs)-based bifunctional nanosystem (MnZ@Au), acting as photosensitizer and nanozyme with cascading glucose oxidase (GOx)- and catalase (CAT)-like reactivity, was developed for improving hypoxia and regulating glucose metabolism to enhance PDT. The MnZ@Au was constructed using Mn-doped CDs (Mn-CDs) as a core and zeolitic imidazolate framework-8 (ZIF-8) as a shell to form a hybrid (MnZ), followed by anchoring ultrasmall Au nanoparticles (AuNPs) onto the surface of MnZ through the ion exchange and in situ reduction methods. MnZ@Au catalyzed glucose consumption and oxygen generation by cascading GOx- and CAT-like nanozyme reactions, which was further enhanced by its own photothermal properties. In vitro and in vivo studies also confirmed that MnZ@Au greatly improved CDs penetration, promoted ROS accumulation, and enhanced PDT efficacy, leading to efficient tumor growth inhibition in the breast tumor model. Besides, MnZ@Au enabled photoacoustic (PA) imaging to provide a mapping of Mn-CDs distribution and oxygen saturation, showing the real-time catalytic process of MnZ@Au in vivo. 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging also validated the decreased glucose uptake in tumors treated by MnZ@Au. Therefore, the integrated design provided a promising strategy to utilize and regulate the tumor microenvironment, promote penetration, enhance PDT, and finally prevent tumor deterioration.
Collapse
Affiliation(s)
- Tianying Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Huan Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yangyang Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Jiao Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
34
|
Li X, Jing X, Yu Z, Huang Y. Diverse Antibacterial Treatments beyond Antibiotics for Diabetic Foot Ulcer Therapy. Adv Healthc Mater 2023; 12:e2300375. [PMID: 37141030 DOI: 10.1002/adhm.202300375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Indexed: 05/05/2023]
Abstract
Diabetic foot ulcer (DFU), a common complication of diabetes, has become a great burden to both patients and the society. The delayed wound closure of ulcer sites resulting from vascular damage and neutrophil dysfunction facilitates bacterial infection. Once drug resistance occurs or bacterial biofilm is formed, conventional therapy tends to fail and amputation is unavoidable. Therefore, effective antibacterial treatment beyond antibiotics is of utmost importance to accelerate the wound healing process and prevent amputation. Considering the complexity of multidrug resistance, biofilm formation, and special microenvironments (such as hyperglycemia, hypoxia, and abnormal pH value) at the infected site of DFU, several antibacterial agents and different mechanisms have been explored to achieve the desired outcome. The present review focuses on the recent progress of antibacterial treatments, including metal-based medications, natural and synthesized antimicrobial peptides, antibacterial polymers, and sensitizer-based therapy. This review provides a valuable reference for the innovation of antibacterial material design for DFU therapy.
Collapse
Affiliation(s)
- Xiaoyuan Li
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Xin Jing
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Ziqian Yu
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
35
|
Qi Y, Ren S, Ye J, Bi S, Shi L, Fang Y, Wang G, Finfrock YZ, Li J, Che Y, Ning G. Copper-Single-Atom Coordinated Nanotherapeutics for Enhanced Sonothermal-Parallel Catalytic Synergistic Cancer Therapy. Adv Healthc Mater 2023; 12:e2300291. [PMID: 37157943 DOI: 10.1002/adhm.202300291] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Phototherapy and sonotherapy are recognized by scientific medicine as effective strategies for treating certain cancers. However, these strategies have limitations such as an inability to penetrate deeper tissues and overcome the antioxidant tumor microenvironment. In this study, a novel "BH" interfacial-confined coordination strategy to synthesize hyaluronic acid-functionalized single copper atoms dispersed over boron imidazolate framework-derived nanocubes (HA-NC_Cu) to achieve sonothermal-catalytic synergistic therapy is reported. Notably, HA-NC_Cu demonstrates exceptional sonothermal conversion performance under low-intensity ultrasound irradiation, attained through intermolecular lattice vibrations. In addition, it shows promise as an efficient biocatalyst, able to generate high-toxicity hydroxyl radicals in response to tumor-endogenous hydrogen peroxide and glutathione. Density functional theory calculations reveal that the superior parallel catalytic performance of HA-NC_Cu originates from the CuN4 C/B active sites. Both in vitro and in vivo evaluations consistently demonstrate that the sonothermal-catalytic synergistic strategy significantly improves tumor inhibition rate (86.9%) and long-term survival rate (100%). In combination with low-intensity ultrasound irradiation, HA-NC_Cu triggers a dual death pathway of apoptosis and ferroptosis in MDA-MB-231 breast cancer cells, comprehensively limiting primary triple-negative breast cancer. This study highlights the applications of single-atom-coordinated nanotherapeutics in sonothermal-catalytic synergistic therapy, which may create new opportunities in biomedical research.
Collapse
Affiliation(s)
- Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Shuangsong Ren
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Yueguang Fang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Y Zou Finfrock
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ying Che
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
36
|
Quezada-Novoa V, Titi HM, Villanueva FY, Wilson MWB, Howarth AJ. The Effect of Linker-to-Metal Energy Transfer on the Photooxidation Performance of an Isostructural Series of Pyrene-Based Rare-Earth Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302173. [PMID: 37116124 DOI: 10.1002/smll.202302173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The tetratopic linker, 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4 TBAPy) along with rare-earth (RE) ions is used for the synthesis of 9 isostructures of a metal-organic framework (MOF) with shp topology, named RE-CU-10 (RE = Y(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), and Lu(III)). The synthesis of each RE-CU-10 analogue requires different reaction conditions to achieve phase pure products. Single crystal X-ray diffraction indicates the presence of a RE9 -cluster in Y- to Tm-CU-10, while a RE11 -cluster is observed for Yb- and Lu-CU-10. The photooxidation performance of RE-CU-10 analogues is evaluated, observing competition between linker-to-metal energy transfer versus the generation of singlet oxygen. The singlet oxygen produced is used to detoxify a mustard gas simulant 2-chloroethylethyl sulfide, with half-lives ranging from 4.0 to 5.8 min, some of the fastest reported to date using UV-irradiation and < 1 mol% catalyst, in methanol under O2 saturation.
Collapse
Affiliation(s)
- Victor Quezada-Novoa
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| | | | - Mark W B Wilson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Ashlee J Howarth
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
37
|
Zhuang F, Xiang H, Huang B, Chen Y. Ultrasound-Triggered Cascade Amplification of Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303158. [PMID: 37222084 DOI: 10.1002/adma.202303158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Ultrasound (US)-triggered cascade amplification of nanotherapies has attracted considerable attention as an effective strategy for cancer treatment. With the remarkable advances in materials chemistry and nanotechnology, a large number of well-designed nanosystems have emerged that incorporate presupposed cascade amplification processes and can be activated to trigger therapies such as chemotherapy, immunotherapy, and ferroptosis, under exogenous US stimulation or specific substances generated by US actuation, to maximize antitumor efficacy and minimize detrimental effects. Therefore, summarizing the corresponding nanotherapies and applications based on US-triggered cascade amplification is essential. This review comprehensively summarizes and highlights the recent advances in the design of intelligent modalities, consisting of unique components, distinctive properties, and specific cascade processes. These ingenious strategies confer unparalleled potential to nanotherapies based on ultrasound-triggered cascade amplification and provide superior controllability, thus overcoming the unmet requirements of precision medicine and personalized treatment. Finally, the challenges and prospects of this emerging strategy are discussed and it is expected to encourage more innovative ideas and promote their further development.
Collapse
Affiliation(s)
- Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
38
|
Wang L, Li Z, Wang Y, Gao M, He T, Zhan Y, Li Z. Surface ligand-assisted synthesis and biomedical applications of metal-organic framework nanocomposites. NANOSCALE 2023. [PMID: 37323021 DOI: 10.1039/d3nr01723k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic framework (MOF) nanocomposites have recently gained intensive attention for biosensing and disease therapy applications owing to their outstanding physiochemical properties. However, the direct growth of MOF nanocomposites is usually hindered by the mismatched lattice in the interface between the MOF and other nanocomponents. Surface ligands, molecules with surfactant-like properties, are demonstrated to exhibit the robust capability to modify the interfacial properties of nanomaterials and can be utilized as a powerful strategy for the synthesis of MOF nanocomposites. Besides this, surface ligands also exhibit significant functions in the morphological control and functionalization of MOF nanocomposites, thus greatly enhancing their performance in biomedical applications. In this review, the surface ligand-assisted synthesis and biomedical applications of MOF nanocomposites are comprehensively reviewed. Firstly, the synthesis of MOF nanocomposites is discussed according to the diverse roles of surface ligands. Then, MOF nanocomposites with different properties are listed with their applications in biosensing and disease therapy. Finally, current challenges and further directions of MOF nanocomposites are presented to motivate the development of MOF nanocomposites with elaborate structures, enriched functions, and excellent application prospects.
Collapse
Affiliation(s)
- Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingqian Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Ting He
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| |
Collapse
|
39
|
Min S, Yu Q, Ye J, Hao P, Ning J, Hu Z, Chong Y. Nanomaterials with Glucose Oxidase-Mimicking Activity for Biomedical Applications. Molecules 2023; 28:4615. [PMID: 37375170 DOI: 10.3390/molecules28124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Glucose oxidase (GOD) is an oxidoreductase that catalyzes the aerobic oxidation of glucose into hydrogen peroxide (H2O2) and gluconic acid, which has been widely used in industrial raw materials production, biosensors and cancer treatment. However, natural GOD bears intrinsic disadvantages, such as poor stability and a complex purification process, which undoubtedly restricts its biomedical applications. Fortunately, several artificial nanomaterials have been recently discovered with a GOD-like activity and their catalytic efficiency toward glucose oxidation can be finely optimized for diverse biomedical applications in biosensing and disease treatments. In view of the notable progress of GOD-mimicking nanozymes, this review systematically summarizes the representative GOD-mimicking nanomaterials for the first time and depicts their proposed catalytic mechanisms. We then introduce the efficient modulation strategy to improve the catalytic activity of existing GOD-mimicking nanomaterials. Finally, the potential biomedical applications in glucose detection, DNA bioanalysis and cancer treatment are highlighted. We believe that the development of nanomaterials with a GOD-like activity will expand the application range of GOD-based systems and lead to new opportunities of GOD-mimicking nanomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Shengyi Min
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiao Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiaquan Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Pengfei Hao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiayu Ning
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhiqiang Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
40
|
Yang D, Tang Y, Zhu B, Pang H, Rong X, Gao Y, Du F, Cheng C, Qiu L, Ma L. Engineering Cell Membrane-Cloaked Catalysts as Multifaceted Artificial Peroxisomes for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206181. [PMID: 37096840 PMCID: PMC10265064 DOI: 10.1002/advs.202206181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Indexed: 05/03/2023]
Abstract
Artificial peroxisomes (APEXs) or peroxisome mimics have caught a lot of attention in nanomedicine and biomaterial science in the last decade, which have great potential in clinically diagnosing and treating diseases. APEXs are typically constructed from a semipermeable membrane that encloses natural enzymes or enzyme-mimetic catalysts to perform peroxisome-/enzyme-mimetic activities. The recent rapid progress regarding their biocatalytic stability, adjustable activity, and surface functionality has significantly promoted APEXs systems in real-life applications. In addition, developing a facile and versatile system that can simulate multiple biocatalytic tasks is advantageous. Here, the recent advances in engineering cell membrane-cloaked catalysts as multifaceted APEXs for diverse biomedical applications are highlighted and commented. First, various catalysts with single or multiple enzyme activities have been introduced as cores of APEXs. Subsequently, the extraction and function of cell membranes that are used as the shell are summarized. After that, the applications of these APEXs are discussed in detail, such as cancer therapy, antioxidant, anti-inflammation, and neuron protection. Finally, the future perspectives and challenges of APEXs are proposed and outlined. This progress review is anticipated to provide new and unique insights into cell membrane-cloaked catalysts and to offer significant new inspiration for designing future artificial organelles.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yuanjiao Tang
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Bihui Zhu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Houqing Pang
- Department of UltrasoundWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiao Rong
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Yang Gao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fangxue Du
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Li Qiu
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| | - Lang Ma
- Department of UltrasoundFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| |
Collapse
|
41
|
Zheng Q, Liu X, Gao S, Cui Z, Wu S, Liang Y, Li Z, Zheng Y, Zhu S, Jiang H, Zou R. Engineering Dynamic Defect of Ce III /Ce IV -Based Metal-Organic Framework through Ultrasound-Triggered Au Electron Trapper for Sonodynamic Therapy of Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207687. [PMID: 36908091 DOI: 10.1002/smll.202207687] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Indexed: 06/08/2023]
Abstract
Defect engineering is an important way to tune the catalytic properties of metal-organic framework (MOF), yet precise control of defects is difficult to achieve. Herein, a cerium-based MOF (CeTCPP) is decorated with Au nanoparticles. Under ultrasound irradiation, Au nanoparticles can precisely turn 1/3 of the pristine Ce3+ nodes into Ce4+ . With the stable existence of Ce4+ , the coordination of Ce nodes changed, causing the structural irregularity in CeTCPP-Au, so that the electron-hole recombination is obviously hindered, facilitating the generation of reactive oxygen species. Therefore, under 20 min of ultrasound irradiation, the CeTCPP-Au showed superior antibacterial efficacy of over 99% against Staphylococcus aureus and Escherichia coli with good biocompatibility, which is further used for effective therapy of osteomyelitis. Overall, this work provides a dynamic defect formation strategy of MOF through the electron trapping of Au nanoparticles, which also sheds light on sonodynamic therapy in curing deep-seated lesions.
Collapse
Affiliation(s)
- Qiyao Zheng
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Xiangmei Liu
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Song Gao
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Yanqin Liang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Ruqiang Zou
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| |
Collapse
|
42
|
Qi Y, Zheng C, Cai Z, Cheng Z, Yu T, Li XX, Fan S, Feng YS. 3D Lanthanide Neodymium Porphyrin Metal-Organic Framework for Photocatalytic Oxidation of Styrene. Inorg Chem 2023; 62:8315-8325. [PMID: 37192403 DOI: 10.1021/acs.inorgchem.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A novel three-dimensional lanthanide porphyrin-based MOF (Nd-PMOFs) was synthesized by using tetracarboxyphenyl porphyrin as the ligand and the lanthanide Nd as the coordination metal. Its specific crystal structure information was obtained by single-crystal diffraction with the space group C2/c and the empirical formula C72H45N6Nd2O15.25. This new Nd porphyrin-based MOF with an organic framework formed by a unique coordination method enables the effective separation of photogenerated electrons and holes under photoluminescence, giving it excellent photocatalytic property which could be verified by the characterization data. The photocatalytic performance was examined by taking tert-butyl hydroperoxide as the oxidant and Nd-PMOFs as the catalyst for photocatalytic oxidation of styrene to benzaldehyde with 91.4% conversion and 81.2% benzaldehyde selectivity under optimal reactions, which surpasses most of the results reported in the literature. Several styrenes with other substituents were screened to explore the general applicability of Nd-PMOF for photocatalysis of styrene, among which Nd-PMOFs also exhibited excellent photocatalytic performance. This work offers the possibility to apply lanthanide organometallic frameworks, which are widely used in fluorescent materials, to photocatalysis. In addition, it also provides a new method for the catalytic generation of benzaldehyde from styrene that is consistent with the needs of modern green development.
Collapse
Affiliation(s)
- Yuxuan Qi
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Chenglong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhiquan Cai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zhifei Cheng
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Tinghao Yu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xiao-Xuan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
43
|
Wei F, Chen Z, Shen XC, Ji L, Chao H. Recent progress in metal complexes functionalized nanomaterials for photodynamic therapy. Chem Commun (Camb) 2023. [PMID: 37184685 DOI: 10.1039/d3cc01355c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal complexes have shown promise as photosensitizers for cancer diagnosis and therapeutics. However, the vast majority of metal photosensitizers are not ideal and associated with several limitations including pharmacokinetic limitations, off-target toxicity, fast systemic clearance, poor membrane permeability, and hypoxic tumour microenvironments. Metal complex functionalized nanomaterials have the potential to construct multifunctional systems, which not only overcome the above defects of metal complexes but are also conducive to modulating the tumour microenvironment (TME) and employing combination therapies to boost photodynamic therapy (PDT) efficacy. In this review, we first introduce the current challenges of photodynamic therapy and summarize the recent research strategies (such as metal coordination bonds, self-assembly, π-π stacking, physisorption, and so on) used for preparing metal complexes functionalized nanomaterials in the application of PDT.
Collapse
Affiliation(s)
- Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, MOE Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, MOE Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
44
|
Li H, Xu H, Wang G, Chen J, Ji D, Huang Y, Cui G, He H, Guo Z. Rational Design of Mesoporous Coordination Polymer Nanophotosensitizers for Photodynamic Tumor Ablation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21746-21753. [PMID: 37126007 DOI: 10.1021/acsami.2c22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective clinical practice of precise photodynamic therapy (PDT) is severely impeded by the inherent drawbacks and aggregation propensity of conventional photosensitizers. An all-in-one approach is highly desired to optimize structural features, photophysical properties, and pharmacokinetic behaviors of photosensitizers. Herein, we have fabricated mesoporous boron dipyrromethene-bridged coordination polymer nanophotosensitizers (BCP-NPs) for high-performance PDT via a unique solvent-assisted assembly strategy. Distinctive photophysical and structural characteristics of BCP-NPs confer enhanced photodynamic activities, together with high cellular uptake and ultrahigh stability. Moreover, BCP-NPs showed excellent tumor accumulation and prolonged tumor retention, achieving eradication of the triple-negative breast cancer (TNBC) model under low-power-density LED irradiation. This work has provided a valuable paradigm for the construction of mesoporous photoactive nanomaterials for biophotonic applications.
Collapse
Affiliation(s)
- Hongyu Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Han Xu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Dandan Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yangyang Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Guoqing Cui
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
45
|
Geng T, Zhang J, Wang Z, Shi Y, Shi Y, Zeng L. Ultrasmall gold decorated bimetallic metal-organic framework based nanoprobes for enhanced chemodynamic therapy with triple amplification. J Mater Chem B 2023; 11:2249-2257. [PMID: 36794807 DOI: 10.1039/d2tb02548e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemodynamic therapy (CDT) has shown potential for important applications in tumor precision therapy, but insufficient endogenous hydrogen peroxide (H2O2), overexpressed glutathione (GSH) and a weak Fenton-reaction rate greatly reduced the efficacy of CDT. Herein, a metal-organic framework (MOF) based bimetallic nanoprobe with self-supplying H2O2 was developed for enhancing CDT with triple amplification, in which ultrasmall gold nanoparticles (AuNPs) were deposited on Co-based MOFs (ZIF-67), and manganese dioxide (MnO2) nanoshells were coated to form a ZIF-67@AuNPs@MnO2 nanoprobe. In the tumor microenvironment, MnO2 depleted overexpressed GSH to produce Mn2+, and the bimetallic Co2+/Mn2+ nanoprobe accelerated the Fenton-like reaction rate. Moreover, by catalyzing glucose via ultrasmall AuNPs, the self-supplying H2O2 further promoted hydroxyl radical (˙OH) generation. Compared with those of ZIF-67 and ZIF-67@AuNPs, the ˙OH yield of ZIF-67@AuNPs@MnO2 obviously increased, due to which the cell viability decreased to 9.3%, and the tumor completely disappeared, indicating the enhanced CDT performance of the ZIF-67@AuNPs@MnO2 nanoprobe.
Collapse
Affiliation(s)
- Tianzi Geng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Jiahe Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Zhaoyang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Yuehua Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Yu Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, P. R. China.
| |
Collapse
|
46
|
Intracellular Delivery of Itaconate by Metal–Organic Framework-Anchored Hydrogel Microspheres for Osteoarthritis Therapy. Pharmaceutics 2023; 15:pharmaceutics15030724. [PMID: 36986584 PMCID: PMC10051475 DOI: 10.3390/pharmaceutics15030724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Treatment of osteoarthritis (OA) remains a significant clinical challenge. Itaconate (IA), an emerging regulator of intracellular inflammation and oxidative stress, may potentially be harnessed to treat OA. However, the short joint residence time, inefficient drug delivery, and cell-impermeable property of IA can seriously hamper the clinical translation. Herein, IA-encapsulated zeolitic imidazolate framework-8 (IA-ZIF-8) nanoparticles were self-assembled by zinc ions, 2-methylimidazole, and IA to render them pH-responsive. Subsequently, IA-ZIF-8 nanoparticles were firmly immobilized in hydrogel microspheres via one-step microfluidic technology. It was demonstrated in vitro experiments that IA-ZIF-8-loaded hydrogel microspheres (IA-ZIF-8@HMs) exhibited good anti-inflammatory and anti-oxidative stress effects by releasing pH-responsive nanoparticles into chondrocytes. Importantly, compared with IA-ZIF-8, IA-ZIF-8@HMs showed better performance in the treatment of OA due to their superior performance in sustained release. Thus, such hydrogel microspheres not only hold enormous potential for OA therapy, but also provide a novel avenue for cell-impermeable drugs by constructing appropriate drug delivery systems.
Collapse
|
47
|
Abstract
Surface-modified lanthanide nanoparticles have been widely developed as an emerging class of therapeutics for cancer treatment because they exhibit several unique properties. First, lanthanide nanoparticles exhibit a variety of diagnostic capabilities suitable for various image-guided therapies. Second, a large number of therapeutic molecules can be accommodated on the surface of lanthanide nanoparticles, which can simultaneously achieve combined cancer therapy. Third, multivalent targeting ligands on lanthanide nanoparticles can be easily modified to achieve high affinity and specificity for target cells. Last but not least, lanthanide nanoparticles can be engineered for spatially and temporally controlled tumor therapy, which is critical for developing precise and personalized tumor therapy. Surface-modified lanthanide-doped nanoparticles are widely used in cancer phototherapy. This is due to their unique optical properties, including large anti-Stokes shifts, long-lasting luminescence, high photostability, and the capacity for near-infrared or X-ray excitation. Upon near-infrared irradiation, these nanoparticles can emit ultraviolet to visible light, which activates photosensitizers and photothermal agents to destroy tumor cells. Surface modification with special ligands that respond to tumor microenvironment changes, such as acidic pH, hypoxia, or redox reactions, can turn lanthanide nanoparticles into a smart nanoplatform for light-guided tumor chemotherapy and gene therapy. Surface-engineered lanthanide nanoparticles can include antigens that elicit tumor-specific immune responses, as well as immune activators that boost immunity, allowing distant and metastatic tumors to be eradicated. The design of ligands and surface chemistry is crucial for improving cancer therapy without causing side effects. In this Account, we classify surface-modified lanthanide nanoparticles for tumor therapy into four main domains: phototherapy, radiotherapy, chemotherapy, and biotherapy. We begin by introducing fundamental bioapplications and then discuss recent developments in tumor phototherapy (photodynamic therapy and photothermal therapy), radiotherapy, chemotherapy, and biotherapy (gene therapy and immunotherapy). We also assess the viability of a variety of strategies for eliminating tumor cells through innovative pathways. Finally, future opportunities and challenges for the development of more efficient lanthanide nanoprobes are discussed.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology, and Research, Singapore 138634, Singapore
| |
Collapse
|
48
|
Jin M, Zhao Y, Guan ZJ, Fang Y. Porous Framework Materials for Bioimaging and Cancer Therapy. Molecules 2023; 28:1360. [PMID: 36771027 PMCID: PMC9921779 DOI: 10.3390/molecules28031360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most pressing diseases in the world. Traditional treatments, including surgery, chemotherapy, and radiotherapy still show certain limitations. Recently, numerous cancer treatments have been proposed in combination with novel materials, such as photothermal therapy, chemodynamic therapy, immunotherapy, and a combination of therapeutic approaches. These new methods have shown significant advantages in reducing side effects and synergistically enhancing anti-cancer efficacy. In addition to the above approaches, early diagnosis and in situ monitoring of lesion areas are also important for reducing side effects and improving the success rate of cancer therapy. This depends on the decent use of bioimaging technology. In this review, we mainly summarize the recent advances in porous framework materials for bioimaging and cancer therapy. In addition, we present future challenges relating to bioimaging and cancer therapy based on porous framework materials.
Collapse
Affiliation(s)
- Meng Jin
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingying Zhao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zong-Jie Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yu Fang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Innovation Institute of Industrial Design and Machine Intelligence, Quanzhou-Hunan University, Quanzhou 362801, China
| |
Collapse
|
49
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
50
|
Guo S, Feng J, Li Z, Yang S, Qiu X, Xu Y, Shen Z. Improved cancer immunotherapy strategies by nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1873. [PMID: 36576112 DOI: 10.1002/wnan.1873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapy agents fight cancer via immune system stimulation and have made significant advances in minimizing side effects and prolonging the survival of patients with solid tumors. However, major limitations still exist in cancer immunotherapy, including the inefficiency of immune response stimulation in specific cancer types, therapy resistance caused by the tumor microenvironment (TME), toxicities by the immune imbalance, and short lifetime of stimulator of interferon genes (STING) agonist. Recent advances in nanomedicine have shown significant potential in overcoming the obstacles of cancer immunotherapy. Several nanoscale agents have been reported for cancer immunotherapy, including nanoscale cancer vaccines impacting the STING pathway, nanomaterials reprogramming TME, nano-agents triggering immune response with immune checkpoint inhibitor synergy, ferroptosis-mediated and indoleamine-2,3-dioxygenase immunosuppression-mediated cancer immunotherapy, and nanomedicine-meditated chimeric antigen receptor-T-cell therapy. Herein, we summarize the major advances and innovations in nanomedicine-based cancer immunotherapy, and outline the opportunities and challenges to integrate more advanced nanomaterials into cancer immunotherapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shuai Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|