1
|
Jiang Y, Hu X, Mei Y, Li X, Chen S, Yuan J, Wang Y, Tao R, Si J, Xu Z, Ke F, Yang H. A new UiO-66-NH 2 MOF-based nano-immobilized DFR enzyme as a biocatalyst for the synthesis of anthocyanidins. Int J Biol Macromol 2024; 277:134296. [PMID: 39094888 DOI: 10.1016/j.ijbiomac.2024.134296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Anthocyanidins and anthocyanins are one subclass of flavonoids in plants with diverse biological functions and have health-promoting effects. Dihydroflavonol 4-reductase (DFR) is one of the important enzymes involved in the biosynthesis of anthocyanidins and other flavonoids. Here, a new MOF-based nano-immobilized DFR enzyme acting as a nano-biocatalyst for the production of anthocyanidins in vitro was designed. We prepared UiO-66-NH2 MOF nano-carrier and recombinant DFR enzyme from genetic engineering. DFR@UiO-66-NH2 nano-immobilized enzyme was constructed based on covalent bonding under the optimum immobilization conditions of the enzyme/carrier ratio of 250 mg/g, 37 °C, pH 6.5 and fixation time of 10 min. DFR@UiO-66-NH2 was characterized and its catalytic function for the synthesis of anthocyanidins in vitro was testified using UPLC-QQQ-MS analysis. Compared with free DFR enzyme, the enzymatic reaction catalyzed by DFR@UiO-66-NH2 was more easily for manipulation in a wide range of reaction temperatures and pH values. DFR@UiO-66-NH2 had better thermal stability, enhanced adaptability, longer-term storage, outstanding tolerances to the influences of several organic reagents and Zn2+, Cu2+ and Fe2+ ions, and relatively good reusability. This work developed a new MOF-based nano-immobilized biocatalyst that had a good prospect of application in the green synthesis of anthocyanins in the future.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xiaodie Hu
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Yu Mei
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Xuefeng Li
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Shilin Chen
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jingbo Yuan
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Yang Wang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Ranran Tao
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Jingyu Si
- Department of Chemistry and Materials Engineering, Hefei University, Hefei 230601, People's Republic of China.
| | - Zezhong Xu
- Analytical and Testing Center, Hefei University, Hefei 230601, People's Republic of China.
| | - Fei Ke
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Hua Yang
- Department of Applied Chemistry, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
2
|
Chen H, Li J, Li S, Wang X, Xu G, Li M, Li G. Research progress of procyanidins in repairing cartilage injury after anterior cruciate ligament tear. Heliyon 2024; 10:e26070. [PMID: 38420419 PMCID: PMC10900419 DOI: 10.1016/j.heliyon.2024.e26070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Anterior cruciate ligament (ACL) tear is a common sports-related injury, and cartilage injury always emerges as a serious complication following ACL tear, significantly impacting the physical and psychological well-being of affected individuals. Over the years, efforts have been directed toward finding strategies to repair cartilage injury after ACL tear. In recent times, procyanidins, known for their anti-inflammatory and antioxidant properties, have emerged as potential key players in addressing this concern. This article focuses on summarizing the research progress of procyanidins in repairing cartilage injury after ACL tear. It covers the roles, mechanisms, and clinical significance of procyanidins in repairing cartilage injury following ACL tear and explores the future prospects of procyanidins in this domain. This review provides novel insights and hope for the repair of cartilage injury following ACL tear.
Collapse
Affiliation(s)
- Hanlin Chen
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jingrui Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Shaofei Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqi Wang
- Major in Clinical Medicine, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ge Xu
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Molan Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Nuamah E, Poaty Ditengou JIC, Hirwa F, Cheon I, Chae B, Choi NJ. Dietary Supplementation of Tannins: Effect on Growth Performance, Serum Antioxidant Capacity, and Immunoglobins of Weaned Piglets-A Systematic Review with Meta-Analysis. Antioxidants (Basel) 2024; 13:236. [PMID: 38397834 PMCID: PMC10886058 DOI: 10.3390/antiox13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the swine industry has witnessed the withdrawal of antibiotics and continuous regulation of zinc and copper oxides in the early-life nutrition of piglets. Due to this development, alternative additives from plant sources have been extensively explored. Therefore, this study's objective was to evaluate the effect of dietary supplementation with tannins on weaned piglets' growth performance, serum antioxidant capacity, and serum immune status using a systematic review and meta-analysis approach. A total of 16 studies with parameters of interest were deemed eligible after a two-step screening process following a comprehensive literature search in the scientific databases of Web of Science, Scopus, ScienceDirect, PubMed, and Google Scholar. The inclusion criteria were mainly (1) studies involving basal diet supplemented with tannins and (2) studies with the quantification of tannin doses, while the exclusion criteria were (1) studies with pre- and post-weaning pigs and (2) challenged studies. Applying the random-effects models, Hedges' g effect size of supplementation with tannins was calculated using R software to determine the standardized mean difference (SMD) at a 95% confidence interval. Sub-group analysis and meta-regression further explored heterogeneity (PSMD < 0.05, I2 > 50%, n ≥ 10). Supplementation with tannins reduced the feed conversion ratio (p < 0.01) but increased the final body weight (p < 0.01) of weaned piglets. Chestnut and grape seed proanthocyanidin tannin sources yielded higher effects on growth performance. In addition, meta-regression models indicated that tannin dosage and supplementation duration were directly associated with tannins' effectiveness on productive performance. In the serum, the concentration of glutathione peroxidase, superoxide dismutase, and total antioxidant capacity were elevated (p < 0.01) in response to tannin supplementation, whereas malondialdehydes was reduced (p < 0.01). Likewise, increased immunoglobin M and G levels (p < 0.01) were detected. In conclusion, dietary supplementation with tannins, particularly with chestnut and grape seed proanthocyanidins, increases the productivity of weaned piglets. At the same time, it is a possible nutritional strategy to mitigate oxidative stress and stimulate gut health. Thus, supplementing chestnut and grape seed proanthocyanidin tannins in the early phase of swine production could be used to alleviate the incidence of diarrhea.
Collapse
Affiliation(s)
- Emmanuel Nuamah
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (J.I.C.P.D.); (F.H.); (I.C.); (B.C.)
| | | | | | | | | | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (J.I.C.P.D.); (F.H.); (I.C.); (B.C.)
| |
Collapse
|
4
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Calvo E, Bravo FI, Mulero M, Ávila-Román J. Abrupt Photoperiod Changes Differentially Modulate Hepatic Antioxidant Response in Healthy and Obese Rats: Effects of Grape Seed Proanthocyanidin Extract (GSPE). Int J Mol Sci 2023; 24:17057. [PMID: 38069379 PMCID: PMC10707189 DOI: 10.3390/ijms242317057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Disruptions of the light/dark cycle and unhealthy diets can promote misalignment of biological rhythms and metabolic alterations, ultimately leading to an oxidative stress condition. Grape seed proanthocyanidin extract (GSPE), which possesses antioxidant properties, has demonstrated its beneficial effects in metabolic-associated diseases and its potential role in modulating circadian disruptions. Therefore, this study aimed to assess the impact of GSPE administration on the liver oxidant system of healthy and diet-induced obese rats undergoing a sudden photoperiod shift. To this end, forty-eight photoperiod-sensitive Fischer 344/IcoCrl rats were fed either a standard (STD) or a cafeteria diet (CAF) for 6 weeks. A week before euthanizing, rats were abruptly transferred from a standard photoperiod of 12 h of light/day (L12) to either a short (6 h light/day, L6) or a long photoperiod (18 h light/day, L18) while receiving a daily oral dose of vehicle (VH) or GSPE (25 mg/kg). Alterations in body weight gain, serum and liver biochemical parameters, antioxidant gene and protein expression, and antioxidant metabolites were observed. Interestingly, GSPE partially ameliorated these effects by reducing the oxidative stress status in L6 through an increase in GPx1 expression and in hepatic antioxidant metabolites and in L18 by increasing the NRF2/KEAP1/ARE pathway, thereby showing potential in the treatment of circadian-related disorders by increasing the hepatic antioxidant response in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Carletti A, Rosa JT, Pes K, Borges I, Santos T, Barreira L, Varela J, Pereira H, Cancela ML, Gavaia PJ, Laizé V. The osteogenic and mineralogenic potential of the microalgae Skeletonema costatum and Tetraselmis striata CTP4 in fish models. Cell Mol Life Sci 2023; 80:310. [PMID: 37777592 PMCID: PMC10543572 DOI: 10.1007/s00018-023-04953-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Skeletal disorders are problematic aspects for the aquaculture industry as skeletal deformities, which affect most species of farmed fish, increase production costs and affect fish welfare. Following recent findings that show the presence of osteoactive compounds in marine organisms, we evaluated the osteogenic and mineralogenic potential of commercially available microalgae strains Skeletonema costatum and Tetraselmis striata CTP4 in several fish systems. Ethanolic extracts increased extracellular matrix mineralization in gilthead seabream (Sparus aurata) bone-derived cell cultures and promoted osteoblastic differentiation in zebrafish (Danio rerio) larvae. Long-term dietary exposure to both extracts increased bone mineralization in zebrafish and upregulated the expression of genes involved in bone formation (sp7, col1a1a, oc1, and oc2), bone remodeling (acp5a), and antioxidant defenses (cat, sod1). Extracts also improved the skeletal status of zebrafish juveniles by reducing the incidence of skeletal anomalies. Our results indicate that both strains of microalgae contain osteogenic and mineralogenic compounds, and that ethanolic extracts have the potential for an application in the aquaculture sector as dietary supplements to support fish bone health. Future studies should also identify osteoactive compounds and establish whether they can be used in human health to broaden the therapeutic options for bone erosive disorders such as osteoporosis.
Collapse
Affiliation(s)
- Alessio Carletti
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
| | - Joana T. Rosa
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Present Address: Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal
| | - Katia Pes
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Inês Borges
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Tamára Santos
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - João Varela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Hugo Pereira
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - M. Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Associação Oceano Verde (GreenCoLab), Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Present Address: Collaborative Laboratory for Sustainable and Smart Aquaculture (S2AQUAcoLAB), Olhão, Portugal
| |
Collapse
|
6
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Bonafos B, Feillet-Coudray C, Casas F, Bravo FI, Calvo E, Ávila-Román J, Mulero M. Rhythm and ROS: Hepatic Chronotherapeutic Features of Grape Seed Proanthocyanidin Extract Treatment in Cafeteria Diet-Fed Rats. Antioxidants (Basel) 2023; 12:1606. [PMID: 37627601 PMCID: PMC10452039 DOI: 10.3390/antiox12081606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols play a key role in the modulation of circadian rhythms, while the cafeteria diet (CAF) is able to perturb the hepatic biological rhythm and induce important ROS production. Consequently, we aimed to elucidate whether grape seed proanthocyanidin extract (GSPE) administration recovers the CAF-induced hepatic antioxidant (AOX) misalignment and characterize the chronotherapeutic properties of GSPE. For this purpose, Fischer 344 rats were fed a standard diet (STD) or a CAF and concomitantly treated with GSPE at two time-points (ZT0 vs. ZT12). Animals were euthanized every 6 h and the diurnal rhythms of hepatic ROS-related biomarkers, hepatic metabolites, and AOX gene expression were examined. Interestingly, GSPE treatment was able to recover the diurnal rhythm lost due to the CAF. Moreover, GSPE treatment also increased the acrophase of Sod1, as well as bringing the peak closer to that of the STD group. GSPE also corrected some hepatic metabolites altered by the CAF. Importantly, the differences observed at ZT0 vs. ZT12 due to the time of GSPE administration highlight a chronotherapeutic profile on the proanthocyanin effect. Finally, GSPE could also reduce diet-induced hepatic oxidative stress not only by its ROS-scavenging properties but also by retraining the circadian rhythm of AOX enzymes.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Béatrice Bonafos
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Christine Feillet-Coudray
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - François Casas
- DMEM, EMN, UMR 866, INRAe, Université de Montpellier, 34090 Montpellier, France; (B.B.); (C.F.-C.); (F.C.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (F.I.B.); (E.C.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| |
Collapse
|
7
|
Sandner G, Stadlbauer V, Sadova N, Neuhauser C, Schwarzinger B, Karlsberger L, Hangweirer K, Antensteiner K, Stallinger A, Aumiller T, Weghuber J. Grape seed extract improves intestinal barrier integrity and performance: Evidence from in vitro, Caenorhabditis elegans and Drosophila melanogaster experiments and a study with growing broilers. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
8
|
Oyeyinka BO, Afolayan AJ. Suitability of Banana and Plantain Fruits in Modulating Neurodegenerative Diseases: Implicating the In Vitro and In Vivo Evidence from Neuroactive Narratives of Constituent Biomolecules. Foods 2022; 11:foods11152263. [PMID: 35954031 PMCID: PMC9367880 DOI: 10.3390/foods11152263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Active principles in plant-based foods, especially staple fruits, such as bananas and plantains, possess inter-related anti-inflammatory, anti-apoptotic, antioxidative, and neuromodulatory activities. Neurodegenerative diseases affect the functionality of the central and peripheral nervous system, with attendant cognitive deficits being hallmarks of these conditions. The dietary constitution of a wide range of bioactive compounds identified in this review further iterates the significance of the banana and plantain in compromising, halting, or preventing the pathological mechanisms of neurological disorders. The neuroprotective mechanisms of these biomolecules have been identified by using protein expression regulation and specific gene/pathway targeting, such as the nuclear and tumor necrosis factors, extracellular signal-regulated and mitogen-activated protein kinases, activator protein-1, and the glial fibrillary acidic protein. This review establishes the potential double-edged neuro-pharmacological fingerprints of banana and plantain fruits in their traditionally consumed pulp and less utilized peel component for human nutrition.
Collapse
|
9
|
Qi Q, Chu M, Yu X, Xie Y, Li Y, Du Y, Liu X, Zhang Z, Shi J, Yan N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qianqian Qi
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meijun Chu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiuting Yu
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanning Xie
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yali Li
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongmei Du
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinmin Liu
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhongfeng Zhang
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - John Shi
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
10
|
Soldado D, Bessa RJB, Jerónimo E. Condensed Tannins as Antioxidants in Ruminants-Effectiveness and Action Mechanisms to Improve Animal Antioxidant Status and Oxidative Stability of Products. Animals (Basel) 2021; 11:3243. [PMID: 34827975 PMCID: PMC8614414 DOI: 10.3390/ani11113243] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
Condensed tannins (CTs) are widely distributed in plants, and due to their recognized antioxidant activity are considered as possible natural antioxidants for application in ruminant diets. A wide range of CT-rich sources has been tested in ruminant diets, and their effects on animal antioxidant status and oxidative stability of their products are reviewed in the present work. Possible mechanisms underlying the CT antioxidant effects in ruminants are also discussed, and the CT chemical structure is briefly presented. Utilization of CT-rich sources in ruminant feeding can improve the animals' antioxidant status and oxidative stability of their products. However, the results are still inconsistent. Although poorly understood, the evidence suggests that CTs can induce an antioxidant effect in living animals and in their products through direct and indirect mechanisms, which can occur by an integrated and synergic way involving: (i) absorption of CTs with low molecular weight or metabolites, despite CTs' poor bioavailability; (ii) antioxidant action on the gastrointestinal tract; and (iii) interaction with other antioxidant agents. Condensed tannins are alternative dietary antioxidants for ruminants, but further studies should be carried out to elucidate the mechanism underlying the antioxidant activity of each CT source to design effective antioxidant strategies based on the use of CTs in ruminant diets.
Collapse
Affiliation(s)
- David Soldado
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal;
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Rui J. B. Bessa
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Eliana Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), 7801-908 Beja, Portugal
| |
Collapse
|
11
|
Rodríguez-Martínez B, Ferreira-Santos P, Gullón B, Teixeira JA, Botelho CM, Yáñez R. Exploiting the Potential of Bioactive Molecules Extracted by Ultrasounds from Avocado Peels-Food and Nutraceutical Applications. Antioxidants (Basel) 2021; 10:1475. [PMID: 34573107 PMCID: PMC8466900 DOI: 10.3390/antiox10091475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Natural bioactive compounds from food waste have fomented interest in food and pharmaceutical industries for the past decade. In this work, it purposed the recovery of bioactive avocado peel extract using an environmentally friendly technique: the ultrasound assisted extraction. The response surface methodology was applied in order to optimize the conditions of the extraction, ethanol-water mixtures and time. The optimized extracts (ethanol 38.46%, 44.06 min, and 50 °C) were chemically characterized by HPLC-ESI-MS and FTIR. Its antioxidant ability, as well as, its effect on cell metabolic activity of normal (L929) and cancer (Caco-2, A549 and HeLa) cell lines were assessed. Aqueous ethanol extracts presented a high content in bioactive compounds with high antioxidant potential. The most representative class of the phenolic compounds found in the avocado peel extract were phenolic acids, such as hydroxybenzoic and hydroxycinnamic acids. Another important chemical group detected were the flavonoids, such as flavanols, flavanonols, flavones, flavanones and chalcone, phenylethanoids and lignans. In terms of its influence on the metabolic activity of normal and cancer cell lines, the extract does not significantly affect normal cells. On the other hand, it can negatively affect cancer cells, particularly HeLa cells. These results clearly demonstrated that ultrasound is a sustainable extraction technique, resulting in extracts with low toxicity in normal cells and with potential application in food, pharmaceutical or nutraceutical sectors.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
| | - José António Teixeira
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Cláudia M. Botelho
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.A.T.); (C.M.B.)
| | - Remedios Yáñez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.R.-M.); (R.Y.)
- Biomedical Research Centre (CINBIO), University of Vigo, University Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
12
|
Mavrommatis A, Giamouri E, Myrtsi ED, Evergetis E, Filippi K, Papapostolou H, Koulocheri SD, Zoidis E, Pappas AC, Koutinas A, Haroutounian SA, Tsiplakou E. Antioxidant Status of Broiler Chickens Fed Diets Supplemented with Vinification By-Products: A Valorization Approach. Antioxidants (Basel) 2021; 10:1250. [PMID: 34439498 PMCID: PMC8389203 DOI: 10.3390/antiox10081250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Vinification by-products display great potential for utilization as feed additives rich in antioxidant compounds. Thus, the effect of dietary ground grape pomace (GGP), wine lees extract rich in yeast cell walls (WYC), and grape stem extracts (PE) on the relative expression of several genes involved in liver oxidative mechanisms and the oxidative status of the blood and breast muscle of broiler chickens was investigated. In total, 240 one-day-old as hatched chicks (Ross 308) were assigned to four treatments, with four replicate pens and 15 birds in each pen. Birds were fed either a basal diet (CON) or a basal diet supplemented with 25 g/kg GGP, or 2 g/kg WYC, or 1 g starch including 100 mg pure stem extract/kg (PE) for 42 days. The polyphenolic content of vinification by-products was determined using an LC-MS/MS library indicating as prevailing compounds procyanidin B1 and B2, gallic acid, caftaric acid, (+)-catechin, quercetin, and trans-resveratrol. Body weight and feed consumption were not significantly affected. The relative transcript level of GPX1 and SOD1 tended to increase in the liver of WYC-fed broilers, while NOX2 tended to decrease in the PE group. SOD activity in blood plasma was significantly increased in WYC and PE compared to the CON group. The total antioxidant capacity measured with FRAP assay showed significantly higher values in the breast muscle of PE-fed broilers, while the malondialdehyde concentration was significantly decreased in both WYC- and PE-fed broilers compared to the CON group. The exploitation of vinification by-products as feed additives appears to be a promising strategy to improve waste valorization and supply animals with bioactive molecules capable of improving animals' oxidative status and products' oxidative stability.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Katiana Filippi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Harris Papapostolou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Evangelos Zoidis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Apostolis Koutinas
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (K.F.); (H.P.); (A.K.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.G.); (E.D.M.); (E.E.); (S.D.K.); (E.Z.); (A.C.P.); (S.A.H.)
| |
Collapse
|
13
|
Song W, Zhao YY, Ren YJ, Liu LL, Wei SD, Yang HB. Proanthocyanidins isolated from the leaves of Photinia × fraseri block the cell cycle and induce apoptosis by inhibiting tyrosinase activity in melanoma cells. Food Funct 2021; 12:3978-3991. [PMID: 33977989 DOI: 10.1039/d1fo00134e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tyrosinase is considered a molecular marker of melanoma, and few natural antitumor drugs targeting tyrosinase have been identified. In this study, proanthocyanidins (PAs) were isolated from the leaves of Photinia × fraseri and their structures were characterized by high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and the effects of antityrosinase activity were investigated. The results showed that the basic structural units of PAs are composed of catechin and epicatechin and that oligomer is the main component. PAs exhibited better antityrosinase activity via chelation of copper ions and by disturbing o-quinone production. Furthermore, analyses of the cell cycle, apoptosis rate, and regulation of melanin protein expression revealed preliminarily that PAs could affect melanin production by downregulating microphthalmia transcription factor (MITF) expression and by inhibiting the activities of tyrosinase and tyrosinase related protein 1 (TRP-1), leading to cell cycle arrest and apoptosis of melanoma cells. Collectively, our study demonstrated that PAs are potential tyrosinase inhibitors and have good antimelanoma effects. These findings provide a theoretical support for the application of tyrosinase inhibitors and for further drug development.
Collapse
Affiliation(s)
- Wei Song
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China.
| | - Ya-Ying Zhao
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Yuan-Jing Ren
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Lu-Lu Liu
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Shu-Dong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Hai-Bo Yang
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and Forestry College, Henan Agricultural University, Zhengzhou, Henan 450000, China
| |
Collapse
|
14
|
Chu CC, Nyam KL. Application of seed oils and its bioactive compounds in sunscreen formulations. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chee Chin Chu
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Kar Lin Nyam
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| |
Collapse
|
15
|
Bocsan IC, Pop RM, Sabin O, Sarkandy E, Boarescu PM, Roşian ŞH, Leru PM, Chedea VS, Socaci SA, Buzoianu AD. Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats. Molecules 2021; 26:molecules26113221. [PMID: 34072098 PMCID: PMC8198749 DOI: 10.3390/molecules26113221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
The study’s aim was to characterize the composition of Nigella sativa seed (NSO) and grape seed (GSO) oils, and to evaluate their cardioprotective and anti-inflammatory effect on isoproterenol (ISO)-induced ischemia in rats. Materials and Methods: NSO and GSO supplements were physicochemically characterized. Liquid chromatography–mass spectrometry (HPLC-MS), Fourier-transform infrared spectroscopy (FTIR), and gas chromatography–mass spectrometry (GC-MS) analyses were used to determine the phytochemical composition in the oils. Total polyphenol content (TPC) and in vitro antioxidant activity were also determined. Pretreatment with 4 mL/kg/day NSO or GSO was administered to rats for 14 days. The experimental ischemia was induced by a single administration of ISO 45 mg/kg after 14 days. An electrocardiogram (ECG) was performed initially and 24 h after ISO. Biological evaluation was done at the end of experiment. Results: The HPLC-MS, GC-MS, and FTIR analyses showed that both NSO and GSO are important sources of bioactive compounds, especially catechin and phenolic acids in GSO, while NSO was enriched in flavonoids and thymol derivatives. Pretreatment with GSO and NSO significantly reduced ventricular conduction, prevented the cardiotoxic effect of ISO in ventricular myocardium, and reduced the level of proinflammatory cytokines and CK-Mb. Conclusion: Both NSO and GSO were shown to have an anti-inflammatory and cardioprotective effect in ISO-induced ischemia.
Collapse
Affiliation(s)
- Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No. 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (O.S.); (E.S.); (A.D.B.)
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No. 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (O.S.); (E.S.); (A.D.B.)
- Correspondence: or
| | - Octavia Sabin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No. 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (O.S.); (E.S.); (A.D.B.)
| | - Elias Sarkandy
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No. 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (O.S.); (E.S.); (A.D.B.)
| | - Paul-Mihai Boarescu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Ştefan Horia Roşian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania;
- Department of Cardiology—Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
| | - Poliana Mihaela Leru
- Department of Family Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania;
| | - Sonia Ancuța Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Manaștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Victor Babes, No. 8, 400012 Cluj-Napoca, Romania; (I.C.B.); (O.S.); (E.S.); (A.D.B.)
| |
Collapse
|
16
|
Asbaghi O, Naeini F, Moodi V, Najafi M, Shirinbakhshmasoleh M, Rezaei Kelishadi M, Hadi A, Ghaedi E, Fadel A. Effect of grape products on blood pressure: a systematic review and meta-analysis of randomized controlled trials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1901731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Science, Tehran University of Medical Science, Tehran, Iran
| | - Vihan Moodi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Najafi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Ghaedi
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdulmnannan Fadel
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
17
|
Harikrishnan R, Devi G, Van Doan H, Balasundaram C, Esteban MÁ, Abdel-Tawwab M. Impact of grape pomace flour (GPF) on immunity and immune-antioxidant-anti-inflammatory genes expression in Labeo rohita against Flavobacterium columnaris. FISH & SHELLFISH IMMUNOLOGY 2021; 111:69-82. [PMID: 33508472 DOI: 10.1016/j.fsi.2021.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
This study evaluates the effects of dietary inclusion of grape pomace flour (GPF) on growth, antioxidant, anti-inflammatory, innate-adaptive immunity, and immune genes expression in Labeo rohita against Flavobacterium columnaris. In both normal and challenged fish the growth rate, hematology and biochemical parameters significantly increased when fed with 200 and 300 mg GPF enriched diets; similarly the activities of antioxidants and innate-adaptive immune parameters, such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), phagocytic (PC), respiratory burst (RB), alternative pathway complement (ACP), lysozyme (Lyz), and total immunoglobulin M (IgM) significantly increased in both groups. Similarly, the immune, antioxidant, and anti-inflammatory-related gene mRNA expression was significantly up-regulated in head kidney (HK) tissues. The challenged fish fed without GPF always exhibited lower values of all the studied parameters. The results indicate that both normal and challenged fish treated with 200 mg GPF inclusion diet had significantly enhanced growth rate, antioxidant status, and immune defense mechanisms than with 300 mg GPF diet in L. rohita against F. columnaris.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
18
|
Gambini J, Gimeno-Mallench L, Olaso-Gonzalez G, Mastaloudis A, Traber MG, Monleón D, Borrás C, Viña J. Moderate Red Wine Consumption Increases the Expression of Longevity-Associated Genes in Controlled Human Populations and Extends Lifespan in Drosophila melanogaster. Antioxidants (Basel) 2021; 10:301. [PMID: 33669360 PMCID: PMC7920262 DOI: 10.3390/antiox10020301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/21/2023] Open
Abstract
The beneficial effects of moderate red wine consumption on cardiovascular health are well known. The composition of red wine includes several compounds, such as the phytoestrogen resveratrol, that exert these beneficial effects, although not all the mechanisms by which they act are known. Our aim was to study the effect of red wine consumption on longevity-related genes in controlled human populations, such as cloistered nuns. We found that the expression of catalase, manganese-superoxide dismutase, Sirt1, and p53 was increased in peripheral blood mononuclear cells after 14 days of moderate red wine consumption. This increase was accompanied by an enhanced metabolic wellness: fatty acids, cholesterol, branched chain amino acids (isoleucine and leucine), ketone bodies (acetoacetate), bacterial co-metabolites (trimethylamine), and cellular antioxidants (taurine) contributed to a change in metabolic profile after moderate red wine consumption by the nuns. No serious unwanted side effects were observed. Finally, we tested the effect of moderate red wine consumption on longevity in a controlled animal population, such as D. melanogaster, and found that it increased average life span by 7%. In conclusion, moderate red wine consumption increases the expression of key longevity-related genes and improves metabolic health in humans and increases longevity in flies.
Collapse
Affiliation(s)
- Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| | - Lucia Gimeno-Mallench
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| | - Angela Mastaloudis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA; (A.M.); (M.G.T.)
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA; (A.M.); (M.G.T.)
| | - Daniel Monleón
- Department of Pathology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain;
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, E46010 Valencia, Spain; (J.G.); (L.G.-M.); (G.O.-G.); (J.V.)
| |
Collapse
|
19
|
Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K. Protective roles of grape seed (Vitis vinifera L.) extract against cobalt(II) nitrate stress in Allium cepa L. root tip cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:270-279. [PMID: 32809124 DOI: 10.1007/s11356-020-10532-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Excessive doses of toxic metals such as cobalt may cause detrimental hazards to exposed organisms. Six groups of onion bulbs were formed to investigate the therapeutic effects of grape seed extract (GSE) against cobalt(II) nitrate (Co(NO3)2) exposure in Allium cepa L. root tips. Control group was irrigated with tap water, while the latter groups were exposed to 150 mg/L GSE, 300 mg/L GSE, 5.5 ppm Co(NO3)2, 5.5 ppm Co(NO3)2 + 150 mg/L GSE and 5.5 ppm Co(NO3)2 + 300 mg/L GSE, respectively. Co(NO3)2 treatment seriously inhibited the root growth, germination and weight gain of the bulbs. Mitotic index was significantly decreased, whereas the chromosomal aberrations and micronuclei incidence exhibited a remarkable increase. In addition, Co(NO3)2 induced a variety of anatomical disorders in onion roots. Lipid peroxidation levels of the cellular membranes were assessed measuring the malondialdehyde content (MDA). MDA amount in Co(NO3)2-treated group reached the highest level among all groups. Co(NO3)2 treatment enhanced the activity of superoxide dismutase and catalase. The addition of GSE to Co(NO3)2 solution substantially suppressed the negative effects of Co(NO3)2 in a dose-dependent manner by strengthening the antioxidant defence system and reducing the cytotoxicity. Moreover, there was a significant recovery in growth parameters following the grape seed addition to Co(NO3)2. GSE had a remarkable reduction in genotoxicity when treated as a mixture with Co(NO3)2. Overall data obtained from this investigation proved that GSE, as a promising functional by-product, had a protective effect on Allium cepa L. against the toxic effects of Co(NO3)2.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| | - Emine Yalçın
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|
20
|
Effects of Fish Oil and Grape Seed Extract Combination on Hepatic Endogenous Antioxidants and Bioactive Lipids in Diet-Induced Early Stages of Insulin Resistance in Rats. Mar Drugs 2020; 18:md18060318. [PMID: 32560216 PMCID: PMC7345288 DOI: 10.3390/md18060318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
Diacylglycerols (DAG) and ceramides have been suggested as early predictors of insulin resistance. This study was aimed to examine the combined effects of fish oil (FO) and grape seed extract (GSE) on hepatic endogenous antioxidants, DAG and ceramides in diet-induced early stages of insulin resistance. Thirty-five rats were fed one of the following diets: (1) a standard diet (STD group), (2) a high-fat high-sucrose diet (HFHS group), (3) an HFHS diet enriched with FO (FO group), (4) an HFHS diet enriched with GSE (GSE group) or (5) an HFHS diet enriched with FO and GSE (FO + GSE group). In the liver, endogenous antioxidants were measured using spectrophotometric and fluorometric techniques, and non-targeted lipidomics was conducted for the assessment of DAG and ceramides. After 24 weeks, the FO + GSE group showed increased glutathione peroxidase activity, as well as monounsaturated fatty acid and polyunsaturated fatty acid-containing DAG, and long-chain fatty acid-containing ceramides abundances compared to the STD group. The FO and GSE combination induced similar activation of the antioxidant system and bioactive lipid accumulation in the liver than the HFHS diet without supplementation. In addition, the FO and GSE combination increased the abundances of polyunsaturated fatty acid-containing DAG in the liver.
Collapse
|
21
|
Liu H, Hu J, Mahfuz S, Piao X. Effects of Hydrolysable Tannins as Zinc Oxide Substitutes on Antioxidant Status, Immune Function, Intestinal Morphology, and Digestive Enzyme Activities in Weaned Piglets. Animals (Basel) 2020; 10:ani10050757. [PMID: 32349238 PMCID: PMC7277717 DOI: 10.3390/ani10050757] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Zinc oxide (ZnO) is generally used to control diarrhea and improve gut health in weaned piglets. To protect weaned pigs from intestinal injuries and to decrease environmental zinc load, it is essential to find an alternative to ZnO. In the present study, hydrolysable tannins (HT) showed decreased diarrhea rate and improving gut health via multiple pathways. Herein we demonstrate that HT supplementation may be a potential alternative of ZnO in weaned piglets. Abstract Zinc oxide (ZnO) has negative environmental effects and bioavailability in weaned piglets. Thus, finding safe and effective ZnO substitutes to improve intestinal health and to prevent diarrhea of weaned piglets is urgently required. Therefore, this experiment was conducted to evaluate the effects of hydrolysable tannins (HT), ZnO and HT versus ZnO on growth performance, antioxidant status, serum immunity, intestinal morphology, and digestive enzyme activities in weaned pigs. A total of 144 piglets (28 d-old, initial body weight 7.81 ± 0.99 kg) were assigned to 4 treatments with 6 replicates of 6 piglets each. The experiment lasted 28 d (d 1 to 14 as for phase 1 and d 15 to 28 as for phase 2). The dietary treatments include a corn-soybean meal basal diet (CON); ZnO diet (CON + 2000 mg/kg ZnO in phase 1 and 137.5 mg/kg ZnO in phase 2); HT diet (CON + 1000 mg/kg HT in the overall period (d 1 to 28); HT + ZnO diet (CON + 2000 mg/kg ZnO + 1000 mg/kg HT in phase 1, and 137.5 mg/kg ZnO + 1000 mg/kg HT in phase 2). In phase 1, the incidence of diarrhea was lower (p < 0.05) in the HT + ZnO group than CON. Serum catalase (CAT) and glutathione peroxidase (GSH-Px) were increased (p < 0.01) and malondialdehyde (MDA) was decreased (p < 0.01) in the HT + ZnO group than CON. Compared with CON, immunoglobulin M (IgM), immunoglobulin A (IgA) were increased (p < 0.05) in the HT + ZnO group. In phase 2, both HT and HT + ZnO had a trend to improve (p < 0.10) daily gain. The concentration of total antioxidant capacity (T-AOC) and IgM in serum was higher (p < 0.01) in HT compared with CON. Supplementation of HT improved (p < 0.01) GSH-Px activities in ileum mucosa than the ZnO group. Compared with CON, trypsin, lipase activities, and villus height of jejunum were improved (p < 0.05) in HT and HT + ZnO. The ratio of villus height to crypt depth in the jejunum was improved (p < 0.05) in the HT + ZnO group and which also was increased (p < 0.05) in ileum in the HT group compared with CON. Propionic acid, butyric acid, and acetic acid concentrations in the colon were increased (p < 0.05) in the HT group than CON. Overall, HT + ZnO treatments could be used to replace ZnO for reducing diarrhea and improving antioxidant capacity, immunity, and digestive enzyme activities in weaned piglets.
Collapse
Affiliation(s)
| | | | | | - Xiangshu Piao
- Correspondence: ; Tel.: +86-10-6273-3588; Fax: +86-10-6273-3688
| |
Collapse
|
22
|
Fang L, Li M, Zhao L, Han S, Li Y, Xiong B, Jiang L. Dietary grape seed procyanidins suppressed weaning stress by improving antioxidant enzyme activity and mRNA expression in weanling piglets. J Anim Physiol Anim Nutr (Berl) 2020; 104:1178-1185. [PMID: 32189416 DOI: 10.1111/jpn.13335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
This study was conducted to investigate the effect of grape seed procyanidins (GSP) on growth performance, digestive enzyme activity, antioxidant enzyme activity and mRNA expression in weanling piglets. A total of 96 piglets (Pietrain × Large White) with an average initial body weight (BW) of 8.4 ± 1.7 kg were weaned at 28 days, and randomly divided into 4 groups. Four groups of animals were fed with a basic diet supplemented with various doses of GSP (0, 40, 70 and 100 mg/kg respectively) during the 28-day treatment period. The results showed that the group receiving 40 mg/kg GSP significantly increased the average daily gain (ADG, p < .05) and decrease the feed/gain ratio (F/G, p < .05). Interestingly, the incidence of diarrhoea was significantly reduced in the groups of 40 and 70 mg/kg GSP, but it was increased in the group of 100 mg/kg GSP. Subsequent biochemical studies indicated that dietary GSP significantly increased the activities of digestive enzymes and antioxidant enzymes, including amylase (Amy), lipase(LPS, p < .05), glutathione peroxidase activity (GSH-Px, p < .05), superoxide dismutase activity (SOD, p < .05) and total antioxidant capacity (T-AOC, p < .05) in serum, liver and muscle, increased the expression of GSH-Px, SOD and CAT genes (p < .05) in the liver, and decreased the level of malondialdehyde (MDA, p < .05) in serum, liver and muscle. Taken together, these studies revealed that low GSP supplement in diets can improve growth performance of weaned piglets, which is associated with increased digestive and antioxidant enzyme activities and enhanced resistance to weanling stress.
Collapse
Affiliation(s)
- Luoyun Fang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Mingyue Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Luyv Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Siyv Han
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
23
|
Ianni A, Martino G. Dietary Grape Pomace Supplementation in Dairy Cows: Effect on Nutritional Quality of Milk and Its Derived Dairy Products. Foods 2020; 9:E168. [PMID: 32050684 PMCID: PMC7073903 DOI: 10.3390/foods9020168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Grape pomace (GP) is the main solid by-product of winemaking and represents a rich source of potent bioactive compounds which could display a wide range of beneficial effects in human health for their association with reduced risk of several chronic diseases. Several studies have proposed the use of GP as a macro-ingredient to obtain economically worthwhile animal feedstuffs naturally enriched by polyphenols and dietary fibers. Moreover, the research carried out in this field in the last two decades evidences the ability of GP to induce beneficial effects in cow milk and its derived dairy products. First of all, a general increase in concentration of polyunsaturated fatty acids (PUFA) was observed, and this could be considered the reflection of the high content of these compounds in the by-product. Furthermore, an improvement in the oxidative stability of dairy products was observed, presumably as a direct consequence of the high content of bioactive compounds in GP that are credited with high and well-characterized antioxidant functions. Last but not least, particularly in ripened cheeses, volatile compounds (VOCs) were identified, arising both from lipolytic and proteolytic processes and commonly associated with pleasant aromatic notes. In conclusion, the GP introduction in the diet of lactating cows made it possible to obtain dairy products characterized by improved nutritional properties and high health functionality. Furthermore, the presumable improvement of organoleptic properties seems to be effective in contributing to an increase in the consumer acceptability of the novel products. This review aims to evaluate the effect of the dietary GP supplementation on the quality of milk and dairy products deriving from lactating dairy cows.
Collapse
Affiliation(s)
| | - Giuseppe Martino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy;
| |
Collapse
|
24
|
González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients 2020; 12:E130. [PMID: 31906505 PMCID: PMC7019584 DOI: 10.3390/nu12010130] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
The intestinal barrier is constantly exposed to potentially harmful environmental factors, including food components and bacterial endotoxins. When intestinal barrier function and immune homeostasis are compromised (intestinal dysfunction), inflammatory conditions may develop and impact overall health. Evidence from experimental animal and cell culture studies suggests that exposure of intestinal mucosa to proanthocyanidin (PAC)-rich plant products, such as grape seeds, may contribute to maintaining the barrier function and to ameliorating the pathological inflammation present in diet-induced obesity and inflammatory bowel disease. In this review, we aim to update the current knowledge on the bioactivity of PACs in experimental models of intestinal dysfunction and in humans, and to provide insights into the underlying biochemical and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.P.); (A.A.); (X.T.)
| | | |
Collapse
|
25
|
Asbaghi O, Nazarian B, Reiner Ž, Amirani E, Kolahdooz F, Chamani M, Asemi Z. The effects of grape seed extract on glycemic control, serum lipoproteins, inflammation, and body weight: A systematic review and meta‐analysis of randomized controlled trials. Phytother Res 2019; 34:239-253. [DOI: 10.1002/ptr.6518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Accepted: 09/08/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Omid Asbaghi
- Student Research CommitteeLorestan University of Medical Sciences Khorramabad Iran
| | - Behzad Nazarian
- Student Research CommitteeLorestan University of Medical Sciences Khorramabad Iran
| | - Željko Reiner
- Department of Internal MedicineUniversity Hospital Centre Zagreb, School of Medicine, University of Zagreb Kispaticeva 12, 10000, Zagreb Croatia
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical Sciences Kashan Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of MedicineUniversity of Alberta Edmonton Canada
| | - Maryam Chamani
- Department of Gynecology and Obstetrics, School of MedicineIran University of Medical Sciences Tehran Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical Sciences Kashan Iran
| |
Collapse
|
26
|
Rosero JC, Cruz S, Osorio C, Hurtado N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado ( Persea americana Mill.) Cultivated in Colombia. Molecules 2019; 24:molecules24173209. [PMID: 31484471 PMCID: PMC6749317 DOI: 10.3390/molecules24173209] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/04/2022] Open
Abstract
The byproducts (seeds and peels) of an avocado cultivated in the south of Colombia were extracted with aqueous acetone and their antioxidant properties were measured with ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays, and total polyphenol content was determined by Folin–Ciocalteu method. A bioguided fractionation was performed, first by SPE (solid phase extraction) on Amberlite XAD-7, and then by size exclusion chromatography on Sephadex LH-20. The polyphenolic-rich extracts and their fractions were analyzed by ultra-performance liquid chromatography–electrospray ionization–mass spectrometry (UPLC-ESI-MS/MS), finding the presence of organic acids, hydroxycinnamic acids, catechins, free and glycosylated flavonoids, and dimeric and trimeric procyanidins. Catechin, epicatechin, six quercetin derivatives, four dimeric procyanidins (three type B and one type A), and three trimeric procyanidins (two type B and one type A) were detected in the most active fractions of avocado peel and seeds. The most antioxidant fractions contain the higher molecular weight phenolic compounds (condensed tannins).
Collapse
Affiliation(s)
- Johanna C Rosero
- Departamento de Química, Universidad de Nariño, Pasto AA 1175, Nariño, Colombia
| | - Silvia Cruz
- Departamento de Química, Universidad de Nariño, Pasto AA 1175, Nariño, Colombia
| | - Coralia Osorio
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC AA 14490, Colombia
| | - Nelson Hurtado
- Departamento de Química, Universidad de Nariño, Pasto AA 1175, Nariño, Colombia.
| |
Collapse
|
27
|
Ginés I, Gil-Cardoso K, Serrano J, Casanova-Marti À, Lobato M, Terra X, Blay MT, Ardévol A, Pinent M. Proanthocyanidins Limit Adipose Accrual Induced by a Cafeteria Diet, Several Weeks after the End of the Treatment. Genes (Basel) 2019; 10:genes10080598. [PMID: 31398921 PMCID: PMC6723337 DOI: 10.3390/genes10080598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
A dose of proanthocyanidins with satiating properties proved to be able to limit body weight increase several weeks after administration under exposure to a cafeteria diet. Here we describe some of the molecular targets and the duration of the effects. We treated rats with 500 mg grape seed proanthocyanidin extract (GSPE)/kg BW for ten days. Seven or seventeen weeks after the last GSPE dose, while animals were on a cafeteria diet, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to measure the mRNA of the key energy metabolism enzymes from the liver, adipose depots and muscle. We found that a reduction in the expression of adipose Lpl might explain the lower amount of adipose tissue in rats seven weeks after the last GSPE dose. The liver showed increased expression of Cpt1a and Hmgs2 together with a reduction in Fasn and Dgat2. In addition, muscle showed a higher fatty oxidation (Oxct1 and Cpt1b mRNA). However, after seventeen weeks, there was a completely different gene expression pattern. At the conclusion of the study, seven weeks after the last GSPE administration there was a limitation in adipose accrual that might be mediated by an inhibition of the gene expression of the adipose tissue Lpl. Concomitantly there was an increase in fatty acid oxidation in liver and muscle.
Collapse
Affiliation(s)
- Iris Ginés
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Katherine Gil-Cardoso
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Àngela Casanova-Marti
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Maria Lobato
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| |
Collapse
|
28
|
Yogalakshmi B, Sathiya Priya C, Anuradha CV. Grape seed proanthocyanidins and metformin combination attenuate hepatic endoplasmic reticulum stress in rats subjected to nutrition excess. Arch Physiol Biochem 2019; 125:174-183. [PMID: 29482356 DOI: 10.1080/13813455.2018.1444058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
CONTEXT Endoplasmic reticulum (ER) stress in the liver is a pathological outcome of nutrient excess and is suggested to be one of the hits for progressive liver injury. OBJECTIVE This study investigated whether grape seed proanthocyanidins (GSP) and metformin (MET) alone or in combination can relieve hepatic ER stress induced in rats subjected to calorie excess. MATERIAL AND METHODS Male albino Wistar rats were given high calorie diet (HCD) for 45 days, while GSP (100 mg/kg body weight) and MET (50 mg/kg body weight) were administered either alone or in combination for last 15 days. RESULTS GSP, MET or both had reduced the levels of ER stress markers and chaperons, and suppressed the activation of lipogenic and inflammatory mediators in rat liver. DISCUSSION Though GSP and MET had reduced ER stress and inflammation individually, combination treatment with GSP + MET was more effective. CONCLUSION We suggest intervention with GSP and MET intake has to be considered for the management of liver disorders.
Collapse
Affiliation(s)
- Baskaran Yogalakshmi
- a Department of Biochemistry and Biotechnology , Annamalai University , Annamalai Nagar , India
| | | | | |
Collapse
|
29
|
Ianni A, Di Maio G, Pittia P, Grotta L, Perpetuini G, Tofalo R, Cichelli A, Martino G. Chemical-nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3635-3643. [PMID: 30629293 DOI: 10.1002/jsfa.9584] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/29/2018] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The aim of the study was to evaluate the nutritional properties of milk and cheese obtained from Friesian cows fed with a diet supplemented with dried grape pomace, a by-product of the oenological industry, which is very rich in polyphenols. This approach is inspired by the increasing interest in foods containing functional ingredients that may have beneficial effects on human health. During the testing period, analyses of the chemical and nutritional properties of milk and dairy products derived from it were performed; particular attention was given to the effect of cheese ripening on the oxidative stability and fermentation process, evaluating respectively the presence of malondialdehyde and γ-aminobutyric acid. RESULTS Dietary enrichment with grape pomace did not affect the milk composition but induced modifications in the fatty acid profiles in both milk and cheese with an increase in concentration of linoleic acid, trans-vaccenic acid, rumenic acid and total n-6 fatty acids. Moreover, after 30 days of cheese ripening, an increased oxidative stability and an increased concentration of γ-aminobutyric acid were found. CONCLUSIONS Our results indicated a general improvement in nutritional parameters of milk and related cheese obtained from Friesian cows that received the feeding enrichment with dried grape pomace. Further analysis should be performed to improve knowledge of the chemical and microbiological mechanisms at the source of these findings. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Gaetano Di Maio
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paola Pittia
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, G. D'Annunzio University, Chieti, Italy
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
30
|
Procyanidins Extracted from Lotus Seedpod Ameliorate Amyloid- β-Induced Toxicity in Rat Pheochromocytoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4572893. [PMID: 30538801 PMCID: PMC6230407 DOI: 10.1155/2018/4572893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, which is characterized by extracellular senile plaque deposits, intracellular neurofibrillary tangles, and neuronal apoptosis. Amyloid-β (Aβ) plays a critical role in AD that may cause oxidative stress and downregulation of CREB/BDNF signaling. Anti-Aβ effect has been discussed as a potential therapeutic strategy for AD. This study aimed to identify the amelioration of procyanidins extracted from lotus seedpod (LSPC) on Aβ-induced damage with associated pathways for AD treatment. Rat pheochromocytoma (PC12) cells incubated with Aβ25–35 serve as an Aβ damage model to evaluate the effect of LSPC in vitro. Our findings illustrated that LSPC maintained the cellular morphology from deformation and reduced apoptosis rates of cells induced by Aβ25–35. The mechanisms of LSPC to protect cells from Aβ-induced damage were based on its regulation of oxidation index and activation of CREB/BDNF signaling, including brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP-responsive element-binding (CREB), protein kinase B (also known as AKT), and the extracellular signal-regulated kinase (ERK). Of note, by high-performance liquid chromatography-tandem mass spectroscopy (LC-MS/MS), several metabolites were detected to accumulate in vivo, part of which could take primary responsibility for the amelioration of Aβ-induced damage on PC12 cells. Taken together, our research elucidated the effect of LSPC on neuroprotection through anti-Aβ, indicating it as a potential pretreatment for Alzheimer's disease.
Collapse
|
31
|
Li Q, Shaoyong W, Li Y, Chen M, Hu Y, Liu B, Yang G, Hu J. Effects of oligomeric proanthocyanidins on quality of boar semen during liquid preservation at 17 °C. Anim Reprod Sci 2018; 198:47-56. [PMID: 30219380 DOI: 10.1016/j.anireprosci.2018.08.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
The use of antioxidants is an important aspect in the preservation of boar semen. Oligomeric proanthocyanidins (OPC) are an effective natural antioxidants that scavenges free radicals and reactive oxygen species (ROS). This study was designed to investigate the antioxidative effect of OPC on boar semen quality during liquid preservation at 17 °C. The effects of different concentrations of OPC on sperm quality variables, antioxidant effects and fertility were analyzed in this experiment. Semen collected from six Guanzhong-Black boars and was diluted with Beltsville thawing solution (BTS). During the process of liquid preservation at 17 °C, the variables assessed were measured and analyzed every 24 h. The addition of OPC improved boar sperm motility, acrosome integrity, membrane integrity, and mitochondrial membrane potential as compared with that of the control group (P < 0.05). Meanwhile, malondialdehyde content (MDA) and ROS content was less after adding OPC, thereby improving the total antioxidant capacity (T-AOC) (P < 0.05). Different concentrations of OPC have different degrees of protective effects on boar semen quality. The results indicate that 50 μg/mL of OPC was the optimum concentration, and that the conception rate, litter size, and survival rate increased at this concentration as compared with that of the control group (P < 0.05). In summary, the addition of OPC to BTS diluents can improve the quality of boar semen at 17 °C during liquid preservation. Further research is needed to understand the mechanism by which OPC provides protection to boar semen during preservation in vitro.
Collapse
Affiliation(s)
- Qian Li
- Collage of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Weike Shaoyong
- Collage of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Yu Li
- Collage of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Meijie Chen
- Collage of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - YaMei Hu
- Collage of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - Bin Liu
- Collage of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, PR China.
| | - GongShe Yang
- Collage of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, PR China
| | - JianHong Hu
- Collage of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, PR China.
| |
Collapse
|
32
|
Leonetti D, Soleti R, Clere N, Vergori L, Jacques C, Duluc L, Dourguia C, Martínez MC, Andriantsitohaina R. Extract Enriched in Flavan-3-ols and Mainly Procyanidin Dimers Improves Metabolic Alterations in a Mouse Model of Obesity-Related Disorders Partially via Estrogen Receptor Alpha. Front Pharmacol 2018; 9:406. [PMID: 29740325 PMCID: PMC5928481 DOI: 10.3389/fphar.2018.00406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Red wine polyphenol extracts improve cardiovascular and metabolic disorders linked to obesity. Their vascular protection is mediated by the activation of the alpha isoform of the estrogen receptor (ERα). In the present study, we explored the effects of a grape seed extract (GSE) enriched in the flavan-3-ols procyanidin dimers on obesity-related cardiovascular and metabolic disorders; with a particular interest in the role/contribution of ERα. Ovariectomized wild type or ERα knockout (KO) mice were fed with standard or western diet, supplemented or not with GSE, for 12 weeks. Their body weight was monitored throughout the study, and an echocardiography was performed at the end of the treatment. Blood and tissues were collected for biochemical and functional analysis, including nitric oxide and oxidative stress measurement. Vascular reactivity and liver mitochondrial complexes activity were also analyzed. In western diet-fed mice, GSE reduced adiposity, plasma triglycerides, and oxidative stress in the heart, liver, adipose and skeletal tissues; but did not improve the vascular dysfunction. In western diet-fed mice, ERα deletion prevented or reduced the beneficial effects of GSE on plasma triglycerides and visceral adiposity. ERα deletion also prevented/reduced the anti-oxidant effect of GSE in the liver, but did not affect its capacity to reduce oxidative stress in the heart and adipose tissue. In conclusion, dietary supplementation of GSE attenuated features of metabolic syndrome partially through ERα-dependent mechanisms. This report highlights the therapeutic potential of polyphenols, and especially extract enriched in procyanidin dimers, against the metabolic disorders associated with excessive energy intake.
Collapse
Affiliation(s)
- Daniela Leonetti
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Raffaella Soleti
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Nicolas Clere
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Luisa Vergori
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Caroline Jacques
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Lucie Duluc
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Catherine Dourguia
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maria C Martínez
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalier Universitaire d'Angers, Angers, France
| |
Collapse
|
33
|
Millan-Linares MC, Bermudez B, Martin ME, Muñoz E, Abia R, Millan F, Muriana FJG, Montserrat-de la Paz S. Unsaponifiable fraction isolated from grape (Vitis vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes. Food Funct 2018; 9:2517-2523. [DOI: 10.1039/c8fo00063h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Grape seed oil has significant potential for the management of inflammatory and oxidative conditions.
Collapse
Affiliation(s)
| | - Beatriz Bermudez
- Department of Cell Biology
- Faculty of Biology
- Universidad de Sevilla
- 41012 Seville
- Spain
| | - Maria E. Martin
- Department of Cell Biology
- Faculty of Biology
- Universidad de Sevilla
- 41012 Seville
- Spain
| | - Ernesto Muñoz
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition
- Instituto de la Grasa
- CSIC
- 41013 Seville
- Spain
| | | | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry
- Molecular Biology and Immunology
- School of Medicine
- Universidad de Sevilla
- 41071 Seville
| |
Collapse
|
34
|
Antioxidant action of grape seed polyphenols and aerobic exercise in improving neuronal number in the hippocampus is associated with decrease in lipid peroxidation and hydrogen peroxide in adult and middle-aged rats. Exp Gerontol 2018; 101:101-112. [DOI: 10.1016/j.exger.2017.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
|
35
|
Selection of antioxidants against ovarian oxidative stress in mouse model. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023]
|
36
|
Ma ZF, Zhang H. Phytochemical Constituents, Health Benefits, and Industrial Applications of Grape Seeds: A Mini-Review. Antioxidants (Basel) 2017; 6:antiox6030071. [PMID: 28914789 PMCID: PMC5618099 DOI: 10.3390/antiox6030071] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 01/14/2023] Open
Abstract
Grapes are one of the most widely grown fruits and have been used for winemaking since the ancient Greek and Roman civilizations. Grape seeds are rich in proanthocyanidins which have been shown to possess potent free radical scavenging activity. Grape seeds are a complex matrix containing 40% fiber, 16% oil, 11% proteins, and 7% complex phenols such as tannins. Grape seeds are rich sources of flavonoids and contain monomers, dimers, trimers, oligomers, and polymers. The monomeric compounds includes (+)-catechins, (−)-epicatechin, and (−)-epicatechin-3-O-gallate. Studies have reported that grape seeds exhibit a broad spectrum of pharmacological properties against oxidative stress. Their potential health benefits include protection against oxidative damage, and anti-diabetic, anti-cholesterol, and anti-platelet functions. Recognition of such health benefits of proanthocyanidins has led to the use of grape seeds as a dietary supplement by the consumers. This paper summarizes the studies of the phytochemical compounds, pharmacological properties, and industrial applications of grape seeds.
Collapse
Affiliation(s)
- Zheng Feei Ma
- Department of Public Health, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Hongxia Zhang
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
37
|
Wang C, Wang Y, Yu M, Chen C, Xu L, Cao Y, Qi R. Grape-seed Polyphenols Play a Protective Role in Elastase-induced Abdominal Aortic Aneurysm in Mice. Sci Rep 2017; 7:9402. [PMID: 28839206 PMCID: PMC5570906 DOI: 10.1038/s41598-017-09674-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a kind of disease characterized by aortic dilation, whose pathogenesis is linked to inflammation. This study aimed to determine whether grape-seed polyphenols (GSP) has anti-AAA effects and what mechanism is involved, thus to find a way to prevent occurrence and inhibit expansion of small AAA. In our study, AAA was induced by incubating the abdominal aorta of the mice with elastase, and GSP was administrated to the mice by gavage at different doses beginning on the day of the AAA inducement. In in vivo experiments, 800 mg/kg GSP could significantly reduce the incidence of AAA, the dilatation of aorta and elastin degradation in media, and dramatically decrease macrophage infiltration and activation and expression of matrix metalloproteinase (MMP) -2 and MMP-9 in the aorta, compared to the AAA model group. Meanwhile, 400 mg/kg GSP could also but not completely inhibit the occurrence and development of AAA. In in vitro experiments, GSP dose-dependently inhibited mRNA expression of interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1), and significantly inhibited expression and activity of MMP-2 and MMP-9, thus prevented elastin from degradation. In conclusion, GSP showed great anti-AAA effects and its mechanisms were related to inhibition of inflammation.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Biomarkers
- Biopsy
- Cytokines/metabolism
- Disease Models, Animal
- Gene Expression
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pancreatic Elastase/deficiency
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Polyphenols/chemistry
- Polyphenols/pharmacology
- Protective Agents/chemistry
- Protective Agents/pharmacology
- Seeds/chemistry
- Vitis/chemistry
Collapse
Affiliation(s)
- Chao Wang
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
- Second School of Clinical Medicine, Peking University, Beijing, 100044, China
| | - Yunxia Wang
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Maomao Yu
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Cong Chen
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Lu Xu
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China.
| |
Collapse
|
38
|
Reduction of oxidative damages induced by titanium dioxide nanoparticles correlates with induction of the Nrf2 pathway by GSPE supplementation in mice. Chem Biol Interact 2017; 275:133-144. [PMID: 28780322 DOI: 10.1016/j.cbi.2017.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used to additives in cosmetics, pharmaceuticals, paints and foods. Recent studies have demonstrated that TiO2 NPs increased the risk of cancer and the mechanism might relate with oxidative stress. Grape seed procyanidin extract (GSPE) is a natural compound which has been demonstrated to possess a wide array of pharmacological and biochemical actions, including anti-inflammatory, anti-carcinogenic, and antioxidant properties. Our data show that GSPE prevents the changes of histopathology and biomarkers in heart, liver and kidney that occur in mice exposed to TiO2 NPs. After pretreatment with GSPE, the DNA damage, reactive oxygen species (ROS) generation and malondialdehyde (MDA) content in mice exposed to TiO2 NPs had statistically significant decreases in dose dependent manners. GSPE increased the expression of nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), NAD(P)H dehydrogenase[quinine] 1(NQO1), heme oxygenase 1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC). We conclude that grape seed procyanidin extract prevents the majority of tissue and molecular damage resulting from nanoparticle treatment. The protective effect of GSPE may be due to its strong antioxidative activities which related with the activated Nrf2 and its down-regulated genes including NQO1, HO-1 and GCLC.
Collapse
|
39
|
Mercan E, Sert D, Karakavuk E, Akın Nİ. Effect of different levels of grapeseed (Vitis vinifera
) oil addition on physicochemical, microbiological and sensory properties of set-type yoghurt. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Emİn Mercan
- Department of Food Engineering; Faculty of Engineering; Bayburt University; Bayburt 69000 Turkey
| | - Durmuş Sert
- Department of Food Engineering; Faculty of Engineering and Architecture; Necmettin Erbakan University; Konya 42090 Turkey
| | - Emrah Karakavuk
- Department of Food Engineering; Faculty of Engineering; Munzur University; Tunceli 62000 Turkey
| | - Nİhat Akın
- Department of Food Engineering; Faculty of Agriculture; Selcuk University; Konya 42075 Turkey
| |
Collapse
|
40
|
Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Arola L, Blay M, Terra X. Chronic supplementation with dietary proanthocyanidins protects from diet-induced intestinal alterations in obese rats. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201601039] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Katherine Gil-Cardoso
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Iris Ginés
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Montserrat Pinent
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Anna Ardévol
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Lluís Arola
- Nutrigenomics Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Mayte Blay
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Ximena Terra
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
41
|
Dasilva G, Pazos M, García-Egido E, Gallardo JM, Ramos-Romero S, Torres JL, Romeu M, Nogués MR, Medina I. A lipidomic study on the regulation of inflammation and oxidative stress targeted by marine ω-3 PUFA and polyphenols in high-fat high-sucrose diets. J Nutr Biochem 2017; 43:53-67. [PMID: 28260647 DOI: 10.1016/j.jnutbio.2017.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/19/2017] [Accepted: 02/08/2017] [Indexed: 01/14/2023]
Abstract
The ability of polyphenols to ameliorate potential oxidative damage of ω-3 PUFAs when they are consumed together and then, to enhance their potentially individual effects on metabolic health is discussed through the modulation of fatty acids profiling and the production of lipid mediators. For that, the effects of the combined consumption of fish oils and grape seed procyanidins on the inflammatory response and redox unbalance triggered by high-fat high-sucrose (HFHS) diets were studied in an animal model of Wistar rats. A standard diet was used as control. Results suggested that fish oils produced a replacement of ω-6 by ω-3 PUFAs in membranes and tissues, and consequently they improved inflammatory and oxidative stress parameters: favored the activity of 12/15-lipoxygenases on ω-3 PUFAs, enhanced glutathione peroxidases activity, modulated proinflammatory lipid mediators synthesis through the cyclooxygenase (COX) pathways and down-regulated the synthesis de novo of ARA leaded by Δ5 desaturase. Although polyphenols exerted an antioxidative and antiinflammatory effect in the standard diet, they were less effective to reduce inflammation in the HFHS dietary model. Contrary to the effect observed in the standard diet, polyphenols up-regulated COX pathways toward ω-6 proinflammatory eicosanoids as PGE2 and 11-HETE and decreased the detoxification of ω-3 hydroperoxides in the HFHS diet. As a result, additive effects between fish oils and polyphenols were found in the standard diet in terms of reducing inflammation and oxidative stress. However, in the HFHS diets, fish oils seem to be the one responsible for the positive effects found in the combined group.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain; Department of Analytical Chemistry, Nutrition and Bromatology and Research Institute for Food Analysis (I.I.A.A.), University of Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain.
| | - Manuel Pazos
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - Eduardo García-Egido
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - José M Gallardo
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| | - Sara Ramos-Romero
- Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Instituto de Química Avanzada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - María-Rosa Nogués
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Galicia, Spain
| |
Collapse
|
42
|
Chronic administration of grape-seed polyphenols attenuates the development of hypertension and improves other cardiometabolic risk factors associated with the metabolic syndrome in cafeteria diet-fed rats. Br J Nutr 2017; 117:200-208. [PMID: 28162106 DOI: 10.1017/s0007114516004426] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of grape-seed polyphenols against the development of hypertension and other cardiometabolic conditions associated with the metabolic syndrome (MetS) were studied in rats fed a high-fat, high-carbohydrate diet, known as the cafeteria (CAF) diet. Two groups of Wistar rats were fed standard (STD) or CAF diets for 12 weeks. The CAF diet-fed rats were administered different doses of a low-molecular-weight grape-seed polyphenol extract (LM-GSPE) (25, 100 and 200 mg/kg per d) or vehicle daily, and the STD diet-fed rats were administered LM-GSPE (100 mg/kg per d) or vehicle using ten animals per group. Body weight (BW), waist perimeter (WP) and systolic and diastolic blood pressures (BP) by the tail-cuff method were recorded weekly. The animals were housed in metabolic chambers every 2 weeks to estimate daily food and liquid intakes and to collect faeces and urine samples. The plasma lipid profile was analysed at time 0 and on the 4th, 7th, 10th and 12th weeks of the experiment. Moreover, plasma leptin was measured at the end of the experiment. Results demonstrated that LM-GSPE, when administered with the CAF diet, attenuated the increase in BP, BW, WP and improved lipid metabolism in these animals. However, although the 25- and 100-mg/kg per d doses were sufficient to produce beneficial effects on BP and lipid metabolism, a 200-mg/kg per d dose was necessary to have an effect on BW and WP. The present findings suggest that LM-GSPE is a good candidate for a BP-lowering agent that can also ameliorate other conditions associated with the MetS.
Collapse
|
43
|
Zhang H, Yin M, Huang L, Wang J, Gong L, Liu J, Sun B. Evaluation of the Cellular and Animal Models for the Study of Antioxidant Activity: A Review. J Food Sci 2017; 82:278-288. [PMID: 28117894 DOI: 10.1111/1750-3841.13605] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023]
Abstract
The mechanisms of antioxidant activities of phytochemicals are highly complex, so various methods to study them have been developed. However, the diverse available methods show inconsistent results. Different stressors, cell models, and animal models have been used to evaluate the antioxidant properties of phytochemicals. However, the literature still lacks a summary of the effects of different stressors, cell models, and animal models on the evaluation of antioxidant activities. Therefore, the mechanisms of action of different oxidative stimuli and the characteristics of the available cell models and animal models are summarized in this review.
Collapse
Affiliation(s)
- Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Meng Yin
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Lianyan Huang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, 100048, China.,Key Laboratory of Space Nutrition and Food Engineering, Beijing, 100094, China
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Jie Liu
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| |
Collapse
|
44
|
Juskiewicz J, Jankowski J, Zielinski H, Zdunczyk Z, Mikulski D, Antoszkiewicz Z, Kosmala M, Zdunczyk P. The Fatty Acid Profile and Oxidative Stability of Meat from Turkeys Fed Diets Enriched with n-3 Polyunsaturated Fatty Acids and Dried Fruit Pomaces as a Source of Polyphenols. PLoS One 2017; 12:e0170074. [PMID: 28076425 PMCID: PMC5226801 DOI: 10.1371/journal.pone.0170074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to determine the efficacy of different dietary fruit pomaces in reducing lipid oxidation in the meat of turkeys fed diets with a high content of n-3 polyunsaturated fatty acids (PUFAs). Over a period of 4 weeks before slaughter, turkeys were fed diets with the addition of 5% dried apple, blackcurrant, strawberry and seedless strawberry pomaces (groups AP, BP, SP and SSP, respectively) and 2.5% linseed oil. Pomaces differed in the content (from 5.5 in AP to 43.1 mg/g in SSP) and composition of polyphenols Proanthocyanidins were the main polyphenolic fraction in all pomaces, AP contained flavone glycosides and dihydrochalcones, BP contained anthocyanins, and SP and SSP-ellagitannins. The n-6/n-3 PUFA ratio in all diets was comparable and lower than 2:1. In comparison with groups C and AP, the percentage of n-3 PUFAs in the total fatty acid pool of white meat from the breast muscles of turkeys in groups BP, SP and SSP was significantly higher, proportionally to the higher content of α-linolenic acid in berry pomaces. The fatty acid profile of dark meat from thigh muscles, including the n-6/n-3 PUFA ratio, was similar and lower than 3:1 in all groups. Vitamin A levels in raw breast muscles were higher in group AP than in groups C and BP (P<0.05). The addition of fruit pomaces to turkey diets lowered vitamin E concentrations (P = 0.001) in raw breast muscles relative to group C. Diets supplemented with fruit pomaces significantly lowered the concentration of thiobarbituric acid reactive substances (TBARS) in raw, frozen and cooked meat. Our results indicate that the dietary application of dried fruit pomaces increases the oxidative stability of meat from turkeys fed linseed oil, and strawberry pomace exerted the most desirable effects due to its highest polyphenol content and antioxidant potential.
Collapse
Affiliation(s)
- Jerzy Juskiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Henryk Zielinski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Zenon Zdunczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition and Food Management, University of Warmia and Mazury, Olsztyn, Poland
| | - Monika Kosmala
- Institute of Food Technology and Analysis, Lodz University of Technology, Lodz, Poland
| | - Przemyslaw Zdunczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
45
|
Garavaglia J, Markoski MM, Oliveira A, Marcadenti A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr Metab Insights 2016; 9:59-64. [PMID: 27559299 PMCID: PMC4988453 DOI: 10.4137/nmi.s32910] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/30/2022] Open
Abstract
Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health.
Collapse
Affiliation(s)
- Juliano Garavaglia
- Institute of Technology in Food for Health, University of Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brazil.; Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Melissa M Markoski
- Postgraduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul (IC/FUC), Porto Alegre, Brazil.; Cellular and Molecular Cardiology Laboratory, Institute of Cardiology of Rio Grande do Sul (IC/FUC), Porto Alegre, Brazil
| | - Aline Oliveira
- Postgraduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul (IC/FUC), Porto Alegre, Brazil
| | - Aline Marcadenti
- Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.; Postgraduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul (IC/FUC), Porto Alegre, Brazil
| |
Collapse
|
46
|
Taghizadeh M, Malekian E, Memarzadeh MR, Mohammadi AA, Asemi Z. Grape Seed Extract Supplementation and the Effects on the Biomarkers of Oxidative Stress and Metabolic Profiles in Female Volleyball Players: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e31314. [PMID: 28144458 PMCID: PMC5253210 DOI: 10.5812/ircmj.31314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/30/2015] [Accepted: 09/12/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Only limited data are available for evaluating the effects of the administration of grape seed extract (GSE) on the metabolic status of female volleyball players. OBJECTIVES This study was conducted to determine the effects of GSE administration on the metabolic status of female volleyball players. METHODS This randomized, double-blind, placebo-controlled clinical trial was performed among 40 female volleyball players. The subjects were randomly divided into two groups, with members of the test group (n = 20) taking 300 mg of GSE twice a day for eight weeks and members of the control group (n = 20) taking a placebo pearl for the same period. Fasting blood samples were taken before and after the eight-week intervention period in order to determine the related variables. RESULTS Supplementation with GSE resulted in a significant rise in the plasma glutathione (GSH) level (+265.5 ± 344.2 vs. +2.2 ± 378.2 µmol/L, P = 0.02), as well as a significant decrease in the malondialdehyde (MDA) level (-1.4 ± 2.0 vs. -0.2 ± 1.2 µmol/L, P = 0.01) when compared to the placebo group. In addition, when compared to the group that received the placebo, the subjects who received GSE had significantly decreased serum insulin concentrations (-23.4 ± 23.4 vs. +1.8 ± 25.2 pmol/L, P = 0.002), a decreased homeostasis model of assessment for insulin resistance (HOMA-IR) (-0.7 ± 0.7 vs. +0.2 ± 0.9, P = 0.002), and an increased quantitative insulin sensitivity check index (QUICKI) (+0.01 ± 0.01 vs. -0.01 ± 0.02, P = 0.03). The administration of GSE had no significant effects on creatine phosphokinase (CPK), total antioxidant capacity (TAC), nitric oxide (NO), fasting plasma glucose (FPG), and lipid concentrations when compared with the administration of the placebo. However, after controlling for baseline NO levels, age, and baseline BMI, the changes in the plasma NO concentrations were significantly different between the two groups. CONCLUSIONS In conclusion, taking GSE for eight weeks had beneficial effects on the plasma GSH, MDA levels, and markers of insulin metabolism of female volleyball players.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Elaheh Malekian
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | | | - Ali Akbar Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR Iran
- Corresponding Author: Zatollah Asemi, Department of Nutrition, Kashan University of Medical Sciences, Kashan, IR Iran. Tel: +98-3155463378; Fax: +98-3155463377, E-mail:
| |
Collapse
|
47
|
Aragonès G, Suárez M, Ardid-Ruiz A, Vinaixa M, Rodríguez MA, Correig X, Arola L, Bladé C. Dietary proanthocyanidins boost hepatic NAD(+) metabolism and SIRT1 expression and activity in a dose-dependent manner in healthy rats. Sci Rep 2016; 6:24977. [PMID: 27102823 PMCID: PMC4840337 DOI: 10.1038/srep24977] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Proanthocyanidins (PACs) have been reported to modulate multiple targets by simultaneously controlling many pivotal metabolic pathways in the liver. However, the precise mechanism of PAC action on the regulation of the genes that control hepatic metabolism remains to be clarified. Accordingly, we used a metabolomic approach combining both nuclear magnetic resonance and mass spectrometry analysis to evaluate the changes induced by different doses of grape-seed PACs in the liver of healthy rats. Here, we report that PACs significantly increased the hepatic nicotinamide adenine dinucleotide (NAD(+)) content in a dose-dependent manner by specifically modulating the hepatic concentrations of the major NAD(+) precursors as well as the mRNA levels of the genes that encode the enzymes involved in the cellular metabolism of NAD(+). Notably, Sirtuin 1 (Sirt1) gene expression was also significantly up-regulated in a dose-response pattern. The increase in both the NAD(+) availability and Sirt1 mRNA levels, in turn, resulted in the hepatic activation of SIRT1, which was significantly associated with improved protection against hepatic triglyceride accumulation. Our data clearly indicates that PAC consumption could be a valid tool to enhance hepatic SIRT1 activity through the modulation of NAD(+) levels.
Collapse
Affiliation(s)
- Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Maria Vinaixa
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), University Rovira i Virgili, IISPV, Reus, Spain
| | - Miguel A Rodríguez
- Center for Omic Sciences (COS), Universitat Rovira i Virgili, Reus, Spain
| | - Xavier Correig
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), University Rovira i Virgili, IISPV, Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.,Center for Omic Sciences (COS), Universitat Rovira i Virgili, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
48
|
Hajizadeh Z, Soleimani Mehranjani M, Najafi G, Shariatzadeh SMA, Shalizar Jalali A. Black Grape Seed Extract Modulates Fluoxetine-Induced Oxidative Stress and Cytotoxicity in the Mouse Testis. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-27512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Leong SY, Burritt DJ, Oey I. Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chem 2016; 196:833-41. [DOI: 10.1016/j.foodchem.2015.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 12/28/2022]
|
50
|
Yang LJ, Zhu DN, Dang YL, Zhao X. Treatment of condyloma acuminata in pregnant women with cryotherapy combined with proanthocyanidins: Outcome and safety. Exp Ther Med 2016; 11:2391-2394. [PMID: 27284325 DOI: 10.3892/etm.2016.3207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/25/2016] [Indexed: 12/27/2022] Open
Abstract
Patients with condyloma acuminata (CA) during pregnancy represent a special risk group. The outcomes of many treatment methods for such cases are not satisfactory. The purpose of the present study was to evaluate the treatment outcome and safety of cryotherapy combined with proanthocyanidins (PCs) for CA in pregnant women. In this study, 46 pregnant women with CA were treated with cryotherapy combined with PCs. The lesions were sprayed with liquid nitrogen until the color of the wart changed from flesh colored to purple. A PC-containing formulation was then sprayed onto a non-woven fabric or single-layer gauze and applied to the affected area. The PC treatment was applied for 20 min, 2 or 3 times per day. All patients were followed up at 1 and 3 months. No visible warts remained after the cryotherapy and PC treatment. At the 1-month follow-up, only 1 case of recurrence was identified. At 3 months, 5 cases of recurrence were identified, and the recurrence rate was 10.9%. The satisfaction rate of the patients was 94% at 1 month and 87% at 3 months after treatment. All pregnancies resulted in healthy live births without delivery complications. Cryotherapy combined with PCs is indicated to be a safe and effective procedure and may serve as a treatment option for pregnant women with CA.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Dermatology, Maternal and Child Health Hospital of Shaanxi, Xi'an, Shaanxi 710003, P.R. China
| | - Dong-Ning Zhu
- Department of Dermatology, Maternal and Child Health Hospital of Shaanxi, Xi'an, Shaanxi 710003, P.R. China
| | - Yan-Ling Dang
- Department of Dermatology, Maternal and Child Health Hospital of Shaanxi, Xi'an, Shaanxi 710003, P.R. China
| | - Xiong Zhao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|