1
|
Arora R. Glucosinolates and Their Hydrolytic Products-A Love Story of Environmental, Biological, and Chemical Conditions. J AOAC Int 2024; 107:867-875. [PMID: 38913875 DOI: 10.1093/jaoacint/qsae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Glucosinolates (GSL) play an important role in providing defense to plants and helping them to cope with various biotic, as well as abiotic, stresses. Many living beings including humans and animals, including some herbivores, have adapted themselves to use this defense mechanism for their own use. More than 120 glucosinolates are distributed within a large number of plants. Many factors are known to influence the GSL composition in a plant. Among these, cofactors, myrosinase isozymes, heavy metals and the environmental conditions such as light, CO2 and temperature are important in regulation. These factors ensure that different glucosinolate compositions can be produced by the plants, thus impacting the defense mechanism. OBJECTIVE The objective of the current review is to highlight the importance of the factors responsible for affecting glucosinolate composition and concentration. METHODS The review has been compiled using accessible literature from Pubmed, Scopus, and Google scholar. Efforts have been made to restrict the literature to the last 5 years (2018-2023), with some exceptions. RESULTS The current critical review acts as a resource for all the researchers working on these essential compounds. It provides information on the factors that may influence glucosinolate production. It also gives them an opportunity to modify the glucosinolate composition of a plant using the given information. CONCLUSIONS Glucosinolates have long been an ignored class of biomolecule. The plethora of biological activities of the compounds can be useful. Though there are some harmful components such as goitrin and progoitrin, these can be easily removed by modulating some of the factors highlighted in the review. HIGHLIGHTS The current review has covered most of the factors that have the ability to modify glucosinolate composition and concentration. The mechanistic action of these factors has also been discussed using the current available literature.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
2
|
Shakerinasab N, Mottaghipisheh J, Eftekhari M, Sadeghi H, Bazarganipour F, Abbasi R, Doustimotlagh AH, Iriti M. The hydroalcoholic extract of Nasturtium officinale reduces oxidative stress markers and increases total antioxidant capacity in patients with asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116862. [PMID: 37437789 DOI: 10.1016/j.jep.2023.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/28/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a common chronic disease characterized by inflammation of the airways. One of the most devastating consequences of this inflammatory process is the production of reactive oxygen species responsible for oxidative stress. Nasturtium officinale commonly known as watercress has traditionally been applied in Iranian folk medicine to treat respiratory disorders and diseases mainly bronchitis and asthma. In accordance with these ethnopharmacological reports, through our previous in vivo experiment, we have confirmed significant effect of its hydroalcoholic extract in reducing lung inflammation and oxidative stress in an ovalbumin-induced asthmatic rat model. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory and antioxidant effects of N. officinale hydroalcoholic extract (NOE) in patients with asthma, in order to confirm our findings of the previous performed in vivo study. MATERIAL AND METHODS The NOE capsules (500 mg) were treated twice daily for 4 weeks as a supplementary treatment in a randomized, double-blind, and placebo-controlled trial in asthmatics. The primary outcome was Asthma Control Test score. The blood samples were taken at the beginning and end of the study. Then, the level of inflammatory markers, oxidative stress markers and antioxidant enzyme activity were measured. RESULTS Treatment with NOE for one month caused a reduction in the levels of MDA, PCO and NO metabolite markers compared to the placebo group. In addition, FRAP levels as an indicator of total antioxidant capacity in the intervention group was significantly increased at the end of the treatment period compared to pre-treatment values. CONCLUSION Findings demonstrated that NOE may have a therapeutic effect on asthma by improving oxidative stress. However, more studies are required to support these results. Moreover, bio-assay guided fractionation and isolation approach can be conducted to identify major bioactive compound/s.
Collapse
Affiliation(s)
- Nasrin Shakerinasab
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Mahdieh Eftekhari
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Fatemeh Bazarganipour
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Reza Abbasi
- Department of Pediatrics, Yasuj University of Medical Science, Yasuj, Iran.
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
3
|
Castillo-Lorenzo E, Breman E, Gómez Barreiro P, Viruel J. Current status of global conservation and characterisation of wild and cultivated Brassicaceae genetic resources. Gigascience 2024; 13:giae050. [PMID: 39110621 PMCID: PMC11304946 DOI: 10.1093/gigascience/giae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/23/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The economic importance of the globally distributed Brassicaceae family resides in the large diversity of crops within the family and the substantial variety of agronomic and functional traits they possess. We reviewed the current classifications of crop wild relatives (CWRs) in the Brassicaceae family with the aim of identifying new potential cross-compatible species from a total of 1,242 species using phylogenetic approaches. RESULTS In general, cross-compatibility data between wild species and crops, as well as phenotype and genotype characterisation data, were available for major crops but very limited for minor crops, restricting the identification of new potential CWRs. Around 70% of wild Brassicaceae did not have genetic sequence data available in public repositories, and only 40% had chromosome counts published. Using phylogenetic distances, we propose 103 new potential CWRs for this family, which we recommend as priorities for cross-compatibility tests with crops and for phenotypic characterisation, including 71 newly identified CWRs for 10 minor crops. From the total species used in this study, more than half had no records of being in ex situ conservation, and 80% were not assessed for their conservation status or were data deficient (IUCN Red List Assessments). CONCLUSIONS Great efforts are needed on ex situ conservation to have accessible material for characterising and evaluating the species for future breeding programmes. We identified the Mediterranean region as one key conservation area for wild Brassicaceae species, with great numbers of endemic and threatened species. Conservation assessments are urgently needed to evaluate most of these wild Brassicaceae.
Collapse
Affiliation(s)
- Elena Castillo-Lorenzo
- Royal Botanic Gardens, Kew, Wakehurst, Partnerships department, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst, Partnerships department, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Pablo Gómez Barreiro
- Royal Botanic Gardens, Kew, Wakehurst, Science Operations, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
| | - Juan Viruel
- Royal Botanic Gardens, Kew, Richmond, Research department, Surrey, TW9 3AE, UK
| |
Collapse
|
4
|
Heinen R, Sanchez-Mahecha O, Martijn Bezemer T, Dominoni DM, Knappe C, Kollmann J, Kopatsch A, Pfeiffer ZA, Schloter M, Sturm S, Schnitzler JP, Corina Vlot A, Weisser WW. Part-night exposure to artificial light at night has more detrimental effects on aphid colonies than fully lit nights. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220357. [PMID: 37899021 PMCID: PMC10613545 DOI: 10.1098/rstb.2022.0357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/23/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) threatens natural ecosystems globally. While ALAN research is increasing, little is known about how ALAN affects plants and interactions with other organisms. We explored the effects of ALAN on plant defence and plant-insect interactions using barley (Hordeum vulgare) and the English grain aphid (Sitobion avenae). Plants were exposed to 'full' or 'part' nights of 15-20 lux ALAN, or no ALAN 'control' nights, to test the effects of ALAN on plant growth and defence. Although plant growth was only minimally affected by ALAN, aphid colony growth and aphid maturation were reduced significantly by ALAN treatments. Importantly, we found strong differences between full-night and part-night ALAN treatments. Contrary to our expectations, part ALAN had stronger negative effects on aphid colony growth than full ALAN. Defence-associated gene expression was affected in some cases by ALAN, but also positively correlated with aphid colony size, suggesting that the effects of ALAN on plant defences are indirect, and regulated via direct disruption of aphid colonies rather than via ALAN-induced upregulation of defences. Mitigating ecological side effects of ALAN is a complex problem, as reducing exposure to ALAN increased its negative impact on insect herbivores. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Robin Heinen
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| | - Oriana Sanchez-Mahecha
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| | - T. Martijn Bezemer
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, 2333 BE Leiden, The Netherlands
| | - Davide M. Dominoni
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, Scotland
| | - Claudia Knappe
- Institute of Biochemical Plant Pathology, Institute of Biochemical Plant Pathology, D-85764, Neuherberg, Germany
| | - Johannes Kollmann
- Chair of Restoration Ecology, Department for Life Science Systems, Technical University of Munich, 8534 Freising, Germany
| | - Anton Kopatsch
- Research Unit Environmental Simulation, Helmhotz, Munich, D-85764, Neuherberg, Germany
| | - Zoë A. Pfeiffer
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| | - Michael Schloter
- Chair of Soil Science, Department for Life Science Systems, Technical University of Munich, 85354 Freising, Germany
- Research Unit Comparative Microbiome Analysis, Helmhotz, Munich, D-85764, Neuherberg, Germany
| | - Sarah Sturm
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmhotz, Munich, D-85764, Neuherberg, Germany
| | - A. Corina Vlot
- Institute of Biochemical Plant Pathology, Institute of Biochemical Plant Pathology, D-85764, Neuherberg, Germany
- Chair of Crop Plant Genetics, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, D-95447, Kulmbach, Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group, Department for Life Science Systems, Technical University of Munich School of Life Sciences, 85354 Freising, Germany
| |
Collapse
|
5
|
Kim SH, Lee GA, Subramanian P, Hahn BS. Quantification and Diversity Analyses of Major Glucosinolates in Conserved Chinese Cabbage (Brassica rapa L. ssp. pekinensis) Germplasms. Foods 2023; 12:foods12061243. [PMID: 36981169 PMCID: PMC10048303 DOI: 10.3390/foods12061243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The genebank at the National Agrobiodiversity Center (RDA-Genebank, Jeonju, Republic of Korea), conserves approximately 8000 germplasms of Brassica spp., of which Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the major crops actively used as food in Northeast Asia, including Korea, as the main ingredient for kimchi. Glucosinolates are a major class of compounds in Chinese cabbage that are responsible for their distinctive flavor, and RDA-Genebank is constantly building a related database (DB) to select suitable germplasms required by consumers and provide resources for breeding programs. In this study, ten glucosinolates were analyzed in sixty Chinese cabbage germplasms. Six aliphatic glucosinolates were the major components, accounting for 85.00% to 91.98% of total glucosinolates in each germplasm. Among them, gluconapin (333.26 to 23,501.58 μmol∙kg−1 DW) was highly represented, followed by glucobrassicanapin (545.60 to 10,344.70 μmol∙kg−1 DW) and progoitrin (155.28 to 8536.51 μmol∙kg−1 DW). In addition, we selected germplasms with a high content of each studied glucosinolate. To analyze the diversity and distribution of glucosinolates among the studied germplasms, Pearson’s correlation was performed, and the related results were interpreted through their biosynthetic pathways. The k-means clustering indicated four optimal clusters, which were confirmed through principal component analysis. Orthogonal projection to latent structure discriminant analysis (OPLS-DA) was also performed on the status (landrace and cultivar) and origin (Korea, China, Taiwan, and Japan) passport data of the germplasms, followed by the calculation of variable importance in the projection (VIP) values. These results are part of a continuous series of studies to analyze the glucosinolates of Brassica germplasms that are being conserved at RDA-Genebank. We aim to provide related results through a public platform accessible to everyone and thereby improve the distribution of Brassica germplasms.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
| | - Parthiban Subramanian
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
- Correspondence:
| |
Collapse
|
6
|
Qaderi MM, Martel AB, Strugnell CA. Environmental Factors Regulate Plant Secondary Metabolites. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030447. [PMID: 36771531 PMCID: PMC9920071 DOI: 10.3390/plants12030447] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 05/31/2023]
Abstract
Abiotic environmental stresses can alter plant metabolism, leading to inhibition or promotion of secondary metabolites. Although the crucial roles of these compounds in plant acclimation and defense are well known, their response to climate change is poorly understood. As the effects of climate change have been increasing, their regulatory aspects on plant secondary metabolism becomes increasingly important. Effects of individual climate change components, including high temperature, elevated carbon dioxide, drought stress, enhanced ultraviolet-B radiation, and their interactions on secondary metabolites, such as phenolics, terpenes, and alkaloids, continue to be studied as evidence mounting. It is important to understand those aspects of secondary metabolites that shape the success of certain plants in the future. This review aims to present and synthesize recent advances in the effects of climate change on secondary metabolism, delving from the molecular aspects to the organismal effects of an increased or decreased concentration of these compounds. A thorough analysis of the current knowledge about the effects of climate change components on plant secondary metabolites should provide us with the required information regarding plant performance under climate change conditions. Further studies should provide more insight into the understanding of multiple environmental factors effects on plant secondary metabolites.
Collapse
Affiliation(s)
- Mirwais M. Qaderi
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada
- Department of Biology, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Ashley B. Martel
- Department of Biology, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - Courtney A. Strugnell
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS B3M 2J6, Canada
| |
Collapse
|
7
|
The Investigation of Phenylalanine, Glucosinolate, Benzylisothiocyanate (BITC) and Cyanogenic Glucoside of Papaya Fruits (Carica papaya L. cv. ‘Tainung No. 2’) under Different Development Stages between Seasons and Their Correlation with Bitter Taste. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Papaya fruit is one of economic crops in Taiwan, mostly eaten as table fruits. In some Asian countries, unripe papaya fruit is eaten as salad and this led to trends in Taiwan as well. However, unripe papaya fruit may taste bitter during cool seasons. Glucosinolate and cyanogenic glucoside are among the substances that cause bitter taste in many plants, which can also be found in papaya. However, there is still no report about the relationship between seasons and bitter taste in papaya fruits. Thus, the purpose of this study is to investigate the glucosinolate biosynthesis and its correlation between bitterness intensity during cool and warm seasons. The bitterness intensity was highest at the young fruit stage and decreased as it developed. In addition, the bitterness intensity in cool season fruits is higher than in warm season fruits. Cyanogenic glucoside and BITC content showed negative correlation with bitterness intensity (r = −0.54 ***; −0.46 ***). Phenylalanine showed positive correlation with bitterness intensity (r = 0.35 ***), but its content did not reach the bitterness threshold concentration, which suggested that phenylalanine only acts as cyanogenic glucoside and glucosinolate precusors. Glucosinolate content showed positive correlation with bitterness intensity at different developmental stages (r = 0.805 ***). However, the correlation value in different lines/cultivars decreased (0.44 ***), suggesting that glucosinolate was not the only substance that caused bitter taste in immature papaya fruits.
Collapse
|
8
|
Pignata G, Ertani A, Casale M, Niñirola D, Egea-Gilabert C, Fernández JA, Nicola S. Understanding the Postharvest Phytochemical Composition Fates of Packaged Watercress ( Nasturtium officinale R. Br.) Grown in a Floating System and Treated with Bacillus subtilis as PGPR. PLANTS (BASEL, SWITZERLAND) 2022; 11:589. [PMID: 35270058 PMCID: PMC8912852 DOI: 10.3390/plants11050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 11/17/2022]
Abstract
The physiological changes and phytochemical pathways of processed watercress (Nasturtium officinale R. Br.) undergone during storage are not well known. The objective of this work was to evaluate the respiration rate and the inherent and external quality of watercress inoculated with B. subtilis and packaged as a fresh-cut product and stored at 4 °C for 11 days. Watercress was grown using continuous flotation (FL) in a greenhouse using substrate disinfection and inoculated or not with Bacillus subtilis as a plant-growth-promoting rhizobacteria (PGPR). The fresh-cut watercress respiration rate and phytochemical profile changed during the shelf life. The inherent phytochemical compounds were retained during the storage of the fresh-cut salad bags. The best results were found in watercress grown in a disinfected substrate but were less satisfactory when seeds and substrates were inoculated with PGPR. In general, the external quality and the pigment contents progressively decreased during the shelf life and the browning enzyme activities responsible for phenolic oxidation increased at different intensities throughout storage. At the end of the shelf-life period, the fresh weight loss of the fresh-cut product was less than 1% of the original weight. The results demonstrated that watercress grown in FL is a standardised baby leaf vegetable that is suitable for processing in the fresh-cut industry and for storing for more than 10 days. Unclear results were obtained for Bacillus subtilis in the postharvest period due to the inconsistent responses of the different analysed parameters.
Collapse
Affiliation(s)
- Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, DISAFA University of Turin, UNITO, Via Leonardo da Vinci, 44-Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy; (G.P.); (M.C.); (S.N.)
| | - Andrea Ertani
- Department of Agricultural, Forest and Food Sciences, DISAFA University of Turin, UNITO, Via Leonardo da Vinci, 44-Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy; (G.P.); (M.C.); (S.N.)
| | - Manuela Casale
- Department of Agricultural, Forest and Food Sciences, DISAFA University of Turin, UNITO, Via Leonardo da Vinci, 44-Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy; (G.P.); (M.C.); (S.N.)
| | - Diana Niñirola
- Department of Agronomical Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (D.N.); (C.E.-G.); (J.A.F.)
- Brassica Breeding Group, Sakata Seed Ibérica S.L.U. Plaza Poeta Vicente García, 6, 46021 Valencia, Spain
| | - Catalina Egea-Gilabert
- Department of Agronomical Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (D.N.); (C.E.-G.); (J.A.F.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+i, Campus Muralla del Mar, 30202 Cartagena, Spain
| | - Juan A. Fernández
- Department of Agronomical Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (D.N.); (C.E.-G.); (J.A.F.)
- Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Edificio I+D+i, Campus Muralla del Mar, 30202 Cartagena, Spain
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, DISAFA University of Turin, UNITO, Via Leonardo da Vinci, 44-Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy; (G.P.); (M.C.); (S.N.)
| |
Collapse
|
9
|
Liu Y, Gui Z, Liu J. Research Progress of Light Wavelength Conversion Materials and Their Applications in Functional Agricultural Films. Polymers (Basel) 2022; 14:polym14050851. [PMID: 35267673 PMCID: PMC8912629 DOI: 10.3390/polym14050851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
As new fluorescent materials, light wavelength conversion materials (light conversion agents) have attracted increasing attention from scientific researchers and agricultural materials companies due to their potential advantages in efficiently utilizing solar energy and increasing crop yield. According to the material properties, the light conversion agents can be divided into fluorescent dyes, organic rare-earth complexes, and inorganic rare-earth complexes. The current researches indicates that the fluorescent dyes have relatively high production costs, poor light stability, difficult degradation processes, and easily cause pollution to the ecological environment. The organic rare-earth complexes have short luminescence times, high production costs, and suffer from rapid decreases in luminescence intensity. Compared with fluorescent dyes and organic rare-earth complexes, although rare-earth inorganic complexes have high luminous efficiency, stable chemical properties, and better spectral matching performance, the existing inorganic light conversion agents have relatively poor dispersibility in agricultural films. According to the research on light conversion agents at home and abroad in recent years, this paper first introduces the three common light conversion agents, namely fluorescent dyes, organic rare-earth complexes, and inorganic rare-earth complexes, as well as their uses in agricultural films and their mechanisms of light conversion. At the same time, the preparation methods, advantages, disadvantages, and existing problems of various light conversion agents are classified and explained. Finally, we predict the development trends for light conversion agents in the future by considering six aspects, namely efficiency, cost, compatibility with greenhouse films, light matching, and light transmittance, in order to provide a reference for the preparation of stable and efficient light conversion agent materials.
Collapse
Affiliation(s)
- Yi Liu
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China; (Y.L.); (Z.G.)
| | - Zhiguo Gui
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China; (Y.L.); (Z.G.)
| | - Jialei Liu
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China
- Correspondence:
| |
Collapse
|
10
|
Light Intensity and Photoperiod Affect Growth and Nutritional Quality of Brassica Microgreens. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030883. [PMID: 35164148 PMCID: PMC8839875 DOI: 10.3390/molecules27030883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
We explored the effects of different light intensities and photoperiods on the growth, nutritional quality and antioxidant properties of two Brassicaceae microgreens (cabbage Brassica oleracea L. and Chinese kale Brassica alboglabra Bailey). There were two experiments: (1) four photosynthetic photon flux densities (PPFD) of 30, 50, 70 or 90 μmoL·m-2·s-1 with red:blue:green = 1:1:1 light-emitting diodes (LEDs); (2) five photoperiods of 12, 14, 16, 18 or 20 h·d-1. With the increase of light intensity, the hypocotyl length of cabbage and Chinese kale microgreens shortened. PPFD of 90 μmol·m-2·s-1 was beneficial to improve the nutritional quality of cabbage microgreens, which had higher contents of chlorophyll, carotenoids, soluble sugar, soluble protein and vitamin C, as well as increased antioxidant capacity. The optimal PPFD for Chinese kale microgreens was 70 μmol·m-2·s-1. Increasing light intensity could increase the antioxidant capacity of cabbage and Chinese kale microgreens, while not significantly affecting glucosinolate (GS) content. The dry and fresh weight of cabbage and Chinese kale microgreens were maximized with a 14-h·d-1 photoperiod. The chlorophyll, carotenoid and soluble protein content in cabbage and Chinese kale microgreens were highest for a 16-h·d-1 photoperiod. The lowest total GS content was found in cabbage microgreens under a 12-h·d-1 photoperiod and in Chinese kale microgreens under 16-h·d-1 photoperiod. In conclusion, the photoperiod of 14~16 h·d-1, and 90 μmol·m-2·s-1 and 70 μmol·m-2·s-1 PPFD for cabbage and Chinese kale microgreens, respectively, were optimal for cultivation.
Collapse
|
11
|
Wang C, Li Z, Zhang L, Gao Y, Cai X, Wu W. Identifying Key Metabolites Associated with Glucosinolate Biosynthesis in Response to Nitrogen Management Strategies in Two Rapeseed ( Brassica napus) Varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:634-645. [PMID: 34985260 DOI: 10.1021/acs.jafc.1c06472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A high glucosinolate (GSL) concentration, an undesirable substance, has severely restricted rapeseed (Brassica species) development. We performed widely targeted metabolomics analysis based on the ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) technology to analyze the metabolic profiles and identify the differential metabolites and GSL components in response to different nitrogen (N) levels in two rapeseed varieties. A total of 341 metabolites and 38 GSL components were detected in the seeds. A total of 188 differential metabolites, including 34 GSL components, were identified in response to different treatments, which were mapped into 2-oxocarboxylic acid metabolism, tryptophan metabolism, and GSL biosynthesis. Key indicators of GSL components highly responsible for different N levels under two contrasting varieties were recognized, i.e., 1-methylpropyl GSL and 4-methylthiobutyl GSL. This study suggests that the efficient N management and variety selection are important strategies for developing rapeseed with low GSLs.
Collapse
Affiliation(s)
- Cheng Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhaojie Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Lingxiang Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuan Gao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaohui Cai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wei Wu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, People's Republic of China
| |
Collapse
|
12
|
Renner IE, Gardner G, Fritz VA. Manipulation of Continuous and End-of-Day Red/Far-Red Light Ratios Affects Glucobrassicin and Gluconasturtiin Accumulation in Cabbage ( Brassica oleracea) and Watercress ( Nasturtium officinale), Respectively. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14126-14142. [PMID: 34787406 DOI: 10.1021/acs.jafc.1c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cabbage (Brassica oleracea) and watercress (Nasturtium officinale) produce glucobrassicin (GBS) and gluconasturtiin (GNST), precursors of chemopreventive compounds. Their accumulation is affected by environmental signals. We studied the impact of the red to far-red light (R/FR) ratio on GBS concentration in red ″Ruby Ball″ and green ″Tiara″ cabbage. Foliar shading, via weed surrogates that competed with cabbage plants for specific durations, induced R/FR variation among treatments. ″Ruby Ball″ GBS concentrations were the highest when R/FR within the canopy was the lowest. ″Tiara″ was unaffected by competition. The same trend was observed in a controlled environment using R and FR LEDs without weeds present. ″Ruby Ball″ subjected to an R/FR = 0.3 treatment had 2.5- and 1.4-fold greater GBS concentration compared to R/FR = 1.1 and 5.0 treatments combined. Watercress given end-of-day (EOD) R and/or FR pulses after the main photoperiod had the lowest GNST concentrations after an EOD FR pulse but the highest concentrations after an R followed by FR pulse.
Collapse
Affiliation(s)
- Ilse E Renner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Gary Gardner
- Department of Horticultural Science, University of Minnesota-Twin Cities, 1970 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Vincent A Fritz
- Southern Research and Outreach Center, University of Minnesota-Twin Cities, 35838 120th Street, Waseca, Minnesota 56093, United States
| |
Collapse
|
13
|
A Narrative Review on Therapeutic Potentials of Watercress in Human Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5516450. [PMID: 34055006 PMCID: PMC8123986 DOI: 10.1155/2021/5516450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Watercress (WC) is an aquatic vegetable that belongs to the Brassicaceae family, and it often grows near water. In traditional medicine, WC is a known remedy for hypercholesterolemia, hyperglycemia, hypertension, arthritis, bronchitis, diuresis, odontalgia, and scurvy. It also acts as an antiestrogenic and can be used as a nutritional supplement. It has been reported that these therapeutic effects are due to primary metabolites such as isothiocyanates, glucosinolates, polyphenols (flavonoids, phenolic acids, and proanthocyanidins), vitamins (B1, B2, B3, B6, E, and C), terpenes (including carotenoids), and bioelements which exist in this plant. Many pharmacological studies confirm the antioxidant, antibacterial, anticancer, antipsoriatic, anti-inflammatory, cardioprotective, renoprotective, hepatoprotective, and antigenotoxicity effects of WC. The consumption of WC extract can be useful in reducing the complications of hypercholesterolemia and hyperglycemia. Furthermore, the extract of WC could markedly augment the antioxidant enzymes such as superoxide dismutase and catalase activity. Interestingly, consumption of food rich in polyphenols such as WC extract can help reduce oxidative stress, DNA damage, and cancer susceptibility. Several studies also showed that WC extract significantly reduced liver injury as a result of cholestatic hepatic injury, gamma radiation, arsenic, and acetaminophen-induced hepatotoxicity. In this review, the researchers focus on the phytochemical and biochemical characterizations of WC and its therapeutic effects in the treatment of human diseases.
Collapse
|
14
|
Rao SQ, Chen XQ, Wang KH, Zhu ZJ, Yang J, Zhu B. Effect of short-term high temperature on the accumulation of glucosinolates in Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:222-233. [PMID: 33639590 DOI: 10.1016/j.plaphy.2021.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Glucosinolates, an important class of secondary metabolites in cruciferous vegetables, play a crucial role in protecting plants from stress-related damage. The mechanism of glucosinolate synthesis under short-term high temperature stress has not been sufficiently studied. In this work, we investigated the changes in transcription factors, synthetic genes, and related metabolites involved in glucosinolate synthesis by pakchoi seedlings under short-term high temperature stress (40 °C for 8 h). Short-term high temperature stress inhibited the primary sulfur assimilation and the contents of methionine, cysteine and glutathione. The contents of aliphatic and indolic glucosinolates were increased by short-term high temperature stress, whereas the content of 4-methoxy-glucobrassicin increased significantly. During the stress period, the transcript level of glucosinolate related MYB transcription factors had been basically significantly up-regulated, whereas the transcript level of aliphatic and indolic glucosinolate synthetic genes were predominantly up-regulated and down-regulated respectively. In the early recovery period, primary sulfur assimilation up-regulated rapidly, and decreased during the late recovery process. The glucosinolate content and synthesis gene expression act similar to the primary sulfur assimilation, a short up-regulated in early recovery, then all go down at 40 and 48 h after short-term high temperature treatment.
Collapse
Affiliation(s)
- Shuai-Qi Rao
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China
| | - Xiao-Qi Chen
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China
| | - Kuan-Hong Wang
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China
| | - Zhu-Jun Zhu
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China
| | - Jing Yang
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China.
| | - Biao Zhu
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
15
|
Walters KJ, Lopez RG. Modeling growth and development of hydroponically grown dill, parsley, and watercress in response to photosynthetic daily light integral and mean daily temperature. PLoS One 2021; 16:e0248662. [PMID: 33765084 PMCID: PMC7993832 DOI: 10.1371/journal.pone.0248662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
In controlled environments, crop models that incorporate environmental factors can be developed to optimize growth and development as well as conduct cost and/or resource use benefit analyses. The overall objective of this study was to model growth and development of dill ‘Bouquet’ (Anethum graveolens), parsley ‘Giant of Italy’ (Petroselinum crispum), and watercress (Nasturtium officinale) in response to photosynthetic daily light integral (DLI) and mean daily temperature (MDT). Plants were grown hydroponically in five greenhouse compartments with MDTs ranging from 9.7 to 27.2 °C under 0%, 30%, or 50% shade cloth to create DLIs ranging from 6.2 to 16.9 mol·m‒2·d‒1. MDT and DLI interacted to influence dill fresh mass and height, and watercress maximum quantum yield of dark adapted leaves (Fv/Fm), height, and branch number while only MDT affected dill leaf number and watercress fresh mass and branch length. Besides dry matter concentration (DMC), parsley was influenced by MDT and not DLI. Increasing MDT from ≈10 to 22.4 °C (parsley) or 27.2 °C (dill and watercress), linearly or near-linearly increased fresh mass. For dill, increasing DLI decreased fresh mass when MDT was low (9.7 to 13.9 °C) and increased fresh mass when MDT was high (18.4 to 27.2 °C). DMC of dill, parsley, and watercress increased as MDT decreased or DLI increased, indicating a higher proportion of plant fresh mass is water at higher MDTs or lower DLIs. With these data we have created growth and development models for culinary herbs to aid in predicting responses to DLI and MDT.
Collapse
Affiliation(s)
- Kellie J. Walters
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
- Plant Sciences Department, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| | - Roberto G. Lopez
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
16
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Wu X, Huang H, Childs H, Wu Y, Yu L, Pehrsson PR. Glucosinolates in Brassica Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake. Annu Rev Food Sci Technol 2021; 12:485-511. [PMID: 33467908 DOI: 10.1146/annurev-food-070620-025744] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucosinolates (GSLs) are a class of sulfur-containing compounds found predominantly in the genus Brassica of the Brassicaceae family. Certain edible plants in Brassica, known as Brassica vegetables, are among the most commonly consumed vegetables in the world. Over the last three decades, mounting evidence has suggested an inverse association between consumption of Brassica vegetables and the risk of various types of cancer. The biological activities of Brassica vegetables have been largely attributed to the hydrolytic products of GSLs. GSLs can be hydrolyzed by enzymes; thermal or chemical degradation also breaks down GSLs. There is considerable variation of GSLs in Brassica spp., which are caused by genetic and environmental factors. Most Brassica vegetables are consumed after cooking; common cooking methods have a complex influence on the levels of GSLs. The variationof GSLs in Brassica vegetables and the influence of cooking and processing methods ultimately affect their intake and health-promoting properties.
Collapse
Affiliation(s)
- Xianli Wu
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA;
| | - Hui Huang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Holly Childs
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Pamela R Pehrsson
- Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
18
|
Pierik R, Ballaré CL. Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. MOLECULAR PLANT 2021; 14:61-76. [PMID: 33276158 DOI: 10.1016/j.molp.2020.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| | - Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina; IIBIO-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Park JE, Kim J, Purevdorj E, Son YJ, Nho CW, Yoo G. Effects of long light exposure and drought stress on plant growth and glucosinolate production in pak choi (Brassica rapa subsp. chinensis). Food Chem 2020; 340:128167. [PMID: 33007694 DOI: 10.1016/j.foodchem.2020.128167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 11/26/2022]
Abstract
Glucosinolates (GLs), found in Brassicaceae family, are precursor metabolites with anti-cancer properties. Increased GLs have been studied under various environmental growth conditions. Pak choi (Brassica rapa subsp. chinensis) is a GL-rich vegetable. We hypothesize that long exposure to light and drought will increase the biomass of, and GL production in, pak choi. The experiment was conducted for 6 weeks. Long light exposure (20 h/day) increased, whilst drought exposure (12 h/week) decreased the plant growth. The plants exposed to a combination of drought and long light conditions showed similar growth pattern as control plants. GL production increased at week 6 in plants exposed to long light, while drought exposure had no impact on GL production, with the exception of glucoraphanin. Significant positive correlations were observed between plant growth and GL yield with accumulated light exposure time. Our findings suggest that long exposure to light can be used to increase both the biomass and GL production in pak choi.
Collapse
Affiliation(s)
- Jai-Eok Park
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Junho Kim
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Erdenetsogt Purevdorj
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Yang-Ju Son
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| | - Gyhye Yoo
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, South Korea.
| |
Collapse
|
20
|
Effects of Root Temperature on the Plant Growth and Food Quality of Chinese Broccoli (Brassica oleracea var. alboglabra Bailey). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Root temperature has long been considered an essential environmental factor influencing the plant’s physiology. However, little is known about the effect of root temperature on the quality of the food produced by the plant, especially that of horticultural crops. To fill this gap, two independent root cooling experiments (15 °C vs. 20 °C and 10 °C vs. 20 °C) were conducted in autumn 2017 and spring 2018 in hydroponics with Chinese broccoli (Brassica oleracea var. alboglabra Bailey) under greenhouse conditions. The aim was to investigate the effect of root temperature on plant growth (biomass, height, yield) and food quality (soluble sugars, total chlorophyll, starch, minerals, glucosinolates). A negative impact on shoot growth parameters (yield, shoot biomass) was detected by lowering the root temperature to 10 °C. Chinese broccoli showed no response to 15 °C root temperature, except for an increase in root biomass. Low root temperature was in general associated with a higher concentration of soluble sugars and total chlorophyll, but lower mineral levels in stems and leaves. Ten individual glucosinolates were identified in the stems and leaves, including six aliphatic and four indolic glucosinolates. Increased levels of neoglucobrassicin in leaves tracked root cooling more closely in both experiments. Reduction of root temperature by cooling could be a potential method to improve certain quality characters of Chinese broccoli, including sugar and glucosinolate levels, although at the expense of shoot biomass.
Collapse
|
21
|
Aghajanzadeh TA, Prajapati DH, Burow M. Differential partitioning of thiols and glucosinolates between shoot and root in Chinese cabbage upon excess zinc exposure. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153088. [PMID: 31812906 DOI: 10.1016/j.jplph.2019.153088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/01/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Zinc (Zn) is one of the important elements of plant growth, however, at elevated level it is toxic. Exposure of Chinese cabbage to elevated Zn2+ concentrations (5 and 10 μM ZnCl2) resulted in enhancement of total sulfur and organic sulfur concentration. Transcript level of APS reductase (APR) as a key enzyme in biosynthesis of primary sulfur compounds (cysteine and thiols), was up-regulated in both shoot and root upon exposure to elevated Zn2+, which was accompanied by an increase in the concentration of cysteine in both tissues. In contrast, the concentration of thiols increased only in the root by 5.5 and 15-fold at 5 and 10 μM Zn2+, respectively, which was in accompanied by an upregulation of ATP sulfurylase, an enzyme responsible for activation of sulfate. An elevated content of glucosinolates, mostly indolic glucosinolates, only in the shoot of plants exposed to excess level of Zn2+ coincided with an increase in gene expression of key biosynthetic enzymes and regulators (CYP79B3, CYP83B1, MYB34). Thus distinct acuumulation patterns of sulfur containing compounds in root and shoot of Chinese cabbage may be a strategy for Chinese cabbage to combat with exposure to excess Zn.
Collapse
Affiliation(s)
- Tahereh A Aghajanzadeh
- Department of Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Dharmendra H Prajapati
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, the Netherlands
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
22
|
Chen J, Chen Z, Li Z, Zhao Y, Chen X, Wang-Pruski G, Guo R. Effect of Photoperiod on Chinese Kale ( Brassica alboglabra) Sprouts Under White or Combined Red and Blue Light. FRONTIERS IN PLANT SCIENCE 2020; 11:589746. [PMID: 33510744 PMCID: PMC7835638 DOI: 10.3389/fpls.2020.589746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
To determine the response of Chinese kale (Brassica alboglabra) sprouts to photoperiods under different light sources, we used four photoperiods (0-h light/24-h dark, 8-h light/16-h dark, 12-h light/12-h dark, and 16-h light/8-h dark) to investigate their sprout growth and secondary metabolite glucosinolates (GSs) accumulation under white or combined red-and-blue (RB) light sources. We found that the 16-h light condition under RB light produced plants with the greatest dry matter. Sprouts grown under 16-h RB light condition achieved greater length than those under white light. To investigate the role of RB light in plant growth and GS accumulation, we applied RB light sources with different RB ratios (0:10, 2:8, 5:5, 8:2, and 10:0) to cultivate sprouts. The results showed that significant differential accumulation of GSs existed between sprouts grown under blue (RB, 0:10) and red (RB, 10:0) light; there was greater GS content under blue light. The underlying mechanism of differential GS content in sprouts under red or blue light condition was studied using RNA sequencing technique. Interestingly, abundant GS biosynthetic gene transcripts were observed in sprouts grown under red light compared with under blue light. The expression of β-glucosidase family homolog genes related to GS degradation differed under red and blue light conditions, among those TGG4 homolog was detected with higher expression under red light than with blue light. Taking into consideration, the lower GS accumulation in sprouts under red rather than blue light, we conclude that the degradation of GSs may play a key role in sprouts GS homeostasis.
Collapse
Affiliation(s)
- Jiaxuan Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyuan Chen
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zunwen Li
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijiao Zhao
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodong Chen
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gefu Wang-Pruski
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Gefu Wang-Pruski,
| | - Rongfang Guo
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Horticultural Biotechnology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Rongfang Guo,
| |
Collapse
|
23
|
Kim Y, Bae KS. Protective Effects of Indole 3-Acetonitrile-4-Methoxy-2- S-β-d-Glucopyranoside From Nasturtium officinale R. Br. Against Ultraviolet B-Induced Photodamage in Normal Human Dermal Fibroblasts. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19872425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultraviolet radiation induces skin photoaging, which is associated with the elevation of matrix metalloproteinase-1 (MMP-1) and the decrease of procollagen. Nasturtium officinale plays a well-known role in the treatment of sulfur-containing compounds and their important role in protecting human health. However, their skin protective activity toward UVB-induced photodamage remains unclear. In the present study, we investigated the protective effect of indole 3-acetonitrile-4-methoxy-2- S-β-d-glucopyranoside (IAMG) from N. officinale on UVB-irradiated normal human dermal fibroblasts (NHDF). Our results show that IAMG enhanced NHDF cell migration. The UVB-induced increases in MMP-1 and decrease in type I procollagen were ameliorated by IAMG treatment. Taken together, our data strongly suggest that IAMG from N. officinale could reduce UVB-induced photodamage.
Collapse
Affiliation(s)
- Yumin Kim
- SKEDERM Cosmetic R&D Center, Seoul, South Korea
| | | |
Collapse
|
24
|
Alrifai O, Hao X, Marcone MF, Tsao R. Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6075-6090. [PMID: 31021630 DOI: 10.1021/acs.jafc.9b00819] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Light-emitting diode (LED) lights have recently been applied in controlled environment agriculture toward growing vegetables of various assortments, including microgreens. Spectral qualities of LED light on photosynthesis in microgreens are currently being studied for their ease of spectral optimization and high photosynthetic efficiency. This review aims to summarize the most recent discoveries and advances in specific phytochemical biosyntheses modulated by LED and other conventional lighting, to identify research gaps, and to provide future perspectives in this emerging multidisciplinary field of research and development. Specific emphasis was made on the effect of light spectral qualities on the biosynthesis of phenolics, carotenoids, and glucosinolates, as these phytochemicals are known for their antioxidant, anti-inflammatory effects, and many health benefits. Future perspectives on enhancing biosynthesis of these bioactives using the rapidly progressing LED light technology are further discussed.
Collapse
Affiliation(s)
- Oday Alrifai
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Xiuming Hao
- Harrow Research & Development Center , Agriculture and Agri-Food Canada , 2585 County Road 20 , Harrow , Ontario N0R 1G0 , Canada
| | - Massimo F Marcone
- Department of Food Science, Ontario Agricultural College , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Research & Development Center , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
25
|
Paśko P, Galanty A, Żmudzki P, Gdula-Argasińska J, Zagrodzki P. Influence of different light conditions and time of sprouting on harmful and beneficial aspects of rutabaga sprouts in comparison to their roots and seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:302-308. [PMID: 29876936 DOI: 10.1002/jsfa.9188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND This study aimed to evaluate the presence and content of selected phytochemicals, namely glucosinolates, fatty acids and phenolic compounds, in rutabaga (Brassica napus L. var. napobrassica) sprouts grown under various light conditions, in comparison to rutabaga seeds and roots. As rutabaga sprouts are likely to become new functional food, special emphasis was placed on the related risks of progoitrin and erucic acid presence - compounds with proven antinutritive properties. RESULTS Time of sprouting significantly decreased progoitrin content, especially after 10 days (by 91.5%) and 12 days (by 97.5%), as compared to 8 days. In addition, sprouts grown under dark conditions showed 27%, 60% and 17% reduction in progoitrin level in 8, 10 and 12 days after sowing, respectively, as compared to sprouts grown under natural conditions. Progoitrin was found to be the predominant glucosinolate in rutabaga seeds (804.07 ± 60.89 mg 100 g-1 dry weight (DW)), accompanied by glucoerucin (157.82 ± 21.04 mg 100 g-1 DW), also found in the roots (82.20 ± 16.53 mg 100 g-1 DW). Among the unsaturated fatty acids in rutabaga sprouts, erucic, linoleic, linolenic and gondoic acids decreased significantly, and only oleic acid increased as germination days progressed. The amount of harmful erucic acid in rutabaga sprouts was found to vary between 1.8% and 7%, depending on the day of seeding or light conditions, as compared to 42.5% in the seeds. CONCLUSION The evaluated rutabaga products showed a wide content range of potentially antinutritive compounds, sprouts having the lowest amounts of erucic acid and progoitrin. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Medical College, Jagiellonian University, Cracow, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| | | | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
26
|
Palliyaguru DL, Salvatore SR, Schopfer FJ, Cheng X, Zhou J, Kensler TW, Wendell SG. Evaluation of 2-Thiothiazolidine-4-Carboxylic Acid, a Common Metabolite of Isothiocyanates, as a Potential Biomarker of Cruciferous Vegetable Intake. Mol Nutr Food Res 2018; 63:e1801029. [PMID: 30408325 DOI: 10.1002/mnfr.201801029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/26/2018] [Indexed: 12/17/2022]
Abstract
SCOPE Cruciferous vegetable consumption is associated with favorable health outcomes. Bioactive compounds arising in these, especially isothiocyanates, exert effects that contribute to prevention of disease, in large part through the attenuation of inflammation and oxidative stress. However, much about isothiocyanate metabolites and their role as biomarkers of crucifer intake remain unknown. METHODS AND RESULTS The utility and limitations of 2-thiothiazolidine-4-carboxylic acid (TTCA) as a urinary biomarker of broccoli beverage intake are tested in a randomized crossover clinical trial where 50 participants consumed either a glucoraphanin-rich (GRR) or sulforaphane-rich (SFR) beverage. Compared to run-in and wash-out periods, significantly higher urinary TTCA is observed after broccoli beverage consumption. Measurements also show that TTCA is present in beverage powders and in all tested cruciferous vegetables. GRR results in excretion of ≈87% of the ingested TTCA while SFR results in excretion of ≈176%. Elevated urinary TTCA is observed in rats administered 100 µmol kg-1 SFN. Unlike SFN, TTCA does not activate Nrf2-mediated cytoprotective signaling. CONCLUSION Collectively, TTCA appears to be a common isothiocyanate-derived metabolite that has the capacity to be utilized as a biomarker of cruciferous vegetables that would be beneficial for objective and quantitative tracking of intake in studies.
Collapse
Affiliation(s)
- Dushani L Palliyaguru
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sonia R Salvatore
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Francisco J Schopfer
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xuemei Cheng
- Occupational & Environmental Department, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Jingyang Zhou
- Occupational & Environmental Department, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Thomas W Kensler
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Stacy G Wendell
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
27
|
Mølmann JA, Hagen SF, Bengtsson GB, Johansen TJ. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1117-1123. [PMID: 28732144 DOI: 10.1002/jsfa.8562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/05/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. RESULTS Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. CONCLUSION High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Sidsel Fiskaa Hagen
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Gunnar B Bengtsson
- Nofima - Norwegian Institute for Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Tor J Johansen
- NIBIO - Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
28
|
Bell L, Wagstaff C. Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9379-9403. [PMID: 28968493 DOI: 10.1021/acs.jafc.7b03628] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glucosinolates (GSLs) and isothiocyanates (ITCs) produced by Brassicaceae plants are popular targets for analysis due to the health benefits associated with them. Breeders aim to increase the concentrations in commercial varieties; however, there are few examples of this. The most well-known is Beneforté broccoli, which has increased glucoraphanin/sulforaphane concentrations compared to those of conventional varieties. It was developed through traditional breeding methods with considerations for processing, consumption, and health made throughout this process. Many studies presented in the literature do not take a holistic approach, and key points about breeding, cultivation methods, postharvest storage, sensory attributes, and consumer preferences are not properly taken into account. In this review, we draw together data for multiple species and address how such factors can influence GSL profiles. We encourage researchers and institutions to engage with industry and consumers to produce research that can be utilized in the improvement of Brassicaceae crops.
Collapse
Affiliation(s)
- Luke Bell
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| | - Carol Wagstaff
- Department of Food & Nutritional Sciences, University of Reading , Whiteknights, Reading, Berkshire RG6 6AP, United Kingdom
| |
Collapse
|
29
|
Ballaré CL, Pierik R. The shade-avoidance syndrome: multiple signals and ecological consequences. PLANT, CELL & ENVIRONMENT 2017; 40:2530-2543. [PMID: 28102548 DOI: 10.1111/pce.12914] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Plants use photoreceptor proteins to detect the proximity of other plants and to activate adaptive responses. Of these photoreceptors, phytochrome B (phyB), which is sensitive to changes in the red (R) to far-red (FR) ratio of sunlight, is the one that has been studied in greatest detail. The molecular connections between the proximity signal (low R:FR) and a model physiological response (increased elongation growth) have now been mapped in considerable detail in Arabidopsis seedlings. We briefly review our current understanding of these connections and discuss recent progress in establishing the roles of other photoreceptors in regulating growth-related pathways in response to competition cues. We also consider processes other than elongation that are controlled by photoreceptors and contribute to plant fitness under variable light conditions, including photoresponses that optimize the utilization of soil resources. In examining recent advances in the field, we highlight emerging roles of phyB as a major modulator of hormones related to plant immunity, in particular salicylic acid and jasmonic acid (JA). Recent attempts to manipulate connections between light signals and defence in Arabidopsis suggest that it might be possible to improve crop health at high planting densities by targeting links between phyB and JA signalling.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIB-INTECH, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
30
|
Petropoulos S, Di Gioia F, Ntatsi G. Vegetable Organosulfur Compounds and their Health Promoting Effects. Curr Pharm Des 2017; 23:2850-2875. [DOI: 10.2174/1381612823666170111100531] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Spyridon Petropoulos
- University of Thessaly, School of Agricultural Sciences, Fytokou Street, 38446, N. Ionia, Magnissia, Greece
| | - Francesco Di Gioia
- Institute of Food and Agricultural Sciences, South West Florida Research and Education Center, University of Florida, Immokalee, Florida
| | - Georgia Ntatsi
- Faculty of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
31
|
Kitamura S, Morisseau C, Harris TR, Inceoglu B, Hammock BD. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales. PLoS One 2017; 12:e0176571. [PMID: 28472063 PMCID: PMC5417501 DOI: 10.1371/journal.pone.0176571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH) inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1), showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii) roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM) effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya) seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Todd R. Harris
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bora Inceoglu
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Giuffrida F, Cassaniti C, Malvuccio A, Leonardi C. Effects of salt stress imposed during two growth phases on cauliflower production and quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1552-1560. [PMID: 27405605 DOI: 10.1002/jsfa.7900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cultivation of cauliflower is diffused in Mediterranean areas where water salinity results in the need to identify alternative irrigation sources or management strategies. Using saline water during two growth phases (from transplanting to visible appearance of inflorescence or from appearance of inflorescence to head harvest), the present study aimed to identify the growth period that is more suitable for irrigation with low quality water in relation to cauliflower production and quality. RESULTS Salinity affected cauliflower growth mainly when imposed in the first growth phase. The growth reduction depended mainly on ion-specific effects, although slight nutrient imbalances as a result of Na+ and Cl- antagonisms were observed. The use of non-saline water in the first or second growth period reduced both the osmotic and toxic effects of salinity. When salinity was applied during inflorescence growth, yield was reduced because of a restriction of water accumulation in the head. CONCLUSION The results of the present study demonstrate the possibility of producing marketable cauliflower heads under conditions of salinity by timing the application of the best quality water during the first growth phase to improve fruit quality and during the second phase to reduce the negative effects of salinity on yield. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesco Giuffrida
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Carla Cassaniti
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Angelo Malvuccio
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Cherubino Leonardi
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| |
Collapse
|
33
|
Shahani S, Behzadfar F, Jahani D, Ghasemi M, Shaki F. Antioxidant and anti-inflammatory effects of Nasturtium officinale involved in attenuation of gentamicin-induced nephrotoxicity. Toxicol Mech Methods 2016; 27:107-114. [DOI: 10.1080/15376516.2016.1258748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Somayeh Shahani
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Behzadfar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Danial Jahani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Immunogenetics Research center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
34
|
Kissen R, Eberl F, Winge P, Uleberg E, Martinussen I, Bones AM. Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. PHYTOCHEMISTRY 2016; 130:106-118. [PMID: 27319377 DOI: 10.1016/j.phytochem.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/23/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
Glucosinolates are plant secondary metabolites with important roles in plant defence against pathogens and pests and are also known for their health benefits. Understanding how environmental factors affect the level and composition of glucosinolates is therefore of importance in the perspective of climate change. In this study we analysed glucosinolates in Arabidopsis thaliana accessions when grown at constant standard (21 °C), moderate (15 °C) and low (9 °C) temperatures during three generations. In most of the tested accessions moderate and pronounced chilling temperatures led to higher levels of glucosinolates, especially aliphatic glucosinolates. Which temperature yielded the highest glucosinolate levels was accession-dependent. Transcriptional profiling revealed also accession-specific gene responses, but only a limited correlation between changes in glucosinolate-related gene expression and glucosinolate levels. Different growth temperatures in one generation did not consistently affect glucosinolate composition in subsequent generations, hence a clear transgenerational effect of temperature on glucosinolates was not observed.
Collapse
Affiliation(s)
- Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Franziska Eberl
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Eivind Uleberg
- NIBIO, Norwegian Institute of Bioeconomy Research, Box 115, NO-1431, Ås, Norway
| | - Inger Martinussen
- NIBIO, Norwegian Institute of Bioeconomy Research, Box 115, NO-1431, Ås, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
35
|
Fujioka N, Fritz V, Upadhyaya P, Kassie F, Hecht SS. Research on cruciferous vegetables, indole-3-carbinol, and cancer prevention: A tribute to Lee W. Wattenberg. Mol Nutr Food Res 2016; 60:1228-38. [DOI: 10.1002/mnfr.201500889] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Naomi Fujioka
- Masonic Cancer Center; University of Minnesota; Minneapolis MN USA
| | - Vincent Fritz
- Southern Research and Outreach Center; University of Minnesota; Minneapolis MN USA
| | - Pramod Upadhyaya
- Masonic Cancer Center; University of Minnesota; Minneapolis MN USA
| | - Fekadu Kassie
- Masonic Cancer Center; University of Minnesota; Minneapolis MN USA
| | - Stephen S. Hecht
- Masonic Cancer Center; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
36
|
Voutsina N, Payne AC, Hancock RD, Clarkson GJJ, Rothwell SD, Chapman MA, Taylor G. Characterization of the watercress (Nasturtium officinale R. Br.; Brassicaceae) transcriptome using RNASeq and identification of candidate genes for important phytonutrient traits linked to human health. BMC Genomics 2016; 17:378. [PMID: 27206485 PMCID: PMC4875719 DOI: 10.1186/s12864-016-2704-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Consuming watercress is thought to provide health benefits as a consequence of its phytonutrient composition. However, for watercress there are currently limited genetic resources underpinning breeding efforts for either yield or phytonutritional traits. In this paper, we use RNASeq data from twelve watercress accessions to characterize the transcriptome, perform candidate gene mining and conduct differential expression analysis for two key phytonutritional traits: antioxidant (AO) capacity and glucosinolate (GLS) content. RESULTS The watercress transcriptome was assembled to 80,800 transcripts (48,732 unigenes); 71 % of which were annotated based on orthology to Arabidopsis. Differential expression analysis comparing watercress accessions with 'high' and 'low' AO and GLS resulted in 145 and 94 differentially expressed loci for AO capacity and GLS respectively. Differentially expressed loci between high and low AO watercress were significantly enriched for genes involved in plant defence and response to stimuli, in line with the observation that AO are involved in plant stress-response. Differential expression between the high and low GLS watercress identified links to GLS regulation and also novel transcripts warranting further investigation. Additionally, we successfully identified watercress orthologs for Arabidopsis phenylpropanoid, GLS and shikimate biosynthesis pathway genes, and compiled a catalogue of polymorphic markers for future applications. CONCLUSIONS Our work describes the first transcriptome of watercress and establishes the foundation for further molecular study by providing valuable resources, including sequence data, annotated transcripts, candidate genes and markers.
Collapse
Affiliation(s)
- Nikol Voutsina
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Adrienne C Payne
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - Graham J J Clarkson
- Vitacress Salads Ltd, Lower Link Farm, St Mary Bourne, Andover, SP11 6DB, UK
| | - Steve D Rothwell
- Vitacress Salads Ltd, Lower Link Farm, St Mary Bourne, Andover, SP11 6DB, UK
| | - Mark A Chapman
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Gail Taylor
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
37
|
Steindal ALH, Johansen TJ, Bengtsson GB, Hagen SF, Mølmann JAB. Impact of pre-harvest light spectral properties on health- and sensory-related compounds in broccoli florets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1974-1981. [PMID: 26084542 DOI: 10.1002/jsfa.7307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Plants grown at different latitudes experience differences in light spectral composition. Broccoli (Brassica oleracea L. var italica) plants were grown in climate-controlled chambers under supplemental wavelengths (red, far-red, red + far-red or blue) from light-emitting diodes (LEDs). The light treatments were combined with two cold climate temperatures (12 and 15 °C) during broccoli head formation to investigate the effects on morphology and content of health- and sensory-related compounds: glucosinolates, flavonols, ascorbic acid and soluble sugars. RESULTS Supplemental far-red and red + far-red light led to elongated plants and the lowest total glucosinolate content in broccoli florets. The content of quercetin was highest with supplemental red light. Vitamin C was not significantly affected by the light treatments, but 12 °C gave a higher content than 15 °C. CONCLUSION The effects of supplemental red and far-red light suggest an involvement of phytochromes in the regulation of glucosinolates and flavonols. A shift in red:far-red ratio could cause changes in their content besides altering the morphology. The sugar and vitamin C content appears to be unaffected by these light conditions. Supplemental blue light had little effect on plant morphology and content of the health- and sensory related compounds.
Collapse
Affiliation(s)
| | - Tor J Johansen
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, NO-9269, Tromsø, Norway
| | - Gunnar B Bengtsson
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, NO-9269, Tromsø, Norway
| | - Sidsel F Hagen
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, NO-1431, Ås, Norway
| | - Jørgen A B Mølmann
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, NO-9269, Tromsø, Norway
| |
Collapse
|
38
|
Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem 2015; 196:1232-8. [PMID: 26593611 DOI: 10.1016/j.foodchem.2015.10.055] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/02/2015] [Accepted: 10/12/2015] [Indexed: 01/10/2023]
Abstract
The effects of different light qualities, including white, red and blue lights, on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts were investigated using light-emitting diodes (LEDs) as a light source. Our results showed that blue light treatment significantly decreased the content of gluconapin, the primary compound for bitter flavor in shoots, while increased the glucoraphanin content in roots. Moreover, the maximum content of vitamin C was detected in the white-light grown sprouts and the highest levels of total phenolic and anthocyanins, as well as the strongest antioxidant capacity were observed in blue-light grown sprouts. Taken together, the application of a colorful light source is a good practice for improvement of the consumers' acceptance and the nutritional phtyochemicals of Chinese kale sprouts.
Collapse
|
39
|
Wang J, Zhao Z, Sheng X, Yu H, Gu H. Influence of leaf-cover on visual quality and health-promoting phytochemicals in loose-curd cauliflower florets. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Baskar V, Park SW, Nile SH. An Update on Potential Perspectives of Glucosinolates on Protection against Microbial Pathogens and Endocrine Dysfunctions in Humans. Crit Rev Food Sci Nutr 2015; 56:2231-49. [DOI: 10.1080/10408398.2014.910748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Steindal ALH, Rødven R, Hansen E, Mølmann J. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale. Food Chem 2014; 174:44-51. [PMID: 25529650 DOI: 10.1016/j.foodchem.2014.10.129] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/22/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease.
Collapse
Affiliation(s)
- Anne Linn Hykkerud Steindal
- Norwegian Institute for Agricultural and Environmental Research, Bioforsk Nord Holt, Box 2284, NO-9269 Tromsø, Norway.
| | - Rolf Rødven
- Norwegian Institute for Agricultural and Environmental Research, Bioforsk Nord Holt, Box 2284, NO-9269 Tromsø, Norway
| | - Espen Hansen
- Marbio, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Jørgen Mølmann
- Norwegian Institute for Agricultural and Environmental Research, Bioforsk Nord Holt, Box 2284, NO-9269 Tromsø, Norway
| |
Collapse
|
42
|
Cargnel MD, Demkura PV, Ballaré CL. Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. THE NEW PHYTOLOGIST 2014; 204:342-54. [PMID: 25236170 DOI: 10.1111/nph.13032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/01/2014] [Indexed: 05/21/2023]
Abstract
Shade-intolerant plants respond to low red : far-red (R : FR) ratios, which signal the proximity of potential competitors, by down-regulating immune responses. Here we investigated the mechanisms underlying this immune suppression in Arabidopsis. We used genetic, transcriptomic and metabolomic approaches to examine the functional connections between R : FR ratio and Arabidopsis resistance to the fungus Botrytis cinerea. Low R : FR ratios reduced the concentration of indol-3-ylmethyl glucosinolate (I3M) (an indolic glucosinolate, iGS) and camalexin in plants inoculated with B. cinerea, and attenuated the I3M response triggered by jasmonate elicitation. These effects on metabolite abundance correlated with reduced expression of iGS and camalexin biosynthetic genes. Furthermore, the effect of low R : FR increasing Arabidopsis susceptibility to B. cinerea was not present in mutants deficient in the biosynthesis of camalexin (pad3) or metabolism of iGS (pen2). Finally, in a mutant deficient in the JASMONATE ZIM DOMAIN-10 (JAZ10) protein, which does not respond to low R : FR with increased susceptibility to B. cinerea, supplemental FR failed to down-regulate iGS production. These results indicate that suppression of Arabidopsis immunity against B. cinerea by low R : FR ratios is mediated by reduced levels of Trp-derived defenses, and provide further evidence for a functional role of JAZ10 in the link between phytochrome and jasmonate signaling.
Collapse
Affiliation(s)
- Miriam D Cargnel
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, C1417DSE, Buenos Aires, Argentina
| | | | | |
Collapse
|
43
|
Gundel PE, Pierik R, Mommer L, Ballaré CL. Competing neighbors: light perception and root function. Oecologia 2014; 176:1-10. [DOI: 10.1007/s00442-014-2983-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/24/2014] [Indexed: 11/24/2022]
|
44
|
Bell L, Wagstaff C. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4481-92. [PMID: 24773270 DOI: 10.1021/jf501096x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rocket species have been shown to have very high concentrations of glucosinolates and flavonols, which have numerous positive health benefits with regular consumption. This review highlights how breeders and processors of rocket species can utilize genomic and phytochemical research to improve varieties and enhance the nutritive benefits to consumers. Plant breeders are increasingly looking to new technologies such as HPLC, UPLC, LC-MS, and GC-MS to screen populations for their phytochemical content to inform plant selections. This paper collates the research that has been conducted to date in rocket and summarizes all glucosinolate and flavonol compounds identified in the species. The paper emphasizes the importance of the broad screening of populations for phytochemicals and myrosinase degradation products, as well as unique traits that may be found in underutilized gene bank resources. This review also stresses that collaboration with industrial partners is becoming essential for long-term plant breeding goals through research.
Collapse
Affiliation(s)
- Luke Bell
- Department of Food and Nutritional Sciences and the Centre for Food Security, University of Reading , Whiteknights, Reading, Berkshire RG6 6AH, United Kingdom
| | | |
Collapse
|
45
|
Stagnari F, Galieni A, Cafiero G, Pisante M. Application of photo-selective films to manipulate wavelength of transmitted radiation and photosynthate composition in red beet (Beta vulgaris var. conditiva Alef.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:713-720. [PMID: 23881467 DOI: 10.1002/jsfa.6312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/06/2013] [Accepted: 07/23/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Interest is increasing around both the use of plants as functional foods and the agronomic techniques which can increase nutrients and phytochemicals. Nevertheless, little research has focused on the effects of light on accumulation of active compounds in root storage organs. Red beet was treated with RED (red/far red ratio: 1.29; transmitted photosynthetically active radiation: 66.9%) and GREEN (red/far red ratio: 0.43; transmitted photosynthetically active radiation: 25.8%) photo-selective films and changes in nutrients and biomass accumulation were measured. RESULTS Plants subjected to GREEN treatment had less dry weight accumulation both in storage roots (68%) and leaves (42%); moreover, soluble and structural carbohydrate concentration in roots was increased, as were the K, Mg and Zn concentrations (40.08, 2.95 and 0.023 mg g⁻¹ fresh weight, respectively). Conversely, GREEN lowered total phenolic concentration (0.33 vs. 0.47 mg g⁻¹ fresh weight) and antioxidant activity (0.65 vs. 0.94 µm Trolox equivalents g⁻¹ fresh weight) compared to CONTROL. Total pigment concentration was reduced by 20% and 48% with RED and GREEN treatments, respectively. CONCLUSION Red beet showed a strong plasticity in its adaptation to light availability. Some macronutrients (fiber, sugars, minerals) can be concentrated in roots by modifying the amount and quality of the light, principally with GREEN photo-selective films.
Collapse
Affiliation(s)
- Fabio Stagnari
- Facoltà di Bio-Scienze e Tecnologie Agro-Alimentari e Ambientali, University of Teramo, I-64023, Teramo, Italy
| | | | | | | |
Collapse
|
46
|
Abstract
Precise allocation of limited resources between growth and defense is critical for plant survival. In shade-intolerant species, perception of competition signals by informational photoreceptors activates shade-avoidance responses and reduces the expression of defenses against pathogens and insects. The main mechanism underlying defense suppression is the simultaneous downregulation of jasmonate and salicylic acid signaling by low ratios of red:far-red radiation. Inactivation of phytochrome B by low red:far-red ratios appears to suppress jasmonate responses by altering the balance between DELLA and JASMONATE ZIM DOMAIN (JAZ) proteins in favor of the latter. Solar UVB radiation is a positive modulator of plant defense, signaling through jasmonate-dependent and jasmonate-independent pathways. Light, perceived by phytochrome B and presumably other photoreceptors, helps plants concentrate their defensive arsenals in photosynthetically valuable leaves. The discovery of connections between photoreceptors and defense signaling is revealing novel mechanisms that control key resource allocation decisions in plant canopies.
Collapse
Affiliation(s)
- Carlos L Ballaré
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina;
| |
Collapse
|
47
|
Steindal ALH, Mølmann J, Bengtsson GB, Johansen TJ. Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10779-86. [PMID: 24168154 DOI: 10.1021/jf403466r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vegetables grown at different latitudes are exposed to various temperatures and day lengths, which can affect the content of health- and sensory-related compounds in broccoli florets. A 2 × 2 factorial experiment was conducted under controlled growth conditions, with contrasting temperatures (15/9 and 21/15 °C) and day lengths (12 and 24 h), to investigate the effect on glucosinolates, vitamin C, flavonols, and soluble sugars. Aliphatic glucosinolates, quercetin, and kaempferol were at their highest levels at high temperatures combined with a 12 h day. Levels of total glucosinolates, d-glucose, and d-fructose were elevated by high temperatures. Conversely, the content of vitamin C was highest with a 12 h day length combined with 15/9 °C. Our results indicate that temperature and day length influence the contents of health-related compounds in broccoli florets in a complex way, suggesting no general superiority of any of the contrasting growth conditions.
Collapse
Affiliation(s)
- Anne Linn Hykkerud Steindal
- Norwegian Institute for Agricultural and Environmental Research , Bioforsk Nord Holt, P.O. Box 2284, N-9269 Tromsø, Norway
| | | | | | | |
Collapse
|
48
|
Aires A, Carvalho R, Rosa EAS, Saavedra MJ. Phytochemical characterization and antioxidant properties of baby-leaf watercress produced under organic production system. CYTA - JOURNAL OF FOOD 2013. [DOI: 10.1080/19476337.2013.769025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Rozpądek P, Ślesak I, Cebula S, Waligórski P, Dziurka M, Skoczowski A, Miszalski Z. Ozone fumigation results in accelerated growth and persistent changes in the antioxidant system of Brassica oleracea L. var. capitata f. alba. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1259-1266. [PMID: 23773692 DOI: 10.1016/j.jplph.2013.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
The growth response and antioxidant capacity of Brassica oleracea var. capitata f. alba plants treated with 70ppb of ozone was examined. Four week old cabbage seedlings were fumigated with O3 for 3 days before being transplanted into the growing field. The effect of O3 treatment was determined directly after fumigation and over the course of field cultivation. Plants subjected to O3 treatment had an increased diameter of rosettes and number of leaves after 3 and 7 weeks in agriculture, respectively. In addition, the vast majority of fumigated plants reached marketable quality faster than control plants, indicating a positive role of episodes of increased O3 concentrations during vegetation on growth and yielding. Our analysis revealed that by fumigating juvenile white cabbage plants with moderate doses of O3 the activity of catalases (CAT) and peroxidases was elevated. The activity of the examined enzymes was not affected directly after fumigation, but it increased after several weeks in the experimental field. Increased CAT activity was accompanied by changes in 2 out of the 3 CAT genes CAT1 and CAT2, where CAT2 seemed to be responsible for the induced CAT activity. The biosynthesis of low-molecular stress protectants - tocopherols and the glucosinolate (GLS) sinigrin was transiently affected by ozone. γ-Tocopherol (γ-toc) content significantly increased directly after fumigation, but after 3 weeks of vegetation in the field its concentration reached values similar to control. The biosynthesis of α-tocopherol (α-toc) and sinigrin seemed to be upregulated in fumigated plants. However, the response was delayed; no differences were registered directly after treatment, but 3 weeks after transplanting the concentration of sinigrin and α-toc was elevated.
Collapse
Affiliation(s)
- Piotr Rozpądek
- Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland
| | | | | | | | | | | | | |
Collapse
|
50
|
del Carmen Martínez-Ballesta M, Moreno DA, Carvajal M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 2013; 14:11607-25. [PMID: 23722664 PMCID: PMC3709749 DOI: 10.3390/ijms140611607] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022] Open
Abstract
Glucosinolates, a class of secondary metabolites, mainly found in Brassicaceae, are affected by the changing environment. This review is focusing on the physiological significance of glucosinolates and their hydrolysis products in the plant response to different abiotic stresses. Special attention is paid to the crosstalk between some of the physiological processes involved in stress response and glucosinolate metabolism, with the resulting connection between both pathways in which signaling mechanisms glucosinolate may act as signals themselves. The function of glucosinolates, further than in defense switching, is discussed in terms of alleviating pathogen attack under abiotic stress. The fact that the exogenous addition of glucosinolate hydrolysis products may alleviate certain stress conditions through its effect on specific proteins is described in light of the recent reports, but the molecular mechanisms involved in this response merit further research. Finally, the transient allocation and re-distribution of glucosinolates as a response to environmental changes is summarized.
Collapse
Affiliation(s)
- María del Carmen Martínez-Ballesta
- Plant Nutrition Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| | - Diego A. Moreno
- Phytochemistry Lab, Food Science and Technology Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| | - Micaela Carvajal
- Plant Nutrition Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| |
Collapse
|