1
|
Liu M, Wang Z, Qin C, Cao H, Kong L, Liu T, Jiang S, Ma L, Liu X, Ren W, Ma W. Cloning, Expression Characteristics of Farnesyl Pyrophosphate Synthase Gene from Platycodon grandiflorus and Functional Identification in Triterpenoid Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11429-11437. [PMID: 38738769 DOI: 10.1021/acs.jafc.3c09293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Platycodon grandiflorus is a medicinal plant whose main component is platycodins, which have a variety of pharmacological effects and nutritional values. The farnesyl pyrophosphate synthase (FPS) is a key enzyme in the isoprenoid biosynthesis pathway, which catalyzes the synthesis of farnesyl diphosphate (FPP). In this study, we cloned the FPS gene from P. grandiflorus (PgFPS) with an ORF of 1260 bp, encoding 419 amino acids with a deduced molecular weight and theoretical pI of 46,200.98 Da and 6.52, respectively. The squalene content of overexpressed PgFPS in tobacco leaves and yeast cells extract was 1.88-fold and 1.21-fold higher than that of the control group, respectively, and the total saponin content was also increased by 1.15 times in yeast cells extract, which verified the biological function of PgFPS in terpenoid synthesis. After 48 h of MeJA treatment and 6 h of ethephon treatment, the expression of the PgFPS gene in roots and stems reached its peak, showing a 3.125-fold and 3.236-fold increase compared to the untreated group, respectively. Interestingly, the expression of the PgFPS gene in leaves showed a decreasing trend after exogenous elicitors treatment. The discovery of this enzyme will provide a novel perspective for enhancing the efficient synthesis of platycodins.
Collapse
Affiliation(s)
- Meiqi Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhen Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chen Qin
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Huiyan Cao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lingyang Kong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tingxia Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shan Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lengleng Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154002, China
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
2
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
3
|
Gai QY, Feng X, Jiao J, Xu XJ, Fu JX, He XJ, Fu YJ. Blue LED light promoting the growth, accumulation of high-value isoflavonoids and astragalosides, antioxidant response, and biosynthesis gene expression in Astragalus membranaceus (Fisch.) Bunge hairy root cultures. PLANT CELL, TISSUE AND ORGAN CULTURE 2023; 153:511-523. [PMID: 37197002 PMCID: PMC10042671 DOI: 10.1007/s11240-023-02486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 05/19/2023]
Abstract
The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11240-023-02486-7.
Collapse
Affiliation(s)
- Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xue Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiao-Jie Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jin-Xian Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiao-Jia He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Yu-Jie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| |
Collapse
|
4
|
Liu M, Liu T, Liu W, Wang Z, Kong L, Lu J, Zhang Z, Su X, Liu X, Ma W, Ren W. Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family and response of PgGT1 under Abiotic Stresses in Platycodon grandiflorus. Gene 2023; 869:147398. [PMID: 36990256 DOI: 10.1016/j.gene.2023.147398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/25/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
The trihelix gene family plays an important role in plant growth and abiotic stress responses. Through the analysis of genomic and transcriptome data, 35 trihelix family members were identified for the first time in Platycodon grandiflorus; they were classified into five subfamilies: GT-1, GT-2, SH4, GTγ, and SIP1. The gene structure, conserved motifs and evolutionary relationships were analyzed. Prediction of physicochemical properties of the 35 trihelix proteins founded, the number of amino acid molecules is between 93 and 960, theoretical isoelectric point is between 4.24 and 9.94, molecular weight is between 9829.77 and 107435.38, 4 proteins among them were stable, and all GRAVY is negative. The full-length cDNA sequence of the PgGT1 gene of the GT-1 subfamily was cloned by PCR. It is a 1165 bp ORF encoding a 387 amino acid protein, with a molecular weight of 43.54 kDa. The predicted subcellular localization of the protein in the nucleus was experimentally verified. After being treated with NaCl, PEG6000, MeJA, ABA, IAA, SA, and ethephon, the expression of PgGT1 gene showed an up-regulated trend except for the roots treated with NaCl and ABA. This study laid a bioinformatics foundation for the research of trihelix gene family and the cultivation of excellent germplasm of P. grandiflorus.
Collapse
|
5
|
Heterologous Expression of Three Transcription Factors Differently Regulated Astragalosides Metabolic Biosynthesis in Astragalus membranaceus Hairy Roots. PLANTS 2022; 11:plants11141897. [PMID: 35890531 PMCID: PMC9315567 DOI: 10.3390/plants11141897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/19/2023]
Abstract
Astragalus membranaceus has been used as a highly popular Chinese herbal medicine for centuries. Triterpenoids, namely astragalosides I, II, III, and IV, represent the main active compounds in this plant species. Transcription factors have a powerful effect on metabolite biosynthesis in plants. We investigated the effect of the Arabidopsis MYB12, production of anthocyanin pigment 1 (PAP1), and maize leaf color (LC) transcription factors in regulating the synthesis of astragaloside metabolites in A. membranaceus. Overexpression of these transcription factors in hairy roots differentially up-regulated these active compounds. Specifically, the overexpression of LC resulted in the accumulation of astragalosides I–IV. The content of astragalosides I and IV were, in particular, more highly accumulated. Overexpression of MYB12 increased the accumulation of astragaloside I in transgenic hairy roots, followed by astragaloside IV, and overexpression of PAP1 resulted in the increased synthesis of astragalosides I and IV. In addition, we found that overexpression of PAP1 together with LC increased astragaloside III levels. At the transcriptional level, several key genes of the mevalonate biosynthetic pathway, especially HMGR1, HMGR2, and HMGR3, were up-regulated differentially in response to these transcription factors, resulting in astragaloside synthesis in the hairy roots of A. membranaceus. Overall, our results indicated that heterologous expression of Arabidopsis MYB12, PAP1, and maize LC differentially affected triterpenoids biosynthesis, leading to the increased biosynthesis of active compounds in A. membranaceus.
Collapse
|
6
|
Sykłowska-Baranek K, Kamińska M, Pączkowski C, Pietrosiuk A, Szakiel A. Metabolic Modifications in Terpenoid and Steroid Pathways Triggered by Methyl Jasmonate in Taxus × media Hairy Roots. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091120. [PMID: 35567120 PMCID: PMC9100385 DOI: 10.3390/plants11091120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 05/29/2023]
Abstract
The in vitro cultures of Taxus spp. were one of the first plant in vitro systems proved to exert the positive effect of elicitation with methyl jasmonate (MeJA) on the biosynthesis of specialized metabolites. The main aim of the present study is to examine the effect of MeJA treatment on the steroid and triterpenoid content of two genetically different hairy root lines of Taxus × media, KT and ATMA. The results revealed that the two lines differed in the total content of steroids and triterpenoids (in the ATMA root line, their amounts were lower than those in the KT line by 43% and 30%, respectively), but not in the composition of these compounds. The metabolic response to elicitation with MeJA was different: in the KT root line, the content of steroids decreased by 18%, whereas it increased by 38% in the ATMA line. Several metabolic features were common, including the characteristic changes in the ratio of sitosterol to stigmasterol content, caused by the very sharp boost in stigmasterol levels, the increase in the amount of glycoside forms of sterols, as well as in triterpenoid and total phenolic content. It is the first report on modifications of the terpenoid biosynthetic pathway in Taxus hairy root cultures triggered by MeJA, concerning steroids and triterpenoids.
Collapse
Affiliation(s)
- Katarzyna Sykłowska-Baranek
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (K.S.-B.); (A.P.)
| | - Monika Kamińska
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (M.K.); (C.P.)
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (M.K.); (C.P.)
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; (K.S.-B.); (A.P.)
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warsaw, Poland; (M.K.); (C.P.)
| |
Collapse
|
7
|
Enhancement of Phytosterol and Triterpenoid Production in Plant Hairy Root Cultures-Simultaneous Stimulation or Competition? PLANTS 2021; 10:plants10102028. [PMID: 34685836 PMCID: PMC8541584 DOI: 10.3390/plants10102028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022]
Abstract
Plant in vitro cultures, including hairy roots, can be applied for controlled production of valuable natural products, such as triterpenoids and sterols. These compounds originate from the common precursor squalene. Sterols and triterpenoids distinctly differ in their functions, and the 2,3-oxidosqualene cyclization step is often regarded as a branch point between primary and secondary (more aptly: general and specialized) metabolism. Considering the crucial role of phytosterols as membrane constituents, it has been postulated that unconstrained biosynthesis of triterpenoids can occur when sterol formation is already satisfied, and these compounds are no longer needed for cell growth and division. This hypothesis seems to follow directly the growth-defense trade-off plant dilemma. In this review, we present some examples illustrating the specific interplay between the two divergent pathways for sterol and triterpenoid biosynthesis appearing in root cultures. These studies were significant for revealing the steps of the biosynthetic pathway, understanding the role of particular enzymes, and discovering the possibility of gene regulation. Currently, hairy roots of many plant species can be considered not only as an efficient tool for production of phytochemicals, but also as suitable experimental models for investigations on regulatory mechanisms of plant metabolism.
Collapse
|
8
|
Kowalczyk T, Sitarek P, Toma M, Rijo P, Domínguez-Martín E, Falcó I, Sánchez G, Śliwiński T. Enhanced Accumulation of Betulinic Acid in Transgenic Hairy Roots of Senna obtusifolia Growing in the Sprinkle Bioreactor and Evaluation of Their Biological Properties in Various Biological Models. Chem Biodivers 2021; 18:e2100455. [PMID: 34185351 DOI: 10.1002/cbdv.202100455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
Betulinic acid, which is found in transgenic roots of Senna obtusifolia (L.) H.S.Irwin & Barneby, is a pentacyclic triterpene with distinctive pharmacological activities. In this study, we report the differences in the content of betulinic acid and selected anthraquinones in transgenic S. obtusifolia hairy roots with overexpression of the PgSS1 gene (SOPSS2 line) and in transformed hairy roots without this genetic construct (SOA41 line). Both hairy root lines grew in 10 L sprinkle bioreactor. Additionally, the extracts obtained from this plant material were used for biological tests. Our results demonstrated that the SOPSS2 hairy root cultures from the bioreactor showed an increase in the content of betulinic acid (38.125 mg/g DW), compared to the SOA41 hairy root line (4.213 mg/g DW). Biological studies have shown a cytotoxic and antiproliferative effect on U-87MG glioblastoma cells, and altering the level of apoptotic proteins (Bax, p53, Puma and Noxa). Antimicrobial properties were demonstrated for both tested extracts, with a stronger effect of SOPSS2 extract. Moreover, both extracts showed moderate antiviral properties on norovirus surrogates.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1 Łódź, 90-151, Lodz, Poland
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Patricia Rijo
- CBIOS - Research Center for Biosciences & Health technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal.,iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Eva Domínguez-Martín
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Campus universitario. Ctra. Madrid-Barcelona km. 33,600, 28805, Alcalá de Henares, Spain
| | - Irene Falcó
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Gloria Sánchez
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Tomasz Śliwiński
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str, 92-215, Lodz, Poland
| |
Collapse
|
9
|
Zheng T, Guan L, Yu K, Haider MS, Nasim M, Liu Z, Li T, Zhang K, Jiu S, Jia H, Fang J. Expressional diversity of grapevine 3-Hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes. BMC PLANT BIOLOGY 2021; 21:279. [PMID: 34147088 PMCID: PMC8214791 DOI: 10.1186/s12870-021-03073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a key enzyme in the mevalonate (MVA) pathway, which regulates the metabolism of terpenoids in the cytoplasm and determines the type and content of downstream terpenoid metabolites. RESULTS Results showed that grapevine HMGR family has three members, such as VvHMGR1, VvHMGR2, and VvHMGR3. The expression of VvHMGRs in 'Kyoho' has tissue specificity, for example, VvHMGR1 keeps a higher expression, VvHMGR2 is the lowest, and VvHMGR3 gradually decreases as the fruit development. VvHMGR3 is closely related to CsHMGR1 and GmHMGR9 and has collinearity with CsHMGR2 and GmHMGR4. By the prediction of interaction protein, it can interact with HMG-CoA synthase, MVA kinase, FPP/GGPP synthase, diphosphate mevalonate decarboxylase, and participates in the synthesis and metabolism of terpenoids. VvHMGR3 have similar trends in expression with some of the genes of carotenoid biosynthesis and MEP pathways. VvHMGR3 responds to various environmental and phytohormone stimuli, especially salt stress and ultraviolet (UV) treatment. The expression level of VvHMGRs is diverse in grapes of different colors and aroma. VvHMGRs are significantly higher in yellow varieties than that in red varieties, whereas rose-scented varieties showed significantly higher expression than that of strawberry aroma. The expression level is highest in yellow rose-scented varieties, and the lowest in red strawberry scent varieties, especially 'Summer Black' and 'Fujiminori'. CONCLUSION This study confirms the important role of VvHMGR3 in the process of grape fruit coloring and aroma formation, and provided a new idea to explain the loss of grape aroma and poor coloring during production. There may be an additive effect between color and aroma in the HMGR expression aspect.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Lubin Guan
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Kun Yu
- College of Agriculture, Shihezi University, Shihezi City, 832003, PR China
| | - Muhammad Salman Haider
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Maazullah Nasim
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Teng Li
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, PR China
| | - Songtao Jiu
- Department of Plant Science, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Jiangsu Province, Nanjing City, 210095, PR China.
| |
Collapse
|
10
|
Kim YK, Sathasivam R, Kim YB, Kim JK, Park SU. Transcriptomic Analysis, Cloning, Characterization, and Expression Analysis of Triterpene Biosynthetic Genes and Triterpene Accumulation in the Hairy Roots of Platycodon grandiflorum Exposed to Methyl Jasmonate. ACS OMEGA 2021; 6:12820-12830. [PMID: 34056433 PMCID: PMC8154235 DOI: 10.1021/acsomega.1c01202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 05/17/2023]
Abstract
Platycodon grandiflorum is a perennial plant that has been used for medicinal purposes. Specifically, it is widely used in Northern China and Korea for the treatment of various diseases. Terpenoids belong to a group called secondary metabolites and have attracted a wide range of interest. Here, we determined the expressed sequence tag (EST) library of the methyl jasmonate (MeJA)-treated hairy root of P. grandiflorum. In total, 5760 ESTs were obtained, but after deleting the vector sequences and removing poor-quality sequences, a total of 2536 ESTs were attained. Of these, 811 contigs and 1725 singletons were annotated. The data were further analyzed with a focus on the gene families of the terpenoid biosynthetic pathway (TBP). We identified and characterized four TBP genes; among these were three full-length cDNAs encoding PgHMGS, PgMK, and PgMVD, whereas PgHMGR had a partial sequence based on the EST library database. Phylogenetic analysis and a pairwise identity matrix showed that these identified genes were closely related to those of other higher plants. Moreover, the tertiary structure and multiple alignment analysis showed that several distinct conserved motifs were present. Quantitative reverse transcription-polymerase chain reaction results revealed that TBP genes were constitutively expressed in all organs of P. grandiflorum, while the expression of transcript levels of these genes varied distinctly among the organs. Additionally, the total amount of platycosides was highly detected in the root, accumulating in concentrations 7.8 and 2.6 times higher than in the hairy root and stem, respectively, and 1.4 times higher than in the leaf and flower. The highest amount of total phytosterols was found to accumulate in the leaves at 9.3, 9.1, 1.8, and 1.6 times higher than that of the stem, root, hairy root, and flower, respectively. After the hairy root was exposed to the MeJA treatment, the transcript levels of PgHMGS, PgHMGR, PgMK, and PgMVD had significantly increased. The highest level of transcript accumulation occurred at 3 h after initial exposure for most of the genes. Meanwhile, triterpene saponin accumulation increased with the increase in the time of exposure, and at 48 h after initial exposure, the total saponin content was the highest recorded.
Collapse
Affiliation(s)
- Yong-Kyoung Kim
- Division
of Safety Analysis, Experiment and Research Institute, National Agricultural Products Quality Management
Service, Gimcheon 39660, Republic of Korea
| | - Ramaraj Sathasivam
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| | - Yeon Bok Kim
- Department
of Medicinal and Industrial Crops, Korea
National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Jae Kwang Kim
- Division
of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- . Phone: +82-32-835-8241. Fax: +82-32-835-0763
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
- Department
of Smart Agriculture Systems, Chungnam National
University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- . Phone: +82-42-821-5730. Fax: +82-42-822-2631
| |
Collapse
|
11
|
Su X, Liu Y, Han L, Wang Z, Cao M, Wu L, Jiang W, Meng F, Guo X, Yu N, Gui S, Xing S, Peng D. A candidate gene identified in converting platycoside E to platycodin D from Platycodon grandiflorus by transcriptome and main metabolites analysis. Sci Rep 2021; 11:9810. [PMID: 33963244 PMCID: PMC8105318 DOI: 10.1038/s41598-021-89294-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Platycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown β-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of β-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.
Collapse
Affiliation(s)
- Xinglong Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lu Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaojian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Mengyang Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Liping Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, Hunan, China
| | - Fei Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shihai Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, 230038, China.
| |
Collapse
|
12
|
Duan Y, Liu J, Du Y, Pei X, Li M. Aspergillus oryzae Biosynthetic Platform for de Novo Iridoid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2501-2511. [PMID: 33599481 DOI: 10.1021/acs.jafc.0c06563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The iridoids and their derivatives monoterpene indole alkaloids (MIAs) are two broad classes of plant-derived natural products with valuable pharmaceutical properties. However, the poor source limited their application. Nepetalactol, a common iridoid scaffold of MIAs, was heterologously produced in Saccharomyces cerevisiae. Although the optimization of nepetalactol production in S. cerevisiae was achieved by metabolic engineering, the inherent metabolic constraints impose a restriction on the production. Herein, we developed a high nepetalactol-producing Aspergillus oryzae platform strain. First, the co-expression of 5 nepetalactol biosynthetic genes, in a high isopentenyl pyrophosphate (IPP)-producing strain A. oryzae AK2, succeeded in the biosynthesis of nepetalactol. Second, the improvement of the IPP supply and the suppression of the byproduct citronellol formation were simultaneously achieved. Finally, the highest titer of nepetalactol of 7.2 mg/L was obtained with the engineered strain, after the optimization of the carbon source. To the best of our knowledge, this is the highest reported titer of nepetalactol in microbial cells. The developed A. oryzae strain represents an attractive biosynthetic platform host for the de novo production of iridoids and MIAs.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiawei Liu
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yun Du
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
13
|
Enhanced Cadmium Accumulation and Tolerance in Transgenic Hairy Roots of Solanum nigrum L. Expressing Iron-Regulated Transporter Gene IRT1. Life (Basel) 2020; 10:life10120324. [PMID: 33287205 PMCID: PMC7761695 DOI: 10.3390/life10120324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Solanum nigrum L., a hyperaccumulator of cadmium (Cd), is regarded as a promising candidate for phytoremediation of heavy metal pollution. In the present study, the hairy roots of Solanum nigrum L. were selected as a model plant system to study the potential application of Iron-regulated Transporter Gene (IRT1) for the efficient phytoremediation of Cd pollution. The transgenic hairy roots of Solanum nigrum L. expressing the IRT1 gene from Arabidopsis thaliana were successfully obtained via the Agrobacterium tumegaciens-mediated method. Expression of IRT1 reduced Cd stress-induced phytotoxic effects. Significantly superior root growth, increased antioxidant enzyme activities, decreased reactive oxygen species (ROS) levels, and less cell apoptosis were observed in the transgenic hairy roots of Solanum nigrum L. compared to the wild-type lines under Cd stress. Enhanced Cd accumulation was also carried out in the transgenic hairy roots compared to the control (886.8 μg/g vs. 745.0 μg/g). These results provide an important understanding of the Cd tolerance mechanism of transgenic IRT1 hairy roots of Solanum nigrum L., and are of particular importance to the development of a transgenic candidate for efficient phytoremediation process.
Collapse
|
14
|
Jiao J, Gai QY, Wang X, Liu J, Lu Y, Wang ZY, Xu XJ, Fu YJ. Effective Production of Phenolic Compounds with Health Benefits in Pigeon Pea [ Cajanus cajan (L.) Millsp.] Hairy Root Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8350-8361. [PMID: 32672956 DOI: 10.1021/acs.jafc.0c02600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phenolic compounds in pigeon pea possess various biological properties beneficial to human health. In this study, pigeon pea hairy root cultures (PPHRCs) were developed as an effective in vitro platform for the production of phenolic compounds. A high-productive hairy root line was screened and characterized, and its culture conditions were optimized in terms of biomass productivity and phenolic yield. The comparative profiling of 10 phenolic compounds in PPHRCs and pigeon pea natural resources (seeds, leaves, and roots) was achieved by ultra-high-performance liquid chromatography-tandem mass spectrometry analysis. The total phenolic yield in PPHRCs (3278.44 μg/g) was much higher than those in seeds (68.86 μg/g) and roots (846.03 μg/g), and comparable to leaves (3379.49 μg/g). Notably, PPHRCs exhibited superiority in the yield of the most important health-promoting compound cajaninstilbene acid (2996.23 μg/g) against natural resources (4.42-2293.31 μg/g). Overall, PPHRCs could serve as promising potential alternative sources for the production of phenolic compounds with nutraceutical/medicinal values.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Qing-Yan Gai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Xin Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Jing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Yao Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Zi-Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Xiao-Jie Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| |
Collapse
|
15
|
Rao S, Meng X, Liao Y, Yu T, Cao J, Tan J, Xu F, Cheng S. Characterization and functional analysis of two novel 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes (GbHMGR2 and GbHMGR3) from Ginkgo biloba. Sci Rep 2019; 9:14109. [PMID: 31575936 PMCID: PMC6773693 DOI: 10.1038/s41598-019-50629-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Terpene trilactones (TTLs) are the main secondary metabolites of Ginkgo biloba. As one of the rate-limiting enzymes in the mevalonic acid (MVA) pathway of TTL biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the 3-hydroxy-3-methylglutaryl coenzyme A to form MVA. In this study, two cDNA sequences of HMGR genes, namely, GbHMGR2 and GbHMGR3, were cloned from G. biloba. The protein sequences of GbHMGR2 and GbHMGR3, which contain several functional domains, were analyzed. Regulatory elements related to light, hormone, and stress response were detected in the promoter regions of GbHMGR2 and GbHMGR3. The catalytic activity of these genes was verified by a functional complement experiment in yeast. Quantitative real-time PCR (qRT-PCR) showed the distinct expression patterns of the two genes in different organs. The TTL contents in the organs were detected by high-performance liquid chromatography- evaporative light scattering detector. GbHMGR2 and GbHMGR3 were responded to cold, dark, methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA), and ethephon (Eth) treatments. The TTL contents were also regulated by cold, dark, MJ, ABA, SA, and Eth treatment. In conclusion, GbHMGR2 and GbHMGR3 may participate in the MVA pathway of TTL biosynthesis.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiangxiang Meng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China
- Serun Health Industry Group, Enshi, 445000, China
| | - Jie Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Junping Tan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
16
|
Pott DM, Osorio S, Vallarino JG. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:835. [PMID: 31316537 PMCID: PMC6609884 DOI: 10.3389/fpls.2019.00835] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Fruit flavor and nutritional characteristics are key quality traits and ones of the main factors influencing consumer preference. Central carbon metabolism, also known as primary metabolism, contributes to the synthesis of intermediate compounds that act as precursors for plant secondary metabolism. Specific and specialized metabolic pathways that evolved from primary metabolism play a key role in the plant's interaction with its environment. In particular, secondary metabolites present in the fruit serve to increase its attractiveness to seed dispersers and to protect it against biotic and abiotic stresses. As a consequence, several important organoleptic characteristics, such as aroma, color, and fruit nutritional value, rely upon secondary metabolite content. Phenolic and terpenoid compounds are large and diverse classes of secondary metabolites that contribute to fruit quality and have their origin in primary metabolic pathways, while the delicate aroma of ripe fruits is formed by a unique combination of hundreds of volatiles that are derived from primary metabolites. In this review, we show that the manipulation of primary metabolism is a powerful tool to engineer quality traits in fruits, such as the phenolic, terpenoid, and volatile content. The enzymatic reactions responsible for the accumulation of primary precursors are bottlenecks in the transfer of metabolic flux from central to specialized metabolism and should be taken into account to increase the yield of the final products of the biosynthetic pathways. In addition, understanding the connection and regulation of the carbon flow between primary and secondary metabolism is a key factor for the development of fruit cultivars with enhanced organoleptic and nutritional traits.
Collapse
Affiliation(s)
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
17
|
|
18
|
Zhao S, Park CH, Yang J, Yeo HJ, Kim TJ, Kim JK, Park SU. Molecular characterization of anthocyanin and betulinic acid biosynthesis in red and white mulberry fruits using high-throughput sequencing. Food Chem 2018; 279:364-372. [PMID: 30611502 DOI: 10.1016/j.foodchem.2018.11.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 01/13/2023]
Abstract
To better understand the molecular mechanism of color formation in different varieties of the mulberry fruit, we investigated the functional genes related to anthocyanin and betulinic acid biosynthesis using high-throughput transcriptome sequencing and detected the primary and secondary metabolites in the white (Morus alba L. cv. 'Turkey') and red (Morus alba L. cv. 'Cheongil') mulberry cultivars. We obtained 171,702,058 high-quality reads with an average read length of 125 bp. These reads were assembled into 51,272 and 51,159 unigenes in Turkey and Cheongil, respectively. We also identified the genes related to anthocyanin and triterpene biosynthesis and investigated their expression and metabolite profiles. Overall, our transcriptome sequencing provides valuable information that could be used in gene discovery, marker-assisted selection, and investigation of metabolic pathways in mulberry. Additionally, gene expression and metabolite profiles provide new insights into the underlying mechanism of anthocyanin and betulinic acid biosynthesis and relationship between primary and secondary metabolites.
Collapse
Affiliation(s)
- Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, 138 Tongdajie Street, Harbin 150076, China
| | - Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Hyeon Ji Yeo
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Tae Jin Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406-772, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406-772, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
19
|
Lee J, Shibamoto T, Ha J, Jang HW. Identification of volatile markers for the detection of adulterants in red ginseng (Panax ginseng) juice using headspace stir-bar sorptive extraction coupled with gas chromatography and mass spectrometry. J Sep Sci 2018; 41:2903-2912. [PMID: 29797772 DOI: 10.1002/jssc.201800202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/24/2023]
Abstract
Red ginseng (Panax ginseng) products are frequently adulterated by manufacturers with cheaper medicinal plant products including deodeok (Codonopsis lanceolata) and doraji (Platycodon grandiflorum) to increase profits. To identify possible volatile markers for the adulteration of red ginseng juices with deodeok or doraji, a headspace stir-bar sorptive extraction method was developed. Gas chromatography with mass spectrometry and untargeted metabolomics analysis revealed that 1-hexanol, cis-3-hexen-1-ol, and trans-2-hexen-1-ol are abundantly present in deodeok and doraji but not red ginseng. The peak area ratios in gas chromatograms of these compounds in red ginseng juices mixed with deodeok or doraji indicate that these volatile chemicals can be used as markers to detect the adulteration of red ginseng juice.
Collapse
Affiliation(s)
- Jangho Lee
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Takayuki Shibamoto
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Jaeho Ha
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hae Won Jang
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| |
Collapse
|
20
|
Balasubramanian M, Anbumegala M, Surendran R, Arun M, Shanmugam G. Elite hairy roots of Raphanus sativus (L.) as a source of antioxidants and flavonoids. 3 Biotech 2018; 8:128. [PMID: 29450118 PMCID: PMC5811410 DOI: 10.1007/s13205-018-1153-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 02/03/2018] [Indexed: 01/07/2023] Open
Abstract
An efficient protocol for hairy root induction in radish was established by optimizing several parameters that affect the efficiency of Agrobacterium rhizogenes-mediated transformations. Explants wounded using sterile hypodermic needle, infected with Agrobacterium suspension (0.6 OD600) for 10 min and co-cultivated in 1/2 MS medium containing acetosyringone (100 µM) for 2 days displayed maximum percentage of hairy root induction using MTCC 2364 (77.6%) and MTCC 532 (67.6%). On further experiments with MTCC 2364 initiated hairy roots, maximum biomass accumulation (fresh weight = 9.50 g; dry weight = 1.48 g) was achieved in liquid 1/2 MS medium supplemented with 87.6 mM sucrose after 40 days of culture. Transgenic state of hairy roots of MTCC 2364 was confirmed by polymerase chain reaction using rolB- and rolC-specific primers. The MTCC 2364-induced hairy roots produced higher amount of phenolic (33.0 mg g-1), flavonoid (48.0 mg g-1), and quercetin (114.8 mg g-1) content compared to auxin-induced roots of non-transformed radish. Furthermore, the results of ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl assay confirmed that the antioxidant activity of MTCC 2364 root extracts was improved when compared to auxin-induced roots of non-transformed radish. The present study offers a new insight in radish for production of phenolics and flavonoids (quercetin) using A. rhizogenes-mediated hairy root induction.
Collapse
Affiliation(s)
| | - Murugesan Anbumegala
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| | - Ramasamy Surendran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| | - Girija Shanmugam
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| |
Collapse
|
21
|
Zhang DH, Jiang LX, Li N, Yu X, Zhao P, Li T, Xu JW. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4683-4690. [PMID: 28530827 DOI: 10.1021/acs.jafc.7b00629] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.
Collapse
Affiliation(s)
- De-Huai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Lu-Xi Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Na Li
- Faculty of Science, Kunming University of Science and Technology , Kunming, 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology , Kunming, 650500, China
| |
Collapse
|
22
|
Hua W, Kong W, Cao X, Chen C, Liu Q, Li X, Wang Z. Transcriptome analysis of Dioscorea zingiberensis identifies genes involved in diosgenin biosynthesis. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0516-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Thakore D, Srivastava AK, Sinha AK. Mass production of Ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Gai Q, Jiao J, Luo M, Wang W, Yao L, Fu Y. Deacetylation biocatalysis and elicitation by immobilized Penicillium canescens in Astragalus membranaceus hairy root cultures: towards the enhanced and sustainable production of astragaloside IV. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:297-305. [PMID: 27518481 PMCID: PMC5316919 DOI: 10.1111/pbi.12612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 05/24/2023]
Abstract
A novel biotechnology approach by combining deacetylation biocatalysis with elicitation of immobilized Penicillium canescens (IPC) in Astragalus membranaceus hairy root cultures (AMHRCs) was proposed for the elevated production of astragaloside IV (AG IV). The highest AG IV accumulation was achieved in 36-day-old AMHRCs co-cultured with IPC for 60 h, which resulted in the enhanced production of AG IV by 14.59-fold in comparison with that in control (0.193 ± 0.007 mg/g DW). Meanwhile, AG IV precursors were almost transformed to AG IV by IPC deacetylation. Moreover, expression of genes involved in AG IV biosynthetic pathway was significantly up-regulated in response to IPC elicitation. Also, FTIR and SEM showed that cell wall lignification was enhanced following IPC treatment and root surface was likely to be IPC deacetylation site. Overall, dual roles of IPC (biocatalyst and elicitor) offered an effective and sustainable way for the mass production of AG IV in AMHRCs.
Collapse
Affiliation(s)
- Qing‐Yan Gai
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Jiao Jiao
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Meng Luo
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Wei Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Li‐Ping Yao
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| | - Yu‐Jie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- Engineering Research Center of Forest Bio‐PreparationMinistry of EducationNortheast Forestry UniversityHarbinChina
- Collaborative Innovation Center for Development and Utilization of Forest ResourcesHarbinHeilongjiangChina
| |
Collapse
|
25
|
Zhang Y, Jiang K, Qing D, Huang B, Jiang J, Wang S, Yan C. Accumulation of camptothecin and 10-hydroxycamptothecin and the transcriptional expression of camptothecin biosynthetic genes in Camptotheca acuminata cambial meristematic and dedifferentiated cells. RSC Adv 2017. [DOI: 10.1039/c7ra00588a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cambial meristematic cells (CMCs) of C. acuminata were isolated and compared with dedifferentiated cells (DDCs). The expression levels of seven genes encoding key enzymes involved in CPT and HCPT biosynthesis was significantly upregulated in CMCs compared with DDCs.
Collapse
Affiliation(s)
- Yuhua Zhang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM
| | - Keming Jiang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Degang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug
- Urumqi 830002
- China
| | - Bing Huang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Jiayi Jiang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM
- P. R. China
- Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province
- China
| | - Chunyan Yan
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| |
Collapse
|
26
|
Yin J, Wang L, Huang Y, Mu Y, Lv S. Authentication of Panax ginseng from different regions. RSC Adv 2017. [DOI: 10.1039/c7ra09537f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The correlation of gene expressions of HMGR and DS with total ginsenoside content was significant.
Collapse
Affiliation(s)
- Juxin Yin
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Liwu Wang
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Yi Huang
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| | - Ying Mu
- Research Center for Analytical Instrumentation
- Institute of Cyber-Systems and Control
- State Key Laboratory of Industrial Control Technology
- Zhejiang University
- Hangzhou 310000
| | - Shaowu Lv
- College of Life Science
- Key Laboratory for Molecular Enzymology
- Engineering of the Ministry of Education
- Jilin University
- Changchun 130000
| |
Collapse
|
27
|
Lu X, Tang K, Li P. Plant Metabolic Engineering Strategies for the Production of Pharmaceutical Terpenoids. FRONTIERS IN PLANT SCIENCE 2016; 7:1647. [PMID: 27877181 PMCID: PMC5099148 DOI: 10.3389/fpls.2016.01647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/19/2016] [Indexed: 05/18/2023]
Abstract
Pharmaceutical terpenoids belong to the most diverse class of natural products. They have significant curative effects on a variety of diseases, such as cancer, cardiovascular diseases, malaria and Alzheimer's disease. Nowadays, elicitors, including biotic and abiotic elicitors, are often used to activate the pathway of secondary metabolism and enhance the production of target terpenoids. Based on Agrobacterium-mediated genetic transformation, several plant metabolic engineering strategies hold great promise to regulate the biosynthesis of pharmaceutical terpenoids. Overexpressing terpenoids biosynthesis pathway genes in homologous and ectopic plants is an effective strategy to enhance the yield of pharmaceutical terpenoids. Another strategy is to suppress the expression of competitive metabolic pathways. In addition, global regulation which includes regulating the relative transcription factors, endogenous phytohormones and primary metabolism could also markedly increase their yield. All these strategies offer great opportunities to enhance the supply of scarce terpenoids drugs, reduce the price of expensive drugs and improve people's standards of living.
Collapse
Affiliation(s)
- Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Kexuan Tang
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
28
|
Miras-Moreno B, Sabater-Jara AB, Pedreño MA, Almagro L. Bioactivity of Phytosterols and Their Production in Plant in Vitro Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7049-58. [PMID: 27615454 DOI: 10.1021/acs.jafc.6b02345] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytosterols are a kind of plant metabolite belonging to the triterpene family. These compounds are essential biomolecules for human health, and so they must be taken from foods. β-Sitosterol, campesterol, and stigmasterol are the main phytosterols found in plants. Phytosterols have beneficial effects on human health since they are able to reduce plasma cholesterol levels and have antiinflammatory, antidiabetic, and anticancer activities. However, there are many difficulties in obtaining them, since the levels of these compounds produced from plant raw materials are low and their chemical synthesis is not economically profitable for commercial exploitation. A biotechnological alternative for their production is the use of plant cell and hairy root cultures. This review is focused on the biosynthesis of phytosterols and their function in both plants and humans as well as the different biotechnological strategies to increase phytosterol biosynthesis. Special attention is given to describing new methodologies based on the use of recombinant DNA technology to increase the levels of phytosterols.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department of Plant Biology, Faculty of Biology, University of Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - M A Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia , Campus de Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
29
|
Ma CH, Gao ZJ, Zhang JJ, Zhang W, Shao JH, Hai MR, Chen JW, Yang SC, Zhang GH. Candidate Genes Involved in the Biosynthesis of Triterpenoid Saponins in Platycodon grandiflorum Identified by Transcriptome Analysis. FRONTIERS IN PLANT SCIENCE 2016; 7:673. [PMID: 27242873 PMCID: PMC4871891 DOI: 10.3389/fpls.2016.00673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable. PRINCIPAL FINDINGS A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80%) were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG, and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant. CONCLUSION The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.
Collapse
Affiliation(s)
- Chun-Hua Ma
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural UniversityKunming, China
| | - Zheng-Jie Gao
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural UniversityKunming, China
| | - Jia-Jin Zhang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural UniversityKunming, China
| | - Wei Zhang
- The Life Science and Technology College, Honghe UniversityMengzi, China
| | - Jian-Hui Shao
- National Engineering Research Center for Agricultural Biodiversity Applied Technology, Yunnan Agricultural UniversityKunming, China
| | - Mei-Rong Hai
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural UniversityKunming, China
| | - Jun-Wen Chen
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural UniversityKunming, China
| | - Sheng-Chao Yang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural UniversityKunming, China
| | - Guang-Hui Zhang
- Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agricultural UniversityKunming, China
| |
Collapse
|
30
|
Shi M, Luo X, Ju G, Li L, Huang S, Zhang T, Wang H, Kai G. Enhanced Diterpene Tanshinone Accumulation and Bioactivity of Transgenic Salvia miltiorrhiza Hairy Roots by Pathway Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2523-30. [PMID: 26753746 DOI: 10.1021/acs.jafc.5b04697] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tanshinones are health-promoting diterpenoids found in Salvia miltiorrhiza and have wide applications. Here, SmGGPPS (geranylgeranyl diphosphate synthase) and SmDXSII (1-deoxy-D-xylulose-5-phosphate synthase) were introduced into hairy roots of S. miltiorrhiza. Overexpression of SmGGPPS and SmDXSII in hairy roots produces higher levels of tanshinone than control and single-gene transformed lines; tanshinone production in the double-gene transformed line GDII10 reached 12.93 mg/g dry weight, which is the highest tanshinone content that has been achieved through genetic engineering. Furthermore, transgenic hairy root lines showed higher antioxidant and antitumor activities than control lines. In addition, contents of chlorophylls, carotenoids, indoleacetic acid, and gibberellins were significantly elevated in transgenic Arabidopsis thaliana plants. These results demonstrate a promising method to improve the production of diterpenoids including tanshinone as well as other natural plastid-derived isoprenoids in plants by genetic manipulation of the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University , Hangzhou 310018, People's Republic of China
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai 200234, People's Republic of China
| | - Xiuqin Luo
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai 200234, People's Republic of China
| | - Guanhua Ju
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai 200234, People's Republic of China
| | - Leilei Li
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai 200234, People's Republic of China
| | - Shengxiong Huang
- Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201, People's Republic of China
| | - Tong Zhang
- Experiment Center For Teaching & Learning, Shanghai University of Traditional Chinese Medicine , Shanghai 201203, People's Republic of China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University , Hangzhou 310018, People's Republic of China
| | - Guoyin Kai
- Institute of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University , Shanghai 200234, People's Republic of China
| |
Collapse
|
31
|
Liao P, Hemmerlin A, Bach TJ, Chye ML. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv 2016; 34:697-713. [PMID: 26995109 DOI: 10.1016/j.biotechadv.2016.03.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 01/03/2023]
Abstract
The cytosol-localised mevalonic acid (MVA) pathway delivers the basic isoprene unit isopentenyl diphosphate (IPP). In higher plants, this central metabolic intermediate is also synthesised by the plastid-localised methylerythritol phosphate (MEP) pathway. Both MVA and MEP pathways conspire through exchange of intermediates and regulatory interactions. Products downstream of IPP such as phytosterols, carotenoids, vitamin E, artemisinin, tanshinone and paclitaxel demonstrate antioxidant, cholesterol-reducing, anti-ageing, anticancer, antimalarial, anti-inflammatory and antibacterial activities. Other isoprenoid precursors including isoprene, isoprenol, geraniol, farnesene and farnesol are economically valuable. An update on the MVA pathway and its interaction with the MEP pathway is presented, including the improvement in the production of phytosterols and other isoprenoid derivatives. Such attempts are for instance based on the bioengineering of microbes such as Escherichia coli and Saccharomyces cerevisiae, as well as plants. The function of relevant genes in the MVA pathway that can be utilised in metabolic engineering is reviewed and future perspectives are presented.
Collapse
Affiliation(s)
- Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Andréa Hemmerlin
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67083 Strasbourg, France.
| | - Thomas J Bach
- Centre National de la Recherche Scientifique, UPR 2357, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 67083 Strasbourg, France.
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
32
|
Rusanov K, Atanassov A, Atanassov I. Engineering Cell and Organ Cultures from Medicinal and Aromatic Plants Toward Commercial Production of Bioactive Metabolites. REFERENCE SERIES IN PHYTOCHEMISTRY 2016. [DOI: 10.1007/978-3-319-32004-5_8-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Patra N, Srivastava AK. Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors. PLANT CELL REPORTS 2016; 35:143-53. [PMID: 26441056 DOI: 10.1007/s00299-015-1875-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/20/2015] [Accepted: 09/25/2015] [Indexed: 05/24/2023]
Abstract
Alternative biotechnological protocol for large-scale artemisinin production was established. It featured enhanced growth and artemisinin production by cultivation of hairy roots in nutrient mist bioreactor (NMB) coupled with novel cultivation strategies. Artemisinin is used for the treatment of cerebral malaria. Presently, its main source is from seasonal plant Artemisia annua. This study featured investigation of growth and artemisinin production by A. annua hairy roots (induced by Agrobacterium rhizogenes-mediated genetic transformation of explants) in three bioreactor configurations-bubble column reactor, NMB and modified NMB particularly to establish their suitability for commercial production. It was observed that cultivation of hairy roots in a non-stirred bubble column reactor exhibited a biomass accumulation of 5.68 g/l only while batch cultivation in a custom-made NMB exhibited a higher biomass concentration of 8.52 g/l but relatively lower artemisinin accumulation of 0.22 mg/g was observed in this reactor. A mixture of submerged liquid-phase growth (for 5 days) followed by gas-phase cultivation in nutrient mist reactor operation strategy (for next 15 days) was adopted for hairy root cultivation in this investigation. Reasonably, high (23.02 g/l) final dry weight along with the artemisinin accumulation (1.12 mg/g, equivalent to 25.78 mg/l artemisinin) was obtained in this bioreactor, which is the highest reported artemisinin yield in the gas-phase NMB cultivation.
Collapse
Affiliation(s)
- Nivedita Patra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Delhi, 110016, India
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland
| | - Ashok K Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Delhi, 110016, India.
| |
Collapse
|
34
|
Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015; 33:717-35. [PMID: 25747290 DOI: 10.1016/j.biotechadv.2015.03.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/28/2015] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
Medicinal plants are essential for improving human health, and around 75% of the population in developing countries relies mainly on herb-based medicines for health care. As the king of herb plants, ginseng has been used for nearly 5,000 years in the oriental and recently in western medicines. Among the compounds studied in ginseng plants, ginsenosides have been shown to have multiple medical effects such as anti-oxidative, anti-aging, anti-cancer, adaptogenic and other health-improving activities. Ginsenosides belong to a group of triterpene saponins (also called ginseng saponins) that are found almost exclusively in Panax species and accumulated especially in the plant roots. In this review, we update the conserved and diversified pathway/enzyme biosynthesizing ginsenosides which have been presented. Particularly, we highlight recent milestone works on functional characterization of key genes dedicated to the production of ginsenosides, and their application in engineering plants and yeast cells for large-scale production of ginsenosides.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea.
| |
Collapse
|
35
|
Jiao J, Gai QY, Fu YJ, Ma W, Peng X, Tan SN, Efferth T. Efficient production of isoflavonoids by Astragalus membranaceus hairy root cultures and evaluation of antioxidant activities of extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12649-12658. [PMID: 25483292 DOI: 10.1021/jf503839m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, Astragalus membranaceus hairy root cultures (AMHRCs) were established as an attractive alternative source for the efficient production of isoflavonoids (IF). A. membranaceus hairy root line II was screened as the most efficient line and was confirmed by PCR amplification of rolB, rolC and aux1 genes. Culture parameters of AMHRCs were systematically optimized, and five main IF constituents were quali-quantitatively determined by LC-MS/MS. Under optimal conditions, the total IF accumulation of 34 day old AMHRCs was 234.77 μg/g dry weight (DW). This yield was significantly higher compared to that of 3 year old field grown roots (187.38 μg/g DW). Additionally, in vitro antioxidant assays demonstrated that AMHRC extracts exhibited antioxidant activities with lower IC50 values (1.40 and 1.73 mg/mL) as compared to those of field grown roots (1.96 and 2.17 mg/mL). Overall, AMHRCs may offer a promising and continuous product platform for naturally derived, high quality and valuable nutraceuticals.
Collapse
Affiliation(s)
- Jiao Jiao
- State Key Laboratory of Tree Genetics and Breeding and §Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University , Harbin, Heilongjiang 150040, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Kim YK, Kim YB, Uddin MR, Lee S, Kim SU, Park SU. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth Biol 2014; 3:773-9. [PMID: 24933610 DOI: 10.1021/sb400194g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.
Collapse
Affiliation(s)
- Yong-Kyoung Kim
- Department
of Crop Science, Chungnam National University, Yuseong-gu, Daejeon 305-764, Korea
- Department
of Applied Biology and Chemistry, Seoul National University, Seoul 151-921, Korea
| | - Yeon Bok Kim
- Department
of Crop Science, Chungnam National University, Yuseong-gu, Daejeon 305-764, Korea
| | - Md Romij Uddin
- Department
of Crop Science, Chungnam National University, Yuseong-gu, Daejeon 305-764, Korea
| | - Sanghyun Lee
- Department
of Integrative Plant Science, Chung-Ang University, Anseong 456-756, Korea
| | - Soo-Un Kim
- Department
of Applied Biology and Chemistry, Seoul National University, Seoul 151-921, Korea
| | - Sang Un Park
- Department
of Crop Science, Chungnam National University, Yuseong-gu, Daejeon 305-764, Korea
| |
Collapse
|
37
|
Zhou JS, Ji SL, Ren MF, He YL, Jing XR, Xu JW. Enhanced accumulation of individual ganoderic acids in a submerged culture of Ganoderma lucidum by the overexpression of squalene synthase gene. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Subramaniyam S, Mathiyalagan R, Natarajan S, Kim YJ, Jang MG, Park JH, Yang DC. Transcript expression profiling for adventitious roots of Panax ginseng Meyer. Gene 2014; 546:89-96. [PMID: 24831831 DOI: 10.1016/j.gene.2014.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/26/2014] [Accepted: 05/07/2014] [Indexed: 02/06/2023]
Abstract
Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots.
Collapse
Affiliation(s)
- Sathiyamoorthy Subramaniyam
- Graduate School of Biotechnology & Ginseng Bank, College of Life Science, Kyung Hee University, Yongin 449-701, South Korea; Insilicogen Inc., #909, Venture Valley, 958, Gosaek-dong, Gwonseon-gu, Suwon, Gyeonggi-do 441-813, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology & Ginseng Bank, College of Life Science, Kyung Hee University, Yongin 449-701, South Korea
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology & Ginseng Bank, College of Life Science, Kyung Hee University, Yongin 449-701, South Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology & Ginseng Bank, College of Life Science, Kyung Hee University, Yongin 449-701, South Korea
| | - Moon-Gi Jang
- Graduate School of Biotechnology & Ginseng Bank, College of Life Science, Kyung Hee University, Yongin 449-701, South Korea
| | - Jun-Hyung Park
- Insilicogen Inc., #909, Venture Valley, 958, Gosaek-dong, Gwonseon-gu, Suwon, Gyeonggi-do 441-813, South Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology & Ginseng Bank, College of Life Science, Kyung Hee University, Yongin 449-701, South Korea.
| |
Collapse
|