1
|
Biswas P, Roy P, Jana S, Ray D, Das J, Chaudhuri B, Basunia RR, Sinha B, Sinha DK. Exploring the role of macromolecular crowding and TNFR1 in cell volume control. eLife 2024; 13:e92719. [PMID: 39297502 PMCID: PMC11581439 DOI: 10.7554/elife.92719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favoring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with nuclear factor kappa beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that tumor necrosis factor receptor 1 (TNFR1) initiates the hypertonicity-induced NFkB signaling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders receptor interacting protein kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signaling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signaling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.
Collapse
Affiliation(s)
- Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Priyanka Roy
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Subhamoy Jana
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Dipanjan Ray
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Jibitesh Das
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Bipasa Chaudhuri
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Ridita Ray Basunia
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| |
Collapse
|
2
|
Wang ZJ, Ma P, Xu CY, Xu TS, Zhang L, He P, Hou BY, Yang XY, Du GH, Ji TF, Qiang GF. Identification of a novel hypoglycemic small molecule, trans-2, 4-dimethoxystilbene by rectifying gut microbiota and activating hepatic AMPKα-PPARγ pathway through gut-liver axis. Biomed Pharmacother 2024; 176:116760. [PMID: 38788595 DOI: 10.1016/j.biopha.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
With the increasing prevalence of metabolic disorders, hyperglycemia has become a common risk factor that endangers people's lives and the need for new drug solutions is burgeoning. Trans-2, 4-dimethoxystilbene (TDMS), a synthetic stilbene, has been found as a novel hypoglycemic small molecule from glucose consumption test. Normal C57BL/6 J mice, mouse models of type 1 diabetes mellitus and diet-induced obesity subjected to TDMS gavage were found with lower glycemic levels and better glycemic control. TDMS significantly improved the symptoms of polydipsia and wasting in type 1 diabetic mice, and could rise their body temperature at the same time. It was found that TDMS could promote the expression of key genes of glucose metabolism in HepG2, as do in TDMS-treated liver, while it could improve the intestinal flora and relieve intestinal metabolic dysbiosis in hyperglycemic models, which in turn affected its function in the liver, forming the gut-liver axis. We further fished PPARγ by virtual screening that could be promoted by TDMS both in-vitro and in-vivo, which was regulated by upstream signaling of AMPKα phosphorylation. As a novel hypoglycemic small molecule, TDMS was proven to be promising with its glycemic improvements and amelioration of diabetes symptoms. It promoted glucose absorption and utilization by the liver and improved the intestinal flora of diabetic mice. Therefore, TDMS is expected to become a new hypoglycemic drug that acts through gut-liver axis via AMPKα-PPARγ signaling pathway in improving glycemic metabolism, bringing new hope to patients with diabetes and glucose metabolism disorders.
Collapse
Affiliation(s)
- Zi-Jing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Tian-Shu Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Ping He
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Xiu-Ying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
3
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
4
|
Ferrari V, Lo Cascio A, Melacarne A, Tanasković N, Mozzarelli AM, Tiraboschi L, Lizier M, Salvi M, Braga D, Algieri F, Penna G, Rescigno M. Sensitizing cancer cells to immune checkpoint inhibitors by microbiota-mediated upregulation of HLA class I. Cancer Cell 2023; 41:1717-1730.e4. [PMID: 37738976 DOI: 10.1016/j.ccell.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/07/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Recent data have shown that gut microbiota has a major impact on the clinical response to immune checkpoint inhibitors (ICIs) in the context of solid tumors. ICI-based therapy acts by unlocking cognate cytotoxic T lymphocyte (CTL) effector responses, and increased sensitivity to ICIs is due to an enhancement of patients' tumor antigen (TA)-specific CTL responses. Cancer clearance by TA-specific CTL requires expression of relevant TAs on cancer cells' HLA class I molecules, and reduced HLA class I expression is a common mechanism used by cancer cells to evade the immune system. Here, we show that metabolites released by bacteria, in particular, phytosphingosine, can upregulate HLA class I expression on cancer cells, sensitizing them to TA-specific CTL lysis in vitro and in vivo, in combination with immunotherapy. This effect is mediated by postbiotic-induced upregulation of NLRC5 in response to upstream MYD88-NF-κB activation, thus significantly controlling tumor growth.
Collapse
Affiliation(s)
- Valentina Ferrari
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Antonino Lo Cascio
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alessia Melacarne
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | - Alessandro M Mozzarelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Luca Tiraboschi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marta Salvi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Postbiotica S.r.l, Milan 20123, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
5
|
Pusch E, Krążek M, Wojciechowicz T, Sassek M, Kołodziejski PA, Strowski MZ, Nowak KW, Skrzypski M. GIP_HUMAN [22-51] Peptide Encoded by the Glucose-Dependent Insulinotropic Polypeptide (GIP) Gene Suppresses Insulin Expression and Secretion in INS-1E Cells and Rat Pancreatic Islets. Genes (Basel) 2023; 14:1910. [PMID: 37895259 PMCID: PMC10606481 DOI: 10.3390/genes14101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
GIP_HUMAN [22-51] is a recently discovered peptide that shares the same precursor molecule with glucose-dependent insulinotropic polypeptide (GIP). In vivo, chronic infusion of GIP_HUMAN [22-51] in ApoE-/- mice enhanced the development of aortic atherosclerotic lesions and upregulated inflammatory and proatherogenic proteins. In the present study, we evaluate the effects of GIP_HUMAN [22-51] on insulin mRNA expression and secretion in insulin-producing INS-1E cells and isolated rat pancreatic islets. Furthermore, we characterize the influence of GIP_HUMAN [22-51] on cell proliferation and death and on Nf-kB nuclear translocation. Rat insulin-producing INS-1E cells and pancreatic islets, isolated from male Wistar rats, were used in this study. Gene expression was evaluated using real-time PCR. Cell proliferation was studied using a BrdU incorporation assay. Cell death was quantified by evaluating histone-complexed DNA fragments. Insulin secretion was determined using an ELISA test. Nf-kB nuclear translocation was detected using immunofluorescence. GIP_HUMAN [22-51] suppressed insulin (Ins1 and Ins2) in INS-1E cells and pancreatic islets. Moreover, GIP_HUMAN [22-51] promoted the translocation of NF-κB from cytoplasm to the nucleus. In the presence of a pharmacological inhibitor of NF-κB, GIP_HUMAN [22-51] was unable to suppress Ins2 mRNA expression. Moreover, GIP_HUMAN [22-51] downregulated insulin secretion at low (2.8 mmol/L) but not high (16.7 mmol/L) glucose concentration. By contrast, GIP_HUMAN [22-51] failed to affect cell proliferation and apoptosis. We conclude that GIP_HUMAN [22-51] suppresses insulin expression and secretion in pancreatic β cells without affecting β cell proliferation or apoptosis. Notably, the effects of GIP_HUMAN [22-51] on insulin secretion are glucose-dependent.
Collapse
Affiliation(s)
- Emily Pusch
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (M.K.); (T.W.); (M.S.); (P.A.K.); (K.W.N.)
| | - Małgorzata Krążek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (M.K.); (T.W.); (M.S.); (P.A.K.); (K.W.N.)
| | - Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (M.K.); (T.W.); (M.S.); (P.A.K.); (K.W.N.)
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (M.K.); (T.W.); (M.S.); (P.A.K.); (K.W.N.)
| | - Paweł A. Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (M.K.); (T.W.); (M.S.); (P.A.K.); (K.W.N.)
| | - Mathias Z. Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, 13353 Berlin, Germany;
- Medical Clinic III, 15236 Frankfurt, Germany
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (M.K.); (T.W.); (M.S.); (P.A.K.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (E.P.); (M.K.); (T.W.); (M.S.); (P.A.K.); (K.W.N.)
| |
Collapse
|
6
|
Bognar S, van Gemmeren M. A Modular Olefination of Aldehydes with Thiols as Coupling Partners. Chemistry 2023; 29:e202203512. [PMID: 36455150 DOI: 10.1002/chem.202203512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Olefins range amongst the most important motifs in organic chemistry. Hence, the development of novel olefin syntheses has remained a constant field of research in synthetic chemistry to date. Herein, we report the development of a modular olefination that converts aldehydes into olefins with thiols as reaction partners. The simple, transition metal-free protocol proceeds via an unsymmetrical bissulfone intermediate which is converted into the respective alkene in a Ramberg-Bäcklund-type process. Differently substituted olefins can be synthesized from readily available starting materials in typically good yields and stereoselectivities using basic laboratory chemicals exclusively. Complementary reaction conditions differing in the choice of solvent favor the E/Z-products respectively under kinetic control rendering this protocol an interesting economical addition to the family of olefin syntheses.
Collapse
Affiliation(s)
- Sabine Bognar
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149, Münster, Germany.,Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
7
|
Hosseini N, Mokhtari Aliabad J, Yavari I. DCID-Mediated Heck Cross-Coupling of Phenols via C-O Bond activation. NEW J CHEM 2022. [DOI: 10.1039/d1nj06120h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work a Palladium-catalyzed Heck cross-coupling of phenols using dichloroimidazolidinedione (DCID) as new reagent for the activation of C-O bond has been developed for the first time. Substituted phenols...
Collapse
|
8
|
Cui J, Jia J. Natural COX-2 Inhibitors as Promising Anti-inflammatory Agents: An Update. Curr Med Chem 2021; 28:3622-3646. [PMID: 32942970 DOI: 10.2174/0929867327999200917150939] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
COX-2, a key enzyme that catalyzed the rate-limiting steps in the conversion of arachidonic acid to prostaglandins, played a pivotal role in the inflammatory process. Different from other family members, COX-2 was barely detectable in normal physiological conditions and highly inducible during the acute inflammatory response of human bodies to injuries or infections. Therefore, the therapeutic utilization of selective COX-2 inhibitors has already been considered as an effective approach for the treatment of inflammation with diminished side effects. Currently, both traditional and newer NSAIDs are the commonly prescribed medications that treat inflammatory diseases by targeting COX-2. However, due to the cardiovascular side-effects of the NSAIDs, finding reasonable alternatives for these frequently prescribed medicines are a hot spot in medicinal chemistry research. Naturallyoccurring compounds have been reported to inhibit COX-2, thereby possessing beneficial effects against inflammation and certain cell injury. The review mainly concentrated on recently identified natural products and derivatives as COX-2 inhibitors, the characteristics of their structural core scaffolds, their anti-inflammatory effects, molecular mechanisms for enzymatic inhibition, and related structure-activity relationships. According to the structural features, the natural COX-2 inhibitors were mainly divided into the following categories: natural phenols, flavonoids, stilbenes, terpenoids, quinones, and alkaloids. Apart from the anti-inflammatory activities, a few dietary COX-2 inhibitors from nature origin also exhibited chemopreventive effects by targeting COX-2-mediated carcinogenesis. The utilization of these natural remedies in future cancer prevention was also discussed. In all, the survey on the characterized COX-2 inhibitors from natural sources paves the way for the further development of more potent and selective COX-2 inhibitors in the future.
Collapse
Affiliation(s)
- Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Zwart SR, Mulavara AP, Williams TJ, George K, Smith SM. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci Biobehav Rev 2021; 127:307-331. [PMID: 33915203 DOI: 10.1016/j.neubiorev.2021.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Multi-year crewed space exploration missions are now on the horizon; therefore, it is important that we understand and mitigate the physiological effects of spaceflight. The spaceflight hazards-radiation, isolation, confinement, and altered gravity-have the potential to contribute to neuroinflammation and produce long-term cognitive and behavioral effects-while the fifth hazard, distance from earth, limits capabilities to mitigate these risks. Accumulated evidence suggests that nutrition has an important role in optimizing cognition and reducing the risk of neurodegenerative diseases caused by neuroinflammation. Here we review the nutritional perspective of how these spaceflight hazards affect the astronaut's brain, behavior, performance, and sensorimotor function. We also assess potential nutrient/nutritional countermeasures that could prevent or mitigate spaceflight risks and ensure that crewmembers remain healthy and perform well during their missions. Just as history has taught us the importance of nutrition in terrestrial exploration, we must understand the role of nutrition in the development and mitigation of spaceflight risks before humans can successfully explore beyond low-Earth orbit.
Collapse
Affiliation(s)
- Sara R Zwart
- Univerity of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | | | - Thomas J Williams
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Kerry George
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| |
Collapse
|
10
|
In vitro study and structure-activity relationship analysis of stilbenoid derivatives as powerful vasorelaxants: Discovery of new lead compound. Bioorg Chem 2020; 104:104239. [DOI: 10.1016/j.bioorg.2020.104239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022]
|
11
|
Kalshetti R, Ramana CV. Oxidative Rearrangement of Stilbenes to 2,2-Diaryl-2-hydroxyacetaldehydes. ACS OMEGA 2020; 5:25199-25208. [PMID: 33043198 PMCID: PMC7542859 DOI: 10.1021/acsomega.0c03328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
A one-pot oxone-mediated/iodine-catalyzed oxidative rearrangement of stilbenes leading to 2,2-diaryl-2-hydroxyacetaldehydes is described. Control experiments revealed that a 2,2-diarylacetaldehyde was initially formed that undergoes subsequent α-hydroxylation. The resulting α-hydroxyaldehydes have been subjected to a one-pot Still-Gennari olefination followed by cyclization, leading to 5,5-diaryl-γ-butenolides.
Collapse
Affiliation(s)
- Rupali
G. Kalshetti
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110002, India
| | - Chepuri V. Ramana
- Division
of Organic Chemistry, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy
of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110002, India
| |
Collapse
|
12
|
Tian B, Liu J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1392-1404. [PMID: 31756276 DOI: 10.1002/jsfa.10152] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Resveratrol, a stilbene molecule belonging to the polyphenol family, is usually extracted from a great many natural plants. The technologies of preparation and extraction methods are developing rapidly. As resveratrol has many beneficial properties, it has been widely utilized in food and medicine industry. In terms of its structure, it is susceptible to degradation and can undergo chemical changes during food processing. Different studies have therefore given more attention to various aspects of resveratrol, including anti-aging, anti-oxidant, and anti-cancer activity. This review classifies the study of resveratrol, considers plant sources, synthesis, stability, common reactions, and food applications, and provides references to boost its food and medical utilization. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingren Tian
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumchi, China
| | - Jiayue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Hassan AH, Yoo SY, Lee KW, Yoon YM, Ryu HW, Jeong Y, Shin JS, Kang SY, Kim SY, Lee HH, Park BY, Lee KT, Lee YS. Repurposing mosloflavone/5,6,7-trimethoxyflavone-resveratrol hybrids: Discovery of novel p38-α MAPK inhibitors as potent interceptors of macrophage-dependent production of proinflammatory mediators. Eur J Med Chem 2019; 180:253-267. [DOI: 10.1016/j.ejmech.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
|
14
|
Pourhanifeh MH, Shafabakhsh R, Reiter RJ, Asemi Z. The Effect of Resveratrol on Neurodegenerative Disorders: Possible Protective Actions Against Autophagy, Apoptosis, Inflammation and Oxidative Stress. Curr Pharm Des 2019; 25:2178-2191. [DOI: 10.2174/1381612825666190717110932] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of neurodegenerative disorders characterized by the loss of neuronal function is rapidly
increasing. The pathogenesis of the majority of these diseases is not entirely clear, but current evidence has
shown the possibility that autophagy, apoptosis, inflammation and oxidative stress are involved. The present
review summarizes the therapeutic effects of resveratrol on neurodegenerative disorders, based on the especially
molecular biology of these diseases. The PubMed, Cochrane, Web of Science and Scopus databases were
searched for studies published in English until March 30th, 2019 that contained data for the role of inflammation,
oxidative stress, angiogenesis and apoptosis in the neurodegenerative disorders. There are also studies documenting
the role of molecular processes in the progression of central nervous system diseases. Based on current evidence,
resveratrol has potential properties that may reduce cell damage due to inflammation. This polyphenol
affects cellular processes, including autophagy and the apoptosis cascade under stressful conditions. Current
evidence supports the beneficial effects of resveratrol on the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammad H. Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Yang L, Qin X, Liu H, Wei Y, Zhu H, Jiang M. Design, synthesis and biological evaluation of a series of new resveratrol analogues as potential anti-cancer agents. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190125. [PMID: 31598278 PMCID: PMC6774960 DOI: 10.1098/rsos.190125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A series of novel resveratrol derivatives were designed, synthesized and evaluated as anti-cancer agents. Most of the compounds showed significant anti-proliferative activities against three human cancer cell lines (HepG2, A549 and Hela). Among these compounds, compound r displayed the most potent inhibitory activity and showed low cytotoxic activity. Cell apoptosis and cell cycle assays demonstrated that compound r significantly induced apoptosis (p < 0.001) and arrested cell cycle at S phase. Immunofluorescence microscopy analysis showed compound r disrupted the tubulin network. Docking simulations supported the pharmacological results of compound r. It is believed that this work would be very useful for designing a new series of tubulin inhibitors.
Collapse
Affiliation(s)
- Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Xuemei Qin
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hongcun Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Yanye Wei
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| |
Collapse
|
16
|
Chillemi R, Sciuto S, Spatafora C, Tringali C. Anti-tumor Properties of Stilbene-based Resveratrol Analogues: Recent Results. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700200419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent literature about stilbene-based analogues of resveratrol (1) has been reviewed, and a total of 94 compounds are reported (see structures 4 – 97), selected either for their promising anti-tumor properties or as comparative terms in SAR studies. As a general outline, these recent literature data confirm the previously reported observation that minimal modification in the nature and position of the substituents on the stilbene nucleus may cause large variations in their biological activity and, more specifically, in their anti-tumor properties. Among the polyhydroxylated stilbenes, it has been established that those with either a catechol or pyrogallol moiety are far better radical scavengers than either 1 or other analogues lacking an ortho-dihydroxy group, and this property was shown to be related to pro-apoptotic activity. In the large majority of cases where couples of E- and Z-isomers were evaluated for either cytotoxic or pro-apoptotic activity, the Z-isomers were significantly more active than their E analogues; nevertheless, a general rule stating that stilbenoids with Z configuration of the double bond display a considerably higher antiproliferative activity than their E-isomers cannot be considered as established. A variety of methoxystilbenes has been reported recently: in many cases these analogues showed either potent antiproliferative and pro-apoptotic activity or strong inhibition of TNFα-induced activation of NF- kB. Globally considered, polymethoxystilbenes are a sub-group of great interest among the resveratrol analogues: these analogues appear worthy of a deeper evaluation also in connection with their potential anti-angiogenic properties. In addition, in vivo studies indicate that methoxystilbenes undergo different metabolic conversion and have a higher bioavailability than resveratrol. The potent activity of some amino- and halogenated stilbenes is undoubtedly worthy of attention, but the toxicity of these compounds to normal cells has rarely been evaluated. In conclusion, the synthesis and evaluation of stilbene-based resveratrol analogues proved to be a highly active field of research and has recently afforded compounds with either cytotoxic or pro-apoptotic activity in the nanomolar range. Nevertheless, the exact structural determinants to optimize the anti-tumor properties of these compounds and details of their mechanism of action remain to be clarified.
Collapse
Affiliation(s)
- Rosa Chillemi
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Sebastiano Sciuto
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
17
|
Hornedo-Ortega R, Cerezo AB, de Pablos RM, Krisa S, Richard T, García-Parrilla MC, Troncoso AM. Phenolic Compounds Characteristic of the Mediterranean Diet in Mitigating Microglia-Mediated Neuroinflammation. Front Cell Neurosci 2018; 12:373. [PMID: 30405355 PMCID: PMC6206263 DOI: 10.3389/fncel.2018.00373] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is a pathological feature of quite a number of Central Nervous System diseases such as Alzheimer and Parkinson's disease among others. The hallmark of brain neuroinflammation is the activation of microglia, which are the immune resident cells in the brain and represents the first line of defense when injury or disease occur. Microglial activated cells can adopt different phenotypes to carry out its diverse functions. Thus, the shift into pro-inflammatory/neurotoxic or anti-inflammatory/neuroprotective phenotypes, depending of the brain environment, has totally changed the understanding of microglia in neurodegenerative disease. For this reason, novel therapeutic strategies which aim to modify the microglia polarization are being developed. Additionally, the understanding of how nutrition may influence the prevention and/or treatment of neurodegenerative diseases has grown greatly in recent years. The protective role of Mediterranean diet (MD) in preventing neurodegenerative diseases has been reported in a number of studies. The Mediterranean dietary pattern includes as distinctive features the moderate intake of red wine and extra virgin olive oil, both of them rich in polyphenolic compounds, such as resveratrol, oleuropein and hydroxytyrosol and their derivatives, which have demonstrated anti-inflammatory effects on microglia on in vitro studies. This review summarizes our understanding of the role of dietary phenolic compounds characteristic of the MD in mitigating microglia-mediated neuroinflammation, including explanation regarding their bioavailability, metabolism and blood-brain barrier.
Collapse
Affiliation(s)
- Ruth Hornedo-Ortega
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - Ana B. Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Stéphanie Krisa
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - Tristan Richard
- MIB, Unité de Recherche Oenologie, EA4577, USC 1366 INRA, ISVV, Unive. de Bordeaux, Bordeaux, France
| | - M. Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M. Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Área de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
18
|
Stereocontrolled synthesis of (E)-stilbene derivatives by palladium-catalyzed Suzuki-Miyaura cross-coupling reaction. Bioorg Med Chem Lett 2018; 28:2693-2696. [PMID: 29685657 DOI: 10.1016/j.bmcl.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/21/2022]
Abstract
A general procedure for the stereocontrolled synthesis of (E)-stilbene derivatives by palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of (E)-2-phenylethenylboronic acid pinacol ester with aryl bromides was investigated. (E)-2-Phenylethenylboronic acid pinacol ester was prepared by 9-BBN-catalyzed hydroboration of phenylacetylene with pinacolborane. This reagent undergoes facile palladium-catalyzed cross-coupling with a diverse set of aryl bromides to provide the corresponding (E)-stilbene derivatives in moderate to good yield. The use of the sterically bulky t-Bu3PHBF4 ligand was crucial to the successful coupling of electron-rich and electron-poor aryl bromides. Complete stereochemical retention of the (E)-2-phenylethenylboronic acid pinacol ester alkene geometry was observed in all of the (E)-stilbene derivatives synthesized.
Collapse
|
19
|
Ning W, Hu Z, Tang C, Yang L, Zhang S, Dong C, Huang J, Zhou HB. Novel Hybrid Conjugates with Dual Suppression of Estrogenic and Inflammatory Activities Display Significantly Improved Potency against Breast Cancer. J Med Chem 2018; 61:8155-8173. [PMID: 30053783 DOI: 10.1021/acs.jmedchem.8b00224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we developed a small library of novel OBHS-RES hybrid compounds with dual inhibition activities targeting both the estrogen receptor α (ERα) and NF-κB by incorporating resveratrol (RES), a known inhibitor of NF-κB, into a privileged indirect antagonism structural motif (OBHS, oxabicycloheptene sulfonate) of estrogen receptor (ER). The OBHS-RES conjugates could bind well to ER and showed remarkable ERα antagonistic activity, and they also exhibited excellent NO inhibition in macrophage RAW 264.7 cells. Compared with 4-hydroxytamoxifen, some of them showed better antiproliferative efficacy in MCF-7 cell lines with IC50 up to 3.7 μM. In vivo experiments in a MCF-7 breast cancer model in Balb/c nude mice indicated that compound 26a was more potent than tamoxifen. Exploration of the compliancy of the structure against ER specificity utilizing these types of isomeric three-dimensional ligands indicated that one enantiomer had much better biological activity than the other.
Collapse
Affiliation(s)
- Wentao Ning
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Zhiye Hu
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an 710126 , Shaanxi , China
| | - Lu Yang
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Silong Zhang
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Chune Dong
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| | - Jian Huang
- College of Life Sciences , Wuhan University , Wuhan 430072 , China
| | - Hai-Bing Zhou
- State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education , Wuhan University School of Pharmaceutical Sciences , Wuhan 430071 , China
| |
Collapse
|
20
|
Model Senescent Microglia Induce Disease Related Changes in α-Synuclein Expression and Activity. Biomolecules 2018; 8:biom8030067. [PMID: 30071596 PMCID: PMC6164966 DOI: 10.3390/biom8030067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Aging is the most prominent risk factor for most neurodegenerative diseases. However, incorporating aging-related changes into models of neurodegeneration rarely occurs. One of the significant changes that occurs in the brain as we age is the shift in phenotype of the resident microglia population to one less able to respond to deleterious changes in the brain. These microglia are termed dystrophic microglia. In order to better model neurodegenerative diseases, we have developed a method to convert microglia into a senescent phenotype in vitro. Mouse microglia grown in high iron concentrations showed many characteristics of dystrophic microglia including, increased iron storage, increased expression of proteins, such as ferritin and the potassium channel, Kv1.3, increased reactive oxygen species production and cytokine release. We have applied this new model to the study of α-synuclein, a protein that is closely associated with a number of neurodegenerative diseases. We have shown that conditioned medium from our model dystrophic microglia increases α-synuclein transcription and expression via tumor necrosis factor alpha (TNFα) and mediated through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The conditioned medium also decreases the formation of α-synuclein tetramers, associated ferrireductase activity, and increases aggregates of α-synuclein. The results suggest that we have developed an interesting new model of aged microglia and that factors, including TNFα released from dystrophic microglia could have a significant influence on the pathogenesis of α-synuclein related diseases.
Collapse
|
21
|
Thiel G, Ulrich M, Mukaida N, Rössler OG. Resveratrol stimulation induces interleukin-8 gene transcription via NF-κB. Pharmacol Res 2018; 134:238-245. [PMID: 30018026 DOI: 10.1016/j.phrs.2018.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
|
22
|
Moghaddam FM, Pourkaveh R, Karimi A. Oxidative Heck Reaction as a Tool for Para-selective Olefination of Aniline: A DFT Supported Mechanism. J Org Chem 2017; 82:10635-10640. [DOI: 10.1021/acs.joc.7b01570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis
and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| | - Raheleh Pourkaveh
- Laboratory of Organic Synthesis
and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| | - Ashkan Karimi
- Laboratory of Organic Synthesis
and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| |
Collapse
|
23
|
Azria D, Blanquer S, Verdier JM, Belamie E. Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. J Mater Chem B 2017; 5:7216-7237. [PMID: 32264173 DOI: 10.1039/c7tb01599b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood-brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.
Collapse
Affiliation(s)
- David Azria
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
24
|
Narva S, Chitti S, Amaroju S, Bhattacharjee D, Rao BB, Jain N, Alvala M, Sekhar KVGC. Design and synthesis of 4-morpholino-6-(1,2,3,6-tetrahydropyridin-4-yl)-N-(3,4,5-trimethoxyphenyl)-1,3,5-triazin-2-amine analogues as tubulin polymerization inhibitors. Bioorg Med Chem Lett 2017; 27:3794-3801. [DOI: 10.1016/j.bmcl.2017.06.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
|
25
|
Biasutto L, Mattarei A, Azzolini M, La Spina M, Sassi N, Romio M, Paradisi C, Zoratti M. Resveratrol derivatives as a pharmacological tool. Ann N Y Acad Sci 2017; 1403:27-37. [PMID: 28675763 DOI: 10.1111/nyas.13401] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Prodrugs of resveratrol are under development. Among the long-term goals, still largely elusive, are (1) modulating physical properties (e.g., water-soluble derivatives bearing polyethylene glycol chains), (2) changing distribution in the body (e.g., galactosyl derivatives restricted to the intestinal lumen), (3) increasing absorption from the gastrointestinal tract (e.g., derivatives imitating the natural substrates of endogenous transporters), and (4) hindering phase II metabolism (e.g., temporarily blocking the hydroxyls), all contributing to (5) increasing bioavailability. The chemical bonds that have been tested for functionalization include carboxyester, acetal, and carbamate groups. A second approach, which can be combined with the first, seeks to reinforce or modify the biochemical activities of resveratrol by concentrating the compound at specific subcellular sites. An example is provided by mitochondria-targeted derivatives. These proved to be pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumor cells when supplied in the low micromolar range. This suggests the possibility of anticancer applications.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Mattarei
- Department of Chemical Sciences, University of Padova, Padova, Italy.,Department of Pharmaceutical & Pharmacological Sciences, University of Padova, Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martina La Spina
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nicola Sassi
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
26
|
E -Stilbene derivatives synthesized by stereoselective reductive coupling of benzylic gem -dibromide promoted by Cu/polyamine. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Aoki T, Frȍsen J, Fukuda M, Bando K, Shioi G, Tsuji K, Ollikainen E, Nozaki K, Laakkonen J, Narumiya S. Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal 2017; 10:10/465/eaah6037. [PMID: 28174280 DOI: 10.1126/scisignal.aah6037] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Intracranial aneurysms are common but are generally untreated, and their rupture can lead to subarachnoid hemorrhage. Because of the poor prognosis associated with subarachnoid hemorrhage, preventing the progression of intracranial aneurysms is critically important. Intracranial aneurysms are caused by chronic inflammation of the arterial wall due to macrophage infiltration triggered by monocyte chemoattractant protein-1 (MCP-1), macrophage activation mediated by the transcription factor nuclear factor κB (NF-κB), and inflammatory signaling involving prostaglandin E2 (PGE2) and prostaglandin E receptor subtype 2 (EP2). We correlated EP2 and cyclooxygenase-2 (COX-2) with macrophage infiltration in human intracranial aneurysm lesions. Monitoring the spatiotemporal pattern of NF-κB activation during intracranial aneurysm development in mice showed that NF-κB was first activated in macrophages in the adventitia and in endothelial cells and, subsequently, in the entire arterial wall. Mice with a macrophage-specific deletion of Ptger2 (which encodes EP2) or macrophage-specific expression of an IκBα mutant that restricts NF-κB activation had fewer intracranial aneurysms with reduced macrophage infiltration and NF-κB activation. In cultured cells, EP2 signaling cooperated with tumor necrosis factor-α (TNF-α) to activate NF-κB and synergistically induce the expression of proinflammatory genes, including Ptgs2 (encoding COX-2). EP2 signaling also stabilized Ccl2 (encoding MCP-1) by activating the RNA-stabilizing protein HuR. Rats administered an EP2 antagonist had reduced macrophage infiltration and intracranial aneurysm formation and progression. This signaling pathway in macrophages thus facilitates intracranial aneurysm development by amplifying inflammation in intracranial arteries. These results indicate that EP2 antagonists may therefore be a therapeutic alternative to surgery.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Juhana Frȍsen
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki 00029 HUS, Finland.,Hemorrhagic Brain Pathology Research Group, NeuroCenter, Kuopio University Hospital, Kuopio 70029 KYS, Finland.,Department of Neurosurgery, NeuroCenter, Kuopio University Hospital, Kuopio 70029 KYS, Finland
| | - Miyuki Fukuda
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Kana Bando
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Hyogo 650-0047, Japan
| | - Keiichi Tsuji
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Eliisa Ollikainen
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki 00029 HUS, Finland
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Johanna Laakkonen
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | - Shuh Narumiya
- Center for Innovation in Immunoregulation Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan. .,Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
28
|
Deck LM, Whalen LJ, Hunsaker LA, Royer RE, Vander Jagt DL. Activation of anti-oxidant Nrf2 signaling by substituted trans stilbenes. Bioorg Med Chem 2017; 25:1423-1430. [PMID: 28126440 DOI: 10.1016/j.bmc.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Nrf2, which is a member of the cap'n'collar family of transcription factors, is a major regulator of phase II detoxification and anti-oxidant genes as well as anti-inflammatory and neuroprotective genes. The importance of inflammation and oxidative stress in many chronic diseases supports the concept that activation of anti-oxidant Nrf2 signaling may have therapeutic potential. A number of Nrf2 activators have entered into clinical trials. Nrf2 exists in the cytosol in complex with its binding partner Keap1, which is a thiol-rich redox-sensing protein. In response to oxidative and electrophilic stress, select cysteine residues of Keap1 are modified, which locks Keap1 in the Nrf2-Keap1 complex and allows newly synthesized Nrf2 to enter the nucleus. Numerous Nrf2-activating chemicals, including a number of natural products, are electrophiles that modify Keap1, often by Michael addition, leading to activation of Nrf2. One concern with the design of Nrf2 activators that are electrophilic covalent modifiers of Keap1 is the issue of selectivity. In the present study, substituted trans stilbenes were identified as activators of Nrf2. These activators of Nrf2 are not highly electrophilic and therefore are unlikely to activate Nrf2 through covalent modification of Keap1. Dose-response studies demonstrated that a range of substituents on either ring of the trans stilbenes, especially fluorine and methoxy substituents, influenced not only the sensitivity to activation, reflected in EC50 values, but also the extent of activation, which suggests that multiple mechanisms are involved in the activation of Nrf2. The stilbene backbone appears to be a privileged scaffold for development of a new class of Nrf2 activators.
Collapse
Affiliation(s)
- Lorraine M Deck
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, United States
| | - Lisa J Whalen
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, United States
| | - Lucy A Hunsaker
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Robert E Royer
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - David L Vander Jagt
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States.
| |
Collapse
|
29
|
Pan J, Xu T, Xu F, Zhang Y, Liu Z, Chen W, Fu W, Dai Y, Zhao Y, Feng J, Liang G. Development of resveratrol-curcumin hybrids as potential therapeutic agents for inflammatory lung diseases. Eur J Med Chem 2016; 125:478-491. [PMID: 27689730 DOI: 10.1016/j.ejmech.2016.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/20/2023]
Abstract
Acute lung injury (ALI) is a major cause of acute respiratory failure in critically-ill patients. Resveratrol and curcumin are proven to have potent anti-inflammatory efficacy, but their clinical application is limited by their metabolic instability. Here, a series of resveratrol and the Mono-carbonyl analogs of curcumin (MCAs) hybrids were designed and synthesized by efficient aldol construction strategy, and then screened for anti-inflammatory activities in vitro and in vivo. The results showed that the majority of analogs effectively inhibited the LPS-induced production of IL-6 and TNF-α. Five analogs, a9, a18, a19, a20 and a24 exhibited excellent anti-inflammatory activity in a dose-dependent manner along with low toxicity in vitro. Structure activity relationship study revealed that the electron-withdrawing groups at meta-position and methoxyl group (OCH3) at the para position of the phenyl ring were important for anti-inflammatory activities. The most promising compound a18 decreased LPS induced TNF-α, IL-6, IL-12, and IL-33 mRNA expression. Additionally, a18 significantly protected against LPS-induced acute lung injury in the in vivo mouse model. The research of resveratrol and MCAs hybrids could bring insight into the treatment of inflammatory diseases and compound a18 may serve as a lead compound for the development of anti-ALI agents.
Collapse
Affiliation(s)
- Jialing Pan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Tingting Xu
- Department of Respiration, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fengli Xu
- Department of Respiration, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yali Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Wenbo Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Weitao Fu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yuanrong Dai
- Department of Respiration, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunjie Zhao
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| | - Jianpeng Feng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China; Wenzhou University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
30
|
Duan J, Yue W, E J, Malhotra J, Lu SE, Gu J, Xu F, Tan XL. In vitro comparative studies of resveratrol and triacetylresveratrol on cell proliferation, apoptosis, and STAT3 and NFκB signaling in pancreatic cancer cells. Sci Rep 2016; 6:31672. [PMID: 27539371 PMCID: PMC4990919 DOI: 10.1038/srep31672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Resveratrol (RES) has been studied extensively as an anticancer agent. However, the anticancer effects of triacetylresveratrol (TRES, an acetylated analog of RES) which has higher bioavailability have not been well established. We comparatively evaluated their effects on cell proliferation, apoptosis and the molecular changes in STAT3, NFκB and apoptotic signaling pathways in pancreatic cancer cells. Apoptosis was determined by flow cytometry. The nuclear translocation and interaction of STAT3 and NFκB were detected by Western blotting and immunoprecipitation, respectively. Both TRES and RES inhibited cell viability, and induced apoptosis of pancreatic cancer cells in a concentration and incubation time-dependent manner. TRES, similarly to RES, inhibited the phosphorylation of STAT3 and NFκB, down-regulated Mcl-1, and up-regulated Bim and Puma in pancreatic cancer cells. Remarkably, we, for the first time, observed that both TRES and RES suppressed the nuclear translocation, and interrupted the interaction of STAT3 and NFκB in PANC-1 cells. Comparative anticancer effects of TRES and RES on pancreatic cancer suggested that TRES with higher bioavailability may be a potential agent for pancreatic cancer prevention and treatment. Further in vivo experiments and functional studies are warranted to investigate whether TRES exhibits better beneficial effects than RES in mice and humans.
Collapse
Affiliation(s)
- JingJing Duan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA.,Department of Pharmacy, 6th People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai 201499, P. R. China
| | - Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA
| | - JianYu E
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA
| | - Shou-En Lu
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA.,Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jun Gu
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201, USA
| | - Feng Xu
- Department of Pharmacy, 6th People's Hospital South Campus, Shanghai Jiao Tong University, Shanghai 201499, P. R. China
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08904, USA.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
31
|
Nøhr MK, Kroager TP, Sanggaard KW, Knudsen AD, Stensballe A, Enghild JJ, Ølholm J, Richelsen B, Pedersen SB. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics - Resveratrol as Ameliorating Factor on LPS Induced Changes. PLoS One 2016; 11:e0159747. [PMID: 27438462 PMCID: PMC4954707 DOI: 10.1371/journal.pone.0159747] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/07/2016] [Indexed: 01/22/2023] Open
Abstract
Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis) revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning adipose tissue induced by inflammatory stimulation.
Collapse
Affiliation(s)
- Mark K. Nøhr
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Toke P. Kroager
- Laboratory for Proteome Analysis and Protein Characterization, Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark
| | - Kristian W. Sanggaard
- Laboratory for Proteome Analysis and Protein Characterization, Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark
| | - Anders D. Knudsen
- Laboratory for Proteome Analysis and Protein Characterization, Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jan J. Enghild
- Laboratory for Proteome Analysis and Protein Characterization, Department of Molecular Biology and Genetics and iNANO, Aarhus University, Aarhus, Denmark
| | - Jens Ølholm
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Richelsen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Steen B. Pedersen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Synthesis and tyrosinase inhibition activity of trans -stilbene derivatives. Bioorg Chem 2016; 64:97-102. [DOI: 10.1016/j.bioorg.2016.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022]
|
33
|
TenBroek EM, Yunker L, Nies MF, Bendele AM. Randomized controlled studies on the efficacy of antiarthritic agents in inhibiting cartilage degeneration and pain associated with progression of osteoarthritis in the rat. Arthritis Res Ther 2016; 18:24. [PMID: 26794830 PMCID: PMC4721142 DOI: 10.1186/s13075-016-0921-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
Background As an initial step in the development of a local therapeutic to treat osteoarthritis (OA), a number of agents were tested for their ability to block activation of inflammation through nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), subchondral bone changes through receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclastogenesis, and proteolytic degradation through matrix metalloproteinase (MMP)-13 activity. Candidates with low toxicity and predicted efficacy were further examined using either of two widely accepted models of OA joint degeneration in the rat: the monoiodoacetic acid (MIA) model or the medial meniscal tear/medial collateral ligament tear (MMT/MCLT) model. Methods Potential therapeutics were assessed for their effects on the activation of nuclear factor (NF)-κB, RANKL-mediated osteoclastogenesis, and MMP-13 activity in vitro using previously established assays. Toxicity was measured using HeLa cells, a synovial cell line, or primary human chondrocytes. Drugs predicted to perform well in vivo were tested either systemically or via intraarticular injection in the MIA or the MMT/MCLT model of OA. Pain behavior was measured by mechanical hyperalgesia using the digital Randall-Selitto test (dRS) or by incapacitance with weight bearing (WB). Joint degeneration was evaluated using micro computed tomography and a comprehensive semiquantitative scoring of cartilage, subchondral bone, and synovial histopathology. Results Several agents were effective both in vitro and in vivo. With regard to pain behavior, systemically delivered clonidine was superior in treating MIA-induced changes in WB or dRS, while systemic clonidine, curcumin, tacrolimus, and fluocinolone were all somewhat effective in modifying MMT/MCLT-induced changes in WB. Systemic tacrolimus was the most effective in slowing disease progression as measured by histopathology in the MMT/MCLT model. Conclusions All of the agents that demonstrated highest benefit in vivo, excepting clonidine, were found to inhibit MMP-13, NF-κB, and bone matrix remodeling in vitro. The MIA and MMT/MCLT models of OA, previously shown to possess inflammatory characteristics and to display associated pain behavior, were affected to different degrees by the same drugs. Although no therapeutic was remarkable across all measures, the several which showed the most promise in either model merit continued study with alternative dosing and therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0921-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erica M TenBroek
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Laurie Yunker
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Mae Foster Nies
- Medtronic Inc., 710 Medtronic Parkway, Minneapolis, MN, 55432, USA.
| | - Alison M Bendele
- Bolder BioPATH, Inc., 5541 Central Avenue, Suite 160, Boulder, CO, 80301, USA.
| |
Collapse
|
34
|
Nøhr MK, Dudele A, Poulsen MM, Ebbesen LH, Radko Y, Christensen LP, Jessen N, Richelsen B, Lund S, Pedersen SB. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol. PLoS One 2016; 11:e0146840. [PMID: 26751381 PMCID: PMC4709071 DOI: 10.1371/journal.pone.0146840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Low-grade inflammation is seen with obesity and is suggested to be a mediator of insulin resistance. The eliciting factor of low-grade inflammation is unknown but increased permeability of gut bacteria-derived lipopolysaccharides (LPS) resulting in endotoxemia could be a candidate. Here we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous) together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b, whereas the increased macrophage infiltration was unaltered) without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during an oral glucose tolerance test was increased despite similar plasma glucose level resulting in an increase in the insulinogenic index (IGI; delta0-15insulin/delta0-15glucose) from 13.73 to 22.40 pmol/mmol (P < 0.001). This aberration in insulin and glucose homeostasis was normalized by resveratrol. IN CONCLUSION Low-dose LPS enhanced the glucose-stimulated insulin secretion without affecting the blood glucose suggesting increased insulin resistance. Resveratrol restored LPS-induced alteration of the insulin secretion and demonstrated anti-inflammatory effects specifically in epididymal adipose tissue possibly due to preferential accumulation of resveratrol metabolites pointing towards a possible important involvement of this tissue for the effects on insulin resistance and insulin secretion.
Collapse
Affiliation(s)
- Mark K. Nøhr
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | - Anete Dudele
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Morten M. Poulsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, Aarhus, Denmark
| | - Lene H. Ebbesen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Yulia Radko
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Lars P. Christensen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Niels Jessen
- Research Laboratory for Biochemical Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Richelsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, Aarhus, Denmark
| | - Sten Lund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, Aarhus, Denmark
| | - Steen B. Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Metabolism C, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Cardullo N, Spatafora C, Musso N, Barresi V, Condorelli D, Tringali C. Resveratrol-Related Polymethoxystilbene Glycosides: Synthesis, Antiproliferative Activity, and Glycosidase Inhibition. JOURNAL OF NATURAL PRODUCTS 2015; 78:2675-2683. [PMID: 26539626 DOI: 10.1021/acs.jnatprod.5b00619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A small library of polymethoxystilbene glycosides (20-25) related to the natural polyphenol resveratrol have been synthesized and subjected, together with their aglycones 17-19, to an antiproliferative activity bioassay toward Caco-2 and SH-SY5Y cancer cells. Six of the compounds exhibit antiproliferative activity against at least one cell line. In particular, compounds 17 and 18 proved highly active on at least one of the two cell cultures. Compound 18 showed a GI50 value of 3 μM against Caco-2 cells, a value comparable to that of the anticancer drug 5-fluorouracil. The closely related compound 19 proved inactive, and its conjugates 22 and 25 showed weak cell growth inhibition. The results indicate that minimal differences in the structure of both polymethoxystilbenes and their glycosides can substantially affect the antiproliferative activity. The possible hydrolytic release of the aglycones 17-19 by β-glucosidase or β-galactosidase was also evaluated. Compounds 20-25 were also tested as potential β-glucosidase, β-galactosidase, and α-glucosidase inhibitors. A promising inhibitory activity toward α-glucosidase was observed for 21 (IC50 = 78 μM) and 25 (IC50 = 70 μM), which might be indicative of their potential as lead compounds for development of antidiabetic or antiobesity agents.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Nicolò Musso
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Vincenza Barresi
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Daniele Condorelli
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
36
|
Thiel G, Rössler OG. Resveratrol stimulates cyclic AMP response element mediated gene transcription. Mol Nutr Food Res 2015; 60:256-65. [PMID: 26446263 DOI: 10.1002/mnfr.201500607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 11/06/2022]
Abstract
SCOPE Many intracellular effects have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants, including the direct regulation of transcription. Here, we have analyzed the impact of resveratrol on gene transcription regulated by the cyclic AMP response element (CRE). METHODS AND RESULTS Transcription of a chromatin-embedded reporter gene with CREs in its regulatory region was significantly elevated in resveratrol-treated 293 human embryonic kidney cells, hepatoma cells and neural stem cells. The CRE thus functions as resveratrol-responsive element. The polyphenols quercetin and naringenin also stimulated CRE-mediated gene transcription, but not in the range of resveratrol. The polyphenol curcumin, in contrast, had no effect upon CRE-regulated transcription. In addition, resveratrol stimulation upregulated the transcriptional activation potentials of the CRE-binding proteins (CREB) and activating transcription factor 2 (ATF2). CONCLUSION CREB exhibits cytoprotective activity by stimulating CRE-regulated genes, while ATF2 has been identified as a tumor suppressor. The fact that resveratrol upregulates CRE-mediated gene transcription and enhances the transcriptional activation potentials of CREB and ATF2 suggests that cytoprotective and tumor suppressive activities of resveratrol may rely-at least in part-on the stimulation of CREB- and ATF2-controlled target genes.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
37
|
Gobec M, Tomašič T, Markovič T, Mlinarič-Raščan I, Dolenc MS, Jakopin Ž. Antioxidant and anti-inflammatory properties of 1,2,4-oxadiazole analogs of resveratrol. Chem Biol Interact 2015; 240:200-7. [PMID: 26335192 DOI: 10.1016/j.cbi.2015.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/27/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022]
Abstract
The chemopreventive properties of resveratrol are ascribed mostly to its antioxidant activity, in particular its scavenging ability for reactive oxygen species (ROS), and to the inhibition of NF-κB pathway which has also been suggested as an important underlying mechanism of its reported properties. In present study, a small library of nine 1,2,4-oxadiazole-based structural analogs of resveratrol were assayed for their antioxidant and anti-inflammatory activities. Several compounds showed significant inhibitory activities against NF-κB and/or ROS production. Compound 2, incorporating two para-hydroxyphenyl moieties connected by the 1,2,4-oxadiazole ring, was the most active, its potency in inhibiting activation of NF-κB and ROS scavenging abilities surpassing that of resveratrol. Additionally, we elucidated the mechanisms underlying the NF-κB inhibitory activity of compound 2. Finally, in contrast to resveratrol, compound 2 significantly reduced the LPS-induced release of pro-inflammatory cytokines, indicating its prominent anti-inflammatory potential.
Collapse
Affiliation(s)
- Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tijana Markovič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
38
|
Martí-Centelles R, Falomir E, Murga J, Carda M, Marco JA. Inhibitory effect of cytotoxic stilbenes related to resveratrol on the expression of the VEGF, hTERT and c-Myc genes. Eur J Med Chem 2015; 103:488-96. [PMID: 26402726 DOI: 10.1016/j.ejmech.2015.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 01/31/2023]
Abstract
A group of thirty-nine stilbene derivatives, prepared by means of Heck coupling reactions, has been investigated for their cytotoxicity, as well as for their ability to inhibit the production of the vascular endothelial growth factor (VEGF) and the activation of telomerase. The ability of these compounds to inhibit proliferation of two tumoral cell lines (HT-29 and MCF-7) and one non tumoral cell line (HEK-293) was first determined. Subsequently, we determined the capacity of the compounds to inhibit the secretion of VEGF in the aforementioned cell lines and to downregulate the expression of the VEGF, hTERT and c-Myc genes, the two latter involved in the control of the activation of telomerase. One of the synthetic stilbenes, (E)-4-(4-methoxystyryl)aniline, showed strong cytotoxicity and proved able to cause a marked decrease both in the secretion of VEGF and in the expression of the hTERT and c-Myc genes, in all cases at concentrations in the low nanomolar range.
Collapse
Affiliation(s)
| | - Eva Falomir
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071, Castellón, Spain.
| | - Juan Murga
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071, Castellón, Spain
| | - Miguel Carda
- Depart. de Q. Inorgánica y Orgánica, Univ. Jaume I, E-12071, Castellón, Spain.
| | - J Alberto Marco
- Depart. de Q. Orgánica, Univ. de Valencia, E-46100, Burjassot, Valencia, Spain
| |
Collapse
|
39
|
|
40
|
Pankova AS, Sorokina MV, Kuznetsov MA. Thermal rearrangement of 2,3-diaryl-1-phthalimidoaziridines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.07.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Lopez MS, Dempsey RJ, Vemuganti R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 2015; 89:75-82. [PMID: 26277384 DOI: 10.1016/j.neuint.2015.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/02/2023]
Abstract
Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
42
|
Penthala NR, Thakkar S, Crooks PA. Heteroaromatic analogs of the resveratrol analog DMU-212 as potent anti-cancer agents. Bioorg Med Chem Lett 2015; 25:2763-7. [PMID: 26022840 PMCID: PMC4459527 DOI: 10.1016/j.bmcl.2015.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
Heteroaromatic analogs of DMU-212 (8-15) have been synthesized and evaluated for their anti-cancer activity against a panel of 60 human cancer cell lines. These novel analogs contain a trans-3,4,5-trimethoxystyryl moiety attached to the C2 position of indole, benzofuran, benzothiazole or benzothiophene ring (8, 11, 13 and 14, respectively) and showed potent growth inhibition in 85% of the cancer cell lines examined, with GI50 values <1 μM. Interestingly, trans-3,4- and trans-3,5-dimethoxystyryl DMU-212 analogs 9, 10, 12 and 15 exhibited significantly less growth inhibition than their 3,4,5-trimethoxystyryl counterparts, suggesting that the trans-3,4,5-trimethoxystyryl moiety is an essential structural element for the potent anti-cancer activity of these heterocyclic DMU-212 analogs. Molecular modeling studies showed that the four most active compounds (8, 11, 13 and 14) all bind to the colchicine binding site on tubulin, and that their binding modes are similar to that of DMU-212.
Collapse
Affiliation(s)
- Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Shraddha Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
43
|
Seçinti H, Seçen H. Synthesis of Two Natural Furan-Cyclized Diarylheptanoidsvia2-Furaldehyde. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201400274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Anti-inflammatory effects of a triple-bond resveratrol analog: Structure and function relationship. Eur J Pharmacol 2015; 748:61-7. [DOI: 10.1016/j.ejphar.2014.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 12/29/2022]
|
45
|
The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells. Exp Cell Res 2014; 327:256-63. [DOI: 10.1016/j.yexcr.2014.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/23/2022]
|
46
|
Ng SY, Cardullo N, Yeo SCM, Spatafora C, Tringali C, Ong PS, Lin HS. Quantification of the resveratrol analogs trans-2,3-dimethoxy-stilbene and trans-3,4-dimethoxystilbene in rat plasma: application to pre-clinical pharmacokinetic studies. Molecules 2014; 19:9577-90. [PMID: 25004068 PMCID: PMC6271088 DOI: 10.3390/molecules19079577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 01/10/2023] Open
Abstract
trans-2,3-Dimethoxystilbene (2,3-DMS) and trans-3,4-dimethoxystilbene (3,4-DMS) are two synthetic resveratrol (trans-3,5,4'-trihydroxystilbene) analogs. In this study, a simple HPLC method was developed and validated to determine 2,3-DMS and 3,4-DMS in rat plasma. Chromatographic separation was obtained with a reversed-phase HPLC column through a 12.5-min gradient delivery of a mixture of acetonitrile and water at the flow rate of 1.5 mL/min at 50 °C. The lower limit of quantification was 10 ng/mL. After successful validation, the pharmacokinetic profiles of 2,3-DMS and 3,4-DMS were subsequently studied in Sprague-Dawley rats. Upon single intravenous administration (4 mg/kg), 2,3-DMS had a medium volume of distribution of the central compartment (Vc = 2.71 ± 0.51 L/kg), quite rapid clearance (Cl = 52.0 ± 7.0 mL/min/kg), moderate mean transit time (MTT0→last = 131.0 ± 4.5 min) but a fairly long terminal elimination half-life (t1/2λZ = 288.9 ± 92.9 min). Interestingly, 3,4-DMS displayed a pharmacokinetic profile apparently distinct from 2,3-DMS and it had more extensive distribution (Vc = 5.58 ± 1.73 L/kg), faster clearance (Cl = 143.4 ± 40.5 mL/min/kg) and shorter residence (MTT0→last = 61.4 ± 27.1 min). Following single oral administration (10 mg/kg), 2,3-DMS had low and erratic plasma exposure (Cmax = 37.5 ± 23.7 ng/mL) and poor oral bioavailability (2.22% ± 2.13%) while the oral bioavailability of 3,4-DMS was even poorer than 2,3-DMS. Clearly, the location of the methoxy groups had a significant impact on the pharmacokinetics of resveratrol analogs. This study provided useful information for the design of resveratrol derivatives in future study.
Collapse
Affiliation(s)
- Shermain Yali Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Samuel Chao Ming Yeo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Pei-Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Hai-Shu Lin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| |
Collapse
|
47
|
Inhibition of cancer derived cell lines proliferation by synthesized hydroxylated stilbenes and new ferrocenyl-stilbene analogs. Comparison with resveratrol. Molecules 2014; 19:7850-68. [PMID: 24962390 PMCID: PMC6271691 DOI: 10.3390/molecules19067850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/06/2023] Open
Abstract
Further advances in understanding the mechanism of action of resveratrol and its application require new analogs to identify the structural determinants for the cell proliferation inhibition potency. Therefore, we synthesized new trans-resveratrol derivatives by using the Wittig and Heck methods, thus modifying the hydroxylation and methoxylation patterns of the parent molecule. Moreover, we also synthesized new ferrocenylstilbene analogs by using an original protective group in the Wittig procedure. By performing cell proliferation assays we observed that the resveratrol derivatives show inhibition on the human colorectal tumor SW480 cell line. On the other hand, cell viability/cytotoxicity assays showed a weaker effects on the human hepatoblastoma HepG2 cell line. Importantly, the lack of effect on non-tumor cells (IEC18 intestinal epithelium cells) demonstrates the selectivity of these molecules for cancer cells. Here, we show that the numbers and positions of hydroxy and methoxy groups are crucial for the inhibition efficacy. In addition, the presence of at least one phenolic group is essential for the antitumoral activity. Moreover, in the series of ferrocenylstilbene analogs, the presence of a hidden phenolic function allows for a better solubilization in the cellular environment and significantly increases the antitumoral activity.
Collapse
|
48
|
Thiel G, Rössler OG. Resveratrol stimulates AP-1-regulated gene transcription. Mol Nutr Food Res 2014; 58:1402-13. [PMID: 24753227 DOI: 10.1002/mnfr.201300913] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/27/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
SCOPE Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants, including the regulation of transcription. Here, we have analyzed the impact of resveratrol on the activity of the transcription factor activator protein-1 (AP-1). METHODS AND RESULTS Using a chromosomally embedded AP-1-responsive reporter gene, we show that the AP-1 activity was significantly elevated in resveratrol-treated 293 human embryonic kidney and HepG2 hepatoma cells. The 12-O-tetradecanoylphorbol-13-acetate-responsive element, a binding site for c-Jun and c-Fos, was identified as resveratrol-responsive element. Expression of c-Jun and c-Fos, two proteins that constitute AP-1, is upregulated in resveratrol-stimulated HEK293 cells. On the transcriptional level, c-Jun and the ternary complex factor Elk-1 are essential for the activation of AP-1 in resveratrol-treated cells. In addition, mitogen-activated protein kinases and protein kinase C are required to connect resveratrol stimulation with enhanced AP-1 controlled transcription. Finally, we show that resveratrol increased the activities of the AP-1 responsive cyclin D1 and tumor necrosis factor α promoters. CONCLUSION Resveratrol regulates gene transcription via activation of stimulus-regulated protein kinases and the stimulus-responsive AP-1 transcription factors. The fact that resveratrol regulates AP-1 activity may explain many of the pleiotropic intracellular alterations induced by resveratrol.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, Homburg, Germany
| | | |
Collapse
|
49
|
Mancuso R, del Valle J, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Núñez O, Pallás M, Portero-Otin M, Osta R, Navarro X. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 2014; 11:419-32. [PMID: 24414863 PMCID: PMC3996124 DOI: 10.1007/s13311-013-0253-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease that causes progressive paralysis and death due to degeneration of motoneurons in spinal cord, brainstem and motor cortex. Nowadays, there is no effective therapy and patients die 2-5 years after diagnosis. Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural polyphenol found in grapes, with promising neuroprotective effects since it induces expression and activation of several neuroprotective pathways involving Sirtuin1 and AMPK. The objective of this work was to assess the effect of resveratrol administration on SOD1(G93A) ALS mice. We determined the onset of symptoms by rotarod test and evaluated upper and lower motoneuron function using electrophysiological tests. We assessed the survival of the animals and determined the number of spinal motoneurons. Finally, we further investigated resveratrol mechanism of action by means of western blot and immunohistochemical analysis. Resveratrol treatment from 8 weeks of age significantly delayed disease onset and preserved lower and upper motoneuron function in female and male animals. Moreover, resveratrol significantly extended SOD1(G93A) mice lifespan and promoted survival of spinal motoneurons. Delayed resveratrol administration from 12 weeks of age also improved spinal motoneuron function preservation and survival. Further experiments revealed that resveratrol protective effects were associated with increased expression and activation of Sirtuin 1 and AMPK in the ventral spinal cord. Both mediators promoted normalization of the autophagic flux and, more importantly, increased mitochondrial biogenesis in the SOD1(G93A) spinal cord. Taken together, our findings suggest that resveratrol may represent a promising therapy for ALS.
Collapse
Affiliation(s)
- Renzo Mancuso
- />Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Jaume del Valle
- />Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Laura Modol
- />Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Anna Martinez
- />Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ana B Granado-Serrano
- />Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida-IRBLleida, Lleida, Spain
| | - Omar Ramirez-Núñez
- />Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida-IRBLleida, Lleida, Spain
| | - Mercé Pallás
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBERNED, Barcelona, Spain
| | - Manel Portero-Otin
- />Department of Experimental Medicine, Faculty of Medicine, Universitat de Lleida-IRBLleida, Lleida, Spain
| | - Rosario Osta
- />Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragon Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Xavier Navarro
- />Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
- />Unitat de Fisiologia Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
50
|
Dhar I, Dhar A, Wu L, Desai KM. Methylglyoxal, a reactive glucose metabolite, increases renin angiotensin aldosterone and blood pressure in male Sprague-Dawley rats. Am J Hypertens 2014; 27:308-16. [PMID: 24436324 DOI: 10.1093/ajh/hpt281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The majority of people with diabetes develop hypertension along with increased activity of the renin-angiotensin system. Methylglyoxal, a reactive glucose metabolite, is elevated in diabetic patients. We investigated the effects of methylglyoxal on the renin-angiotensin system and blood pressure. METHODS Male Sprague-Dawley rats were treated with a continuous infusion of methylglyoxal with a minipump for 4 weeks. Organs/tissues and cultured vascular smooth muscle cells (VSMCs) were used for molecular studies. High-performance liquid chromatography, Western blotting, and quantitative real-time polymerase chain reaction were used to measure methylglyoxal, proteins, and mRNA, respectively. Small interfering RNA for angiotensinogen and the receptor for advanced glycation endproducts (RAGE) were used to study mechanisms. RESULTS Methylglyoxal-treated rats developed a significant increase in blood pressure and plasma levels of aldosterone, renin, angiotensin, and catecholamines. Methylglyoxal level and protein and mRNA for angiotensin, AT1 receptor, adrenergic α1D receptor, and renin were significantly increased in the aorta and/or kidney of methylglyoxal-treated rats, a novel finding. Alagebrium attenuated the above effects of methylgloyxal. Treatment of cultured VSMCs with methylglyoxal or high glucose (25 mM) significantly increased cellular methylglyoxal and protein and mRNA for nuclear factor kappa B (NF-κB), angiotensin, AT1 receptor, and α1D receptor, which were prevented by inhibition of NF-κB, and by alagebrium. Silencing of mRNA for RAGE prevented the increase in NF-kB induced by methylglyoxal. Silencing of mRNA for angiotensinogen prevented the increase in NF-κB, angiotensin, AT1 receptor, and α1D receptor. CONCLUSIONS Methylglyoxal activates NF-κB through RAGE and thereby increases renin-angiotensin levels, a novel finding, and a probable mechanism of increase in blood pressure.
Collapse
Affiliation(s)
- Indu Dhar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|