1
|
Liu H, Zhang H, IJzerman AP, Guo D. The translational value of ligand-receptor binding kinetics in drug discovery. Br J Pharmacol 2024; 181:4117-4129. [PMID: 37705429 DOI: 10.1111/bph.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The translation of in vitro potency of a candidate drug, as determined by traditional pharmacology metrics (such as EC50/IC50 and KD/Ki values), to in vivo efficacy and safety is challenging. Residence time, which represents the duration of drug-target interaction, can be part of a more comprehensive understanding of the dynamic nature of drug-target interactions in vivo, thereby enabling better prediction of drug efficacy and safety. As a consequence, a prolonged residence time may help in achieving sustained pharmacological activity, while transient interactions with shorter residence times may be favourable for targets associated with side effects. Therefore, integration of residence time into the early stages of drug discovery and development has yielded a number of clinical candidates with promising in vivo efficacy and safety profiles. Insights from residence time research thus contribute to the translation of in vitro potency to in vivo efficacy and safety. Further research and advances in measuring and optimizing residence time will bring a much-needed addition to the drug discovery process and the development of safer and more effective drugs. In this review, we summarize recent research progress on residence time, highlighting its importance from a translational perspective.
Collapse
Affiliation(s)
- Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Wu Z, Chen G, Qiu C, Yan X, Xu L, Jiang S, Xu J, Han R, Shi T, Liu Y, Gao W, Wang Q, Li J, Ye F, Pan X, Zhang Z, Ning P, Zhang B, Chen J, Du Y. Structural basis for the ligand recognition and G protein subtype selectivity of kisspeptin receptor. SCIENCE ADVANCES 2024; 10:eadn7771. [PMID: 39151001 PMCID: PMC11328905 DOI: 10.1126/sciadv.adn7771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
Kisspeptin receptor (KISS1R), belonging to the class A peptide-GPCR family, plays a key role in the regulation of reproductive physiology after stimulation by kisspeptin and is regarded as an attractive drug target for reproductive diseases. Here, we demonstrated that KISS1R can couple to the Gi/o pathway besides the well-known Gq/11 pathway. We further resolved the cryo-electron microscopy (cryo-EM) structure of KISS1R-Gq and KISS1R-Gi complexes bound to the synthetic agonist TAK448 and structure of KISS1R-Gq complex bound to the endogenous agonist KP54. The high-resolution structures provided clear insights into mechanism of KISS1R recognition by its ligand and can facilitate the design of targeted drugs with high affinity to improve treatment effects. Moreover, the structural and functional analyses indicated that conformational differences in the extracellular loops (ECLs), intracellular loops (ICLs) of the receptor, and the "wavy hook" of the Gα subunit may account for the specificity of G protein coupling for KISS1R signaling.
Collapse
Affiliation(s)
- Zhangsong Wu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Chen Qiu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Xiaoyi Yan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Lezhi Xu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Shirui Jiang
- The Huanan Affiliated Hospital of Shenzhen University, Shenzhen University, 518000 Shenzhen, Guangdong, China
| | - Jun Xu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Runyuan Han
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingyi Shi
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Yiming Liu
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Qian Wang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
- The Huanan Affiliated Hospital of Shenzhen University, Shenzhen University, 518000 Shenzhen, Guangdong, China
| | - Jiancheng Li
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Fang Ye
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Xin Pan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Peiruo Ning
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, 272067 Jining, Shandong, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172 Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Poon MM, Lorrain KI, Stebbins KJ, Edu GC, Broadhead AR, Lorenzana AO, Paulson BE, Baccei CS, Roppe JR, Schrader TO, Valdez LJ, Xiong Y, Chen AC, Lorrain DS. Discovery of a brain penetrant small molecule antagonist targeting LPA1 receptors to reduce neuroinflammation and promote remyelination in multiple sclerosis. Sci Rep 2024; 14:10573. [PMID: 38719983 PMCID: PMC11079064 DOI: 10.1038/s41598-024-61369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yifeng Xiong
- Contineum Therapeutics, San Diego, CA, 92121, USA
| | | | | |
Collapse
|
4
|
Montejo-López W, Sampieri-Cabrera R, Nicolás-Vázquez MI, Aceves-Hernández JM, Razo-Hernández RS. Analysing the effect caused by increasing the molecular volume in M1-AChR receptor agonists and antagonists: a structural and computational study. RSC Adv 2024; 14:8615-8640. [PMID: 38495977 PMCID: PMC10938299 DOI: 10.1039/d3ra07380g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
M1 muscarinic acetylcholine receptor (M1-AChR), a member of the G protein-coupled receptors (GPCR) family, plays a crucial role in learning and memory, making it an important drug target for Alzheimer's disease (AD) and schizophrenia. M1-AChR activation and deactivation have shown modifying effects in AD and PD preclinical models, respectively. However, understanding the pharmacology associated with M1-AChR activation or deactivation is complex, because of the low selectivity among muscarinic subtypes, hampering their therapeutic applications. In this regard, we constructed two quantitative structure-activity relationship (QSAR) models, one for M1-AChR agonists (total and partial), and the other for the antagonists. The binding mode of 59 structurally different compounds, including agonists and antagonists with experimental binding affinity values (pKi), were analyzed employing computational molecular docking over different structures of M1-AChR. Furthermore, we considered the interaction energy (Einter), the number of rotatable bonds (NRB), and lipophilicity (ilogP) for the construction of the QSAR model for agonists (R2 = 89.64, QLMO2 = 78, and Qext2 = 79.1). For the QSAR model of antagonists (R2 = 88.44, QLMO2 = 82, and Qext2 = 78.1) we considered the Einter, the fraction of sp3 carbons fCsp3, and lipophilicity (MlogP). Our results suggest that the ligand volume is a determinant to establish its biological activity (agonist or antagonist), causing changes in binding energy, and determining the affinity for M1-AChR.
Collapse
Affiliation(s)
- Wilber Montejo-López
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México Avenida 1o de Mayo s/n, Colonia Santa María las Torres Cuautitlán Izcalli Estado de Mexico 54740 Mexico
| | - Raúl Sampieri-Cabrera
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Centro de Ciencias de Complejidad, Universidad Nacional Autónoma de México Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México Avenida 1o de Mayo s/n, Colonia Santa María las Torres Cuautitlán Izcalli Estado de Mexico 54740 Mexico
| | - Juan Manuel Aceves-Hernández
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Cuautitlán Izcalli Estado de Mexico 54714 Mexico
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca 62209 Mexico
| |
Collapse
|
5
|
Burger WAC, Pham V, Vuckovic Z, Powers AS, Mobbs JI, Laloudakis Y, Glukhova A, Wootten D, Tobin AB, Sexton PM, Paul SM, Felder CC, Danev R, Dror RO, Christopoulos A, Valant C, Thal DM. Xanomeline displays concomitant orthosteric and allosteric binding modes at the M 4 mAChR. Nat Commun 2023; 14:5440. [PMID: 37673901 PMCID: PMC10482975 DOI: 10.1038/s41467-023-41199-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
The M4 muscarinic acetylcholine receptor (M4 mAChR) has emerged as a drug target of high therapeutic interest due to its expression in regions of the brain involved in the regulation of psychosis, cognition, and addiction. The mAChR agonist, xanomeline, has provided significant improvement in the Positive and Negative Symptom Scale (PANSS) scores in a Phase II clinical trial for the treatment of patients suffering from schizophrenia. Here we report the active state cryo-EM structure of xanomeline bound to the human M4 mAChR in complex with the heterotrimeric Gi1 transducer protein. Unexpectedly, two molecules of xanomeline were found to concomitantly bind to the monomeric M4 mAChR, with one molecule bound in the orthosteric (acetylcholine-binding) site and a second molecule in an extracellular vestibular allosteric site. Molecular dynamic simulations supports the structural findings, and pharmacological validation confirmed that xanomeline acts as a dual orthosteric and allosteric ligand at the human M4 mAChR. These findings provide a basis for further understanding xanomeline's complex pharmacology and highlight the myriad of ways through which clinically relevant ligands can bind to and regulate GPCRs.
Collapse
Affiliation(s)
- Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Ziva Vuckovic
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Alexander S Powers
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Departments of Computer Science, Structural Biology, and Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA
| | - Jesse I Mobbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Yianni Laloudakis
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Alisa Glukhova
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Andrew B Tobin
- The Advanced Research Centre (ARC), Centre for Translational Science, School of Biomolecular Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | | | | | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Ron O Dror
- Departments of Computer Science, Structural Biology, and Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Neuromedicines Discovery Centre, Monash University, Parkville, VIC, 3052, Australia.
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
- Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
6
|
Pham V, Habben Jansen MCC, Thompson G, Heitman LH, Christopoulos A, Thal DM, Valant C. Role of Conserved Tyrosine Lid Residues in the Activation of the M 2 Muscarinic Acetylcholine Receptor. Mol Pharmacol 2023; 104:92-104. [PMID: 37348914 DOI: 10.1124/molpharm.122.000661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
The development of subtype selective small molecule drugs for the muscarinic acetylcholine receptor (mAChR) family has been challenging. The design of more selective ligands can be improved by understanding the structure and function of key amino acid residues that line ligand binding sites. Here we study the role of three conserved key tyrosine residues [Y1043.33, Y4036.51, and Y4267.39 (Ballesteros and Weinstein numbers in superscript)] at the human M2 mAChR, located at the interface between the orthosteric and allosteric binding sites of the receptor. We specifically focused on the role of the three tyrosine hydroxyl groups in the transition between the inactive and active conformations of the receptor by making phenylalanine point mutants. Single-point mutation at either of the three positions was sufficient to reduce the affinity of agonists by ∼100-fold for the M2 mAChR, whereas the affinity of antagonists remained largely unaffected. In contrast, neither of the mutations affected the efficacy of orthosteric agonists. When mutations were combined into double and triple M2 mAChR mutants, the affinity of antagonists was reduced by more than 100-fold compared with the wild-type M2 receptor. In contrast, the affinity of allosteric modulators, either negative or positive, was retained at all single and multiple mutations, but the degree of allosteric effect exerted on the endogenous ligand acetylcholine was affected at all mutants containing Y4267.39F. These findings will provide insights to consider when designing future mAChR ligands. SIGNIFICANCE STATEMENT: Structural studies demonstrated that three tyrosine residues between the orthosteric and allosteric sites of the M2 muscarinic acetylcholine receptor (mAChR) had different hydrogen bonding networks in the inactive and active conformations. The role of hydroxyl groups of the tyrosine residues on orthosteric and allosteric ligand pharmacology was unknown. We found that hydroxyl groups of the tyrosine residues differentially affected the molecular pharmacology of orthosteric and allosteric ligands. These results provide insights to consider when designing future mAChR ligands.
Collapse
Affiliation(s)
- Vi Pham
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Maria Clazina Cornelia Habben Jansen
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Geoff Thompson
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Laura H Heitman
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Arthur Christopoulos
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - David M Thal
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| | - Celine Valant
- Drug Discovery Biology (V.P., G.T., A.C., D.M.T., C.V.), ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins (A.C., D.M.T.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Drug Discovery and Safety, Universiteit Leiden, Leiden, The Netherlands (M.C.C.H.J., L.H.H.); and Neuromedicines Discovery Center, Monash University, Parkville, Victoria, Australia (A.C.)
| |
Collapse
|
7
|
Buigues P, Gehrke S, Badaoui M, Dudas B, Mandana G, Qi T, Bottegoni G, Rosta E. Investigating the Unbinding of Muscarinic Antagonists from the Muscarinic 3 Receptor. J Chem Theory Comput 2023; 19:5260-5272. [PMID: 37458730 PMCID: PMC10413856 DOI: 10.1021/acs.jctc.3c00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 08/09/2023]
Abstract
Patient symptom relief is often heavily influenced by the residence time of the inhibitor-target complex. For the human muscarinic receptor 3 (hMR3), tiotropium is a long-acting bronchodilator used in conditions such as asthma or chronic obstructive pulmonary disease (COPD). The mechanistic insights into this inhibitor remain unclear; specifically, the elucidation of the main factors determining the unbinding rates could help develop the next generation of antimuscarinic agents. Using our novel unbinding algorithm, we were able to investigate ligand dissociation from hMR3. The unbinding paths of tiotropium and two of its analogues, N-methylscopolamin and homatropine methylbromide, show a consistent qualitative mechanism and allow us to identify the structural bottleneck of the process. Furthermore, our machine learning-based analysis identified key roles of the ECL2/TM5 junction involved in the transition state. Additionally, our results point to relevant changes at the intracellular end of the TM6 helix leading to the ICL3 kinase domain, highlighting the closest residue L482. This residue is located right between two main protein binding sites involved in signal transduction for hMR3's activation and regulation. We also highlight key pharmacophores of tiotropium that play determining roles in the unbinding kinetics and could aid toward drug design and lead optimization.
Collapse
Affiliation(s)
- Pedro
J. Buigues
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Sascha Gehrke
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Magd Badaoui
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Balint Dudas
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Gaurav Mandana
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Tianyun Qi
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| | - Giovanni Bottegoni
- Dipartimento
di Scienze Biomolecolari (DISB), University
of Urbino, Urbino Piazza Rinascimento, 6, Urbino 61029, Italy
- Institute
of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Edina Rosta
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United
Kingdom
| |
Collapse
|
8
|
Powers AS, Pham V, Burger WAC, Thompson G, Laloudakis Y, Barnes NW, Sexton PM, Paul SM, Christopoulos A, Thal DM, Felder CC, Valant C, Dror RO. Structural basis of efficacy-driven ligand selectivity at GPCRs. Nat Chem Biol 2023; 19:805-814. [PMID: 36782010 PMCID: PMC10299909 DOI: 10.1038/s41589-022-01247-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/21/2022] [Indexed: 02/15/2023]
Abstract
A drug's selectivity for target receptors is essential to its therapeutic utility, but achieving selectivity between similar receptors is challenging. The serendipitous discovery of ligands that stimulate target receptors more strongly than closely related receptors, despite binding with similar affinities, suggests a solution. The molecular mechanism of such 'efficacy-driven selectivity' has remained unclear, however, hindering design of such ligands. Here, using atomic-level simulations, we reveal the structural basis for the efficacy-driven selectivity of a long-studied clinical drug candidate, xanomeline, between closely related muscarinic acetylcholine receptors (mAChRs). Xanomeline's binding mode is similar across mAChRs in their inactive states but differs between mAChRs in their active states, with divergent effects on active-state stability. We validate this mechanism experimentally and use it to design ligands with altered efficacy-driven selectivity. Our results suggest strategies for the rational design of ligands that achieve efficacy-driven selectivity for many pharmaceutically important G-protein-coupled receptors.
Collapse
Affiliation(s)
- Alexander S Powers
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Geoff Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yianni Laloudakis
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Nicholas W Barnes
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Center, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Galvani F, Pala D, Cuzzolin A, Scalvini L, Lodola A, Mor M, Rizzi A. Unbinding Kinetics of Muscarinic M3 Receptor Antagonists Explained by Metadynamics Simulations. J Chem Inf Model 2023; 63:2842-2856. [PMID: 37053454 PMCID: PMC10170513 DOI: 10.1021/acs.jcim.3c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 04/15/2023]
Abstract
The residence time (RT), the time for which a drug remains bound to its biological target, is a critical parameter for drug design. The prediction of this key kinetic property has been proven to be challenging and computationally demanding in the framework of atomistic simulations. In the present work, we setup and applied two distinct metadynamics protocols to estimate the RTs of muscarinic M3 receptor antagonists. In the first method, derived from the conformational flooding approach, the kinetics of unbinding is retrieved from a physics-based parameter known as the acceleration factor α (i.e., the running average over time of the potential deposited in the bound state). Such an approach is expected to recover the absolute RT value for a compound of interest. In the second method, known as the tMETA-D approach, a qualitative estimation of the RT is given by the time of simulation required to drive the ligand from the binding site to the solvent bulk. This approach has been developed to reproduce the change of experimental RTs for compounds targeting the same target. Our analysis shows that both computational protocols are able to rank compounds in agreement with their experimental RTs. Quantitative structure-kinetics relationship (SKR) models can be identified and employed to predict the impact of a chemical modification on the experimental RT once a calibration study has been performed.
Collapse
Affiliation(s)
- Francesca Galvani
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Daniele Pala
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Alberto Cuzzolin
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Laura Scalvini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
- Microbiome
Research Hub, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - Andrea Rizzi
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| |
Collapse
|
10
|
Sykes DA, Jiménez‐Rosés M, Reilly J, Fairhurst RA, Charlton SJ, Veprintsev DB. Exploring the kinetic selectivity of drugs targeting the β 1 -adrenoceptor. Pharmacol Res Perspect 2022; 10:e00978. [PMID: 35762357 PMCID: PMC9237807 DOI: 10.1002/prp2.978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
In this study, we report the β1 -adrenoceptor binding kinetics of several clinically relevant β1/2 -adrenoceptor (β1/2 AR) agonists and antagonists. [3 H]-DHA was used to label CHO-β1 AR for binding studies. The kinetics of ligand binding was assessed using a competition association binding method. Ligand physicochemical properties, including logD7.4 and the immobilized artificial membrane partition coefficient (KIAM ), were assessed using column-based methods. Protein Data Bank (PDB) structures and hydrophobic and electrostatic surface maps were constructed in PyMOL. We demonstrate that the hydrophobic properties of a molecule directly affect its kinetic association rate (kon ) and affinity for the β1 AR. In contrast to our findings at the β2 -adrenoceptor, KIAM , reflecting both hydrophobic and electrostatic interactions of the drug with the charged surface of biological membranes, was no better predictor than simple hydrophobicity measurements such as clogP or logD7.4 , at predicting association rate. Bisoprolol proved kinetically selective for the β1 AR subtype, dissociating 50 times slower and partly explaining its higher measured affinity for the β1 AR. We speculate that the association of positively charged ligands at the β1 AR is curtailed somewhat by its predominantly neutral/positive charged extracellular surface. Consequently, hydrophobic interactions in the ligand-binding pocket dominate the kinetics of ligand binding. In comparison at the β2 AR, a combination of hydrophobicity and negative charge attracts basic, positively charged ligands to the receptor's surface promoting the kinetics of ligand binding. Additionally, we reveal the potential role kinetics plays in the on-target and off-target pharmacology of clinically used β-blockers.
Collapse
Affiliation(s)
- David A. Sykes
- Centre of Membrane Proteins and Receptors (COMPARE)University of NottinghamMidlandsUK
- Division of Physiology, Pharmacology & Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Mireia Jiménez‐Rosés
- Centre of Membrane Proteins and Receptors (COMPARE)University of NottinghamMidlandsUK
- Division of Physiology, Pharmacology & Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - John Reilly
- Novartis Institutes for BioMedical ResearchBaselSwitzerland
| | | | - Steven J. Charlton
- Centre of Membrane Proteins and Receptors (COMPARE)University of NottinghamMidlandsUK
- Division of Physiology, Pharmacology & Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Dmitry B. Veprintsev
- Centre of Membrane Proteins and Receptors (COMPARE)University of NottinghamMidlandsUK
- Division of Physiology, Pharmacology & Neuroscience, School of Life SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
11
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
12
|
Pasqua E, Hamblin N, Edwards C, Baker-Glenn C, Hurley C. Developing inhaled drugs for respiratory diseases: A medicinal chemistry perspective. Drug Discov Today 2021; 27:134-150. [PMID: 34547449 DOI: 10.1016/j.drudis.2021.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/11/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
Despite the devastating impact of many lung diseases on human health, there is still a significant unmet medical need in respiratory diseases, for which inhaled delivery represents a crucial strategy. More guidance on how to design and carry out multidisciplinary inhaled projects is needed. When designing inhaled drugs, the medicinal chemist must carefully balance the physicochemical properties of the molecule to achieve optimal target engagement in the lung. Although the medicinal chemistry strategy is unique for each project, and will change depending on multiple factors, such as the disease, target, systemic risk, delivery device, and formulation, general guidelines aiding inhaled drug design can be applied and are summarised in this review.
Collapse
Affiliation(s)
- Elisa Pasqua
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK.
| | - Nicole Hamblin
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK; Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Christine Edwards
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| | - Charles Baker-Glenn
- Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Chris Hurley
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| |
Collapse
|
13
|
Staszewski M, Nelic D, Jończyk J, Dubiel M, Frank A, Stark H, Bajda M, Jakubik J, Walczyński K. Guanidine Derivatives: How Simple Structural Modification of Histamine H 3R Antagonists Has Led to the Discovery of Potent Muscarinic M 2R/M 4R Antagonists. ACS Chem Neurosci 2021; 12:2503-2519. [PMID: 34100603 PMCID: PMC8291587 DOI: 10.1021/acschemneuro.1c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
This article describes
the discovery of novel potent muscarinic
receptor antagonists identified during a search for more active histamine
H3 receptor (H3R) ligands. The idea was to replace
the flexible seven methylene linker with a semirigid 1,4-cyclohexylene
or p-phenylene substituted group of the previously
described histamine H3R antagonists ADS1017 and ADS1020. These simple structural modifications
of the histamine H3R antagonist led to the emergence of
additional pharmacological effects, some of which unexpectedly showed
strong antagonist potency at muscarinic receptors. This paper reports
the routes of synthesis and pharmacological characterization of guanidine
derivatives, a novel chemotype of muscarinic receptor antagonists
binding to the human muscarinic M2 and M4 receptors
(hM2R and hM4R, respectively) in nanomolar concentration
ranges. The affinities of the newly synthesized ADS10227 (1-{4-{4-{[4-(phenoxymethyl)cyclohexyl]methyl}piperazin-1-yl}but-1-yl}-1-(benzyl)guanidine)
at hM2R and hM4R were 2.8 nM and 5.1 nM, respectively.
Collapse
Affiliation(s)
- Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Łódź, Poland
| | - Dominik Nelic
- Department of Neurochemistry, Institute of Physiology CAS, Videnska 1083, CZ142 20, Prague, Czech Republic
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Mariam Dubiel
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf 40225, Germany
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Jan Jakubik
- Department of Neurochemistry, Institute of Physiology CAS, Videnska 1083, CZ142 20, Prague, Czech Republic
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
14
|
Wang Z, Bosma R, Kuhne S, van den Bor J, Garabitian W, Vischer HF, Wijtmans M, Leurs R, de Esch IJ. Exploring the Effect of Cyclization of Histamine H 1 Receptor Antagonists on Ligand Binding Kinetics. ACS OMEGA 2021; 6:12755-12768. [PMID: 34056427 PMCID: PMC8154229 DOI: 10.1021/acsomega.0c06358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
There is an increasing interest in guiding hit optimization by considering the target binding kinetics of ligands. However, compared to conventional structure-activity relationships, structure-kinetics relationships have not been as thoroughly explored, even for well-studied archetypical drug targets such as the histamine H1 receptor (H1R), a member of the family A G-protein coupled receptor. In this study, we show that the binding kinetics of H1R antagonists at the H1R is dependent on the cyclicity of both the aromatic head group and the amine moiety of H1R ligands, the chemotypes that are characteristic for the first-generation H1R antagonists. Fusing the two aromatic rings of H1R ligands into one tricyclic aromatic head group prolongs the H1R residence time for benchmark H1R ligands as well as for tailored synthetic analogues. The effect of constraining the aromatic rings and the basic amines is systematically explored, leading to a coherent series and detailed discussions of structure-kinetics relationships. This study shows that cyclicity has a pronounced effect on the binding kinetics.
Collapse
Affiliation(s)
| | | | | | - Jelle van den Bor
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wrej Garabitian
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F. Vischer
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J.P. de Esch
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Manandhar M, Chun E, Romesberg FE. Genetic Code Expansion: Inception, Development, Commercialization. J Am Chem Soc 2021; 143:4859-4878. [DOI: 10.1021/jacs.0c11938] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Miglena Manandhar
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | - Eugene Chun
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | | |
Collapse
|
16
|
Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Methods Mol Biol 2021. [PMID: 32016893 DOI: 10.1007/978-1-0716-0282-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
G-protein-coupled receptors (GPCRs) have enormous physiological and biomedical importance, and therefore it is not surprising that they are the targets of many prescribed drugs. Further progress in GPCR drug discovery is highly dependent on the availability of protein structural information. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanics (QM) approaches are often too computationally expensive to be of practical use in time-sensitive situations, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed, and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule toward ligand binding, including an analysis of their chemical nature. Such information is essential for an efficient structure-based drug design (SBDD) process. In this chapter, we describe how to use FMO in the characterization of GPCR-ligand interactions.
Collapse
|
17
|
Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, Peng W, Qian T, Tan K, Zou J, Trinh S, Wu R, Zhang S, Pan S, Hires SA, Xu M, Li H, Saksida LM, Prado VF, Bussey TJ, Prado MAM, Chen L, Cheng H, Li Y. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods 2020; 17:1139-1146. [PMID: 32989318 PMCID: PMC7606762 DOI: 10.1038/s41592-020-0953-2] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 08/11/2020] [Indexed: 01/17/2023]
Abstract
The ability to directly measure acetylcholine (ACh) release is an essential step toward understanding its physiological function. Here we optimized the GRABACh (GPCR-activation-based ACh) sensor to achieve substantially improved sensitivity in ACh detection, as well as reduced downstream coupling to intracellular pathways. The improved version of the ACh sensor retains the subsecond response kinetics, physiologically relevant affinity and precise molecular specificity for ACh of its predecessor. Using this sensor, we revealed compartmental ACh signals in the olfactory center of transgenic flies in response to external stimuli including odor and body shock. Using fiber photometry recording and two-photon imaging, our ACh sensor also enabled sensitive detection of single-trial ACh dynamics in multiple brain regions in mice performing a variety of behaviors.
Collapse
Affiliation(s)
- Miao Jing
- Chinese Institute for Brain Research, Beijing, China.
| | - Yuexuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Pengcheng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Miguel Skirzewski
- BrainsCAN Rodent Cognition Core, The University of Western Ontario, London, Ontario, Canada
| | - Ornela Kljakic
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Wanling Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Jing Zou
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Simon Trinh
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Runlong Wu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shichen Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Sunlei Pan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Samuel A Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Min Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haohong Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa M Saksida
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, Schulich School of Medecine and Dentistry, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- Institute of Molecular Medicine, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
18
|
Schuetz DA, Richter L, Martini R, Ecker GF. A structure-kinetic relationship study using matched molecular pair analysis. RSC Med Chem 2020; 11:1285-1294. [PMID: 34085042 PMCID: PMC8126976 DOI: 10.1039/d0md00178c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifetime of a binary drug–target complex is increasingly acknowledged as an important parameter for drug efficacy and safety. With a better understanding of binding kinetics and better knowledge about kinetic parameter optimization, intentionally induced prolongation of the drug–target residence time through structural changes of the ligand could become feasible. In this study we assembled datasets from 21 publications and the K4DD (Kinetic for Drug Discovery) database to conduct large scale data analysis. This resulted in 3812 small molecules annotated to 78 different targets from five protein classes (GPCRs: 273, kinases: 3238, other enzymes: 240, HSPs: 160, ion channels: 45). Performing matched molecular pair (MMP) analysis to further investigate the structure–kinetic relationship (SKR) in this data collection allowed us to identify a fundamental contribution of a ligand's polarity to its association rate, and in selected cases, also to its dissociation rate. However, we furthermore observed that the destabilization of the transition state introduced by increased polarity is often accompanied by simultaneous destabilization of the ground state resulting in an unaffected or even worsened residence time. Supported by a set of case studies, we provide concepts on how to alter ligands in ways to trigger on-rates, off-rates, or both. A large-scale study employing matched molecular pair (MMP) analysis to uncover the contribution of a compound's polarity to its association and dissociation rates.![]()
Collapse
Affiliation(s)
- Doris A Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Riccardo Martini
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
19
|
Torrens-Fontanals M, Stepniewski TM, Aranda-García D, Morales-Pastor A, Medel-Lacruz B, Selent J. How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs. Int J Mol Sci 2020; 21:E5933. [PMID: 32824756 PMCID: PMC7460635 DOI: 10.3390/ijms21165933] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are implicated in nearly every physiological process in the human body and therefore represent an important drug targeting class. Advances in X-ray crystallography and cryo-electron microscopy (cryo-EM) have provided multiple static structures of GPCRs in complex with various signaling partners. However, GPCR functionality is largely determined by their flexibility and ability to transition between distinct structural conformations. Due to this dynamic nature, a static snapshot does not fully explain the complexity of GPCR signal transduction. Molecular dynamics (MD) simulations offer the opportunity to simulate the structural motions of biological processes at atomic resolution. Thus, this technique can incorporate the missing information on protein flexibility into experimentally solved structures. Here, we review the contribution of MD simulations to complement static structural data and to improve our understanding of GPCR physiology and pharmacology, as well as the challenges that still need to be overcome to reach the full potential of this technique.
Collapse
Affiliation(s)
- Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
- InterAx Biotech AG, PARK innovAARE, 5234 Villigen, Switzerland
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - David Aranda-García
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Adrián Morales-Pastor
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| |
Collapse
|
20
|
Mucke HA. Drug Repurposing Patent Applications October–December 2019. Assay Drug Dev Technol 2020. [DOI: 10.1089/adt.2020.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Fischer O, Hofmann J, Rampp H, Kaindl J, Pratsch G, Bartuschat A, Taudte RV, Fromm MF, Hübner H, Gmeiner P, Heinrich MR. Regiospecific Introduction of Halogens on the 2-Aminobiphenyl Subunit Leading to Highly Potent and Selective M3 Muscarinic Acetylcholine Receptor Antagonists and Weak Inverse Agonists. J Med Chem 2020; 63:4349-4369. [PMID: 32202101 DOI: 10.1021/acs.jmedchem.0c00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Muscarinic M3 receptor antagonists and inverse agonists displaying high affinity and subtype selectivity over the antitarget M2 are valuable pharmacological tools and may enable improved treatment of chronic obstructive pulmonary disease (COPD), asthma, or urinary incontinence. On the basis of known M3 antagonists comprising a piperidine or quinuclidine unit attached to a biphenyl carbamate, 5-fluoro substitution was responsible for M3 subtype selectivity over M2, while 3'-chloro substitution substantially increased affinity through a σ-hole interaction. Resultantly, two piperidinyl- and two quinuclidinium-substituted biphenyl carbamates OFH243 (13n), OFH244 (13m), OFH3911 (14n), and OFH3912 (14m) were discovered, which display two-digit picomolar affinities with Ki values from 0.069 to 0.084 nM, as well as high selectivity over the M2 subtype (46- to 68-fold). While weak inverse agonistic properties were determined for the biphenyl carbamates 13m and 13n, neutral antagonism was observed for 14m and 14n and tiotropium under identical assay conditions.
Collapse
Affiliation(s)
- Oliver Fischer
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Josefa Hofmann
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Hannelore Rampp
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jonas Kaindl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Gerald Pratsch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Amelie Bartuschat
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - R Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
22
|
van der Velden WJC, Heitman LH, Rosenkilde MM. Perspective: Implications of Ligand-Receptor Binding Kinetics for Therapeutic Targeting of G Protein-Coupled Receptors. ACS Pharmacol Transl Sci 2020; 3:179-189. [PMID: 32296761 DOI: 10.1021/acsptsci.0c00012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The concept of ligand-receptor binding kinetics has been broadly applied in drug development pipelines focusing on G protein-coupled receptors (GPCRs). The ligand residence time (RT) for a receptor describes how long a ligand-receptor complex exists, and is defined as the reciprocal of the dissociation rate constant (k off). RT has turned out to be a valuable parameter for GPCR researchers focusing on drug development as a good predictor of in vivo efficacy. The positive correlation between RT and in vivo efficacy has been established for several drugs targeting class A GPCRs (e.g., the neurokinin-1 receptor (NK1R), the β2 adrenergic receptor (β2AR), and the muscarinic 3 receptor (M3R)) and for drugs targeting class B1 (e.g., the glucagon-like peptide 1 receptor (GLP-1R)). Recently, the association rate constant (k on) has gained similar attention as another parameter affecting in vivo efficacy. In the current perspective, we address the importance of studying ligand-receptor binding kinetics for therapeutic targeting of GPCRs, with an emphasis on how binding kinetics can be altered by subtle molecular changes in the ligands and/or the receptors and how such changes affect treatment outcome. Moreover, we speculate on the impact of binding kinetic parameters for functional selectivity and sustained receptor signaling from endosomal compartments; phenomena that have gained increasing interest in attempts to improve therapeutic targeting of GPCRs.
Collapse
Affiliation(s)
- Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK 2200, Denmark
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK 2200, Denmark
| |
Collapse
|
23
|
Vlachodimou A, Konstantinopoulou K, IJzerman AP, Heitman LH. Affinity, binding kinetics and functional characterization of draflazine analogues for human equilibrative nucleoside transporter 1 (SLC29A1). Biochem Pharmacol 2020; 172:113747. [DOI: 10.1016/j.bcp.2019.113747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
|
24
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
25
|
Park H, Jung HY, Mah S, Kim K, Hong S. Kinase and GPCR polypharmacological approach for the identification of efficient anticancer medicines. Org Biomol Chem 2020; 18:8402-8413. [PMID: 33112339 DOI: 10.1039/d0ob01917h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Discovery of an anticancer medicine using a single target protein has often been unsuccessful due to the complexity of pathogenic mechanisms as well as the presence of redundant signaling pathways. In this work, we attempted to find promising anticancer drug candidates by simultaneously targeting casein kinase 1 delta (CK1δ) and muscarinic acetylcholine receptor M3 (M3R). Through the structure-based virtual screening and de novo design with the modified potential function for protein-ligand binding, a series of benzo[4,5]imidazo[1,2-a][1,3,5]triazine-2-amine (BITA) derivatives were identified as CK1δ inhibitors and also as M3R antagonists. The biochemical potencies of these bifunctional molecules reached the nanomolar and low-micromolar levels with respect to CK1δ and M3R, respectively. A common interaction feature in the calculated CK1δ-inhibitor and M3R-antagonist complexes is that the BITA moiety is well-stabilized in the orthosteric site of M3R and the hinge region of CK1δ through the establishment of the three hydrogen bonds and the hydrophobic contacts in the vicinity. The computational and experimental results found in this work exemplify the efficiency of kinase and GPCR polypharmacology in developing anticancer medicines.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology & Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul 05006, Republic of Korea.
| | - Hoi-Yun Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Shinmee Mah
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kewon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Borisov DV, Veselovsky AV. [Ligand-receptor binding kinetics in drug design]. BIOMEDITSINSKAIA KHIMIIA 2020; 66:42-53. [PMID: 32116225 DOI: 10.18097/pbmc20206601042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditionally, the thermodynamic values of affinity are considered as the main criterion for the development of new drugs. Usually, these values for drugs are measured <i>in vitro</i> at steady concentrations of the receptor and ligand, which are differed from <i>in vivo</i> environment. Recent studies have shown that the kinetics of the process of drug binding to its receptor make significant contribution in the drug effectiveness. This has increased attention in characterizing and predicting the rate constants of association and dissociation of the receptor ligand at the stage of preclinical studies of drug candidates. A drug with a long residence time can determine ligand-receptor selectivity (kinetic selectivity), maintain pharmacological activity of the drug at its low concentration in vivo. The paper discusses the theoretical basis of protein-ligand binding, molecular determinants that control the kinetics of the drug-receptor binding. Understanding the molecular features underlying the kinetics of receptor-ligand binding will contribute to the rational design of drugs with desired properties.
Collapse
Affiliation(s)
- D V Borisov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
27
|
Abstract
The 5 subtypes of the muscarinic acetylcholine receptors (mAChRs) are expressed throughout the central and peripheral nervous system where they play a vital role in physiology and pathologies. Recently, the M5 mAChR subtype has emerged as an exciting drug target for the treatment of drug addiction. We have determined the atomic structure of the M5 mAChR bound to the clinically used inverse agonist tiotropium. The M5 mAChR structure now allows for a full comparison of all 5 mAChR subtypes and reveals that small differences in the extracellular loop regions can mediate orthosteric and allosteric ligand selectivity. Together, these findings open the door for future structure-based design of selective drugs that target this therapeutically important class of receptors. The human M5 muscarinic acetylcholine receptor (mAChR) has recently emerged as an exciting therapeutic target for treating a range of disorders, including drug addiction. However, a lack of structural information for this receptor subtype has limited further drug development and validation. Here we report a high-resolution crystal structure of the human M5 mAChR bound to the clinically used inverse agonist, tiotropium. This structure allowed for a comparison across all 5 mAChR family members that revealed important differences in both orthosteric and allosteric sites that could inform the rational design of selective ligands. These structural studies, together with chimeric swaps between the extracellular regions of the M2 and M5 mAChRs, provided structural insight into kinetic selectivity, where ligands show differential residency times between related family members. Collectively, our study provides important insights into the nature of orthosteric and allosteric ligand interaction across the mAChR family that could be exploited for the design of selective drugs.
Collapse
|
28
|
Bosma R, Wang Z, Kooistra AJ, Bushby N, Kuhne S, van den Bor J, Waring MJ, de Graaf C, de Esch IJ, Vischer HF, Sheppard RJ, Wijtmans M, Leurs R. Route to Prolonged Residence Time at the Histamine H 1 Receptor: Growing from Desloratadine to Rupatadine. J Med Chem 2019; 62:6630-6644. [PMID: 31274307 PMCID: PMC6750840 DOI: 10.1021/acs.jmedchem.9b00447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Drug–target
binding kinetics are an important predictor of in vivo drug efficacy,
yet the relationship
between ligand structures and their binding kinetics is often poorly
understood. We show that both rupatadine (1) and desloratadine
(2) have a long residence time at the histamine H1 receptor (H1R). Through development of a [3H]levocetirizine radiolabel, we find that the residence time
of 1 exceeds that of 2 more than 10-fold.
This was further explored with 22 synthesized rupatadine and desloratadine
analogues. Methylene-linked cycloaliphatic or β-branched substitutions
of desloratadine increase the residence time at the H1R,
conveying a longer duration of receptor antagonism. However, cycloaliphatic
substituents directly attached to the piperidine amine (i.e., lacking
the spacer) have decreased binding affinity and residence time compared
to their methylene-linked structural analogues. Guided by docking
studies, steric constraints within the binding pocket are hypothesized
to explain the observed differences in affinity and binding kinetics
between analogues.
Collapse
Affiliation(s)
- Reggie Bosma
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Zhiyong Wang
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Albert J Kooistra
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Nick Bushby
- Operations, BioPharmaceuticals R&D , AstraZeneca , Alderley Park , Macclesfield SK10 4TG , United Kingdom
| | - Sebastiaan Kuhne
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Michael J Waring
- Medicinal Chemistry, Research and Early Development, Oncology R&D , AstraZeneca , Alderley Park , Macclesfield SK10 4TG , United Kingdom
| | - Chris de Graaf
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Iwan J de Esch
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Robert J Sheppard
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D , AstraZeneca , Gothenburg 431 50 , Sweden
| | - Maikel Wijtmans
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
29
|
Kistemaker LEM, Elzinga CRS, Tautermann CS, Pieper MP, Seeliger D, Alikhil S, Schmidt M, Meurs H, Gosens R. Second M 3 muscarinic receptor binding site contributes to bronchoprotection by tiotropium. Br J Pharmacol 2019; 176:2864-2876. [PMID: 31077341 DOI: 10.1111/bph.14707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The bronchodilator tiotropium binds not only to its main binding site on the M3 muscarinic receptor but also to an allosteric site. Here, we have investigated the functional relevance of this allosteric binding and the potential contribution of this behaviour to interactions with long-acting β-adrenoceptor agonists, as combination therapy with anticholinergic agents and β-adrenoceptor agonists improves lung function in chronic obstructive pulmonary disease. EXPERIMENTAL APPROACH ACh, tiotropium, and atropine binding to M3 receptors were modelled using molecular dynamics simulations. Contractions of bovine and human tracheal smooth muscle strips were studied. KEY RESULTS Molecular dynamics simulation revealed extracellular vestibule binding of tiotropium, and not atropine, to M3 receptors as a secondary low affinity binding site, preventing ACh entry into the orthosteric binding pocket. This resulted in a low (allosteric binding) and high (orthosteric binding) functional affinity of tiotropium in protecting against methacholine-induced contractions of airway smooth muscle, which was not observed for atropine and glycopyrrolate. Moreover, antagonism by tiotropium was insurmountable in nature. This behaviour facilitated functional interactions of tiotropium with the β-agonist olodaterol, which synergistically enhanced bronchoprotective effects of tiotropium. This was not seen for glycopyrrolate and olodaterol or indacaterol but was mimicked by the interaction of tiotropium and forskolin, indicating no direct β-adrenoceptor-M3 receptor crosstalk in this effect. CONCLUSIONS AND IMPLICATIONS We propose that tiotropium has two binding sites at the M3 receptor that prevent ACh action, which, together with slow dissociation kinetics, may contribute to insurmountable antagonism and enhanced functional interactions with β-adrenoceptor agonists.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carolina R S Elzinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christofer S Tautermann
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Michael P Pieper
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Seeliger
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Suraya Alikhil
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Ibrahim P, Clark T. Metadynamics simulations of ligand binding to GPCRs. Curr Opin Struct Biol 2019; 55:129-137. [PMID: 31100549 DOI: 10.1016/j.sbi.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 11/17/2022]
Abstract
Recent developments in metadynamics simulation techniques for ligand binding to Class A GPCRs are described and the results obtained elucidated. The computational protocol makes good use of modern massively parallel hardware, making simulations of the binding/unbinding process routine. The simulations reveal unprecedented details of the ligand-binding pathways, including multiple binding sites in many cases. Free energies of binding are reproduced very well and the simulations allow prediction of the efficacy (agonist, antagonist etc.) of ligands.
Collapse
Affiliation(s)
- Passainte Ibrahim
- Computer-Chemistry Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Timothy Clark
- Computer-Chemistry Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany.
| |
Collapse
|
31
|
Sykes DA, Stoddart LA, Kilpatrick LE, Hill SJ. Binding kinetics of ligands acting at GPCRs. Mol Cell Endocrinol 2019; 485:9-19. [PMID: 30738950 PMCID: PMC6406023 DOI: 10.1016/j.mce.2019.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
The influence of drug-receptor binding kinetics has often been overlooked during the development of new therapeutics that target G protein-coupled receptors (GPCRs). Over the last decade there has been a growing understanding that an in-depth knowledge of binding kinetics at GPCRs is required to successfully target this class of proteins. Ligand binding to a GPCR is often not a simple single step process with ligand freely diffusing in solution. This review will discuss the experiments and equations that are commonly used to measure binding kinetics and how factors such as allosteric regulation, rebinding and ligand interaction with the plasma membrane may influence these measurements. We will then consider the molecular characteristics of a ligand and if these can be linked to association and dissociation rates.
Collapse
Affiliation(s)
- David A Sykes
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Laura E Kilpatrick
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
32
|
Magarkar A, Schnapp G, Apel AK, Seeliger D, Tautermann CS. Enhancing Drug Residence Time by Shielding of Intra-Protein Hydrogen Bonds: A Case Study on CCR2 Antagonists. ACS Med Chem Lett 2019; 10:324-328. [PMID: 30891134 DOI: 10.1021/acsmedchemlett.8b00590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
The target residence time (RT) for a given ligand is one of the important parameters that have to be optimized during drug design. It is well established that shielding the receptor-ligand hydrogen bond (H-bond) interactions from water has been one of the factors in increasing ligand RT. Building on this foundation, here we report that shielding an intra-protein H-bond, which confers rigidity to the binding pocket and which is not directly involved in drug-receptor interactions, can strongly influence RT for CCR2 antagonists. Based on our recently solved CCR2 structure with MK-0812 and molecular dynamics (MD) simulations, we show that the RT for this and structurally related ligands is directly dependent on the shielding of the Tyr120-Glu291 H-bond from the water. If solvated this H-bond is often broken, making the binding pocket flexible and leading to shorter RT.
Collapse
Affiliation(s)
- Aniket Magarkar
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, D-88397 Biberach a.d. Riss, Germany
| | - Gisela Schnapp
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, D-88397 Biberach a.d. Riss, Germany
| | - Anna-Katharina Apel
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, D-88397 Biberach a.d. Riss, Germany
| | - Daniel Seeliger
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, D-88397 Biberach a.d. Riss, Germany
| | - Christofer S. Tautermann
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, D-88397 Biberach a.d. Riss, Germany
| |
Collapse
|
33
|
Peeking at G-protein-coupled receptors through the molecular dynamics keyhole. Future Med Chem 2019; 11:599-615. [DOI: 10.4155/fmc-2018-0393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular dynamics is a state of the art computational tool for the investigation of biophysics phenomenon at a molecular scale, as it enables the modeling of dynamic processes, such as conformational motions, molecular solvation and ligand binding. The recent advances in structural biology have led to a bloom in published G-protein-coupled receptor structures, representing a solid and valuable resource for molecular dynamics studies. During the last decade, indeed, a plethora of physiological and pharmacological facets of this membrane protein superfamily have been addressed by means of molecular dynamics simulations, including the activation mechanism, allosterism and, very recently, biased signaling. Here, we try to recapitulate some of the main contributions that molecular dynamics has recently produced in the field.
Collapse
|
34
|
Apel AK, Cheng RK, Tautermann CS, Brauchle M, Huang CY, Pautsch A, Hennig M, Nar H, Schnapp G. Crystal Structure of CC Chemokine Receptor 2A in Complex with an Orthosteric Antagonist Provides Insights for the Design of Selective Antagonists. Structure 2019; 27:427-438.e5. [DOI: 10.1016/j.str.2018.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
|
35
|
Malaiyandi LM, Sharthiya H, Surachaicharn N, Shams Y, Arshad M, Schupbach C, Kopf PG, Dineley KE. M 3-subtype muscarinic receptor activation stimulates intracellular calcium oscillations and aldosterone production in human adrenocortical HAC15 cells. Mol Cell Endocrinol 2018; 478:1-9. [PMID: 29959979 PMCID: PMC6193837 DOI: 10.1016/j.mce.2018.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/25/2022]
Abstract
A previous body of work in bovine and rodent models shows that cholinergic agonists modulate the secretion of steroid hormones from the adrenal cortex. In this study we used live-cell Ca2+ imaging to investigate cholinergic activity in the HAC15 human adrenocortical carcinoma cell line. The cholinergic agonists carbachol and acetylcholine triggered heterogeneous Ca2+ oscillations that were strongly inhibited by antagonists with high affinity for the M3 muscarinic receptor subtype, while preferential block of M1 or M2 receptors was less effective. Acute exposure to carbachol and acetylcholine modestly elevated aldosterone secretion in HAC15 cells, and this effect was also diminished by M3 inhibition. HAC15 cells expressed relatively high levels of mRNA for M3 and M2 receptors, while M1 and M5 mRNA were much lower. In conclusion, our data extend previous findings in non-human systems to implicate the M3 receptor as the dominant muscarinic receptor in the human adrenal cortex.
Collapse
Affiliation(s)
- Latha M Malaiyandi
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Harsh Sharthiya
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60515, USA.
| | | | - Yara Shams
- Department of Pharmacology, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Mohammad Arshad
- Department of Anatomy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Chad Schupbach
- Department of Pharmacology, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Phillip G Kopf
- Department of Pharmacology, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Kirk E Dineley
- Department of Pharmacology, Midwestern University, Downers Grove, IL, 60515, USA.
| |
Collapse
|
36
|
Vass M, Podlewska S, de Esch IJP, Bojarski AJ, Leurs R, Kooistra AJ, de Graaf C. Aminergic GPCR-Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. J Med Chem 2018; 62:3784-3839. [PMID: 30351004 DOI: 10.1021/acs.jmedchem.8b00836] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aminergic family of G protein-coupled receptors (GPCRs) plays an important role in various diseases and represents a major drug discovery target class. Structure determination of all major aminergic subfamilies has enabled structure-based ligand design for these receptors. Site-directed mutagenesis data provides an invaluable complementary source of information for elucidating the structural determinants of binding of different ligand chemotypes. The current study provides a comparative analysis of 6692 mutation data points on 34 aminergic GPCR subtypes, covering the chemical space of 540 unique ligands from mutagenesis experiments and information from experimentally determined structures of 52 distinct aminergic receptor-ligand complexes. The integrated analysis enables detailed investigation of structural receptor-ligand interactions and assessment of the transferability of combined binding mode and mutation data across ligand chemotypes and receptor subtypes. An overview is provided of the possibilities and limitations of using mutation data to guide the design of novel aminergic receptor ligands.
Collapse
Affiliation(s)
- Márton Vass
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Sabina Podlewska
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smętna 12 , PL31-343 Kraków , Poland
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology , Polish Academy of Sciences , Smętna 12 , PL31-343 Kraków , Poland
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands.,Department of Drug Design and Pharmacology , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS) , VU University Amsterdam , 1081HZ Amsterdam , The Netherlands.,Sosei Heptares , Steinmetz Building, Granta Park, Great Abington , Cambridge CB21 6DG , U.K
| |
Collapse
|
37
|
Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates. eNeuro 2018; 5:eN-NWR-0340-18. [PMID: 30564629 PMCID: PMC6298421 DOI: 10.1523/eneuro.0340-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
The family of muscarinic acetylcholine receptors (mAChRs) consists of five members in mammals, encoded by the CHRM1-5 genes. The mAChRs are G-protein-coupled receptors, which can be divided into the following two subfamilies: M2 and M4 receptors coupling to Gi/o; and M1, M3, and M5 receptors coupling to Gq/11. However, despite the fundamental roles played by these receptors, their evolution in vertebrates has not yet been fully described. We have combined sequence-based phylogenetic analyses with comparisons of exon–intron organization and conserved synteny in order to deduce the evolution of the mAChR receptors. Our analyses verify the existence of two ancestral genes prior to the two vertebrate tetraploidizations (1R and 2R). After these events, one gene had duplicated, resulting in CHRM2 and CHRM4; and the other had triplicated, forming the CHRM1, CHRM3, and CHRM5 subfamily. All five genes are still present in all vertebrate groups investigated except the CHRM1 gene, which has not been identified in some of the teleosts or in chicken or any other birds. Interestingly, the third tetraploidization (3R) that took place in the teleost predecessor resulted in duplicates of all five mAChR genes of which all 10 are present in zebrafish. One of the copies of the CHRM2 and CHRM3 genes and both CHRM4 copies have gained introns in teleosts. Not a single separate (nontetraploidization) duplicate has been identified in any vertebrate species. These results clarify the evolution of the vertebrate mAChR family and reveal a doubled repertoire in zebrafish, inviting studies of gene neofunctionalization and subfunctionalization.
Collapse
|
38
|
Moo EV, Sexton PM, Christopoulos A, Valant C. Utility of an "Allosteric Site-Impaired" M 2 Muscarinic Acetylcholine Receptor as a Novel Construct for Validating Mechanisms of Action of Synthetic and Putative Endogenous Allosteric Modulators. Mol Pharmacol 2018; 94:1298-1309. [PMID: 30213802 DOI: 10.1124/mol.118.112490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are exemplar models for understanding G protein-coupled receptor (GPCR) allostery, possessing a "common" allosteric site in an extracellular vestibule (ECV) for synthetic modulators including gallamine, strychnine, and brucine. In addition, there is intriguing evidence of endogenous peptides/proteins that may target this region at the M2 mAChR. A common feature of synthetic and endogenous M2 mAChR negative allosteric modulators (NAMs) is their cationic nature. Using a structure-based approach, we previously designed a mutant M2 mAChR (N410K+T423K) to specifically abrogate binding of ECV cationic modulators (Dror et al., 2013). Herein, we used this "allosteric site-impaired" receptor to investigate allosteric interactions of synthetic modulators as well as basic peptides (poly-l-arginine, endogenously produced protamine, and major basic protein). Using [3H]N-methylscopolamine equilibrium and kinetic binding and functional assays of guanosine 5'-O-[γ-thio]triphosphate [35S] binding and extracellular signal-regulated kinases 1 and 2 phosphorylation, we found modest effects of the mutations on potencies of orthosteric antagonists and an increase in the affinity of the cognate agonist, acetylcholine, likely reflecting the effect of the mutations on the access/egress of these ligands into the orthosteric pocket. More importantly, we noted a significant abrogation in affinity for all synthetic or peptidic modulators at the mutant mAChR, validating their allosteric nature. Collectively, these findings provide evidence for a hitherto-unappreciated role of endogenous cationic peptides interacting allosterically at the M2 mAChR and identify the allosteric site-impaired GPCR as a tool for validating NAM activity as well as a potential candidate for future chemogenetic strategies to understand the physiology of endogenous allosteric substances.
Collapse
Affiliation(s)
- Ee Von Moo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
39
|
Lu H, Iuliano JN, Tonge PJ. Structure-kinetic relationships that control the residence time of drug-target complexes: insights from molecular structure and dynamics. Curr Opin Chem Biol 2018; 44:101-109. [PMID: 29986213 DOI: 10.1016/j.cbpa.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Time-dependent target occupancy is a function of both the thermodynamics and kinetics of drug-target interactions. However, while the optimization of thermodynamic affinity through approaches such as structure-based drug design is now relatively straight forward, less is understood about the molecular interactions that control the kinetics of drug complex formation and breakdown since this depends on both the ground and transition state energies on the binding reaction coordinate. In this opinion we highlight several recent examples that shed light on current approaches that are elucidating the factors that control the life-time of the drug-target complex.
Collapse
Affiliation(s)
- Hao Lu
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | - James N Iuliano
- Department of Chemistry, Institute for Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - Peter J Tonge
- Department of Chemistry, Institute for Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA; Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| |
Collapse
|
40
|
Structure-kinetic relationship studies of cannabinoid CB 2 receptor agonists reveal substituent-specific lipophilic effects on residence time. Biochem Pharmacol 2018; 152:129-142. [DOI: 10.1016/j.bcp.2018.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 02/05/2023]
|
41
|
Hegde SS, Pulido-Rios MT, Luttmann MA, Foley JJ, Hunsberger GE, Steinfeld T, Lee T, Ji Y, Mammen MM, Jasper JR. Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol Res Perspect 2018; 6:e00400. [PMID: 29736245 PMCID: PMC5927803 DOI: 10.1002/prp2.400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/04/2018] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
Revefenacin (TD‐4208) is a novel, long‐acting, and lung‐selective muscarinic cholinergic receptor (mAChR) antagonist in development as a nebulized inhalation solution for the treatment of chronic obstructive pulmonary disease (COPD) patients. This study evaluated the pharmacology of revefenacin at human recombinant mAChRs and in airway tissues from rats, guinea pigs, and humans. At human recombinant mAChRs, revefenacin displayed high affinity (pKI = 8.2‐9.8) and behaved as a competitive antagonist (pKI, apparent = 9.4‐10.9) at the five human recombinant mAChRs. Kinetic studies demonstrated that revefenacin dissociated significantly slower from the hM3 (t1/2 = 82 minutes) compared to the hM2 (t1/2 = 6.9 minutes) mAChR at 37°C, thereby making it kinetically selective for the former subtype. Similarly, in functional studies, revefenacin‐mediated antagonism of acetylcholine (ACh)‐evoked calcium mobilization responses were reversed less rapidly at hM3 compared to the hM2 mAChR. In isolated tracheal tissues from rat and guinea pig and isolated bronchial tissues from humans, revefenacin potently antagonized mAChR‐mediated contractile responses. Furthermore, the antagonistic effects of revefenacin in rat, guinea pig, and human airway tissues were slowly reversible (t1/2 of 13.3, >16, and >10 hours, respectively). These data demonstrate that revefenacin is a potent, high affinity, and selective functional mAChR antagonist with kinetic selectivity for the hM3 receptor and produces potent and long‐lasting antagonism of mAChR‐mediated contractile responses in rat, guinea pig, and human airway tissue. These data suggest that revefenacin has the potential to be a potent once‐daily dosed inhaled bronchodilator in COPD patients.
Collapse
Affiliation(s)
| | | | | | - James J Foley
- GlaxoSmithKline Pharmaceuticals King of Prussia PA USA
| | | | - Tod Steinfeld
- Theravance Biopharma U.S, Inc South San Francisco CA USA
| | - TaeWeon Lee
- Theravance Biopharma U.S, Inc South San Francisco CA USA
| | - Yuhua Ji
- Theravance Biopharma U.S, Inc South San Francisco CA USA
| | | | | |
Collapse
|
42
|
Abstract
The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.
Collapse
Affiliation(s)
- Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery, Departments of Chemistry and Radiology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
43
|
El Hage K, Mondal P, Meuwly M. Free energy simulations for protein ligand binding and stability. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2017.1416115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Padmabati Mondal
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Basel, Switzerland
| |
Collapse
|
44
|
Guo D, IJzerman AP. Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time. Methods Mol Biol 2018; 1705:197-206. [PMID: 29188564 DOI: 10.1007/978-1-4939-7465-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
G protein-coupled receptors (GPCRs) are integral membrane proteins and represent the largest class of drug targets. During the past decades progress in structural biology has enabled the crystallographic elucidation of the architecture of these important macromolecules. It also provided atomic-level visualization of ligand-receptor interactions, dramatically boosting the impact of structure-based approaches in drug discovery. However, knowledge obtained through crystallography is limited to static structural information. Less information is available showing how a ligand associates with or dissociates from a given receptor, whose importance is in fact increasingly recognized by the drug research community. Owing to recent advances in computer power and algorithms, molecular dynamics stimulations have become feasible that help in analyzing the kinetics of the ligand binding process. Here, we review what is currently known about the dynamics of GPCRs in the context of ligand association and dissociation, as determined through both crystallography and computer simulations. We particularly focus on the molecular basis of ligand dissociation from GPCRs and provide case studies that predict ligand dissociation pathways and residence time.
Collapse
Affiliation(s)
- Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300, RA, Leiden, The Netherlands.
| |
Collapse
|
45
|
Lee Y, Basith S, Choi S. Recent Advances in Structure-Based Drug Design Targeting Class A G Protein-Coupled Receptors Utilizing Crystal Structures and Computational Simulations. J Med Chem 2017; 61:1-46. [PMID: 28657745 DOI: 10.1021/acs.jmedchem.6b01453] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) represent the largest and most physiologically important integral membrane protein family, and these receptors respond to a wide variety of physiological and environmental stimuli. GPCRs are among the most critical therapeutic targets for numerous human diseases, and approximately one-third of the currently marketed drugs target this receptor family. The recent breakthroughs in GPCR structural biology have significantly contributed to our understanding of GPCR function, ligand binding, and pharmacological action as well as to the design of new drugs. This perspective highlights the latest advances in GPCR structures with a focus on the receptor-ligand interactions of each receptor family in class A nonrhodopsin GPCRs as well as the structural features for their activation, biased signaling, and allosteric mechanisms. The current state-of-the-art methodologies of structure-based drug design (SBDD) approaches in the GPCR research field are also discussed.
Collapse
Affiliation(s)
- Yoonji Lee
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Shaherin Basith
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul 03760, Republic of Korea
| |
Collapse
|
46
|
Abstract
Previously, drugs were developed focusing on target affinity and selectivity. However, it is becoming evident that the drug-target residence time, related to the off-rate, is an important parameter for successful drug development. The residence time influences both the on-rate and overall effectiveness of drugs. Furthermore, ligand binding is now appreciated to be a multistep process because metastable and/or intermediate binding sites in the extracellular region have been identified. In this review, we summarize experimental ligand-binding data for G-protein-coupled receptors (GPCRs), and their binding pathways, analyzed by molecular dynamics (MD). The kinetics of drug binding to GPCRs are complex and depend on several factors, including charge distribution on the receptor surface, ligand-receptor interactions in the binding channel and the binding site, or solvation.
Collapse
Affiliation(s)
- Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany.
| | | | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Affiliation(s)
- Naomi R. Latorraca
- Department of Computer Science, ‡Biophysics Program, §Department of Molecular
and Cellular
Physiology, and ∥Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - A. J. Venkatakrishnan
- Department of Computer Science, ‡Biophysics Program, §Department of Molecular
and Cellular
Physiology, and ∥Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ron O. Dror
- Department of Computer Science, ‡Biophysics Program, §Department of Molecular
and Cellular
Physiology, and ∥Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
48
|
Impact, determination and prediction of drug-receptor residence times for GPCRs. Curr Opin Pharmacol 2016; 30:22-26. [PMID: 27428776 DOI: 10.1016/j.coph.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/02/2023]
Abstract
The residence time of a ligand on a GPCR of interest has become an optimization parameter in many examples in drug design. Long residence times can counterbalance unfavorable pharmacokinetic parameters, contributing to compound safety, and short residence times can be a tool to avoid target related side effects. Unlike the prediction and interpretation of the structure-activity relationship (SAR) of a ligand class on a receptor, the understanding and prediction of the structure-kinetics relationship (SKR) is much more demanding. Experimental and computational approaches are described, which serve to either rationalize SKR or to predict the kinetic parameters such as on-rates and off-rates.
Collapse
|
49
|
Liu Y, An S, Ward R, Yang Y, Guo XX, Li W, Xu TR. G protein-coupled receptors as promising cancer targets. Cancer Lett 2016; 376:226-39. [PMID: 27000991 DOI: 10.1016/j.canlet.2016.03.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) regulate an array of fundamental biological processes, such as growth, metabolism and homeostasis. Specifically, GPCRs are involved in cancer initiation and progression. However, compared with the involvement of the epidermal growth factor receptor in cancer, that of GPCRs have been largely ignored. Recent findings have implicated many GPCRs in tumorigenesis, tumor progression, invasion and metastasis. Moreover, GPCRs contribute to the establishment and maintenance of a microenvironment which is permissive for tumor formation and growth, including effects upon surrounding blood vessels, signaling molecules and the extracellular matrix. Thus, GPCRs are considered to be among the most useful drug targets against many solid cancers. Development of selective ligands targeting GPCRs may provide novel and effective treatment strategies against cancer and some anticancer compounds are now in clinical trials. Here, we focus on tumor related GPCRs, such as G protein-coupled receptor 30, the lysophosphatidic acid receptor, angiotensin receptors 1 and 2, the sphingosine 1-phosphate receptors and gastrin releasing peptide receptor. We also summarize their tissue distributions, activation and roles in tumorigenesis and discuss the potential use of GPCR agonists and antagonists in cancer therapy.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wei Li
- Kidney Cancer Research, Diagnosis and Translational Technology Center of Yunnan Province, Department of Urology, The People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
50
|
Thal DM, Sun B, Feng D, Nawaratne V, Leach K, Felder CC, Bures MG, Evans DA, Weis WI, Bachhawat P, Kobilka TS, Sexton PM, Kobilka BK, Christopoulos A. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 2016; 531:335-40. [PMID: 26958838 DOI: 10.1038/nature17188] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022]
Abstract
Muscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.
Collapse
Affiliation(s)
- David M Thal
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Bingfa Sun
- ConfometRx, 3070 Kenneth Street, Santa Clara, California 95054, USA
| | - Dan Feng
- ConfometRx, 3070 Kenneth Street, Santa Clara, California 95054, USA
| | - Vindhya Nawaratne
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Katie Leach
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | | | - Mark G Bures
- Computational Chemistry and Chemoinformatics, Eli Lilly, Indianapolis, Indiana 46285, USA
| | - David A Evans
- Computational Chemistry and Chemoinformatics, Eli Lilly, Sunninghill Road, Windlesham GU20 6PH, UK
| | - William I Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Priti Bachhawat
- ConfometRx, 3070 Kenneth Street, Santa Clara, California 95054, USA
| | - Tong Sun Kobilka
- ConfometRx, 3070 Kenneth Street, Santa Clara, California 95054, USA
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Brian K Kobilka
- ConfometRx, 3070 Kenneth Street, Santa Clara, California 95054, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| |
Collapse
|