1
|
Qin X, Wang Z, Lai J, Liang Y, Qian K. The Synthesis of Selenium Nanoparticles and Their Applications in Enhancing Plant Stress Resistance: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:301. [PMID: 39997864 PMCID: PMC11858168 DOI: 10.3390/nano15040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Nanoparticle-based strategies have emerged as transformative tools for addressing critical challenges in sustainable agriculture, offering precise modulation of plant-environment interactions through enhanced biocompatibility and stimuli-responsive delivery mechanisms. Among these innovations, selenium nanoparticles (SeNPs) present unique advantages due to their dual functionality as both essential micronutrient carriers and redox homeostasis modulators. Compared to conventional selenium treatments, SeNPs offer a more efficient and environmentally friendly solution for improving plant resilience while minimizing toxicity, even at low doses. This review provides a comprehensive analysis of methods for synthesizing SeNPs, including chemical reduction, green synthesis using plant extracts, and biological techniques with microbial agents. Additionally, the review discusses the effects of SeNPs on biotic and abiotic stress responses in plants, focusing on how these nanoparticles activate stress-response pathways and enhance plant immune function. The primary objective of this study is to offer theoretical insights into the application of SeNPs for addressing critical challenges in modern agriculture, such as improving crop yield and quality under stress conditions. Moreover, the research highlights the role of SeNPs in advancing sustainable agricultural practices by reducing reliance on chemical fertilizers and pesticides. The findings underscore the transformative potential of SeNPs in crop management, contributing to a more sustainable and eco-friendly agricultural future.
Collapse
Affiliation(s)
- Xin Qin
- College of Plant Protection, Southwest University, Chongqing 400715, China; (X.Q.); (J.L.)
| | - Zijun Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225012, China; (Z.W.); (Y.L.)
| | - Jie Lai
- College of Plant Protection, Southwest University, Chongqing 400715, China; (X.Q.); (J.L.)
| | - You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225012, China; (Z.W.); (Y.L.)
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China; (X.Q.); (J.L.)
| |
Collapse
|
2
|
Nagime PV, Pandey VK, Rajpal C, Jayeoye TJ, Kumar A, Chidrawar VR, Singh S. Biogenic selenium nanoparticles: a comprehensive update on the multifaceted application, stability, biocompatibility, risk, and opportunity. Z NATURFORSCH C 2025:znc-2024-0176. [PMID: 39920565 DOI: 10.1515/znc-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025]
Abstract
Biogenic selenium nanoparticles (SeNPs) have emerged as promising area of research due to their unique properties and potential multifaceted applications. The biosynthesis of SeNPs through biological methods, such as using microorganism, plant extracts, etc., offers a safe, eco-friendly, and biocompatible approach, compared to traditional chemical synthesis. Recent several studies demonstrated that multifaceted application of SeNPs includes a broad area such as antibacterial, anticancer, antioxidant, antiviral, anti-inflammatory, antidiabetic, and excellent wound healing activity. On the other hand, SeNPs have also shown promising application in sensing of inorganic toxic metals, electrochemistry, agro-industries, aqua-cultures, and in fabrication of solar panels. Additionally, SeNPs capability to enhance the efficacy of traditional antibiotics and act as effective agents against multidrug-resistant pathogens has shown their potential in addressing critical health challenges. Although, the SeNPs exhibit wide applicability, the potential toxicity of Se, particularly in its various oxidative states, necessitates careful assessment of the environmental and health impacts associated with their use. Therefore, understanding the balance between their beneficial properties and potential risks is crucial for its safe applications. This review focuses exclusively on SeNPs synthesized via eco-friendly process, excluding research utilizing other synthesis processes. Moreover, this review aims to offer an overview of the diverse applications, potential risks, stability requirement, and cytocompatibility requirement, and multifaceted opportunities associated with SeNPs. Ultimately, the review bridges a gap in knowledge by providing an updated details of multifaceted applications of SeNPs.
Collapse
Affiliation(s)
- Pooja V Nagime
- Faculty of Agro-Industry, Centre of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Vinay Kumar Pandey
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Charu Rajpal
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashwini Kumar
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, India
- Research and Development Cell, 231547 School of Engineering and Technology, Manav Rachna International Institute of Research and Studies , Faridabad, Haryana 121003, India
| | - Vijay R Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed-to-University, Green Industrial Park, Jadcherla, Hyderabad 509301, India
| | - Sudarshan Singh
- Office of Research Administration, Chaing Mai University, Chiang Mai 50200, Thailand
- Faculty of Pharmacy, Chaing Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Chen C, Yang Z, Ma J, Xie W, Wang Z. Recent research progress on the biological functions, synthesis and applications of selenium nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124448. [PMID: 39778390 DOI: 10.1016/j.jchromb.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Selenium is an essential trace element that is involved in a variety of complex biological processes and has a significant positive effect on the prevention and treatment of cardiovascular disease, inflammatory diseases, and cancer. Selenium in the body is mainly provided by daily meals. However, selenium has two sides, beneficial in moderation and harmful in excess. Selenium nanoparticles (SeNPs), which has better biocompatibility, safety and stability compared with other forms of selenium, is a good choice for selenium supplementing. Current researchers are exploring SeNPs in a variety of ways, including but not limited to antioxidant, antimicrobial, antiviral, inhibition of inflammation, anti-tumor, development of bio-diagnostic reagents, and nano-carrier systems. Also, efforts are being made to synthesize stable and efficient SeNPs for various applications. This study briefly describes how SeNPs are synthesized, summarizes in detail the wide range of uses of SeNPs, and provides an outlook on the future development of it. In addition, combined with the research results of our group, this study discusses the application and biological assays of SeNPs in diagnosis, which will provide inspiration and help for researchers to broaden the application of SeNPs.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Zhan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Jingjing Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Weiqi Xie
- The First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Zhizeng Wang
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Zhang Y, Palanisamy S, Kwon MH, Ge Y, Kou F, Uthamapriya RA, Lee D, Lee DJ, Bao H, You S, Zhang Y. A novel targeted anticancer drug delivery strategy: Cnidium officinale polysaccharide conjugated with carboxymethyl-5-fluorouracil and folic acid for ovarian cancer therapy. Int J Biol Macromol 2024; 285:138107. [PMID: 39608520 DOI: 10.1016/j.ijbiomac.2024.138107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
To mitigate adverse reactions induced by 5-fluorouracil (5-FU), Cnidium officinale fraction 2 (F2) polysaccharides served as the macromolecular carrier, facilitating its reaction with carboxymethyl-5-fluorouracil (C-5-FU) for producing F2-C-5-FU. Subsequently, this compound could react with folic acid (FA) through the ester bond, forming F2-C-5-FU-FA, as verified through NMR analysis. The in vitro anticancer efficacy of F2-C-5-FU-FA was evaluated using SKOV-3 cells that expressed folate receptor (FR) and FR-deficient A549 cells, showing greater cytotoxicity in the SKOV-3 cell line due to the FRs on the cell membrane. In vivo experiments were conducted on SKOV-3-bearing xenograft mice using an in vivo imaging system (IVIS). Animals injected with F2-C-5-FU-FA exhibited significantly stronger targeting of tumor tissue compared to those injected with F2-C-5-FU. These findings highlighted enhanced drug delivery and accumulation in targeted tumor regions facilitated by folate-targeted conjugates. Moreover, F2-C-5FU-FA showed reduced cardiac toxicity in mice and minimal spleen accumulation, indicating a negligible effect on the immune system. Overall, this study introduced a novel strategy for achieving highly efficient anticancer drug delivery into tumor cells that express FR.
Collapse
Affiliation(s)
- Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China; Sanya Research Institute, Chinese Academy of Tropical Agriculture Science, Sanya 572025, Hainan, China
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Yunfei Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - DongKi Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Honghui Bao
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, Hainan, China.
| |
Collapse
|
5
|
Zhang J, Liu D, Liang X, Liu G, Wen C, Liang L, Liu X, Li Y, Xu X. Synthesis and characterization of selenium nanoparticles stabilized by Grifola frondosa polysaccharides and gallic acid conjugates. Int J Biol Macromol 2024; 278:134787. [PMID: 39153675 DOI: 10.1016/j.ijbiomac.2024.134787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Selenium nanoparticles (SeNPs) are of interest for their versatility and low toxicity, but bare SeNPs are unstable and tend to aggregate and precipitate as black elemental Se, which limits the application of SeNPs. This study evaluated the physicochemical properties, physical stability, antioxidant activities and cytotoxicity of SeNPs stabilized by Grifola frondosa polysaccharides (GFPs) and GFPs-gallic acid conjugates (GFPs-GA). The results showed that the particle size (PZ), polymer index (PDI) and zeta potential (ZP) of the GFPs-SeNPs and GFPs-GA-SeNPs were 58.72 ± 0.53 nm, 0.11, -8.36 ± 0.21 mV and 61.80 ± 0.16 nm, 0.12, -9.37 ± 0.13 mV, respectively. Besides, the GFPs-SeNPs and GFPs-GA-SeNPs remained stable when stored at 4 °C for 70 days in darkness. SeNPs stabilized with GFPs have improved the antioxidant activity and selective toxicity to tumour cells. Interestingly, SeNPs stabilized with GFPs-GA further enhanced these biological activities. This work provided a simple and effective method to construct well-dispersed SeNPs in aqueous systems, demonstrating the important roles of GFPs and GFPs-GA in the size control, dispersion and stabilization of SeNPs. The prepared GFPs-SeNPs and GFPs-GA-SeNPs can serve as good selenium supplements and have potential prospects for antioxidant activity and tumour inhibition.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Guangling College, Yangzhou University, Yangzhou 225000, China
| | - Dongming Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xia Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
6
|
Li L, Zhang W, Cao H, Fang L, Wang W, Li C, He Q, Jiao J, Zheng R. Nanozymes in Alzheimer's disease diagnostics and therapy. Biomater Sci 2024; 12:4519-4545. [PMID: 39083017 DOI: 10.1039/d4bm00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that has become an important public health problem of global concern, and the early diagnosis and etiological treatment of AD are currently the focus of research. In the course of clinical treatment, approved clinical drugs mainly serve to slow down the disease process by relieving patients' clinical symptoms. However, these drugs do not target the cause of the disease, and the lack of specificity of these drugs has led to undesirable side effects in treatment. Meanwhile, AD is mainly diagnosed by clinical symptoms and imaging, which does not have the advantage of early diagnosis. Nanozymes have been extensively investigated for the diagnosis and treatment of AD with high stability and specificity. Therefore, this review summarizes the recent advances in various nanozymes for AD diagnosis and therapy, including with peroxidase-like-activity gold nanozymes, iron nanozymes, superoxide dismutase-like- and catalase-like-activity selenium dioxide nanozymes, platinum nanozymes, and peroxidase-like palladium nanozymes, among others. A comprehensive analysis was conducted on the diagnostic and therapeutic characteristics of nanozyme therapy for AD, as well as the prospects and challenges of its clinical application. Our goal is to advance this emerging topic by building on our own work and the new insights we have learned from others. This review will assist researchers to quickly understand relevant nanozymes' therapeutic and diagnostic information and further advance the field of nanozymes in AD.
Collapse
Affiliation(s)
- Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Hengyi Cao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Leming Fang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenjing Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jianwei Jiao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
7
|
Zang Y, Zhang W, Wang P, Zhu C, Guo X, Wang W, Cheng L, Chen XL, Wang X. Bi 2Se 3/PAAS Hydrogels with Photothermal and Antioxidant Properties for Bacterial Infection Wound Therapy by Improving Vascular Function and Regulating Glycolipid Metabolism. Adv Healthc Mater 2024:e2401810. [PMID: 39180451 DOI: 10.1002/adhm.202401810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Indexed: 08/26/2024]
Abstract
Skin is the largest organ in the human body, and it is also the most important natural barrier. However, some accidents can cause skin damage. Bacterial infections and inflammatory reactions can hinder wound healing. Therefore, eliminating bacterial infections and regulating oxidative stress are essential. The use of antibiotics is no longer sufficient because of bacterial resistance. The development of new nanomaterials provides another way of thinking about bacterial drug resistance. In this study, bismuth selenide is modified with polyethylpyrrolidone to obtain a 2D nanomaterial with negligible toxicity and then added to a sodium polyacrylate hydrogel, which is nontoxic and has strong tissue adhesion and a weak antibacterial effect. To further enhance antibacterial performance, photothermal therapy is a good strategy. Under near-infrared light, Bi2Se3/PAAS shows a strong bactericidal effect. Bi2Se3/PAAS hydrogels also have certain antioxidant effects and are used to remove excess free radicals from wound infections. The effective therapeutic effect of Bi2Se3/PAAS/NIR on methicillin-resistant Staphylococcus aureus (MRSA) infection is further verified in animal models. Transcriptome analysis reveals that the Bi2Se3/PAAS hydrogel improves the function of vascular endothelial cells, regulates glucose and lipid metabolism, and promotes the healing of infected wounds.
Collapse
Affiliation(s)
- Ying Zang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Wei Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Peisan Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Can Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xueting Guo
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Wenqi Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
| | - Xianwen Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
8
|
Lei R, Liu X, Wu J. Nutrition and melanoma: the contribution of trace elements in onset, progression, and treatment of melanoma. Nutr Rev 2024; 82:1138-1149. [PMID: 37702535 DOI: 10.1093/nutrit/nuad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Melanoma is a highly malignant and drug-resistant disease that imposes a substantial economic burden on the world. There are many studies linking trace elements to diverse types of cancers, including melanoma. This review elucidates the relationship between trace elements exposure and melanoma. It was identified that copper, manganese, selenium, zinc, iron, and many other trace elements were associated with melanoma in humans. In terms of epidemiology, different elements have different correlations with melanoma. These trace elements affect the occurrence and development of melanoma through various mechanisms, such as oxidative stress and the MAPK pathway. The literature on the role of trace elements in the pathogenesis and treatment of melanoma depicts promising prospects for this field.
Collapse
Affiliation(s)
- Rui Lei
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Ma N, Li R, You S, Zhang DJ. Preparation of novel sulfated polysaccharide-carboxymethyl-5-fluorouracil-folic acid conjugates for targeted anticancer drug delivery. Int J Biol Macromol 2024; 273:133121. [PMID: 38876229 DOI: 10.1016/j.ijbiomac.2024.133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
GFP1, a sulfated polysaccharide extracted from Grateloupia filicina, exhibits remarkable immunomodulatory activity. To reduce the side effects of 5-fluorouracil (5-FU), GFP1 was employed as a macromolecular carrier to synthesize of GFP1-C-5-FU by reacting with carboxymethyl-5-fluorouracil (C-5-FU). Subsequently, this new compound was reacted with folic acid (FA) through an ester bond, forming novel conjugates named GFP1-C-5-FU-FA. Nuclear magnetic resonance analysis confirmed the formation of GFP1-C-5-FU-FA. In vitro drug release studies revealed that the cumulative release rate of C-5-FU reached 46.9 % in phosphate buffer (pH 7.4) after 96 h, a rate significantly higher than that of the control groups, indicating the controlled drug release behavior of GFP1-C-5-FU-FA. Additionally, in vitro anticancer assays demonstrated the potent anticancer activity of GFP1-C-5-FU-FA conjugates, as evidenced by the reduced viability of HeLa and AGS cancer cells, along with increased levels of apoptosis and cellular uptake. Western blot analysis indicated that the GFP1-C-5-FU-FA conjugate effectively enhanced phosphorylation in cancer cells through the NF-kB and MAPK pathways, thereby promoting apoptosis. These findings highlight the potential of folate-targeted conjugates in efficiently treating HeLa and AGS cancer cells in vitro and lay a robust theoretical groundwork for future in vivo anti-cancer research involving these cells.
Collapse
Affiliation(s)
- Nan Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Rong Li
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea; East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea.
| | - Dong-Jie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Daqing Center of Inspection and Testing for Rural Affairs Agricultural Products and Processed Products, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing 163319, China; National Coarse Cereals Engineering Research Center, Daqing 163319, China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China.
| |
Collapse
|
10
|
Zu-Man D, Yu-Long Z, Chun-Yang T, Chuang L, Jia-Qin F, Qiang H, Chun C, Li-Jun Y, Chin-Ping T, Hui N, Xiong F. Construction of blackberry polysaccharide nano-selenium particles: Structure features and regulation effects of glucose/lipid metabolism in HepG2 cells. Food Res Int 2024; 187:114428. [PMID: 38763678 DOI: 10.1016/j.foodres.2024.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
In this study, blackberry polysaccharide-selenium nanoparticles (BBP-24-3Se) were first prepared via Na2SeO3/Vc redox reaction, followed by coating with red blood cell membrane (RBC) to form core-shell structure polysaccharide-selenium nanoparticles (RBC@BBP-24-3Se). The particle size of BBP-24-3Se (167.1 nm) was increased to 239.8 nm (RBC@BBP-24-3Se) with an obvious core-shell structure after coating with RBC. FT-IR and XPS results indicated that the interaction between BBP-24-3 and SeNPs formed a new C-O···Se bond with valence state of Se0. Bioassays indicated that RBC coating markedly enhanced both the biocompatibility and bioabsorbability of RBC@BBP-24-3Se, and the absorption rate of RBC@BBP-24-3Se in HepG2 cells was 4.99 times higher than that of BBP-24-3Se at a concentration of 10 μg/mL. Compared with BBP-24-3Se, RBC@BBP-24-3Se possessed significantly heightened protective efficacy against oxidative damage and better regulation of glucose/lipid metabolism disorder induced by palmitic acid in HepG2 cells. Mechanistic studies demonstrated that RBC@BBP-24-3Se could effectively improve PI3K/AKT signaling pathway to promote glucose metabolism, inhibit the expression of lipid synthesis genes and up-regulate the expression of lipid-decomposing genes through AMPK signaling pathway to improve lipid metabolism. These results provided a theoretical basis for developing a new type of selenium supplement for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Dou Zu-Man
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhang Yu-Long
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tang Chun-Yang
- Likofu Food Co Ltd, Guangzhou Restaurant Grp, Guangzhou 511445, China
| | - Liu Chuang
- Likofu Food Co Ltd, Guangzhou Restaurant Grp, Guangzhou 511445, China
| | - Fang Jia-Qin
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huang Qiang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Chen Chun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - You Li-Jun
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tan Chin-Ping
- Univ Putra Malaysia, Fac Food Sci & Technol, Dept Food Technol, Serdang 43400, Selangor, Malaysia
| | - Niu Hui
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fu Xiong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
11
|
Si B, Yang Y, Naveed M, Wang F, Chan MWH. Characterizations of biogenic selenium nanoparticles and their anti-biofilm potential against Streptococcus mutans ATCC 25175. J Trace Elem Med Biol 2024; 84:127448. [PMID: 38626650 DOI: 10.1016/j.jtemb.2024.127448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION S. mutans has been identified as the primary pathogenic bacterium in biofilm-mediated dental caries. The biogenic selenium nanoparticles (SeNPs) produced by L. plantarum KNF-5 were used in this study against S. mutans ATCC 25175. OBJECTIVES The aims of this study were: (1) the biosynthesis of SeNPs by L. plantarum KNF-5, (2) the characterization of SeNPs, (3) the investigation of the inhibitory effect of biogenic SeNPs against S. mutans ATCC 25175, and (4) the determination of the anti-biofilm potential of SeNPS against S. mutans ATCC 25175. METHODOLOGY 3 mL of the culture was added to 100 mL of MRS medium and incubated. After 4 h, Na2SeO3 solution (concentration 100 μg/mL) was added and incubated at 37 °C for 36 h. The color of the culture solution changed from brownish-yellow to reddish, indicating the formation of SeNPs. The characterization of SeNPs was confirmed by UV-Vis spectrophotometry, FTIR, SEM-EDS and a particle size analyzer. The antibacterial activity was determined by the disk diffusion method, the MIC by the micro-double dilution method, and the biofilm inhibitory potential by the crystal violet method and the MTT assay. The effect of SeNPs on S. mutans ATCC 25175 was determined using SEM and CLSM spectrometry techniques. The sulfate-anthrone method was used to analyze the effect of SeNPs on insoluble extracellular polysaccharides. The expression of genes in S. mutans ATCC 25175 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). PREPARATION OF NANOPARTICLES SeNPs produced by probiotic bacteria are considered a safe method. In this study, L. plantarum KNF-5 (probiotic strain) was used for the production of SeNPs. RESULTS The biogenic SeNPs were spherical and coated with proteins and polysaccharides and had a diameter of about 270 nm. The MIC of the SeNPs against S. mutans ATCC 25175 was 3.125 mg/mL. Biofilm growth was also significantly suppressed at this concentration. The expression of genes responsible for biofilm formation (GtfB, GtfC, BrpA and GbpB,) was reduced when S. mutans ATCC 25175 was treated with SeNPs. CONCLUSION It was concluded that the biogenic SeNPs produced by L. plantarum KNF-5 was highly effective to inhibit the growth of S. mutans ATCC 25175. NOVELTY STATEMENT The application of biogenic SeNPs, a natural anti-biofilm agent against S. mutans ATCC 25175. In the future, this study will provide a new option for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Binbin Si
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Muhammad Naveed
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Malik Wajid Hussain Chan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
12
|
Kaur R, Singh K, Agarwal S, Masih M, Chauhan A, Gautam PK. Silver nanoparticles induces apoptosis of cancer stem cells in head and neck cancer. Toxicol Rep 2024; 12:10-17. [PMID: 38173651 PMCID: PMC10758978 DOI: 10.1016/j.toxrep.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Background Several nano formulations of silver nanoparticles with bioconjugates, herbal extracts and anti-cancerous drug coating have been vividly studied to target cancer. Despite of such extensive studies, AgNPs (silver nanoparticles) have not reached the stage of clinical use. Out of all possible reasons for this failure, the unexplored effect on Cancer Stem Cell (CSC) population and mechanism of action of AgNPs, are the most plausible ones and are worked upon in this study. Methods AgNPs were synthesized by chemical reduction method using sodium citrate and characterized by UV, FTIR, XRD and electron microscopy. CSC population was isolated from Cal33 cell line by MACS technique. MTT assay, trypan blue exclusion assay, Annexin V and PI based apoptosis assay and cell cycle assay were performed. Results The results showed that synthesized AgNPs have cytotoxic activity on all cancer cell lines tested with the IC50 value of a wide range (1.5-49.21 µg/ml for cell lines and 0.0643-0.1211 µg/ml for splenocytes and thymocytes). CSCs Cal33 showed higher resistance to AgNP treatment and arrest in G1/G0 phase upon cell cycle analysis. Conclusion AgNPs as an anti-cancer agent although have great potential but is limited by its off-target effects on normal cells and less effective on cancer stem cells at lower concentrations.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Khushwant Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sonam Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Marilyn Masih
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anita Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pramod Kumar Gautam
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
13
|
Sarkar S, Kiren S, Gmeiner WH. Review of Prodrug and Nanodelivery Strategies to Improve the Treatment of Colorectal Cancer with Fluoropyrimidine Drugs. Pharmaceutics 2024; 16:734. [PMID: 38931855 PMCID: PMC11206923 DOI: 10.3390/pharmaceutics16060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Fluoropyrimidine (FP) drugs are central components of combination chemotherapy regimens for the treatment of colorectal cancer (CRC). FP-based chemotherapy has improved survival outcomes over the last several decades with much of the therapeutic benefit derived from the optimization of dose and delivery. To provide further advances in therapeutic efficacy, next-generation prodrugs and nanodelivery systems for FPs are being developed. This review focuses on recent innovative nanodelivery approaches for FP drugs that display therapeutic promise. We summarize established, clinically useful FP prodrug strategies, including capecitabine, which exploit tumor-specific enzyme expression for optimal anticancer activity. We then describe the use of FP DNA-based polymers (e.g., CF10) for the delivery of activated FP nucleotides as a nanodelivery approach with proven activity in pre-clinical models and with clinical potential. Multiple nanodelivery systems for FP delivery show promise in CRC pre-clinical models and we review advances in albumin-mediated FP delivery, the development of mesoporous silica nanoparticles, emulsion-based nanoparticles, metal nanoparticles, hydrogel-based delivery, and liposomes and lipid nanoparticles that display particular promise for therapeutic development. Nanodelivery of FPs is anticipated to impact CRC treatment in the coming years and to improve survival for cancer patients.
Collapse
Affiliation(s)
- Santu Sarkar
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| | - Sezgin Kiren
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA;
| | - William H. Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| |
Collapse
|
14
|
Adam-Dima EI, Balas M, Anastasescu M, Purdel C, Margină D. Synthesis of homogeneous spherical selenium nanoparticles through a chemical method for cancer therapy applications. Toxicol In Vitro 2024; 95:105765. [PMID: 38103703 DOI: 10.1016/j.tiv.2023.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Oxidative stress is associated with pathologies affecting various organs or metabolic pathways. Thus, targeting oxidative stress might represent a valid therapeutic option. Selenium nanoparticles (SeNPs) are reported to exert antioxidant effects by many mechanisms. Our purpose was to assess in vitro on normal (MRC-5) and cancer (PANC-1) cell lines the potential of SeNPs for inducing cytotoxicity and redox modulation. They were synthesized through a chemogenic method and characterized through advanced microscopy techniques. SeNPs were spherical, with 100 nm average diameters and low dimension variability. Cancer and normal cells were exposed for 24 h to different concentrations of SeNPs ranging from 1 to 25 μg/mL. According to the LDH and MTT assay results, SeNPs treatment caused a more pronounced decrease in cancer cell viability compared to normal cells, suggesting a possible therapeutic benefit on tumors, thus supporting the hypothesis of therapeutic use of SeNPs with the benefit of cell type selectivity. Neither an elevation nor an inhibition of intracellular ROS production was detected in MRC-5 cells exposed to concentrations between 1 and 25 μg/mL SeNPs. The results of this study suggest that SeNPs could represent potential candidate for treatment of cancer, especially pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- E I Adam-Dima
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania.
| | - M Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - M Anastasescu
- "Ilie Murgulescu" Institute of Physical-Chemistry, Romanian Academy, Splaiul Independentei no. 202, 060021 Bucharest, Romania
| | - C Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania.
| | - D Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 6 Traian Vuia Str., 020956 Bucharest, Romania.
| |
Collapse
|
15
|
Haji Mehdi Nouri Z, Tafvizi F, Amini K, Khandandezfully N, Kheirkhah B. Enhanced Induction of Apoptosis and Cell Cycle Arrest in MCF-7 Breast Cancer and HT-29 Colon Cancer Cell Lines via Low-Dose Biosynthesis of Selenium Nanoparticles Utilizing Lactobacillus casei. Biol Trace Elem Res 2024; 202:1288-1304. [PMID: 37392361 DOI: 10.1007/s12011-023-03738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV-vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 μg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.
Collapse
Affiliation(s)
- Zahra Haji Mehdi Nouri
- Department of Cellular and Molecular Biology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Kumarss Amini
- Department of Microbiology, School of Basic Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Nooshin Khandandezfully
- Faculty Member, Department of Microbiology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Babak Kheirkhah
- Department of Microbiology, Faculty of Veterinary Medicine, Baft Branch, Islamic Azad University, Baft, Iran
| |
Collapse
|
16
|
Zhang X, Xiao Y, Huang Q. Investigation of cellular uptake and transport capacity of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles with different particle sizes in Caco-2 cell monolayer. Int J Biol Macromol 2024; 262:130060. [PMID: 38340938 DOI: 10.1016/j.ijbiomac.2024.130060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Cordyceps sinensis exopolysaccharide‑selenium nanoparticles (EPS-SeNPs) were successfully constructed, characterized, and its Se release kinetics and mechanism were also evaluated in our previous studies. However, the intestinal cellular uptake and transport capacities of EPS-SeNPs remain unknown. On the basis of our previous researches, this work was designed to evaluate the uptake and transport capacities of EPS-SeNPs (EPS/Se = 20/1, 3/1, 1/1, and 3/4) in intestinal epithelial (Caco-2) cells. Confocal laser scanning microscopy results indicated that the internalization of coumarin-6 labeled EPS-SeNPs was in a time-dependent process and eventually located in the cytoplasm, not in the nucleus. Endocytosis inhibitors were employed to evaluate the cellular uptake pathway of EPS-SeNPs, relevant results revealed that clathrin-, caveolae-, and energy-mediated pathways were participated in the internalization of EPS-SeNPs by Caco-2 cells. In addition, the transportation of EPS-SeNPs across Caco-2 cell monolayers was in a concentration-dependent manner. Different particle sizes of EPS-SeNPs presented different uptake and transport capacities in Caco-2 cells. Noteworthy, EPS/Se = 3/4 with the highest selenium content possessed the most superior cellular uptake and transport abilities in Caco-2 cells. The present work may contribute to illustrate the internalization and transport mechanism of EPS-SeNPs, thus facilitating its application in food and medical industries.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Xiao
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Qilin Huang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Sampath S, Sunderam V, Manjusha M, Dlamini Z, Lawrance AV. Selenium Nanoparticles: A Comprehensive Examination of Synthesis Techniques and Their Diverse Applications in Medical Research and Toxicology Studies. Molecules 2024; 29:801. [PMID: 38398553 PMCID: PMC10893520 DOI: 10.3390/molecules29040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 02/25/2024] Open
Abstract
Selenium is a trace and necessary micronutrient for human, animal, and microbial health. Many researchers have recently been interested in selenium nanoparticles (SeNPs) due to their biocompatibility, bioavailability, and low toxicity. As a result of their greater bioactivity, selenium nanoparticles are widely employed in a variety of biological applications. Physical, chemical, and biological approaches can all be used to synthesize selenium nanoparticles. Since it uses non-toxic solvents and operates at a suitable temperature, the biological technique is a preferable option. This review article addresses the processes implemented in the synthesis of SeNPs and highlights their medicinal uses, such as the treatment of fungi, bacteria, cancer, and wounds. Furthermore, we discuss the most recent findings on the potential of several biological materials for selenium nanoparticle production. The precursor, extract, process, time, temperature, and other synthesis criteria will be elaborated in conjunction with the product's physical properties (size, shape, and stability). The synergies of SeNP synthesis via various methods aid future researchers in precisely synthesizing SeNPs and using them in desired applications.
Collapse
Affiliation(s)
- Shobana Sampath
- Department of Biotechnology, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India
| | - Veena Sunderam
- Centre for Nano Science and Technology, A.C. Tech Campus, Anna University, Chennai 600025, India
| | - M Manjusha
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur 603203, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Ansel Vishal Lawrance
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Affiliated to Anna University, Chennai 600123, India
| |
Collapse
|
18
|
Vale N, Ribeiro E, Cruz I, Stulberg V, Koksch B, Costa B. New Perspective for Using Antimicrobial and Cell-Penetrating Peptides to Increase Efficacy of Antineoplastic 5-FU in Cancer Cells. J Funct Biomater 2023; 14:565. [PMID: 38132819 PMCID: PMC10744333 DOI: 10.3390/jfb14120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study explores the effectiveness of the antineoplastic agent 5-FU in cancer cells by leveraging the unique properties of cationic antimicrobial peptides (CAMPs) and cell-penetrating peptides (CPPs). Traditional anticancer therapies face substantial limitations, including unfavorable pharmacokinetic profiles and inadequate specificity for tumor sites. These drawbacks often necessitate higher therapeutic agent doses, leading to severe toxicity in normal cells and adverse side effects. Peptides have emerged as promising carriers for targeted drug delivery, with their ability to selectively deliver therapeutics to cells expressing specific receptors. This enhances intracellular drug delivery, minimizes drug resistance, and reduces toxicity. In this research, we comprehensively evaluate the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of various AMPs and CPPs to gain insights into their potential as anticancer agents. The peptide synthesis involved a solid-phase synthesis using a Liberty Microwave Peptide Synthesizer. The peptide purity was confirmed via LC-MS and HPLC methods. For the ADMET screening, computational tools were employed, assessing parameters like absorption, distribution, metabolism, excretion, and toxicity. The cell lines A549 and UM-UC-5 were cultured and treated with 5-FU, CAMPs, and CPPs. The cell viability was measured using the MTT assay. The physicochemical properties analysis revealed favorable drug-likeness attributes. The peptides exhibited potential inhibitory activity against CYP3A4. The ADMET predictions indicated variable absorption and distribution characteristics. Furthermore, we assessed the effectiveness of these peptides alone and in combination with 5-FU, a widely used antineoplastic agent, in two distinct cancer cell lines, UM-UC-5 and A549. Our findings indicate that CAMPs can significantly reduce the cell viability in A549 cells, while CPPs exhibit promising results in UM-UC-5 cells. Understanding these multifaceted effects could open new avenues for antiviral and anticancer research. Further, experimental validation is necessary to confirm the mechanism of action of these peptides, especially in combination with 5-FU.
Collapse
Affiliation(s)
- Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Eduarda Ribeiro
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Inês Cruz
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Valentina Stulberg
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany; (V.S.); (B.K.)
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany; (V.S.); (B.K.)
| | - Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (I.C.); (B.C.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
19
|
Shen L, Liao K, Yang E, Yang F, Lin W, Wang J, Fan S, Huang X, Chen L, Shen H, Jin H, Ruan Y, Liu X, Zeng G, Xu JF, Pi J. Macrophage targeted iron oxide nanodecoys augment innate immunological and drug killings for more effective Mycobacterium Tuberculosis clearance. J Nanobiotechnology 2023; 21:369. [PMID: 37817142 PMCID: PMC10563239 DOI: 10.1186/s12951-023-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is still one of the top killers worldwide among infectious diseases. The escape of Mtb from immunological clearance and the low targeting effects of anti-TB drugs remain the substantial challenges for TB control. Iron is particularly required for Mtb growth but also toxic for Mtb in high dosages, which makes iron an ideal toxic decoy for the 'iron-tropic' Mtb. Here, a macrophage-targeted iron oxide nanoparticles (IONPs)-derived IONPs-PAA-PEG-MAN nanodecoy is designed to augment innate immunological and drug killings against intracellular Mtb. IONPs-PAA-PEG-MAN nanodecoy exhibits preferential uptake in macrophages to significantly increase drug uptake with sustained high drug contents in host cells. Moreover, it can serve as a specific nanodecoy for the 'iron-tropic' Mtb to realize the localization of Mtb contained phagosomes surrounding the drug encapsulated nanodecoys and co-localization of Mtb with the drug encapsulated nanodecoys in lysosomes, where the incorporated rifampicin (Rif) can be readily released under acidic lysosomal condition for enhanced Mtb killing. This drug encapsulated nanodecoy can also polarize Mtb infected macrophages into anti-mycobacterial M1 phenotype and enhance M1 macrophage associated pro-inflammatory cytokine (TNF-α) production to trigger innate immunological responses against Mtb. Collectively, Rif@IONPs-PAA-PEG-MAN nanodecoy can synergistically enhance the killing efficiency of intracellular Mtb in in vitro macrophages and ex vivo monocyte-derived macrophages, and also significantly reduce the mycobacterial burdens in the lung of infected mice with alleviated pathology. These results indicate that Rif@IONPs-PAA-PEG-MAN nanodecoy may have a potential for the development of more effective therapeutic strategy against TB by manipulating augmented innate immunity and drug killings.
Collapse
Affiliation(s)
- Ling Shen
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, The Marine Biomedical Research Institute of Guangdong Medical University, ZhanJiang, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Enzhuo Yang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, The Marine Biomedical Research Institute of Guangdong Medical University, ZhanJiang, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xueqin Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lingming Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, The Marine Biomedical Research Institute of Guangdong Medical University, ZhanJiang, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, The Marine Biomedical Research Institute of Guangdong Medical University, ZhanJiang, Guangdong, China.
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
20
|
Vishakha V, Abdel-Mohsen AM, Michalicka J, White PB, Lepcio P, Tinoco Navarro LK, Jančář J. Carboxymethyl starch as a reducing and capping agent in the hydrothermal synthesis of selenium nanostructures for use with three-dimensional-printed hydrogel carriers. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230829. [PMID: 37830030 PMCID: PMC10565383 DOI: 10.1098/rsos.230829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The hydrothermal method is a cost-effective and eco-friendly route for preparing various nanomaterials. It can use a capping agent, such as a polysaccharide, to govern and define the nanoparticle morphology. Elemental selenium nanostructures (spheres and rods) were synthesized and stabilized using a tailor-made carboxymethyl starch (CMS, degree of substitution = 0.3) under hydrothermal conditions. CMS is particularly convenient because it acts simultaneously as the capping and reducing agent, as verified by several analytical techniques, while the reaction relies entirely on green solvents. Furthermore, the effect of sodium selenite concentration, reaction time and temperature on the nanoparticle size, morphology, microstructure and chemical composition was investigated to identify the ideal synthesis conditions. A pilot experiment demonstrated the feasibility of implementing the synthesized nanoparticles into vat photopolymerization three-dimensional-printed hydrogel carriers based on 2-hydroxyethyl methacrylate (HEMA). When submersed into the water, the subsequent particle release was confirmed by dynamic light scattering (DLS), promising great potential for use in bio-three-dimensional printing and other biomedical applications.
Collapse
Affiliation(s)
- Vishakha Vishakha
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, Czech Republic
| | - A. M. Abdel-Mohsen
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, Czech Republic
- Czech Academy of Sciences, Institute of Macromolecular Chemistry Heyrovského nám. 2, Praha 16206, Czech Republic
| | - Jan Michalicka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, Czech Republic
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500, GL, Nijmegen, The Netherlands
| | - Petr Lepcio
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, Czech Republic
| | | | - Josef Jančář
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, Czech Republic
| |
Collapse
|
21
|
Zhang X, Xiao Y, Huang Q. The cellular uptake of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles and their induced apoptosis of HepG2 cells via mitochondria- and death receptor-mediated pathways. Int J Biol Macromol 2023; 247:125747. [PMID: 37429344 DOI: 10.1016/j.ijbiomac.2023.125747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
This wok investigated the effects of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles (EPS-SeNPs), EPS-Se-1, EPS-Se-2, EPS-Se-3, and EPS-Se-4) with particle sizes (79-124 nm) and Se contents (20.11-40.80 μg/mg) on endocytosis and antitumor activity against human hepatocellular carcinoma (HepG2) cells and revealed the apoptosis-related mechanisms. EPS-SeNPs inhibited HepG2 cells proliferation in a dose and Se content-dependent manner by disrupting cell membrane and mitochondrial integrity, promoting reactive oxygen species production. EPS-SeNPs were endocytosed by HepG2 cells through a clathrin-mediated pathway and followed the quasi-first-order kinetics model, indicating physical adsorption played a dominant role in cellular uptake behavior of EPS-SeNPs. Notably, EPS-Se-3 with the lowest particle size (79 nm) showed the highest antitumor activity and the strongest ability to promote cell apoptosis. Western blotting results revealed that EPS-Se-3 increased expressions of Bax, Cytochrome c, cleaved caspase-9, cleaved caspase-3, Fas, p53, and cleaved caspase-8, while decreased the expressions of Bcl-2 and PARP, as contrast to that of control. Overall, EPS-SeNPs induced cell apoptosis through intrinsic mitochondria-mediated and extrinsic death receptor-mediated pathways.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Xiao
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Qilin Huang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
22
|
Wang H, Qin T, Wang W, Zhou X, Lin F, Liang G, Yang Z, Chi Z, Tang BZ. Selenium-Containing Type-I Organic Photosensitizers with Dual Reactive Oxygen Species of Superoxide and Hydroxyl Radicals as Switch-Hitter for Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301902. [PMID: 37357144 PMCID: PMC10460872 DOI: 10.1002/advs.202301902] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Indexed: 06/27/2023]
Abstract
Organic type-I photosensitizers (PSs) which produce aggressive reactive oxygen species (ROS) with less oxygen-dependent exhibit attractive curative effect for photodynamic therapy (PDT), as they adapt better to hypoxia microenvironment in tumors. However, the reported type-I PSs are limited and its exacted mechanism of oxygen dependence is still unclear. Herein, new selenium-containing type-I PSs of Se6 and Se5 with benzoselenadiazole acceptor has been designed and possessed aggregation-induced emission characteristic. Benefited from double heavy-atom-effect of selenium and bromine, Se6 shows a smaller energy gap (ΔEST ) of 0.03 eV and improves ROS efficiency. Interestingly, type-I radicals of both long-lived superoxide anion (O2 •‾ ) and short-lived hydroxyl (• OH) are generated from them upon irradiation. This may provide a switch-hitter of dual-radical with complementary lifetimes for PDT. More importantly, simultaneous processes to produce • OH are revealed, including disproportionation of O2 •‾ and reaction between excited PS and water. Actually, Se6 displays superior in-vitro PDT performance to commercial chlorin e6 (Ce6), under normoxia or hypoxia. After intravenous injection, a significantly in-vivo PDT performance is demonstrated on Se6, where tumor growth inhibition rates of 99% is higher than Ce6. These findings offer new insights about both molecular design and mechanism study of type-I PSs.
Collapse
Affiliation(s)
- Haiyang Wang
- PCFM labGuangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional FilmsSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Tian Qin
- PCFM labGuangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional FilmsSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Wen Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Xie Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Faxu Lin
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Guodong Liang
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Zhiyong Yang
- PCFM labGuangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional FilmsSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Zhenguo Chi
- PCFM labGuangdong Engineering Technology Research Center for High‐performance Organic and Polymer Photoelectric Functional FilmsSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Ben Zhong Tang
- School of Science and EngineeringShenzhen Institute of Molecular Aggregate Science and Engineeringthe Chinese University of Hong KongShenzhenGuangdong518172P. R. China
| |
Collapse
|
23
|
Serov DA, Khabatova VV, Vodeneev V, Li R, Gudkov SV. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5363. [PMID: 37570068 PMCID: PMC10420033 DOI: 10.3390/ma16155363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The resistance of microorganisms to antimicrobial drugs is an important problem worldwide. To solve this problem, active searches for antimicrobial components, approaches and therapies are being carried out. Selenium nanoparticles have high potential for antimicrobial activity. The relevance of their application is indisputable, which can be noted due to the significant increase in publications on the topic over the past decade. This review of research publications aims to provide the reader with up-to-date information on the antimicrobial properties of selenium nanoparticles, including susceptible microorganisms, the mechanisms of action of nanoparticles on bacteria and the effect of nanoparticle properties on their antimicrobial activity. This review describes the most complete information on the antiviral, antibacterial and antifungal effects of selenium nanoparticles.
Collapse
Affiliation(s)
- Dmitry A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Vladimir Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| |
Collapse
|
24
|
Goltyaev MV, Varlamova EG. The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various Natures. Int J Mol Sci 2023; 24:10547. [PMID: 37445723 DOI: 10.3390/ijms241310547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is the body's largest gland, and regulates a wide variety of physiological processes. The work of the liver can be disrupted in a variety of pathologies, the number of which is several hundred. It is extremely important to monitor the health of the liver and develop approaches to combat liver diseases. In recent decades, nanomedicine has become increasingly popular in the treatment of various liver pathologies, in which nanosized biomaterials, which are inorganic, polymeric, liposomal, albumin, and other nanoparticles, play an important role. Given the need to develop environmentally safe, inexpensive, simple, and high-performance biomedical agents for theragnostic purposes and showing few side effects, special attention is being paid to nanoparticles based on the important trace element selenium (Se). It is known that the metabolism of the microelement Se occurs in the liver, and its deficiency leads to the development of several serious diseases in this organ. In addition, the liver is the depot for most selenoproteins, which can reduce oxidative stress, inhibit tumor growth, and prevent other liver damage. This review is devoted to the description of the results of recent years, revealing the important role of selenium nanoparticles in the therapy and diagnosis of several liver pathologies, depending on the dose and physicochemical properties. The possibilities of selenium nanoparticles in the treatment of liver diseases, disclosed in the review, will not only reveal the advantages of their hepatoprotective properties but also significantly supplement the data on the role of the trace element selenium in the regulation of these diseases.
Collapse
Affiliation(s)
- Michael V Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|
25
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
26
|
Purohit MP, Kar AK, Kumari M, Ghosh D, Patnaik S. Heparin Biofunctionalized Selenium Nanoparticles as Potential Antiangiogenic-Chemotherapeutic Agents for Targeted Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19904-19920. [PMID: 37046174 DOI: 10.1021/acsami.3c00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combining antiangiogenic and chemotherapeutic agents has shown promising clinical benefits in cancer cures when the therapeutic intervention takes into account the tissue and molecular targets. Moreover, the risk of induced drug resistance is minimized when multiple pathways are involved in the treatment regimen, yielding a better therapeutic outcome. Nanodrug delivery systems have proven to be a prudent approach to treating complex disease pathologies. As such, combining antiangiogenic and chemotherapeutic drugs within multimodal nanocarriers synergistically augments the clinical efficiency of the drugs. This study reports the combinatorial efficacy of heparin (Hep), selenium NPs (SeNPs), and doxorubicin (Dox) to inhibit tumor growth and progression. Both Se@Hep-NPs and Se@Hep-Dox-NPs with excellent water dispersity having a size and charge in the range of 250 ± 5 and 253 ± 5 nm and -53 ± 0.4 and -48.4 ± 6.4 mV, respectively, showed strong anticancer potential assessed through in vitro assays like cell viability, specificity, colony formation, and wound scratch in MCF7 cells. Strong synergistic interactions among SeNPs, Hep, and Dox in Se@Hep-Dox-NPs render it to be an antiangiogenic and proapoptotic cancer cell death inducers. In vivo imaging highlights the dual-mode attributes of Se@Hep-NPs with desirable passive tumor targeting and biomedical imaging ability when tagged with Cy7.5, while Se@Hep-Dox-NPs significantly reduce the tumor burden and prolong the longevity of subcutaneous EAC-bearing mice. Histopathology studies reveal no signs of toxicity in major organs. Collectively, these results qualify Se@Hep-Dox-NPs as a plausible clinical therapeutic candidate.
Collapse
Affiliation(s)
- Mahaveer P Purohit
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Aditya K Kar
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Manisha Kumari
- Nucleic Acid Research Lab, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debabrata Ghosh
- Immunotoxicology laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Luck now, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
27
|
Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, Qiao L, He Y, Han J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact 2023; 378:110483. [PMID: 37044285 DOI: 10.1016/j.cbi.2023.110483] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ahmed Sameir Mohamed Ali
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Angelo Viscardi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ziwei Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Lichun Qiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yujie He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
28
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
29
|
Synthesis, characterization, and anticancer activity of protamine sulfate stabilized selenium nanoparticles. Food Res Int 2023; 164:112435. [PMID: 36738002 DOI: 10.1016/j.foodres.2022.112435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Selenium nanoparticles (SeNPs) have attracted much recent interest as nutraceuticals, while they face great challenges, such as poor stability and low cellular uptake efficiency. This study introduced a facile approach to synthesizing protamine sulfate (PS) functionalized selenium nanoparticles (PS-SeNPs) by using PS as a surface decorator. The monodisperse spherical PS-SeNPs with a particle size of 130 nm and a ζ-potential of +31 mV were ligated with PS through Se-N, Se-O bonds, and physical adsorption, which exhibits excellent physical stability against pH, temperature, and storage time. The positive surface charge of PS-SeNPs contributed to the enhancement of cellular uptake efficiency by endocytosis, which was 3-times higher than bare SeNPs. Compared to SeNPs (IC50 = 17.675 μg/mL), PS-SeNPs could dramatically inhibit the proliferation of HepG2 cells with an IC50 value of 5.507 μg/mL, as reflected by the induction of apoptosis, S phase arresting, overproduction of intracellular ROS, and depolarization of mitochondria membrane. Overall, these results demonstrated the great potential of PS-SeNPs that can be applied as a functional ingredient in foods and nutraceuticals.
Collapse
|
30
|
Cheng H, Wang C, Lyu Z, Zhu Z, Xia Y. Controlling the Nucleation and Growth of Au on a-Se Nanospheres to Enhance Their Cellular Uptake and Cytotoxicity. J Am Chem Soc 2023; 145:1216-1226. [PMID: 36621988 DOI: 10.1021/jacs.2c11053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report a method to experimentally control the heterogeneous nucleation and growth of Au nanoparticles on the surface of amorphous Se (a-Se) nanospheres. When a AuIII precursor is added into a colloidal suspension of a-Se nanospheres, galvanic replacement occurs between them and the resultant Au0 atoms then heterogeneously nucleate and grow from the surface of the a-Se nanospheres. As a unique feature of this system, the Au0 atoms can only be produced on the surface of the a-Se nanospheres in the nucleation stage. Once Au nuclei are formed on the surface at the very beginning of a synthesis, they will serve as the preferential sites for further deposition of Au0 atoms, making it possible to control the number of Au nanoparticles on each nanosphere and the morphology of the final product. The dependence of the initial reduction rate on the pH can be used to obtain Se-Au hybrid nanoparticles containing one, two, three, and multiple Au nanoparticles on the surface of each a-Se nanosphere. The presence of Au patches on the hybrid nanoparticles offers an experimental handle to optimize the ligand distribution for the achievement of enhanced cellular uptake and cytotoxicity for the a-Se nanospheres.
Collapse
Affiliation(s)
- Haoyan Cheng
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia30332, United States.,School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang471023, China.,Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan430079, China
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Zhihong Zhu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan430079, China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia30332, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
31
|
Wang H, Xu MZ, Liang XY, Nag A, Zeng QZ, Yuan Y. Fabrication of food grade zein-dispersed selenium dual-nanoparticles with controllable size, cell friendliness and oral bioavailability. Food Chem 2023; 398:133878. [DOI: 10.1016/j.foodchem.2022.133878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
|
32
|
Pavithra ME, Jayaraman R, Azarudeen RS, Thirumarimurugan M. Casting hydrophilic polymers blended polycaprolactone membranes for drug delivery to eradicate the cancer cells and pathogenic microorganisms. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Raja S. Azarudeen
- Department of Chemical Engineering Coimbatore Institute of Technology Coimbatore India
- Department of Chemistry Coimbatore Institute of Technology Coimbatore India
| | | |
Collapse
|
33
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
34
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Gao F, Liu H, Han H, Wang X, Qu L, Liu C, Tian X, Hou R. Ameliorative effect of Berberidis radix polysaccharide selenium nanoparticles against carbon tetrachloride induced oxidative stress and inflammation. Front Pharmacol 2022; 13:1058480. [PMID: 36438830 PMCID: PMC9682150 DOI: 10.3389/fphar.2022.1058480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 10/03/2023] Open
Abstract
Berberidis radix polysaccharide (BRP) extracted as capping agents was applied to prepare BRP-selenium nanoparticles (BRP-SeNPs) in the redox reaction system of sodium selenite and ascorbic acid. The stability and characterization of BRP-SeNPs were investigated by physical analysis method. The results revealed that BRP were tightly wrapped on the surface of SeNPs by forming C-O⋯Se bonds or hydrogen bonding interaction (O-H⋯Se). BRP-SeNPs presented irregular, fragmented and smooth surface morphology and polycrystalline nanoring structure, and its particle size was 89.4 nm in the optimal preparation condition. The pharmacologic functions of BRP-SeNPs were explored in vitro and in vivo. The results showed that BRP-SeNPs could heighten the cell viabilities and the enzyme activity of GSH-Px and decrease the content of MDA on H2O2-induced AML-12 cells injury model. In vivo tests, the results displayed that BRP-SeNPs could increase the body weight of mice, promote the enzyme activity like SOD and GSH-Px, decrease the liver organ index and the hepatic function index such as ALT, AST, CYP2E1, reduce the content of MDA, and relieve the proinflammation factors of NO, IL-1β and TNF-α in CCl4-induced mice injury model. Liver tissue histopathological studies corroborated the improvement of BRP-SeNPs on liver of CCl4-induced mice. The results of Western blot showed that BRP-SeNPs could attenuate oxidant stress by the Nrf2/Keap1/MKP1/JNK pathways, and downregulate the proinflammatory factors by TLR4/MAPK pathway. These findings suggested that BRP-SeNPs possess the hepatoprotection and have the potential to be a green liver-protecting and auxiliary liver inflammation drugs.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Huimin Liu
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hao Han
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lihua Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Congmin Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Xuemei Tian
- Shandong Provincial Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Ranran Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
36
|
Wang R, Ha KY, Dhandapani S, Kim YJ. Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway. J Nanobiotechnology 2022; 20:441. [PMID: 36209164 PMCID: PMC9548198 DOI: 10.1186/s12951-022-01576-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Despite being a promising strategy, current chemotherapy for gastric cancer (GC) is limited due to adverse side effects and poor survival rates. Therefore, new drug-delivery platforms with good biocompatibility are needed. Recent studies have shown that nanoparticle-based drug delivery can be safe, eco-friendly, and nontoxic making them attractive candidates. Here, we develop a novel selenium-nanoparticle based drug-delivery agent for cancer treatment from plant extracts and selenium salts. RESULTS Selenium cations were reduced to selenium nanoparticles using Kaempferia parviflora (black ginger) root extract and named KP-SeNP. Transmission electron microscopy, selected area electron diffraction, X-ray diffraction, energy dispersive X-ray, dynamic light scattering, and Fourier-transform infrared spectrum were utilized to confirm the physicochemical features of the nanoparticles. The KP-SeNPs showed significant cytotoxicity in human gastric adenocarcinoma cell (AGS cells) but not in normal cells. We determined that the intracellular signaling pathway mechanisms associated with the anticancer effects of KP-SeNPs involve the upregulation of intrinsic apoptotic signaling markers, such as B-cell lymphoma 2, Bcl-associated X protein, and caspase 3 in AGS cells. KP-SeNPs also caused autophagy of AGS by increasing the autophagic flux-marker protein, LC3B-II, whilst inhibiting autophagic cargo protein, p62. Additionally, phosphorylation of PI3K/Akt/mTOR pathway markers and downstream targets was decreased in KP-SeNP-treated AGS cells. AGS-cell xenograft model results further validated our in vitro findings, showing that KP-SeNPs are biologically safe and exert anticancer effects via autophagy and apoptosis. CONCLUSIONS These results show that KP-SeNPs treatment of AGS cells induces apoptosis and autophagic cell death through the PI3K/Akt/mTOR pathway, suppressing GC progression. Thus, our research strongly suggests that KP-SeNPs could act as a novel potential therapeutic agent for GC.
Collapse
Affiliation(s)
- Rongbo Wang
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Keum-Yun Ha
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Sanjeevram Dhandapani
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, 17104, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
37
|
Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants (Basel) 2022; 11:antiox11101965. [PMID: 36290687 PMCID: PMC9598587 DOI: 10.3390/antiox11101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
As an essential micronutrient, selenium participates in numerous life processes and plays a key role in human health. In the past decade, selenium nanoparticles (SeNPs) have attracted great attention due to their excellent functionality for potential applications in pharmaceuticals. However, the utilization of SeNPs has been restricted by their instability and low targeting ability. Since the existing reviews mainly focused on the applications of SeNPs, this review highlights the synthesis of SeNPs and the strategies to improve their stability and targeting ability through surface functionalization. In addition, the utilization of functionalized SeNPs for the single and co-delivery of drugs or genes to achieve the combination of therapy are also presented, with the emphasis on the potential mechanism. The current challenges and prospects of functionalized SeNPs are also summarized. This review may provide valuable information for the design of novel functionalized SeNPs and promote their future application in cancer therapy.
Collapse
|
38
|
Wang H, Li ZZ, Liang XY, Jiang WY, Yang XQ, Zeng QZ, Yuan Y. A novel zein-selenium complex nanoparticle with controllable size: quantitative design, physical properties and cytotoxicity in vitro. Food Chem 2022; 402:134470. [DOI: 10.1016/j.foodchem.2022.134470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022]
|
39
|
Zhu M, Niu Q, Zhang J, Yu Y, Wang H, Zhu T, Wang G, Yang L, Yin Y, Li P. Amorphous selenium nanodots alleviate non-alcoholic fatty liver disease via activating VEGF receptor 1 to further inhibit phosphorylation of JNK/p38 MAPK pathways. Eur J Pharmacol 2022; 932:175235. [PMID: 36049560 DOI: 10.1016/j.ejphar.2022.175235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022]
Abstract
In clinic, there is still no unified standard for the treatment of non-alcoholic fatty liver disease (NAFLD), and the development of effective novel drugs to alleviate NAFLD remains a challenge. This study aimed to explore the effect and mechanism of amorphous selenium nanodots (A SeNDs) in alleviating NAFLD. Model rats with NAFLD were induced by the high-fat diet (HFD). Histomorphology was used to observe liver tissue, automatic biochemical analyzer was used to analyze liver function indicators, and ELISA kit was used to detect the effect of A SeNDs on oxidative stress and inflammatory factors in NAFLD rats. The results exhibited that A SeNDs could reduce hepatocyte steatosis, liver index, blood lipid level, and transaminase level in NAFLD rats. Furthermore, A SeNDs could relieve the oxidative stress and inflammatory reaction and maintain liver tissue structure in NAFLD rats. Mechanistically, A SeNDs (0.3 mg/kg/day) inhibit the phosphorylation of JNK/p38 MAPK pathways after activating vascular endothelial growth factor receptor 1 (VEGFR1) in the liver of rats with NAFLD to allay oxidative stress and inflammatory response and improves hepatic structure and liver function. Therefore, it should be an important method to mitigate NAFLD by supplementing A SeNDs to normalize hepatic structure and liver function.
Collapse
Affiliation(s)
- Moli Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, China
| | - Qianqian Niu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China
| | - Jie Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China
| | - Yanan Yu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China
| | - Huanhuan Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China
| | - Tiantian Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ge Wang
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, China.
| | - Yaling Yin
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Peng Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
40
|
Li H, Wang Y, Chen Y, Wang S, Zhao Y, Sun J. Arabinogalactan from Ixeris chinensis (Thunb.) Nakai as a stabilizer to decorate SeNPs and enhance their anti-hepatocellular carcinoma activity via the mitochondrial pathway. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yan Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Shuxin Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
41
|
A Review on Biogenic Synthesis of Selenium Nanoparticles and Its Biological Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02366-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Associations between Maternal Selenium Status and Cord Serum Vitamin D Levels: A Birth Cohort Study in Wuhan, China. Nutrients 2022; 14:nu14091715. [PMID: 35565683 PMCID: PMC9104068 DOI: 10.3390/nu14091715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Serum selenium (Se) has been reported to be associated with serum 25-hydroxyvitamin D [25(OH)D], but epidemiological findings are limited in pregnant women. We aimed to assess the associations between maternal urinary Se concentrations and cord serum 25(OH)D levels. We measured urinary concentrations of Se in the first, second, and third trimesters and cord serum 25(OH)D of 1695 mother-infant pairs from a prospective cohort study in Wuhan, China. The results showed that each doubling of urinary Se concentrations in the first, second, third trimester, and whole pregnancy (average SG-adjusted concentrations across three trimesters) were associated with 8.76% (95% confidence interval (CI): 4.30%, 13.41%), 15.44% (95% CI: 9.18%, 22.06%), 11.84% (95% CI: 6.09%, 17.89%), and 21.14% (95% CI: 8.69%, 35.02%) increases in 25(OH)D levels. Newborns whose mothers with low (<10 μg/L) or medium (10.92−14.34 μg/L) tertiles of urinary Se concentrations in whole pregnancy were more likely to be vitamin D deficient (<20 ng/mL) compared with those with the highest tertile (>14.34 μg/L). Our study provides evidence that maternal Se levels were positively associated with cord serum vitamin D status.
Collapse
|
43
|
Aboud HM, Hussein AK, Zayan AZ, Makram TS, Sarhan MO, El-Sharawy DM. Tailoring of Selenium-Plated Novasomes for Fine-Tuning Pharmacokinetic and Tumor Uptake of Quercetin: In Vitro Optimization and In Vivo Radiobiodistribution Assessment in Ehrlich Tumor-Bearing Mice. Pharmaceutics 2022; 14:pharmaceutics14040875. [PMID: 35456709 PMCID: PMC9032182 DOI: 10.3390/pharmaceutics14040875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin (QRC) is a bioflavonoid with anti-inflammatory, antioxidant, and anticancer activities, yet QRC poor bioavailability has hampered its clinical implementation. The aim of the current work was to harness novasomes (NOVs), free fatty acid enriched vesicles, as a novel nano-cargo for felicitous QRC delivery with subsequent functionalization with selenium (SeNOVs), to extend the systemic bio-fate of NOVs and potentiate QRC anticancer efficacy through the synergy with selenium. QRC-NOVs were primed embedding oleic acid, Brij 35, and cholesterol adopting thin-film hydration technique according to Box–Behnken design. Employing Design-Expert® software, the impact of formulation variables on NOVs physicochemical characteristics besides the optimum formulation election were explored. Based on the optimal NOVs formulation, QRC-SeNOVs were assembled via electrostatic complexation/in situ reduction method. The MTT cytotoxicity assay of the uncoated, and coated nanovectors versus crude QRC was investigated in human rhabdomyosarcoma (RD) cells. The in vivo pharmacokinetic and biodistribution studies after intravenous administrations of technetium-99m (99mTc)-labeled QRC-NOVs, QRC-SeNOVs, and QRC-solution were scrutinized in Ehrlich tumor-bearing mice. QRC-NOVs and QRC-SeNOVs disclosed entrapment efficiency of 67.21 and 70.85%, vesicle size of 107.29 and 129.16 nm, ζ potential of −34.71 and −43.25 mV, and accumulatively released 43.26 and 31.30% QRC within 24 h, respectively. Additionally, QRC-SeNOVs manifested a far lower IC50 of 5.56 μg/mL on RD cells than that of QRC-NOVs (17.63 μg/mL) and crude QRC (38.71 μg/mL). Moreover, the biodistribution study elicited higher preferential uptake of 99mTc-QRC-SeNOVs within the tumorous tissues by 1.73- and 5.67-fold as compared to 99mTc-QRC-NOVs and 99mTc-QRC-solution, respectively. Furthermore, the relative uptake efficiency of 99mTc-QRC-SeNOVs was 5.78, the concentration efficiency was 4.74 and the drug-targeting efficiency was 3.21. Hence, the engineered QRC-SeNOVs could confer an auspicious hybrid nanoparadigm for QRC delivery with fine-tuned pharmacokinetics, and synergized antitumor traits.
Collapse
Affiliation(s)
- Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: ; Tel.: +20-822162135
| | - Amal K. Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Abdallah Z. Zayan
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Tarek Saad Makram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Mona O. Sarhan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt; (M.O.S.); (D.M.E.-S.)
| | - Dina M. El-Sharawy
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt; (M.O.S.); (D.M.E.-S.)
- Cyclotron Project, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt
| |
Collapse
|
44
|
Staroverov SA, Kozlov SV, Fomin AS, Gabalov KP, Khanadeev VA, Soldatov DA, Domnitsky IY, Dykman LA, Akchurin SV, Guliy OI. Synthesis of silymarin-selenium nanoparticle conjugate and examination of its biological activity in vitro. ADMET AND DMPK 2022; 9:255-266. [PMID: 35300372 PMCID: PMC8920099 DOI: 10.5599/admet.1023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/21/2021] [Indexed: 12/29/2022] Open
Abstract
Silymarin (Sil) was conjugated to selenium nanoparticles (SeNPs) to increase Sil bioavailability. The conjugates were monodisperse; the average diameter of the native SeNPs was ~ 20-50 ± 1.5 nm, whereas that of the conjugates was 30-50 ± 0.5 nm. The use of SeNPs to increase the bioavailability of Sil was examined with the MH-22a, EPNT-5, HeLa, Hep-2, and SPEV-2 cell lines. The EPNT-5 (glioblastoma) cells were the most sensitive to the conjugates compared to the conjugate-free control. The conjugates increased the activity of cellular dehydrogenases and promoted the penetration of Sil into the intracellular space. Possibly, SeNPs play the main part in Sil penetration of cells and Sil penetration is not associated with phagocytosis. Thus, SeNPs are promising for use as a Sil carrier and as protective antigens.
Collapse
Affiliation(s)
- Sergey A Staroverov
- Saratov State Agrarian University, Saratov, Russian Federation.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Sergey V Kozlov
- Saratov State Agrarian University, Saratov, Russian Federation
| | - Alexander S Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Konstantin P Gabalov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Vitaliy A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | | | | | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Sergey V Akchurin
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
| | - Olga I Guliy
- Saratov State Agrarian University, Saratov, Russian Federation.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| |
Collapse
|
45
|
Liu X, Chen D, Su J, Zheng R, Ning Z, Zhao M, Zhu B, Li Y. Selenium nanoparticles inhibited H1N1 influenza virus-induced apoptosis by ROS-mediated signaling pathways. RSC Adv 2022; 12:3862-3870. [PMID: 35425430 PMCID: PMC8981154 DOI: 10.1039/d1ra08658h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Influenza A (H1N1) viruses are distributed around the world and pose a threat to public health. Vaccination is the main treatment strategy to prevent influenza infection, but antiviral drugs also play an important role in controlling seasonal and pandemic influenza. Currently, as influenza viruses may be developing antiviral resistance, new agents with different modes of action are being investigated. Recently, selenium nanoparticles (SeNPs), which have antiviral effects, have attracted increasing attention in biomedical interventions. The appearance of nanotechnology has attracted great attention in the field of nanomedicine. SeNPs constitute an attractive vector platform for delivering a variety of drugs to action targets. SeNPs are being explored for potential therapeutic efficacy in a variety of oxidative stress and inflammation-mediated diseases, such as cancer, arthritis, diabetes, and kidney disease. SeNPs could inhibit infection of Madin-Darby canine kidney (MDCK) cells with H1N1 and prevent chromatin condensation and DNA fragmentation. ROS play a key role in physiological processes for apoptosis. SeNPs significantly inhibited the production of reactive oxygen species (ROS) in MDCK cells. Mechanistic investigation revealed that SeNPs inhibited the apoptosis induced by H1N1 virus infection in MDCK cells by improving the level of GPx1. Our results suggest that SeNPs are an effective selenium source and a promising H1N1 influenza antiviral candidate.
Collapse
Affiliation(s)
- Xia Liu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University No. 318 Renminzhong Road, Yuexiu District Guangzhou 510120 People's Republic of China
| | - Danyang Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University No. 318 Renminzhong Road, Yuexiu District Guangzhou 510120 People's Republic of China
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University No. 318 Renminzhong Road, Yuexiu District Guangzhou 510120 People's Republic of China
| | - Ruilin Zheng
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University No. 318 Renminzhong Road, Yuexiu District Guangzhou 510120 People's Republic of China
| | - Zhihui Ning
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University No. 318 Renminzhong Road, Yuexiu District Guangzhou 510120 People's Republic of China
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University No. 318 Renminzhong Road, Yuexiu District Guangzhou 510120 People's Republic of China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University No. 318 Renminzhong Road, Yuexiu District Guangzhou 510120 People's Republic of China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University No. 318 Renminzhong Road, Yuexiu District Guangzhou 510120 People's Republic of China
| |
Collapse
|
46
|
Deng L, Xiao M, Wu A, He D, Huang S, Deng T, Xiao J, Chen X, Peng Y, Cao K. Se/Albumin Nanoparticles for Inhibition of Ferroptosis in Tubular Epithelial Cells during Acute Kidney Injury. ACS APPLIED NANO MATERIALS 2022; 5:227-236. [DOI: 10.1021/acsanm.1c02706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Anshan Wu
- Zhuzhou Hospital of Xiangya School of Medicine, Central South University, Zhuzhou 412007, China
| | - Dong He
- Department of Respiration, The Second People’s Hospital of Hunan Province, Changsha 410021, China
| | - Sanqian Huang
- Department of Pathology, Hunan Cancer Hospital, Changsha 410000, China
| | - Tanggang Deng
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Jiawei Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
47
|
Construction of Polygonatum sibiricum Polysaccharide Functionalized Selenium Nanoparticles for the Enhancement of Stability and Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11020240. [PMID: 35204123 PMCID: PMC8868418 DOI: 10.3390/antiox11020240] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Although selenium nanoparticles (SeNPs) have attracted great attention due to their potential antioxidant activity and low toxicity, the application of SeNPs is still restricted by their poor stability. A combination of polysaccharides and SeNPs is an effective strategy to overcome the limitations. In this study, Polygonatum sibiricum polysaccharide (PSP) was used as a stabilizer to fabricate SeNPs under a simple redox system. Dynamic light scattering, transmission electron microscopy, energy dispersive X-ray, ultraviolet-visible spectroscopy, Fourier transform infrared, and X-ray photoelectron spectrometer were applied to characterize the synthesized PSP-SeNPs. The stability and the antioxidant activity of PSP-SeNPs were also investigated. The results revealed that the zero-valent and well-dispersed spherical PSP-SeNPs with an average size of 105 nm and a negative ζ-potential of −34.9 mV were successfully synthesized using 0.1 mg/mL PSP as a stabilizer. The prepared PSP-SeNPs were stable for 30 days at 4 °C. The decoration of the nanoparticle surface with PSP significantly improved the free radical scavenging ability of SeNPs. Compared to the H2O2-induced oxidative stress model group, the viability of PC-12 cells pretreated with 20 μg/mL PSP-SeNPs increased from 56% to 98%. Moreover, PSP-SeNPs exhibited a higher protective effect on the H2O2-induced oxidative damage on PC-12 cells and lower cytotoxicity than sodium selenite and SeNPs. In summary, these results suggest the great potential of PSP-SeNPs as a novel antioxidant agent in the food or nutraceuticals area.
Collapse
|
48
|
Nikam PB, Salunkhe JD, Minkina T, Rajput VD, Kim BS, Patil SV. A review on green synthesis and recent applications of red nano Selenium. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
49
|
Abbas HS, Nagy MM, Hammam WE, Abd El Fatah AA, Abd-Elafatah MS, Aref AAAENM, Abdulhamid HA, Ghotekar S, Abou Baker DH. A Comprehensive Review on the Synthesis, Surface Decoration of Nanoselenium and Their Medical Applications. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:197-220. [DOI: 10.1007/978-981-16-9190-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
50
|
Ruthenium complexes boost NK cell immunotherapy via sensitizing triple-negative breast cancer and shaping immuno-microenvironment. Biomaterials 2022; 281:121371. [DOI: 10.1016/j.biomaterials.2022.121371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 11/23/2022]
|