1
|
Guengerich FP. Ninety-eight semesters of cytochrome P450 enzymes and related topics-What have I taught and learned? J Biol Chem 2024; 300:105625. [PMID: 38185246 PMCID: PMC10847173 DOI: 10.1016/j.jbc.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have never lost the enthusiasm for research that I learned in the summer of 1968 with Harry Broquist, and I have tried to instill this in the many trainees I have worked with. A sentence I use on closing slides is "It's not just a laboratory-it's a fraternity."
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Yang H, Tang JA, Greenberg MM. Synthesis of Oligonucleotides Containing the N 6 -(2-Deoxy-α,β-d-erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy⋅dG) Oxidative Damage Product Derived from 2'-Deoxyguanosine. Chemistry 2020; 26:5441-5448. [PMID: 32271495 DOI: 10.1002/chem.201905795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/19/2022]
Abstract
N6 -(2-Deoxy-α,β-d-erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy⋅dG) is a major DNA lesion produced from 2'-deoxyguanosine under oxidizing conditions. Fapy⋅dG is produced from a common intermediate that leads to 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OxodGuo), and in greater quantities in cells. The impact of Fapy⋅dG on DNA structure and function is much less well understood than that of 8-OxodGuo. This is largely due to the significantly greater difficulty in synthesizing oligonucleotides containing Fapy⋅dG than 8-OxodGuo. We describe a synthetic approach for preparing oligonucleotides containing Fapy⋅dG that will facilitate intensive studies of this lesion in DNA. A variety of oligonucleotides as long as 30 nucleotides are synthesized. We anticipate that the chemistry described herein will provide an impetus for a wide range of studies involving Fapy⋅dG.
Collapse
Affiliation(s)
- Haozhe Yang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Joel A Tang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Lash LH, Chiu WA, Guyton KZ, Rusyn I. Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 762:22-36. [PMID: 25484616 PMCID: PMC4254735 DOI: 10.1016/j.mrrev.2014.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolism is critical for the mutagenicity, carcinogenicity, and other adverse health effects of trichloroethylene (TCE). Despite the relatively small size and simple chemical structure of TCE, its metabolism is quite complex, yielding multiple intermediates and end-products. Experimental animal and human data indicate that TCE metabolism occurs through two major pathways: cytochrome P450 (CYP)-dependent oxidation and glutathione (GSH) conjugation catalyzed by GSH S-transferases (GSTs). Herein we review recent data characterizing TCE processing and flux through these pathways. We describe the catalytic enzymes, their regulation and tissue localization, as well as the evidence for transport and inter-organ processing of metabolites. We address the chemical reactivity of TCE metabolites, highlighting data on mutagenicity of these end-products. Identification in urine of key metabolites, particularly trichloroacetate (TCA), dichloroacetate (DCA), trichloroethanol and its glucuronide (TCOH and TCOG), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC), in exposed humans and other species (mostly rats and mice) demonstrates function of the two metabolic pathways in vivo. The CYP pathway primarily yields chemically stable end-products. However, the GST pathway conjugate S-(1,2-dichlorovinyl)glutathione (DCVG) is further processed to multiple highly reactive species that are known to be mutagenic, especially in kidney where in situ metabolism occurs. TCE metabolism is highly variable across sexes, species, tissues and individuals. Genetic polymorphisms in several of the key enzymes metabolizing TCE and its intermediates contribute to variability in metabolic profiles and rates. In all, the evidence characterizing the complex metabolism of TCE can inform predictions of adverse responses including mutagenesis, carcinogenesis, and acute and chronic organ-specific toxicity.
Collapse
Affiliation(s)
- Lawrence H. Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201 USA
| | - Weihsueh A. Chiu
- U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC, 20460 USA; Chiu.Weihsueh@.epa.gov;
| | - Kathryn Z. Guyton
- U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC, 20460 USA; Chiu.Weihsueh@.epa.gov;
| | - Ivan Rusyn
- Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 USA;
| |
Collapse
|
4
|
Huang J, Yeung CS, Ma J, Gayner ER, Phillips DL. A Computational Chemistry Investigation of the Mechanism of the Water-Assisted Decomposition of Trichloroethylene Oxide. J Phys Chem A 2014; 118:1557-67. [DOI: 10.1021/jp501310z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jinqing Huang
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Chi Shun Yeung
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Jiani Ma
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
- College
of Chemistry and Materials Science, Northwest University, Xi’an, People’s Republic of China
| | - Emma R. Gayner
- School
of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, Scotland, United Kingdom
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
5
|
Lee S. Post-translational modification of proteins in toxicological research: focus on lysine acylation. Toxicol Res 2013; 29:81-6. [PMID: 24278632 PMCID: PMC3834447 DOI: 10.5487/tr.2013.29.2.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 01/01/2023] Open
Abstract
Toxicoproteomics integrates the proteomic knowledge into toxicology by enabling protein quantification in biofluids and tissues, thus taking toxicological research to the next level. Post-translational modification (PTM) alters the three-dimensional (3D) structure of proteins by covalently binding small molecules to them and therefore represents a major protein function diversification mechanism. Because of the crucial roles PTM plays in biological systems, the identification of novel PTMs and study of the role of PTMs are gaining much attention in proteomics research. Of the 300 known PTMs, protein acylation, including lysine formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, and crotonylation, regulates the crucial functions of many eukaryotic proteins involved in cellular metabolism, cell cycle, aging, growth, angiogenesis, and cancer. Here, I reviewed recent studies regarding novel types of lysine acylation, their biological functions, and their applicationsin toxicoproteomics research.
Collapse
Affiliation(s)
- Sangkyu Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
6
|
Lock EA, Zhang J, Checkoway H. Solvents and Parkinson disease: a systematic review of toxicological and epidemiological evidence. Toxicol Appl Pharmacol 2013; 266:345-55. [PMID: 23220449 PMCID: PMC3621032 DOI: 10.1016/j.taap.2012.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 12/25/2022]
Abstract
Parkinson disease (PD) is a debilitating neurodegenerative motor disorder, with its motor symptoms largely attributable to loss of dopaminergic neurons in the substantia nigra. The causes of PD remain poorly understood, although environmental toxicants may play etiologic roles. Solvents are widespread neurotoxicants present in the workplace and ambient environment. Case reports of parkinsonism, including PD, have been associated with exposures to various solvents, most notably trichloroethylene (TCE). Animal toxicology studies have been conducted on various organic solvents, with some, including TCE, demonstrating potential for inducing nigral system damage. However, a confirmed animal model of solvent-induced PD has not been developed. Numerous epidemiologic studies have investigated potential links between solvents and PD, yielding mostly null or weak associations. An exception is a recent study of twins indicating possible etiologic relations with TCE and other chlorinated solvents, although findings were based on small numbers, and dose-response gradients were not observed. At present, there is no consistent evidence from either the toxicological or epidemiologic perspective that any specific solvent or class of solvents is a cause of PD. Future toxicological research that addresses mechanisms of nigral damage from TCE and its metabolites, with exposure routes and doses relevant to human exposures, is recommended. Improvements in epidemiologic research, especially with regard to quantitative characterization of long-term exposures to specific solvents, are needed to advance scientific knowledge on this topic.
Collapse
Affiliation(s)
- Edward A Lock
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UK.
| | | | | |
Collapse
|
7
|
Lin H, Su X, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol 2012; 7:947-60. [PMID: 22571489 DOI: 10.1021/cb3001793] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the past few years, several new protein post-translational modifications that use intermediates in metabolism have been discovered. These include various acyl lysine modifications (formylation, propionylation, butyrylation, crotonylation, malonylation, succinylation, myristoylation) and cysteine succination. Here, we review the discovery and the current understanding of these modifications. Several of these modifications are regulated by the deacylases, sirtuins, which use nicotinamide adenine dinucleotide (NAD), an important metabolic small molecule. Interestingly, several of these modifications in turn regulate the activity of metabolic enzymes. These new modifications reveal interesting connections between metabolism and protein post-translational modifications and raise many questions for future investigations.
Collapse
Affiliation(s)
- Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Xiaoyang Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| |
Collapse
|
8
|
Henning C, Smuda M, Girndt M, Ulrich C, Glomb MA. Molecular basis of maillard amide-advanced glycation end product (AGE) formation in vivo. J Biol Chem 2011; 286:44350-6. [PMID: 22069309 DOI: 10.1074/jbc.m111.282442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Maillard reaction in vivo entails alteration of proteins or free amino acids by non-enzymatic glycation or glycoxidation. The resulting modifications are called advanced glycation end products (AGEs) and play a prominent role in various pathologies, including normoglycemic uremia. Recently, we established a new class of lysine amide modifications in vitro. Now, human plasma levels of the novel amide-AGEs N(6)-acetyl lysine, N(6)-formyl lysine, N(6)-lactoyl lysine, and N(6)-glycerinyl lysine were determined by means of LC-MS/MS. They were significantly higher in uremic patients undergoing hemodialysis than in healthy subjects. Model reactions with N(1)-t-butoxycarbonyl-lysine under physiological conditions confirmed 1-deoxy-d-erythro-hexo-2,3-diulose as an immediate precursor. Because formation of N(6)-formyl lysine from glucose responded considerably to the presence of oxygen, glucosone was identified as another precursor. Comparison of the in vivo results with the model experiments enabled us to elucidate possible formation pathways linked to Maillard chemistry. The results strongly suggest a major participation of non-enzymatic Maillard mechanisms on amide-AGE formation pathways in vivo, which, in the case of N(6)-acetyl lysine, parallels enzymatic processes.
Collapse
Affiliation(s)
- Christian Henning
- Food Chemistry, Institute of Chemistry, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
9
|
Mattes TE, Alexander AK, Coleman NV. Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 2010; 34:445-75. [DOI: 10.1111/j.1574-6976.2010.00210.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Kim S, Kim D, Pollack GM, Collins LB, Rusyn I. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine. Toxicol Appl Pharmacol 2009; 238:90-9. [PMID: 19409406 DOI: 10.1016/j.taap.2009.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/16/2009] [Accepted: 04/23/2009] [Indexed: 11/19/2022]
Abstract
Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was approximately 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (approximately 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.
Collapse
Affiliation(s)
- Sungkyoon Kim
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
11
|
Strycharz S, Newman L. USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: II. CONIFEROUS TREES. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2009; 11:171-186. [PMID: 28133996 DOI: 10.1080/15226510802378459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The phytoremediation of trichloroethylene (TCE) from contaminated groundwater has been extensively studied using the hybrid poplar tree (Populus spp.). Several metabolites of TCE have been identified in the tissue of poplar including trichloroethanol (TCEOH) and dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA). In addition to the use of hybrid poplar for the phytoremediation of TCE, it is important to screen native tree species that could be successful candidates for field use. This study involves a greenhouse-based comparison of four different native southeastern conifers to a hybrid poplar species for their potential to phytoremediate TCE through the analysis of various plant tissues for TCE and major TCE metabolites, as well as several growth parameters that are desirable for phytoremediation. Longleaf pine (Pinus palustris), Leyland cypress (X Cupressocyparis leylandii), two varieties of Loblolly pine (Pinus taeda), and hybrid poplar species H11-11 (Populus trichocarpa x deltoides) were examined for the concentration of TCE and its metabolites in their tissue following treatment with either a low (50 mg L-1) or high dose of TCE (150 mg L-1) for 2 mo. The amount of water taken up, change in height of the tree, TCE transpiration, and total fresh weight of various tissue types were also measured. All trees contained detectable levels of TCE in their root and stem tissue. TCEOH was found only in the tissue of longleaf pine, suggesting that TCE metabolism was occurring in this tree. TCAA was only detected in the leaves of hybrid poplar and piedmont loblolly pine. Conifers took up less water over the 2-mo treatment period than hybrid poplar and grew at a slower rate. However, phytoremediation field sites may benefit from the evergreen's ability to transpire water throughout the winter months.
Collapse
Affiliation(s)
- S Strycharz
- a Department of Environmental Health Sciences , Norman J. Arnold School of Public Health, University of South Carolina , Columbia , South Carolina , USA
| | - L Newman
- a Department of Environmental Health Sciences , Norman J. Arnold School of Public Health, University of South Carolina , Columbia , South Carolina , USA
- b Savannah River Ecology Lab , Savannah River Site , Aiken , South Carolina , USA
| |
Collapse
|
12
|
Cai P, König R, Boor PJ, Kondraganti S, Kaphalia BS, Khan MF, Ansari G. Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice. Toxicol Appl Pharmacol 2008; 228:68-75. [PMID: 18234256 PMCID: PMC2442272 DOI: 10.1016/j.taap.2007.11.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
Trichloroethene (TCE) exacerbates the development of autoimmune responses in autoimmune-prone MRL +/+ mice. Although TCE-mediated autoimmune responses are associated with an increase in serum immunoglobulins and autoantibodies, the underlying mechanism of autoimmunity is not known. To determine the progression of TCE-mediated immunotoxicity, female MRL +/+ mice were chronically exposed to TCE through the drinking water (0.5 mg/ml of TCE) for various periods of time. Serum concentrations of antinuclear antibodies increased after 36 and 48 weeks of TCE exposure. Histopathological analyses showed lymphocyte infiltration in the livers of MRL +/+ mice exposed to TCE for 36 or 48 weeks. Lymphocyte infiltration was also apparent in the pancreas, lungs, and kidneys of mice exposed to TCE for 48 weeks. Immunoglobulin deposits in kidney glomeruli were found after 48 weeks of exposure to TCE. Our results suggest that chronic exposure to TCE promotes inflammation in the liver, pancreas, lungs, and kidneys, which may lead to SLE-like disease in MRL +/+ mice.
Collapse
Affiliation(s)
- Ping Cai
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Rolf König
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Paul J. Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Shakuntala Kondraganti
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - Bhupendra S. Kaphalia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - G.A.S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| |
Collapse
|
13
|
Cai P, König R, Khan MF, Kaphalia BS, Ansari GAS. Differential immune responses to albumin adducts of reactive intermediates of trichloroethene in MRL+/+ mice. Toxicol Appl Pharmacol 2007; 220:278-83. [PMID: 17376499 PMCID: PMC1959509 DOI: 10.1016/j.taap.2007.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 11/26/2022]
Abstract
Trichloroethene (TCE) is an industrial degreasing solvent and widespread environmental contaminant. Exposure to TCE is associated with autoimmunity. The mode of action of TCE is via its oxidative metabolism, and most likely, immunotoxicity is mediated via haptenization of macromolecules and subsequent induction of immune responses. To better understand the role of protein haptenization through TCE metabolism, we immunized MRL+/+ mice with albumin adducts of various TCE reactive intermediates. Serum immunoglobulins and cytokine levels were measured to determine immune responses against haptenized albumin. We found antigen-specific IgG responses of the IgG subtypes IgG(1), IgG(2a), and IgG(2b), with IgG(1) predominating. Serum levels of G-CSF were increased in immunized mice, suggesting macrophage activation. Liver histology revealed lymphocyte infiltration in the lobules and the portal area following immunization with formyl-albumin. Our findings suggest that proteins haptenized by metabolites of TCE may act as neo-antigens that can induce humoral immune responses and T cell-mediated hepatitis.
Collapse
Affiliation(s)
- Ping Cai
- Department of Pathology, University of Texas Medical Branch, Galveston TX 77555-0609, USA
| | | | | | | | | |
Collapse
|
14
|
Jiang T, Zhou X, Taghizadeh K, Dong M, Dedon PC. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc Natl Acad Sci U S A 2006; 104:60-5. [PMID: 17190813 PMCID: PMC1765477 DOI: 10.1073/pnas.0606775103] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The posttranslational modification of histone and other chromatin proteins has a well recognized but poorly defined role in the physiology of gene expression. With implications for interfering with these epigenetic mechanisms, we now report the existence of a relatively abundant secondary modification of chromatin proteins, the N(6)-formylation of lysine that appears to be uniquely associated with histone and other nuclear proteins. Using both radiolabeling and sensitive bioanalytical methods, we demonstrate that the formyl moiety of 3'-formylphosphate residues arising from 5'-oxidation of deoxyribose in DNA, caused by the enediyne neocarzinostatin, for example, acylate the N(6)-amino groups of lysine side chains. A liquid chromatography (LC)-tandem mass spectrometry (MS) method was developed to quantify the resulting N(6)-formyl-lysine residues, which were observed to be present in unperturbed cells and all sources of histone proteins to the extent of 0.04-0.1% of all lysines in acid-soluble chromatin proteins including histones. Cells treated with neocarzinostatin showed a clear dose-response relationship for the formation of N(6)-formyl-lysine, with this nucleosome linker-selective DNA-cleaving agent causing selective N(6)-formylation of the linker histone H1. The N(6)-formyl-lysine residue appears to represent an endogenous histone secondary modification, one that bears chemical similarity to lysine N(6)-acetylation recognized as an important determinant of gene expression in mammalian cells. The N(6)-formyl modification of lysine may interfere with the signaling functions of lysine acetylation and methylation and thus contribute to the pathophysiology of oxidative and nitrosative stress.
Collapse
Affiliation(s)
- Tao Jiang
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xinfeng Zhou
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Koli Taghizadeh
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Min Dong
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Peter C. Dedon
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Cai P, König R, Khan MF, Qiu S, Kaphalia BS, Ansari GAS. Autoimmune response in MRL+/+ mice following treatment with dichloroacetyl chloride or dichloroacetic anhydride. Toxicol Appl Pharmacol 2006; 216:248-55. [PMID: 16806339 DOI: 10.1016/j.taap.2006.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 11/30/2022]
Abstract
Dichloroacetyl chloride (DCAC) is formed from trichloroethene (TCE), which is implicated in inducing/accelerating autoimmune response. Due to its potent acylating activity, DCAC may convert proteins to neo-antigens and thus could induce autoimmune responses. Dichloroacetic anhydride (DCAA), which is a similar acylating agent, might also induce autoimmune responses. To evaluate if chloroacylation plays a role in the induction of autoimmunity, we have measured the autoimmune responses following treatment with DCAC or DCAA in autoimmune-prone MRL+/+ mice. Five-week-old female mice were injected intraperitoneally (twice weekly) with 0.2 mmol/kg of DCAC or DCAA in corn oil for 6 weeks. Total serum IgG, IgG1, and IgE levels were significantly increased in DCAC-treated mice as compared to controls. These increases corresponded with increases in DCAC-specific IgG and IgG1 levels. Total serum IgM was decreased in both DCAC- and DCAA-treated mice. Antinuclear antibodies, measured as an indication of systemic autoimmune responses, were increased in both DCAC- and DCAA-treated mice. Of eight Th1/Th2 cytokines measured in the serum, only IL-5 was significantly decreased in both treatment groups. The cytokine secretion patterns of splenic lymphocytes after stimulation with antibodies against CD3 (T cell receptor-mediated signal) and CD28 (costimulatory signal) differed between treatment and control groups. Levels of IL-1, IL-3, IL-6, IFN-gamma, G-CSF, and KC were higher in cultures of stimulated splenocytes from either DCAC- or DCAA-treated mice than from controls. The level of IL-17 was only increased in cultures from DCAC-treated mice. Increased lymphocytic populations were found in the red pulp of spleens following treatment with either DCAC or DCAA. In addition, thickening of the alveolar septa in the lungs of DCAC- or DCAA-treated mice was observed. The lung histopathology in exposed mice was consistent with the symptomology observed in welders exposed to DCAC/phosgene. Thickening was more pronounced in DCAC-treated mice. Our data suggest that DCAC and DCAA elicit autoimmune responses in MRL+/+ mice that might be reflective of their chloroacylation potential in vivo.
Collapse
Affiliation(s)
- Ping Cai
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | | | |
Collapse
|
16
|
Forkert PG, Millen B, Lash LH, Putt DA, Ghanayem BI. Pulmonary bronchiolar cytotoxicity and formation of dichloroacetyl lysine protein adducts in mice treated with trichloroethylene. J Pharmacol Exp Ther 2005; 316:520-9. [PMID: 16269531 DOI: 10.1124/jpet.105.093062] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was undertaken to test the hypothesis that bronchiolar damage induced by trichloroethylene (TCE) is associated with bioactivation within the Clara cells with the involvement of CYP2E1 and CYP2F2. Histopathology confirmed dose-dependent Clara cell injury and disintegration of the bronchiolar epithelium in CD-1 mice treated with TCE doses of 500 to 1000 mg/kg i.p. Immunohistochemical studies, using an antibody that recognizes dichloroacetyl lysine adducts, revealed dose-dependent formation of adducts in the bronchiolar epithelium. Localization of dichloroacetyl adducts in the Clara cells coincided with damage to this cell type in TCE-treated mice. Pretreatment of CD-1 mice with diallyl sulfone, an inhibitor of CYP2E1 and CYP2F2, abrogated the formation of the dichloroacetyl adducts and protected against TCE-induced bronchiolar cytotoxicity. Treatment of wild-type and CYP2E1-null mice with TCE (750 mg/kg i.p.) also elicited bronchiolar damage that correlated with the formation of adducts in the Clara cells. Immunoblotting, using lung microsomes from TCE-treated CD-1 mice, showed dose-dependent production of dichloroacetyl adducts that comigrated with CYP2E1 and CYP2F2. However, TCE treatment resulted in a loss of immunoreactive CYP2E1 and CYP2F2 proteins and p-nitrophenol hydroxylation, a catalytic activity associated with both cytochrome P450 enzymes. The TCE metabolite, chloral hydrate, was formed in incubations of TCE with lung microsomes from CD-1, wild-type, and CYP2E1-null mice. The levels were higher in CD-1 than in either wild-type or CYP2E1-null mice, although levels were higher in CYP2E1-null than in wild-type mice. These findings supported the contention that TCE bioactivation within the Clara cells, predominantly involving CYP2F2, correlated with bronchiolar cytotoxicity in mice.
Collapse
Affiliation(s)
- Poh-Gek Forkert
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
17
|
Forkert PG, Baldwin RM, Millen B, Lash LH, Putt DA, Shultz MA, Collins KS. Pulmonary bioactivation of trichloroethylene to chloral hydrate: relative contributions of CYP2E1, CYP2F, and CYP2B1. Drug Metab Dispos 2005; 33:1429-37. [PMID: 15987776 DOI: 10.1124/dmd.105.005074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary cytotoxicity induced by trichloroethylene (TCE) is associated with cytochrome P450-dependent bioactivation to reactive metabolites. In this investigation, studies were undertaken to test the hypothesis that TCE metabolism to chloral hydrate (CH) is mediated by cytochrome P450 enzymes, including CYP2E1, CYP2F, and CYP2B1. Recombinant rat CYP2E1 catalyzed TCE metabolism to CH with greater affinity than did the recombinant P450 enzymes, rat CYP2F4, mouse CYP2F2, rat CYP2B1, and human CYP2E1. The catalytic efficiencies of recombinant rat CYP2E1 (V(max)/K(m) = 0.79) for generating CH was greater than those of recombinant CYP2F4 (V(max)/K(m) = 0.27), recombinant mouse CYP2F2 (V(max)/K(m) = 0.11), recombinant rat CYP2B1 (V(max)/K(m) = 0.07), or recombinant human CYP2E1 (V(max)/K(m) = 0.02). Decreases in lung microsomal immunoreactive CYP2E1, CYP2F2, and CYP2B1 were manifested at varying time points after TCE treatment. The loss of immunoreactive CYP2F2 occurred before the loss of immunoreactive CYP2E1 and CYP2B1. These protein decreases coincided with marked reduction of lung microsomal p-nitrophenol hydroxylation and pentoxyresorufin O-dealkylation. Rates of CH formation in the microsomal incubations were time-dependent and were incremental from 5 to 45 min. The production of CH was also determined in human lung microsomal incubations. The rates were low and were detected in only three of eight subjects. These results showed that, although CYP2E1, CYP2F, and CYP2B1 are all capable of generating CH, TCE metabolism is mediated with greater affinity by recombinant rat CYP2E1 than by recombinant CYP2F, CYP2B1, or human CYP2E1. Moreover, the rates of CH production were substantially higher in murine than in human lung.
Collapse
Affiliation(s)
- Poh-Gek Forkert
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | | | | | | | |
Collapse
|
18
|
Guengerich FP. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys 2003; 409:59-71. [PMID: 12464245 DOI: 10.1016/s0003-9861(02)00415-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much of the interest in the cytochrome P450 (P450) enzymes has been because of oxidation of chemicals to reactive products. The epoxides (oxiranes) have been a major topic of interest with olefins and aryl compounds. Epoxides vary considerably in their reactivity, with t(1/2) varying from 1s to several hours. The stability and reactivity influences not only the overall damage to biological systems but also the site of injury. Transformations of some xenobiotic chemicals may involve products other than epoxides. Chemicals considered here include olefins, aromatic hydrocarbons, heterocycles, vinyl halides, ethyl carbamate, vinyl nitrosamines, and aflatoxin B(1). These compounds either are unsaturated or are transformed to unsaturated products. The epoxides and other products provide a view of the landscape of P450-generated reactive products and the myriad of chemistry involved in the metabolism of drugs and protoxicants. Understanding the chemical nature of reactive products is necessary to develop rational strategies for intervention.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, School of Medicine, Vanderbilt University, 638 Robinson Research Building, 23rd and Pierce Avenues, Nashville, TN 37232-0146, USA.
| |
Collapse
|
19
|
Guengerich FP, Cai H, Johnson WW, Parikh A. Reactive intermediates in biological systems: what have we learned and where are we going? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:639-50. [PMID: 11765010 DOI: 10.1007/978-1-4615-0667-6_96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- F P Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
20
|
Fujita H, Nishitani C, Ogawa K. Regulatory heme and trichloroethylene intoxication: A possible explanation of the case of "A Civil Action". Environ Health Prev Med 2002; 7:103-12. [PMID: 21432291 PMCID: PMC2723491 DOI: 10.1265/ehpm.2002.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Accepted: 04/09/2002] [Indexed: 01/03/2023] Open
Abstract
In 1998, a amovie entitled "A Civil Action" was released. The movie described the Woburn case, begun in 1982 and concluded in 1990, one of the most famous cases of trichloroethylene pollution. In a small town near Boston, twelve children died of leukemia, which seemed attributable to trichloroethylene contamination of the drinking water. The victims, however, could not win the case, since evidence that the identified chemicals could cause leukemia and other human illnesses was rather sketchy. There have been many cases of trichloroethylene pollution in industrial nations including Japan, therefore, we reconsidered the missing link. Our conclusion is that the disease occurred not by a direct effect of the chemical hazard on biological macromolecules but by an indirect effect through the physiological system such as signal transduction and transcriptional regulation. In 1984, we reported a marked reduction in the regulatory heme pool by trichloroethylene exposure, however, the biological significance was not well understood. Recently, we found that the DNA binding activity of Bach1, a negative regulator of genes, is controlled by heme, the regulation of which seems to explain how leukemia develops. The heterodimer of Bach1 with MafK recognizes Maf recognition elements (MAREs) competing with the erythroid type positive regulator, a complex of NF-E2 with MafK. Bach1/MafK occupies MAREs under lower heme conditions, whereas MAREs are open to NF-E2/MafK along with increasing heme concentration. Since the NF-E2/MafK function is closely related to normal erythroid differentiation, of which disorders such as sideroblastic anemia are often related to neoplasia; i.e., a clonal disorder that can progress to leukemia. Thus, a marked decline in regulatory heme by trichloroethylene intoxication could be one of the pathways to leukemia.
Collapse
Affiliation(s)
- Hiroyoshi Fujita
- Laboratory of Environmental Biology, Hokkaido University School of Medicine, North 15, West 7, Kita-ku, 060-8638, Supporo, Japan
| | | | | |
Collapse
|
21
|
Cummings BS, Parker JC, Lash LH. Cytochrome p450-dependent metabolism of trichloroethylene in rat kidney. Toxicol Sci 2001; 60:11-9. [PMID: 11222868 DOI: 10.1093/toxsci/60.1.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite consistently detected and was used as a measurement of P450-dependent metabolism of Tri. Pretreatment of rats with pyridine increased CH formation in both liver and kidney microsomes, whereas pretreatment of rats with clofibrate increased CH formation only in kidney microsomes. Pyridine increased CYP2E1 expression in both liver and kidney microsomes, whereas clofibrate had no effect on hepatic but increased renal CYP2E1 and CYP2C11 protein levels. These results suggest a role for CYP2E1 in both the hepatic and renal metabolism of Tri and a role for CYP2C11 in the renal metabolism of Tri. Studies with the general P450 inhibitor SKF-525A and the CYP2E1 competitive substrate chlorzoxazone provided additional support for the role of CYP2E1 in both tissues. CH formation was higher in PT cells than in DT cells and was time and reduced nicotinamide adenine dinucleotide phosphate (NADPH) dependent. However, pretreatment of rats with either pyridine or clofibrate had no effect on CYP2E1 or CYP2C11 protein levels or on CH formation in isolated cells. These data show for the first time that Tri can be metabolized to at least one of its P450 metabolites in the kidneys and quantitate the effect of P450 induction on Tri metabolism in the rat kidney.
Collapse
Affiliation(s)
- B S Cummings
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
22
|
Forkert PG, Premdas PD, Bowers RJ. Epoxide formation from diallyl sulfone is associated with CYP2E1 inactivation in murine and human lungs. Am J Respir Cell Mol Biol 2000; 23:687-95. [PMID: 11062148 DOI: 10.1165/ajrcmb.23.5.4149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We tested the hypothesis that an epoxide formed from diallyl sulfone (DASO(2)) is responsible for inactivation of CYP2E1 in murine and human lungs. An epoxide (1,2-epoxypropyl-3,3'-sulfonyl-1'-propene [DASO(3)]) was synthesized from DASO(2) and conjugated with glutathione (GSH) to produce the conjugates S-(1R, S-[[1-hydroxymethyl-2,3' -sulfonyl]-1' -propenyl]ethyl)glutathione (diastereomers) and S-(1-[[2R,S-hydroxypropyl]-3, 3'-sulfonyl]-1'-propenyl)glutathione (diastereomers). Analysis of these conjugates by high performance liquid chromatography revealed a major peak eluting at 20.5 min. This peak was detected in incubations of murine and human lung microsomes containing DASO(2) and nicotinamide adenine dinucleotide phosphate (NADPH), and was not detected in incubations performed in the absence of DASO(2) or NADPH. The amounts of epoxide-derived GSH conjugates formed in the incubations were concentration-dependent and achieved saturation at 0.75 mM DASO(2). Formation of the conjugates was also time-dependent and peaked at 2.0 h after DASO(2). The peak containing the GSH conjugates was also detected in incubations of CYP2E1-expressed lymphoblastoid microsomes, NADPH, and DASO(2). Maximal amounts of DASO(3), as estimated by formation of a 4-(p-nitrobenzyl)pyridine derivatized product, were detected in murine lung microsomes incubated for 35 min with 1 mM DASO(2). The derivatized DASO(3) was not detectable in incubations of human lung microsomes. p-Nitrophenol hydroxylation, a catalytic activity associated with CYP2E1, was reduced in murine and human lung microsomes incubated with DASO(2), with decreases that were concentration-dependent. Dose-dependent decreases in hydroxylase activity were also found in microsomes from mice treated in vivo with DASO(2) (25 to 200 mg/kg). These results supported the premise that an epoxide formed from DASO(2) mediates inactivation of lung CYP2E1. Furthermore, the findings suggested that the mouse model is relevant for studies of DASO(2) in human lung.
Collapse
Affiliation(s)
- P G Forkert
- Departments of Anatomy and Cell Biology and Chemistry, Queen's University, Kingston, Ontario, Canada.
| | | | | |
Collapse
|