1
|
Wang JR, Kuang HX, Liu Y, Li XY, Chen TH, Zhu XH, Fan RF, Xiang MD, Yu YJ. Associations between volatile organic compounds exposure and multiple oxidative damage biomarkers: Method development, human exposure, and application for e-waste pollution prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177402. [PMID: 39510277 DOI: 10.1016/j.scitotenv.2024.177402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Atmospheric monitoring studies reveal substantial health risks from exposure to volatile organic compounds (VOCs) for workers and nearby children in e-waste recycling areas (ERA), yet internal exposure risks are seldom examined. To address this, we developed a method to simultaneously analyze 12 urinary VOC metabolites (mVOCs) and oxidative damage biomarkers (ODBs) in workers and children from ERA and general adults from control areas using ultrahigh performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (UPLC-Orbitrap-HRMS). The results showed that e-waste workers exhibited significantly higher levels of VOC exposure and ODBs than e-waste children and control adults. Exceeding 91.1 %, 69.1 %, 20.8 %, 19.7 %, and 3.26 % of e-waste workers faced non-carcinogenic risk from exposure to acrolein, acrylonitrile, acrylamide, 1,3-butadiene, and 1,2-dichloroethane, respectively. The weighted quantile sum, quantile g-computation, and Bayesian kernel machine regression models consistently indicated significant positive associations between these VOC mixtures and cholesterol ODB levels (i.e., glycocholic acid, cholic acid, and glycochenodeoxycholic acid), highlighting the necessity for improved protective measures for occupational workers. Interestingly, cholesterol ODBs significantly mediated the association between VOCs exposure and nucleic acid ODBs, accounting for 12.0-26.0 % of the association with 8-hydroxy-2'-deoxyguanosine (an oxidative DNA damage biomarker) and 25.4-53.4 % with 8-hydroxyguanosine (an oxidative RNA damage biomarker). This suggests that cholesterol ODBs potentially serve as better indicators of health risks from VOC exposure than nucleic acid ODBs. Additionally, the combination of mVOCs and ODBs (Mean AUC: 0.906, ACC: 0.821) as exposure fingerprints outperformed either mVOCs (Mean AUC: 0.878, ACC: 0.802) or ODBs (Mean AUC: 0.843, ACC: 0.768) alone in predicting the presence of e-waste pollution, underscoring the importance of integrating exposure and effect biomarker fingerprints to accurately capture e-waste pollution characteristic. Our findings offer a novel approach for screening e-waste pollution in unknow e-waste recycling sites and provide a foundation for developing high-precision prediction models for other polluting industries.
Collapse
Affiliation(s)
- Jia-Rong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; School of Public Health, China Medical University, Liaoning 110122, PR China
| | - Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Ye Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xin-Yi Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Tian-Hong Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; School of Public Health, China Medical University, Liaoning 110122, PR China
| | - Xiao-Hui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Rui-Fang Fan
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
2
|
Bowman BA, Ejzak EA, Reese CM, Blount BC, Bhandari D. Mitigating Matrix Effects in LC-ESI-MS-MS Analysis of a Urinary Biomarker of Xylenes Exposure. J Anal Toxicol 2023; 47:129-135. [PMID: 35766875 PMCID: PMC10949524 DOI: 10.1093/jat/bkac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) with stable isotope-labeled internal standards (SIL-ISs) is the gold standard for quantitative analysis of drugs and metabolites in complex biological samples. Significant isotopic effects associated with deuterium labeling often cause the deuterated IS to elute at a different retention time from the target analyte, diminishing its capability to compensate for matrix effects. In this study, we systematically compared the analytical performance of deuterated (2H) SIL-IS to non-deuterated (13C and 15N) SIL-ISs for quantifying urinary 2-methylhippuric acid (2MHA) and 4-methylhippuric acid (4MHA), biomarkers of xylenes exposure, with an LC-ESI-MS-MS assay. Analytical method comparison between ISs demonstrated a quantitative bias for urinary 2MHA results, with concentrations generated with 2MHA-[2H7] on average 59.2% lower than concentrations generated with 2MHA-[13C6]. Spike accuracy, measured by quantifying the analyte-spiked urine matrix and comparing the result to the known spike concentration, determined that 2MHA-[2H7] generated negatively biased urinary results of -38.4%, whereas no significant bias was observed for 2MHA-[13C6]. Post-column infusion demonstrated that ion suppression experienced by 2MHA and 2MHA-[13C6] was not equally experienced by 2MHA-[2H7], explaining the negatively biased 2MHA results. The quantitation of urinary 4MHA results between ISs exhibited no significant quantitative bias. These results underscore the importance of the careful selection of ISs for targeted quantitative analysis in complex biological samples.
Collapse
Affiliation(s)
- Brett A. Bowman
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
- Life Sciences Research, Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA
| | - Elizabeth A. Ejzak
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
- Life Sciences Research, Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA
| | - Christopher M. Reese
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Benjamin C. Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Deepak Bhandari
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| |
Collapse
|
3
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
García-García S, Matilla-González H, Peña J, del Nogal Sánchez M, Casas-Ferreira AM, Pérez Pavón JL. Determination of Hydroxy Polycyclic Aromatic Hydrocarbons in Human Urine Using Automated Microextraction by Packed Sorbent and Gas Chromatography-Mass Spectrometry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013089. [PMID: 36293669 PMCID: PMC9602966 DOI: 10.3390/ijerph192013089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/10/2023]
Abstract
A fast methodology for the determination of monohydroxy polycyclic aromatic hydrocarbons in human urine using a fully automated microextraction by packed sorbent coupled to a gas chromatograph-mass spectrometer is reported. Sample preparation requires simple hydrolysis, centrifugation, filtration, and dilution. The method does not require a derivatization step prior to analysis with gas chromatography and allows the measurement of up to three samples per hour after hydrolysis. Quantitation is carried out by a one-point standard addition allowing the determination of 6 analytes with good limits of detection (10.1-39.6 ng L-1 in water and 0.5-19.4 µg L-1 in urine), accuracy (88-110%) and precision (2.1-23.4% in water and 5.1-19.0% in urine) values. This method has been successfully applied to the analysis of six urine samples (three from smoker and three from non-smoker subjects), finding significant differences between both types of samples. Results were similar to those found in the literature for similar samples, which proves the applicability of the methodology.
Collapse
|
5
|
Kuang H, Li Y, Li L, Ma S, An T, Fan R. Four-year population exposure study: Implications for the effectiveness of e-waste control and biomarkers of e-waste pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156595. [PMID: 35688250 DOI: 10.1016/j.scitotenv.2022.156595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
E-waste pollution has emerged as a significant environmental concern. To assess the impact of e-waste control on human pollutant exposure risk and identify appropriate biomarkers to classify e-waste pollution levels, we performed longitudinal population exposure monitoring research in an e-waste recycling area in China after e-waste control. The urinary levels of oxidative stress markers and typical pollutants emitted during e-waste recycling, including heavy metals, polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs), were continuously monitored in the surrounding population (including 275 children and 485 adults) from 2016 to 2019 using high-performance liquid chromatography-tandem mass spectrometry and inductively coupled plasma-mass spectrometry. The results showed that exposure to PAHs, VOCs and heavy metals was significantly associated with oxidative stress levels in urine. After e-waste control, the exposure levels of most PAHs and VOCs and a few heavy metals in the population significantly decreased. Interestingly, the level of 8-hydroxy-2'-deoxyguanosine (a biomarker of oxidative DNA damage) in children significantly decreased by 17.6 %, from 9.45 μg/g CRE in 2017 to 7.79 μg/g CRE in 2019 (p < 0.01). Thus, implementing e-waste control measures effectively reduced the human exposure risk to e-waste pollutants. Urinary tin (Sn), s-phenylmercapturic acid (PMA), 2-&3-hydroxyfluorene (2-&3-OHF), 3-hydroxyphenanthrene (3-OHPhe), and 1-hydroxypyrene (1-OHP) levels decreased significantly and monotonically over time (p < 0.01). The levels of urinary Sn and PMA in combination with 1-OHP, 2-&3-OHF, or 3-OHPhe as biomarkers demonstrated an excellent ability to classify e-waste pollution. These biomarkers will facilitate evaluations of the effectiveness of the governmental pollution regulations and policy measures. Additionally, children were generally exposed to higher levels of heavy metals and VOCs and suffered higher levels of oxidative stress damage than adults, suggesting that children are more vulnerable to e-waste pollution. This work will provide a reference for e-waste management and control.
Collapse
Affiliation(s)
- Hongxuan Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, China
| | - Yonghong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Leizi Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shengtao Ma
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
6
|
Kuang H, Zhou W, Zeng Y, Xu D, Zhu W, Lin S, Fan R. Dose makes poison: Insights into the neurotoxicity of perinatal and juvenile exposure to environmental doses of 16 priority-controlled PAHs. CHEMOSPHERE 2022; 298:134201. [PMID: 35257710 DOI: 10.1016/j.chemosphere.2022.134201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Whether chronic exposure to environmental doses of polycyclic aromatic hydrocarbons (PAHs) can lead to neurotoxic effects is still unclear. Hence, the neurotoxic effects of perinatal and juvenile exposure to 16 priority-controlled PAHs were investigated. The mice were treated with 0, 0.5, 18.75, 50, 1875 μg/kg/day of PAHs corresponding to various population exposure concentrations from gestation to postnatal day 60. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hippocampal and cortical neurotransmitter levels were determined using liquid chromatography-tandem mass spectrometry. Typical indicators or outcome of neurotoxicity, including, spatial learning and memory ability, hippocampal long-term potentiation (LTP) and dendritic spine density were evaluated via Morris water maze tests, electrophysiological experiments and Golgi-Cox assays, respectively. The results showed that exposure to different levels of PAH could not increase oxidative DNA damage level. Mice exposed to 0.5, 50 and 1875 μg/kg/day PAHs had significantly longer escape latency than the control group only on the 1st day (p < 0.05). The number of platform crossings and the time spent in target quadrant were similar between the control and the PAHs-exposed mice. Compared with the control mice, only those exposed to 50 μg/kg/day PAHs had significantly lower LTP in hippocampal CA1 region and dendritic spine density in hippocampal DG region (p < 0.05). Except for serotonin, no significant difference in hippocampal and cortical neurotransmitter concentrations was observed between the control and PAHs-exposed groups. Taken together, perinatal and juvenile exposure to environmental doses of PAHs had no profound effect on spatial learning and memory abilities, hippocampal LTP, dendritic spines density, and neurotransmitter levels. These unexpected findings were quite different from previous in vivo studies which commonly used 2-3 orders of magnitude higher PAHs doses to treat animals. Thus, the environmental dose is a crucial reference for future toxicological research to reveal the actual toxic mechanisms and human health effects of PAHs exposure.
Collapse
Affiliation(s)
- Hongxuan Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Wenji Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yingwei Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Da Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wanqi Zhu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shengjie Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring and Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Nguyen K, Pitiranggon M, Wu HC, John EM, Santella RM, Terry MB, Yan B. Improvement on recovery and reproducibility for quantifying urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1192:123113. [PMID: 35114472 PMCID: PMC8884719 DOI: 10.1016/j.jchromb.2022.123113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
Efficient and reproducible measurements of multiple polycyclic aromatic hydrocarbon (PAH) metabolites in urinary samples are required to evaluate the complex health effects of PAH exposure. Here, we demonstrate a highly practical, automated off-line solid-phase extraction (SPE) of deconjugated hydroxylated PAHs followed by LC-MS/MS to simultaneously measure eight mono-hydroxylated PAH compounds: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 2&3-hydroxyphenanthrene, 4-hydroxyphenanthrene and 1-hydroxypyrene. Initially, we observed low recovery rates (e.g., 16% for 1-hydroxypyrene) when using previously published methods. We optimized the procedure by choosing polymeric absorbent-based cartridges, automating the sample loading step by diluting samples with 15% methanol/sodium acetate, and most importantly, replacing acetonitrile with methanol as the eluting solvent. Optimized sample preparation has improved the recovery rates to more than 69% for analytes of interest. This improvement led to higher method sensitivity and detection frequency, especially for 1-hydroxypyrene, in all of 100 urine samples collected in the New York City site of the Legacy Girls Study. The limits of detection ranged from 7.6 pg/mL to 20.3 pg/mL using 1 mL of urine, compared to the 2 mL required in CDC, method 09-OD. The average coefficients of variance of quality control samples (n = 60) ranged between 7 and 21%; variance of repeated measurements (n = 45) was less than 10%. This efficient and reliable method for measuring PAH metabolites will greatly benefit epidemiology studies and biomonitoring programs.
Collapse
Affiliation(s)
- Khue Nguyen
- Lamont Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Masha Pitiranggon
- Lamont Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Esther M. John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA,Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA.
| |
Collapse
|
8
|
Nontawong N, Ngaosri P, Chunta S, Jarujamrus P, Nacapricha D, Lieberzeit PA, Amatatongchai M. Smart sensor for assessment of oxidative/nitrative stress biomarkers using a dual-imprinted electrochemical paper-based analytical device. Anal Chim Acta 2022; 1191:339363. [PMID: 35033235 DOI: 10.1016/j.aca.2021.339363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
We present a novel dual-imprinted electrochemical paper-based analytical device (Di-ePAD) to simultaneously determine 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 3-nitrotyrosine (3-NT) and assess oxidative and nitrative biomarkers in urine and plasma samples. The Di-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The molecularly imprinted polymer (MIP) was synthesized using a silica nanosphere decorated with silver nanoparticles (SiO2@AgNPs) as a core covered with dual-analyte imprinted sites on the polymer to recognize selectively and bind the target biomarkers. This strategy drives monodispersity and enhances the conductivity of the resulting MIP core-shell products. 3-NT-MIP and 8-OHdG-MIP were synthesized by successively coating the surface of SiO2@AgNPs with l-Cysteine via the thiol group, then terminating with MIP shells. The dual imprinted core-shell composites possess attractive properties for the target biomarkers' sensing, including catalytic activity, selectivity, and good conductivity. The Di-ePAD revealed excellent linear dynamic ranges of 0.01-500 μM for 3-NT and 0.05-500 μM for 8-OHdG, with detection limits of 0.0027 μM for 3-NT and 0.0138 μM for 8-OHdG. This newly developed method based on the synergistic effects of SiO2@AgNPs combined with promising properties of MIP offers outstanding selectivity, sensitivity, reproducibility, simplicity, and low cost for quantitative analysis of 3-NT and 8-OHdG. The proposed Di-ePAD showed good accuracy and precision when applied to actual samples, including urine and serum samples validated by a conventional HPLC method.
Collapse
Affiliation(s)
- Nongyao Nontawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pattanun Ngaosri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Suticha Chunta
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Duangjai Nacapricha
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, 1090, Vienna, Austria
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand; Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Thailand.
| |
Collapse
|
9
|
Yang J, Zeng D, Hassan M, Ma Z, Dong L, Xie Y, He Y. Efficient degradation of Bisphenol A by dielectric barrier discharge non-thermal plasma: Performance, degradation pathways and mechanistic consideration. CHEMOSPHERE 2022; 286:131627. [PMID: 34311400 DOI: 10.1016/j.chemosphere.2021.131627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The discharge of recalcitrant and persistent organic pollutants into the environment and subsequent adverse impacts on the ecosystem has aroused a great concern all over the world. In this study, dielectric barrier discharge (DBD) non-thermal plasma was employed to eliminate bisphenol A (BPA). The influences of several vital experimental parameters, including discharge voltage, initial pH of solution, and rate of water flow on degradation of BPA, were explored in detail. In addition, the real wastewater from pharmaceutical factory was utilized to test the oxidation performance of DBD system. 96.8% chemical oxygen demand removal was achieved using DBD system. Radical quenching experiment as well as electron paramagnetic resonance test demonstrated that •OH was the main reactive oxygen species for the degradation of BPA. Moreover, eight major BPA degradation intermediates were identified by UPLC-MS. Ultimately, based on the UPLC-MS test results, a possible degradation pathway of BPA was proposed.
Collapse
Affiliation(s)
- Jingren Yang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Deqian Zeng
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Muhammad Hassan
- Department of Ecology & Chemical Engineering, South Ural State University, Chelyabinsk, 454080, Russia
| | - Zhongbao Ma
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingqian Dong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Xie
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Kuang H, Dai Y, Ding X, Li Y, Cha C, Jiang W, Zhang H, Zhou W, Zeng Y, Pang Q, Fan R. Association among blood BPDE-DNA adduct, serum interleukin-8 (IL-8) and DNA strand breaks for children with pulmonary diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:823-834. [PMID: 31722538 DOI: 10.1080/09603123.2019.1690638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Exposure to benzo[a]pyrene (B[a]P) may be a risk factor for pulmonary diseases. To investigate the correlations among B[a]P exposure level, DNA strand breaks and pulmonary inflammation, we recruited 83 children diagnosed with pulmonary diseases and 63 healthy children from Guangzhou, China. Results showed that the levels of Benzo[a]pyrene diol epoxide (BPDE) DNA adduct in blood and IL-8 in serum in case group were significantly higher than those in control group (p < 0.01). Moreover, levels of atmospheric B[a]P in case group was about twice of those in control group, which was consistent with the levels of BPDE-DNA adduct in blood. Significant positive correlations were observed among the levels of BPDE-DNA adduct, IL-8 and DNA strand breaks (p < 0.05). Our findings indicate that environmental air is an important exposure source of B[a]P and higher B[a]P exposure may contribute to the occurrence of pulmonary inflammation and lead to high health risks.
Collapse
Affiliation(s)
- Hongxuan Kuang
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanyan Dai
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Li
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Caihui Cha
- Department of Psychology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wenhui Jiang
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenji Zhou
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yingwei Zeng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruifang Fan
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Simultaneous determination of multiple isomeric hydroxylated polycyclic aromatic hydrocarbons in urine by using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122983. [PMID: 34655894 DOI: 10.1016/j.jchromb.2021.122983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Monitoring the level of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in urine is the key to exploring human metabolic changes and comprehensive potential toxicity of PAHs. The OH-PAHs with isomeric structure have different biological functions, indicating that their quantification is indispensable. However, the quantitation method is still dissatisfactory due to the poor separation of these isomeric OH-PAHs. The current study established a ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS) method to complete the simultaneous determination of 17 OH-PAHs, including two naphthalene metabolites (1-hydroxynaphthalene, 2-hydroxynaphthalene), two fluorene metabolites (2-hydroxyfluorene, 3-hydroxyfluorene), five phenanthrene metabolites (1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene), a pyrene metabolite (1-hydroxypyrene), five chrysene metabolites (1-hydroxychrysene, 2-hydroxychrysene, 3-hydroxychrysene, 4-hydroxychrysene, 6-hydroxychrysene) and two benzo[a]pyrene metabolites (3-hydroxybenzo[a]pyrene, 9-hydroxybenzo[a]pyrene). The method validation results showed good selectivity, linearity (r2 > 0.999), inter-day and intra-day precision (relative standard deviation (RSD) < 5.5% and RSD < 6.3%), stability (RSD < 19.3%), matrix effect (-8.3%-11.5%) and recovery (65.9%-116.2%). This method is convenient, sensitive and efficient, saving expensive materials and complicated derivatization procedures. The practical applicability of developed approach was also tested in urine samples to identify potential biomarkers of PAHs exposure in humans, and a great compromise was obtained between recoveries and extract convenience. The developed approach may be widely utilized for specific determination of OH-PAHs with isomer structure in urine samples. It is expected that the application of this method may provide powerful references for PAHs exposure assessment.
Collapse
|
12
|
Zhu D, Zhen Q, Xin J, Ma H, Pang H, Tan L, Wang X. In situ hierarchical encapsulation of bimetallic selenides into honeycomb-like nitrogen doped porous carbon nanosheets for highly sensitive and selective guanosine detection. J Colloid Interface Sci 2021; 598:181-192. [PMID: 33901845 DOI: 10.1016/j.jcis.2021.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023]
Abstract
An innovative electrochemical nanocomposite for the detection of guanosine (Gua) was proposed by in situ encapsulation of nickel-iron bimetallic selenides confined into honeycomb-like nitrogen doped porous carbon nanosheets, denoted as (Ni,Fe)Se2/N-PCNs. The porous carbon nanosheets were prepared by utilizing nickel-iron layered double hydroxide (Ni-Fe LDH) as the substrate and zeolitic imidazolate frameworks (ZIF-67) nanocrystals as the sacrificial templates via hydrothermal synthesis, followed by a process of acid etching and pyrolysis selenylation. Interestingly, the nickel-ferric bimetallic selenides material (Ni,Fe)Se2, is rarely fabricated successfully using selenylation treatment, which is a highly conductive and robust support to promote the electron transport. Meanwhile, the obtained (Ni,Fe)Se2/N-PCNs have the favorable architectural features of both unique three-dimensional (3D) porous structural and hierarchical connectivity, which are expected to provide more active sites for electrochemical reactions and ease of electron, ion, and biomolecule penetration. Benefiting from the inherent virtues of its composition, together with unique structural advantages, the (Ni,Fe)Se2/N-PCNs possess ideal sensing properties for guanosine detection with a low detection limit of 1.20 × 10-8 M, a wide linear range of 5.30 × 10-8 ~ 2.27 × 10-4 M and a good stability. Superb selectivity for potential interfering species and superb recoveries in serum suggests its feasibility for practical applications.
Collapse
Affiliation(s)
- Di Zhu
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Qingfang Zhen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, PR China
| | - Jianjiao Xin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Huiyuan Ma
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Haijun Pang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Lichao Tan
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Xinming Wang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| |
Collapse
|
13
|
Alikord M, Mohammadi A, Kamankesh M, Shariatifar N. Food safety and quality assessment: comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS). Crit Rev Food Sci Nutr 2021; 62:4833-4866. [PMID: 33554631 DOI: 10.1080/10408398.2021.1879003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is an analytical separation and diagnostic technique that is simple and sensitive and a rapid response and low-priced technique for detecting trace levels of chemical compounds in different matrices. Chemical agents and environmental contaminants are successfully detected by IMS and have been recently considered to employ in food safety. In addition, IMS uses stand-alone or coupled analytical diagnostic tools with chromatographic and spectroscopic methods. Scientific publications show that IMS has been applied 21% in the pharmaceutical industry, 9% in environmental studies and 13% in quality control and food safety. Nevertheless, applications of IMS in food safety and quality analysis have not been adequately explored. This review presents the IMS-related analysis and focuses on the application of IMS in food safety and quality. This review presents the important topics including detection of traces of chemicals, rate of food spoilage and freshness, food adulteration and authenticity as well as natural toxins, pesticides, herbicides, fungicides, veterinary, and growth promoter drug residues. Further, persistent organic pollutants (POPs), acrylamide, polycyclic aromatic hydrocarbon (PAH), biogenic amines, nitrosamine, furfural, phenolic compounds, heavy metals, food packaging materials, melamine, and food additives were also examined for the first time. Therefore, it is logical to predict that the application of the IMS technique in food safety, food quality, and contaminant analysis will be impressively increased in the future. HighlightsCurrent status of IMS for residues and contaminant detection in food safety.To assess all the detected contaminants in food safety, for the first time.Identified IMS-related parameters and chemical compounds in food safety control.
Collapse
Affiliation(s)
- Mahsa Alikord
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Halal Research Center of the Islamic Republic of Iran, Tehran, Iran
| |
Collapse
|
14
|
Kuang H, Liu J, Zeng Y, Zhou W, Wu P, Tan J, Li Y, Pang Q, Jiang W, Fan R. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene may impair lung function by increasing oxidative damage and airway inflammation in asthmatic children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115220. [PMID: 32707352 DOI: 10.1016/j.envpol.2020.115220] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
As previous studies found that the direct associations between urinary polycyclic aromatic hydrocarbon (PAH), benzene and toluene (BT) metabolites and the decreased lung function were not conclusive, we further investigated relationship of oxidative damage and airway inflammation induced by PAHs and BTs exposure with lung function. A total of 262 children diagnosed with asthma and 72 heathy children were recruited. Results showed that asthmatic children had higher levels of PAHs and BTs exposure, as well as Malonaldehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) compared with healthy children. Furthermore, binary logistic regression showed that each unit increases in level of urinary 2-&3-hydroxyfluorene (2-&3-OHF), 2-hydroxyphenanthrene (2-OHPhe), 1-hydroxyphenanthrene (1-OHP) and S-phenylmercapturic acid (S-PMA) were significantly associated with an elevated risk of asthma in children with odds ratios of 1.5, 2.3, 1.7 and 1.4, respectively, suggesting that PAHs and BTs exposure could increase the risk of asthma for children. Neither PAH nor BT metabolite could comprehensively indicate the decreased lung function as only 2-&3-OHF and 1-OHP were significantly and negatively correlated with forced vital capacity (FVC). Moreover, levels of most individual PAH and BT metabolite were significantly correlated to MDA and 8-OHdG. Further hierarchical regression analysis indicated that MDA and 8-OHdG levels did not show significant effects on the decreased lung function, suggesting that they are not the suitable biomarkers to indirectly indicate the altered lung function induced by PAHs and BTs. Urinary 2-OHPhe and 1-&9-hydroxyphenanthrene (1-&9-OHPhe) were significantly correlated with fractional exhaled nitric oxide (FeNO). Moreover, FeNO significantly contributed to decreased lung function and explained 7.7% of variance in ratio of forced expiratory volume in 1 s (FEV1) and FVC (FEV1/FVC%). Hence, FeNO, rather than oxidative damage indicators or any urinary PAH and BT metabolite, is more sensitive to indirectly reflect the decreased lung function induced by PAHs and BTs exposure for asthmatic children.
Collapse
Affiliation(s)
- Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jian Liu
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yingwei Zeng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenji Zhou
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Peiqiong Wu
- Guangzhou Women and Children's Medical Center, Guangzhou, 510120, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 511447, China
| | - Yonghong Li
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenhui Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou, 510120, China.
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
15
|
Matulakul P, Vongpramate D, Kulchat S, Chompoosor A, Thanan R, Sithithaworn P, Sakonsinsiri C, Puangmali T. Development of Low-Cost AuNP-Based Aptasensors with Truncated Aptamer for Highly Sensitive Detection of 8-Oxo-dG in Urine. ACS OMEGA 2020; 5:17423-17430. [PMID: 32715227 PMCID: PMC7377066 DOI: 10.1021/acsomega.0c01834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), an oxidized form of guanosine residues, is a critical biomarker for various cancers. Herein, a sensitive citrate-capped gold nanoparticle-based aptasensor device has been developed for the detection of 8-oxo-dG in urine. We previously designed a 38-nt anti-8-oxo-dG-aptamer by a computer simulation and the experimental validation has been performed in the present work. The analytical performance of the 38-nt aptamer from the in silico design was compared with the parent 66-nt aptamer. This assay is based on the principle of salt-induced aggregation of citrate-capped gold nanoparticles. Based on this sensing mechanism, the difference between the absorbance in the presence and absence of 8-oxo-dG at λ = 525 nm (ΔA525) increased linearly as a function of 8-oxo-dG concentrations in the ranges of 10-100 and 15-100 nM for 38-nt and 66-nt aptasensors, respectively. This method can provide detection limits of 6.4 nM for 8-oxo-dG in the 38-nt aptasensor and 13.2 nM in the 66-nt aptasensor. Similar to the 66-nt aptamer, the shortened aptamer, 38-nt long, can provide high sensitivity and selectivity with rapid detection time. In addition, using the 38-nt aptamer as a recognition component in the developed portable low-cost device showed high sensitivity in the detection range of 15-100 nM with a detection limit of 12.9 nM, which is much lower than the threshold value (280 nM) for normal human urine. This easy-to-use device could effectively and economically be utilized for monitoring 8-oxo-dG in real urine samples and potentially serve as a prototype for a commercial device.
Collapse
Affiliation(s)
- Piyaporn Matulakul
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Drusawin Vongpramate
- Department
of Information Technology, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand
| | - Sirinan Kulchat
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
| | - Apiwat Chompoosor
- Department
of Chemistry, Faculty of Science, Ramkhamhaeng
University, Bangkok 10240, Thailand
| | - Raynoo Thanan
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Paiboon Sithithaworn
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
16
|
Urbancova K, Dvorakova D, Gramblicka T, Sram RJ, Hajslova J, Pulkrabova J. Comparison of polycyclic aromatic hydrocarbon metabolite concentrations in urine of mothers and their newborns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138116. [PMID: 32222511 DOI: 10.1016/j.scitotenv.2020.138116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants produced during incomplete combustion of organic matter. Humans can be exposed to them via several pathways (inhalation, digestion, dermal exposure). The aim of this study was to assess the concentration of 11 monohydroxylated metabolites of PAHs (OH-PAHs) in 660 urine samples collected from mothers and their newborns residing in two localities of the Czech Republic - Most and Ceske Budejovice - in 2016 and 2017. After enzymatic hydrolysis, the target analytes were extracted from the urine samples using liquid-liquid extraction, with extraction solvent ethyl acetate and a clean-up step using dispersive solid-phase extraction (d-SPE) with the Z-Sep sorbent. For identification and quantification, ultra-high performance liquid chromatography coupled with tandem mass spectrometry was applied. 2-OH-NAP was the compound present in all of the measured samples and it was also the compound at the highest concentration in both mothers' and newborns' urine samples (median concentration 5.15 μg/g creatinine and 3.58 μg/g creatinine). The total concentrations of OH-PAHs in urine samples collected from mothers were 2 times higher compared to their children. The most contaminated samples were collected in Most in the period October 2016-March 2017 from both mothers (12.59 μg/g creatinine) and their newborns (8.29 μg/g creatinine). The concentrations of OH-PAHs in urine samples, which were collected from both mothers and their newborns as presented in this study, are comparable with those found in our previous study between 2013 and 2014. In addition, they are slightly lower or comparable to other studies from Poland, USA, Germany, China, and Australia. The results might indicate that the population in the previously highly air-polluted mining districts carries some long-term changes (maybe existing changes in genetic information), which also affect the metabolism of PAHs. It could be related to the long-lasting effect, and thus corresponding to the shortened life expectancy.
Collapse
Affiliation(s)
- Katerina Urbancova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Tomas Gramblicka
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Radim J Sram
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic; Institute of Experimental Medicine Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
17
|
Lateral flow immunostrips for the sensitive and rapid determination of 8-hydroxy-2'-deoxyguanosine using upconversion nanoparticles. Mikrochim Acta 2020; 187:377. [PMID: 32519072 DOI: 10.1007/s00604-020-04349-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
Lateral flow immunostrips were newly designed and a sensitive and rapid fluorometric method for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a model target of small biomarker molecules was developed. The upconversion nanoparticles (UCNPs, NaYF4:Yb/Er core, and polyacrylic acid (PAA)-modified shell, size ~ 39 nm, excitation wavelength = 980 nm; emission wavelength = 540 nm) were employed as fluorescence signal material. The 8-OHdG antibody (Ab) was taken as the recognition probe while UCNP-labeled Ab was taken as the signal probe. Bovine serum albumin (BSA) was designed as carrier protein for 8-OHdG to form 8-OHdG-BSA conjugate as the capture probe. The lateral flow immunostrips were prepared by laminating a sample pad (glass fiber membrane), a test pad (nitrocellulose membrane), and adsorption pad (filter paper) on PVP backing. The capture probe was immobilized on the test zone while an IgG antibody taken as the control probe was immobilized on the control zone. When the signal probe and the sample were in sequence loaded on the sample pad, 8-OHdG analyte bound with the signal probe, and then the excess of the signal probe move along the strip and is collected by the capture probe on the test zone while the remnant signal probe is collected by the control probe on the control zone. The signal probe and capture probe were synthesized and characterized. The fluorescence intensity on the test zone was inversely proportional to the concentration of 8-OHdG for the quantitative determination while the fluorescence emission on the control zone was observed to validate the assay. The developed method showed a wide linear range from 0.10 to 10 nM, a quite low detection limit of 0.05 nM, small sample volume requirement (100 μL), short assay time (15 min), and good method reproducibility (RSD = 4.4%, nine immunostrips). Graphical abstract Schematic illustration of the configuration and measurement principle of lateral flow fluorescence immunostrip for 8-OHdG: (a) configuration; (b) preparation: load of capture probe (BSA-8-OHdG, 2 μL) on test zone; load of control probe (IgG Ab, 2 μL) on control zone; load of signal probe (UCNP-Ab, 16 μL) on sample pad; (c) measurement: load of sample (8-OHdG, 100 μL) on sample pad, collection, and measurement.
Collapse
|
18
|
Xu X, Wei D, Li Y, Wei Q, Li Y, Jin M, Zhao B, Zhang S, Han J, Xie D. Determination of unmetabolized polycyclic aromatic hydrocarbons in children urine by low temperature partitioning extraction and gas chromatography triple quadrupole tandem mass spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
The Detection of 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine in Circulating Cell-Free DNA: A Step Towards Longitudinal Monitoring of Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:125-138. [DOI: 10.1007/978-3-030-41283-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
He Y, Zou L, Luo W, Yi Z, Yang P, Yu S, Liu N, Ji J, Guo Y, Liu P, He X, Lv Z, Huang S. Heavy metal exposure, oxidative stress and semen quality: Exploring associations and mediation effects in reproductive-aged men. CHEMOSPHERE 2020; 244:125498. [PMID: 31812049 DOI: 10.1016/j.chemosphere.2019.125498] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Heavy metal exposure induces oxidative stress, which is critical for adverse male reproductive health. OBJECTIVE To explore the mediating effect of oxidative stress on the relationship of heavy metal exposure with semen quality. METHODS Urinary levels of three oxidative stress markers, semen quality, and urinary arsenic, cadmium and lead were examined among 1020 men. Multivariate linear regression was applied to explore cross-sectional associations, and the role of oxidative stress as mediators was investigated. RESULTS Quartiles of metals showed significant dose-dependent relationships with increasing levels of 8-hydroxy-2deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA). Significant or suggestive associations were also found between urinary 8-OHdG levels and the percentage of normal sperm morphology (ptrend < 0.001), between urinary 8-isoPGF2α levels and total motility (ptrend = 0.052), progressive motility (ptrend = 0.050) respectively. The mediation analysis showed that about 14.59%, 18.06%, 15.35% or 16.49% of the association between arsenic/cadmium exposure and the decreased total motility/progressive motility was mediated by 8-isoPGF2α, respectively. In addition, about 16.47% of the relationship between lead exposure and the decreased percentage of normal sperm morphology was mediated by 8-OHdG. CONCLUSIONS Our findings suggest that higher urinary arsenic, cadmium and lead levels were associated with increased oxidative stress markers, which also related with altered semen quality. 8-isoPGF2α and 8-OHdG might be the possible mediators of the associations between urinary heavy metals and total motility, progressive motility or the proportion of normal sperm morphology.
Collapse
Affiliation(s)
- Yinni He
- School of Medicine, Shaoyang University, Shaoyang, 422000, Hunan Province, China
| | - Lijun Zou
- Department of Preventive Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Wenqi Luo
- Department of Histology and Embryology, Changsha Medical University, Changsha, 410219, Hunan Province, China
| | - Zhiyong Yi
- School of Medicine, Shaoyang University, Shaoyang, 422000, Hunan Province, China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuyuan Yu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China
| | - Ning Liu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China
| | - Jiajia Ji
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China
| | - Yinsheng Guo
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China
| | - Peiyi Liu
- Department of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China
| | - Xinpeng He
- Department of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China
| | - Ziquan Lv
- Department of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China.
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China.
| |
Collapse
|
21
|
Lin M, Tang J, Ma S, Yu Y, Li G, Fan R, Mai B, An T. Insights into biomonitoring of human exposure to polycyclic aromatic hydrocarbons with hair analysis: A case study in e-waste recycling area. ENVIRONMENT INTERNATIONAL 2020; 136:105432. [PMID: 31884415 DOI: 10.1016/j.envint.2019.105432] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, 96 pairs of hair and urine samples were collected from e-waste (EW) dismantling workers of an industrial park, as well as residents living in surrounding areas. The concentrations of polycyclic aromatic hydrocarbons (PAHs) and hydroxylated PAH metabolites (OH-PAHs) were analyzed . The results show that concentrations of Σ15PAHs ranged from 6.24 to 692 ng/g dry weight (dw) and Σ12OH-PAHs from undetected to 187 ng/g dw in hair external (hair-Ex), and ranged from 31.7 to 738 ng/g dw and 21.6 to 1887 ng/g dw in hair internal (hair-In). There was no significant difference in exposure levels between EW dismantling workers and residents of the surrounding area. For the parent PAHs, the concentrations of Σ15PAHs of hair-In were comparable with those of hair-Ex for all populations except for the child residents. On the contrary, for the OH-PAHs, the concentrations of Σ12OH-PAHs of hair-In were 9-37 times higher than those of hair-Ex for populations. Moreover, the congener profiles of OH-PAHs of hair-In were different from those of hair-Ex, but similar to that of urine. Particularly, 3-OH-Bap, which is a carcinogenic metabolite, was only detected in the hair-In. These results indicate that OH-PAHs in hair-In, just like in urine, are mainly derived from endogenous metabolism and could be considered as reliable biomarkers for PAHs exposure. However, there was almost no significant correlations between hair-In and urine for OH-PAHs. This indicates that more attention should be paid to OH-PAHs when conducting PAHs exposure risk assessment using hair, which will help to obtain more reliable and comprehensive information on health risk assessments.
Collapse
Affiliation(s)
- Meiqing Lin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, 510631, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
22
|
Kuang H, Li Y, Jiang W, Wu P, Tan J, Zhang H, Pang Q, Ma S, An T, Fan R. Simultaneous determination of urinary 31 metabolites of VOCs, 8-hydroxy-2′-deoxyguanosine, and trans-3′-hydroxycotinine by UPLC-MS/MS: 13C- and 15N-labeled isotoped internal standards are more effective on reduction of matrix effect. Anal Bioanal Chem 2019; 411:7841-7855. [DOI: 10.1007/s00216-019-02202-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
|
23
|
Choodet C, Toomjeen P, Phanchai W, Matulakul P, Thanan R, Sakonsinsiri C, Puangmali T. Combined in silico and in vitro study of an aptasensor based on citrate-capped AuNPs for naked-eye detection of a critical biomarker of oxidative stress. RSC Adv 2019; 9:17592-17600. [PMID: 35520541 PMCID: PMC9064585 DOI: 10.1039/c9ra01497g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/10/2019] [Indexed: 11/27/2022] Open
Abstract
An elevated level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in biosamples has been found to correlate to oxidative stress, and it has been assigned as a critical biomarker of various diseases. Herein, insights into the mechanisms of an aptasensor, based on citrate-capped gold nanoparticles (AuNPs), for 8-oxo-dG detection were elucidated using molecular dynamics (MD) simulations and validated experimentally. We found that the binding mechanism for binding between the anti-8-oxo-dG aptamer and 8-oxo-dG has the following characteristic stages: (i) adsorption stage, (ii) binding stage, and (iii) complex stabilization stage. Our simulations also reveal the binding sites between the anti-8-oxo-dG aptamer and 8-oxo-dG formed through hydrogen bonding during complex formation. A shortened anti-8-oxo-dG-aptamer was also engineered using in silico design, which was expected to improve the analytical performance of the colorimetric aptasensor. The mechanisms of the colorimetric aptasensor in the presence and absence of 8-oxo-dG were also investigated, and found to be in good agreement with the experiments. Complete understanding of the mechanism of the colorimetric aptasensor would open the door for development of novel naked-eye aptasensors.
Collapse
Affiliation(s)
- Cherdpong Choodet
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Pakawat Toomjeen
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Piyaporn Matulakul
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University Khon Kaen 40002 Thailand
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University Khon Kaen 40002 Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
- Cholangiocarcinoma Research Institute (CARI), Khon Kaen University Khon Kaen 40002 Thailand
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University Khon Kaen 40002 Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
24
|
Determination of Ten Kinds of Monohydroxylated Polycyclic Aromatic Hydrocarbons in Human Urine by Supported Liquid Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Jiang J, Ip HSS, Zhou J, Guan Y, Zhang J, Liu G, Garrotto N, Lu Y, DeGuzman J, She J. Supported-liquid phase extraction in combination with isotope-dilution gas chromatography triple quadrupole tandem mass spectrometry for high-throughput quantitative analysis of polycyclic aromatic hydrocarbon metabolites in urine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:304-311. [PMID: 30802744 DOI: 10.1016/j.envpol.2019.01.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants with a number of them being carcinogenic. One of the approaches to assess human exposure to PAHs is to measure their urinary metabolites, monohydroxyl polycyclic aromatic hydrocarbons (OH-PAHs), with a method allowing for high throughput and short turn-around time. We developed a method to quantify nine urinary OH-PAHs by using supported liquid phase extraction (SLE) and isotope dilution gas chromatography tandem mass spectrometry (GC-MS/MS). SLE demonstrated advantages over the traditionally used liquid-liquid extraction techniques. The target analytes with spiked deuterated and 13C-labeled internal standards were extracted from urine by SLE after enzymatic cleavage of the glucuronide and sulfate conjugates. The extracted analytes were then derivatized with N-Methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), and analyzed by GC-MS/MS. Six solvent mixtures were evaluated as the SLE extraction solvent, and pentane:chloroform (7:3, v/v) was selected due to its best overall analytical performance. Method detection limits for the 9 analytes ranged from 2.3 to 13.8 pg/mL. Precision and accuracy were satisfactory. SLE and internal isotope labeled standard combination reduced matrix effect effectively. This new method using SLE sample preparation techniques coupled with GC-MS/MS proves applicable to urinary measurements for PAH exposure studies for general population.
Collapse
Affiliation(s)
- Jie Jiang
- California Department of Public Health, Environmental Health Laboratory Branch, 850 Marina Bay Parkway, G365, Richmond, CA, 94804, USA; Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ho Sai Simon Ip
- California Department of Public Health, Environmental Health Laboratory Branch, 850 Marina Bay Parkway, G365, Richmond, CA, 94804, USA
| | - Junqiang Zhou
- California Department of Public Health, Environmental Health Laboratory Branch, 850 Marina Bay Parkway, G365, Richmond, CA, 94804, USA
| | - Yufeng Guan
- California Department of Public Health, Environmental Health Laboratory Branch, 850 Marina Bay Parkway, G365, Richmond, CA, 94804, USA; School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Jianqing Zhang
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guihua Liu
- Shenzhen Centers for Disease Control and Prevention, Shenzhen, 518055, China
| | - Natalia Garrotto
- California Department of Public Health, Environmental Health Laboratory Branch, 850 Marina Bay Parkway, G365, Richmond, CA, 94804, USA
| | - Yifu Lu
- California Department of Public Health, Environmental Health Laboratory Branch, 850 Marina Bay Parkway, G365, Richmond, CA, 94804, USA; Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Josephine DeGuzman
- California Department of Public Health, Environmental Health Laboratory Branch, 850 Marina Bay Parkway, G365, Richmond, CA, 94804, USA
| | - Jianwen She
- California Department of Public Health, Environmental Health Laboratory Branch, 850 Marina Bay Parkway, G365, Richmond, CA, 94804, USA.
| |
Collapse
|
26
|
Gan H, Xu H. A novel aptamer-based online magnetic solid phase extraction method for simultaneous determination of urinary 8-hydroxy-2'-deoxyguanosine and monohydroxylated polycyclic aromatic hydrocarbons. Talanta 2019; 201:271-279. [PMID: 31122423 DOI: 10.1016/j.talanta.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 02/08/2023]
Abstract
In this work, an innovative aptamer-based magnetic adsorbent (Fe3O4@PDA-aptamer MNPs) was prepared by hydrothermal synthesis method followed by the surface functionalization of nanoparticles. After fixing in a steel stainless tube as sorbent of magnetic solid phase extraction (MSPE), an online magnetic solid phase extraction-high performance liquid chromatography-mass spectrometry (online-MSPE-HPLC-MS) method was developed and applied for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) simultaneously in urine. The synthesized sorbent presented outstanding features, including large specific surface area, high enrichment capacity and excellent stability. High throughput analysis can be achieved by affinity-specific adsorption of 8-OHdG and non-specific adsorption of OH-PAHs at the same time. In addition, online MSPE can greatly simplify the analysis process, reduce human errors and enhance the sensitivity. When compared with offline MSPE, a sensitivity enhancement of 30-400 times was obtained for the online method. Some experimental parameters such as the amount of the sorbent, sampling flow rate and sample volume, were optimized systematically. Under the optimal conditions, the limits of detection (LOD) were in the range of 0.028-0.114 ng mL-1, and the correlation coefficients (R2) were higher than 0.9962. The relative standard deviations (RSDs) were less than 16.1% (n = 5) and the recoveries ranged from 71% to 116%. The above results show that the rapid, sensitive and automated online-MSPE-HPLC-MS method has potential application in the simultaneous determination of 8-OHdG and PAHs in complex sample matrix to assess the environmental exposure level.
Collapse
Affiliation(s)
- Haijiao Gan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
| |
Collapse
|
27
|
Wang YX, Liu C, Shen Y, Wang Q, Pan A, Yang P, Chen YJ, Deng YL, Lu Q, Cheng LM, Miao XP, Xu SQ, Lu WQ, Zeng Q. Urinary levels of bisphenol A, F and S and markers of oxidative stress among healthy adult men: Variability and association analysis. ENVIRONMENT INTERNATIONAL 2019; 123:301-309. [PMID: 30553203 DOI: 10.1016/j.envint.2018.11.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as alternatives to endocrine disrupting chemical bisphenol A (BPA). Evidence from in vitro and animal studies demonstrates that BPA, BPF and BPS induce oxidative stress, a proposed mechanism that is relevant to various adverse health effects. Evaluation in humans is hampered by the potentially high within-subject variability of urinary measurements. OBJECTIVE To evaluate the variability and associations of levels of BPA, BPS, BPF and 3 oxidative stress markers [i.e., 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)] in urine collected on multiple occasions over 3 months. METHOD A total of 529 spot urine samples, including 88 first morning voids (FMVs) and 24-h specimens, were gathered from 11 adult men on days 0, 1, 2, 3, 4, 30, 60 and 90 and analyzed for BPA, BPF, BPS, 8-OHdG, 8-isoPGF2α and HNE-MA. Intraclass correlation coefficients (ICCs) were estimated to characterize the reproducibility of urinary bisphenols and oxidative stress markers, and linear mixed models were applied to assess the associations between markers of exposure and response. RESULTS BPA and BPF were detected in ≥85% of the spot samples, while BPS in 13% of the samples. High degrees of within-subject variability were found for BPA, BPF, 8-OHdG, 8-isoPGF2α and HNE-MA in spot samples, FMVs and 24-h specimens (creatinine-corrected ICCs ≤ 0.37). The sensitivities were low-to-moderate (0.30-0.63) when using single spot samples or FMVs to predict high (>27th, or 36th percentile) 3-month average urinary levels of BPA, BPF, 8-OHdG, 8-isoPGF2α and HNE-MA. Collecting repeated specimens at different time points improved the accuracy of classification for markers of exposure and response. Elevated urinary BPA and BPF were associated with significantly higher levels of oxidative stress markers. CONCLUSIONS Repeated urinary specimens are required to characterize bisphenol exposure levels and the oxidative stress status of individuals. Exposure to BPA and BPF may partly contribute to the elevated urinary levels of oxidative stress makers in adult men.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi Wang
- Department of Pathology, Bengbu Medical College, Anhui, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Ming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun-Qing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
28
|
Toomjeen P, Phanchai W, Choodet C, Chompoosor A, Thanan R, Sakonsinsiri C, Puangmali T. Designing an Aptasensor Based on Cysteamine-Capped AuNPs for 8-Oxo-dG Detection: A Molecular Dynamics Approach and Experimental Validation. J Phys Chem B 2019; 123:1129-1138. [DOI: 10.1021/acs.jpcb.8b10436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | | | | | | |
Collapse
|
29
|
Chen L, Hu G, Fan R, Lv Y, Dai Y, Xu Z. Association of PAHs and BTEX exposure with lung function and respiratory symptoms among a nonoccupational population near the coal chemical industry in Northern China. ENVIRONMENT INTERNATIONAL 2018; 120:480-488. [PMID: 30145312 DOI: 10.1016/j.envint.2018.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Emissions (particularly aromatic compounds) from coal industries and biomass fuels combustion lead to high health risks for neighboring residents. To investigate the association of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and 1,2-dimethylbenzene (BTEX) exposure with lung function and respiratory symptoms among adults and children near the coal-chemical industry in Northern China, adults and children from a county dotted with coal chemical industry were chosen as subjects for investigation (investigated area, IR). The control group consisted of adults and children from an agricultural county (control area, CR). The environmental and urinary PAH and BTEX levels of adults and children were determined by isotope dilution liquid chromatography coupled with tandem mass spectrometry. The Mann-Whitney U test and multivariate linear regression models were used to analyze the relationship between pollutant exposure and the respiratory system. The results showed that in an ambient environment, levels of PAHs and BTEX in the IR were significantly higher than those in the CR. Particularly, the concentration profiles for air samples were IR > CR and indoor > outdoor. Both for adults and children, the geometric (GM) concentrations of urinary PAHs and BTEX from the IR were significantly higher than those measured in the CR. Additionally, the urinary PAH exposure level profiles of smokers were higher than those of nonsmokers, indicating that indoor air and smoking were both important nonoccupational exposure sources. The decline of the forced expiratory in the first second (FEV1, %) and the forced expiratory middle flow rate (FEF25%) in children were associated with increasing urinary PAH metabolite levels (p < 0.05). The increase in urinary 1-OHN, 3-OHPhe, 4-OHPhe and 1-OHP levels could be linked to a decrease in FEV1 (r = -0.179, p < 0.05) and FEF25% with the coefficient of -0.166, -0.201 and -0.175 (p < 0.05), respectively. Medical examinations and lung function tests indicated that residents in the IR had higher occurrences of chest inflammation or declining lung function than residents in the CR. Moreover, exposure to PAHs and BTEX could decrease child lung function, though decreased lung function was not observed in adults. Both urinary monitoring and lung function data showed that children were more sensitive to PAH and BTEX exposure than adults.
Collapse
Affiliation(s)
- Laiguo Chen
- State Environmental Protection Key Laboratory of Urban Environment & Ecology, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Urban Environment & Ecology, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Yanshan Lv
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yanyan Dai
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhencheng Xu
- State Environmental Protection Key Laboratory of Urban Environment & Ecology, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China.
| |
Collapse
|
30
|
Huang ZY, Wu CC, Bao LJ, Wang XP, Muir D, Zeng EY. Characteristics and potential health risk of rural Tibetans' exposure to polycyclic aromatic hydrocarbons during summer period. ENVIRONMENT INTERNATIONAL 2018; 118:70-77. [PMID: 29803803 DOI: 10.1016/j.envint.2018.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Biomass fuels remain main energy sources in many remote rural regions, but potential health hazards from exposure to biomass combustion fumes have not been adequately assessed. Combustion of biomass fuels generates abundant polycyclic aromatic hydrocarbons (PAHs); hence residential exposure to PAHs can be used to evaluate the potential health risk to remote rural populations. The present study selected rural Tibetans to address the above-mentioned issue. Samples of indoor air and dust, human urine and local foods (Tsampa flour and buttered tea) were collected from five rural households in Langkazi County, an agricultural and pasturing region in Tibet of China in the summer season, which represented the best-case scenario as no heating was required. Residential exposure to PAHs by adults amounted to benzo[a]pyrene equivalent (BaPeq) dosages of 110-760, 1.2-50 and 0.5-23 ng d-1 for ingestion, inhalation and dermal contact, respectively. Daily intakes of naphthalene, fluorene, phenanthrene and pyrene estimated from urinary monohydroxy PAH metabolites and from diet and inhalation exposure to PAHs were comparable (3.9, 1.9, 12 and 3.3 μg d-1 versus 9.5, 2.5, 5.1 and 1.1 μg d-1), indicating the utility of external exposure in assessing daily intake of PAHs. The median incremental lifetime cancer risk was 32 × 10-6 (95% confidence interval: 0.7-73 × 10-6) for ingestion and 2.4 × 10-6 (95% confidence interval: 0.02-12 × 10-6) for inhalation and dermal contact combined, indicating moderate to slight potential cancer risk. Diet is the dominant source of health hazards for rural Tibetans, but cooking fumes also present a meaningful concern. The present study demonstrates that the pristine lifestyles of remote rural residents may be of global health concern, and merit further investigations.
Collapse
Affiliation(s)
- Zhi-Yong Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Chen-Chou Wu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Lian-Jun Bao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiao-Ping Wang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Derek Muir
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Eddy Y Zeng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
31
|
Tao L, Yue Q, Hou Y, Wang Y, Chen C, Li CZ. Resonance light scattering aptasensor for urinary 8-hydroxy-2'-deoxyguanosine based on magnetic nanoparticles: a preliminary study of oxidative stress association with air pollution. Mikrochim Acta 2018; 185:419. [PMID: 30121832 DOI: 10.1007/s00604-018-2937-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
An aptamer based method is described for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) using resonance light scattering (RLS). Magnetic nanoparticles (MNPs) were employed as RLS probes. The probe DNA was placed on the surface of MNPs, which produces a rather low RLS signal. If, however, probe DNA hybridizes with the aptamer against 8-OHdG, a sandwich structure will be formed. This results in a significant enhancement of RLS intensity. The aptamer was used as the recognition element to capture 8-OHdG. 8-OHdG has a stronger affinity for the aptamer than probe DNA, and the conformation of the aptamer therefore switches from a double-stranded to a G-quadruplex structure. As a result, MNPs labeled with probe DNA are released, and RLS intensity decreases. The method allows 8-OHdG to be detected with a linear response in the 32 pM - 12.0 nM concentration range and an 11 pM limit of detection (at 3.29SB/m, according to the recent recommendation of IUPAC). The MNPs can be reused 5 times by applying an external magnetic field for collection. The method was successfully applied to analyze human urine samples for its content of 8-OHdG. It was also found that the levels of 8-OHdG noticeably increased with the increase of the Air Quality Index. Conceivably, the method is a viable tool to investigate the relationship between 8-OHdG levels and the effect of air pollution. Graphical abstract A reusable sensing strategy was constructed to detect urinary 8-OHdG based on "turn-off" resonance light scattering. The LOD was as low as 11 pM. This study showed some preliminary data for the association between oxidative stress and air pollution.
Collapse
Affiliation(s)
- Lixia Tao
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Qiaoli Yue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China.
| | - Yining Hou
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Yongping Wang
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Chen-Zhong Li
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China. .,Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
32
|
Zheng J, Zheng W, Zhou Y, Jiang S, Spencer P, Ye W, Zheng Y, He G, Qu W. Heavy Exposure of Waste Collectors to Polycyclic Aromatic Hydrocarbons in a Poor Rural Area of Middle China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8866-8875. [PMID: 29963854 DOI: 10.1021/acs.est.8b02024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Manual collection and open-air incineration of waste materials is a common practice in rural regions of China and beyond. Low-temperature combustion of rubber and plastic waste generates high levels of airborne polycyclic aromatic hydrocarbons (PAHs). We investigated ten urinary hydroxylated PAH metabolites (OH-PAHs), the oxidative damage biomarker (8-hydroxy-deoxyguanosine, 8-OHdG), and four serum biomarkers including gamma-glutamyl transferase (GGT) and alanine aminotransferase (ALT) in 41 waste collectors and 122 control subjects residing in the same or a distant rural village in Henan Province. The level of PAH metabolites in urine (median: 17.24 μg/g Cre) was twice that of controls living in the same area without an occupational history involving waste collection (median: 8.16 μg/g Cre) and thrice that of controls living 30 km away (median: 6.07 μg/g Cre). The concentrations of OH-PAHs were positively associated with urinary 8-OHdG levels (β = 0.283, p < 0.05). Serum GGT and ALT were slightly increased in waste collectors. Urinary 8-OHdG levels were similar in one-year and longer-term workers, suggesting that rubber and plastic waste collection/incineration carries a high PAH exposure risk. These data provide solid baseline information, emphasizing the importance of monitoring the long-term health outcomes of waste collectors and changes in exposure patterns associated with rural development and regulation of waste disposal.
Collapse
Affiliation(s)
- Jianheng Zheng
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
- Key Laboratory of the Public Health Safety, Department of Nutrition and Food Hygiene, Ministry of Education, School of Public Health , Fudan University , Shanghai , 200032 , China
- Key Laboratory of State General Administration of Sport , Shanghai Research Institute of Sports Science , Shanghai , 200030 , China
| | - Weiwei Zheng
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
| | - Ying Zhou
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
- Key Laboratory of the Public Health Safety, Department of Nutrition and Food Hygiene, Ministry of Education, School of Public Health , Fudan University , Shanghai , 200032 , China
| | - Songhui Jiang
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
| | - Peter Spencer
- Oregon Institute of Occupational Health Sciences, and Department of Neurology, School of Medicine , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , 171 77 , Sweden
| | - Yuxin Zheng
- School of Public Health , Qingdao University , 38 Dengzhou Road , Qingdao , 266021 , China
| | - Gengsheng He
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
- Key Laboratory of the Public Health Safety, Department of Nutrition and Food Hygiene, Ministry of Education, School of Public Health , Fudan University , Shanghai , 200032 , China
| | - Weidong Qu
- Centers for Water and Health, Key Laboratory of the Public Health Safety, Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Department of Environmental Health, School of Public Health , Fudan University , Shanghai , 200032 , China
| |
Collapse
|
33
|
Li Y, Zhang H, Kuang H, Fan R, Cha C, Li G, Luo Z, Pang Q. Relationship between bisphenol A exposure and attention-deficit/ hyperactivity disorder: A case-control study for primary school children in Guangzhou, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:141-149. [PMID: 29276960 DOI: 10.1016/j.envpol.2017.12.056] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical. Studies have shown that the exposure to BPA is associated with attention-deficit/hyperactivity disorder (ADHD) during adolescent development. However the direct clinical evidence is limited. To investigate the possible association between environmental BPA exposure and the altered behavior of children, a case-control study was conducted with children aged 6-12 years in Guangzhou, China. Two hundred fifteen children diagnosed with ADHD and 253 healthy children from Guangzhou were recruited as the case and control groups, respectively. Urinary BPA and 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage) concentrations were determined by high-performance liquid chromatography/tandem spectrometry. The results showed that concentrations of urinary BPA for the case group were significantly higher than those for the control group (3.44 vs 1.70 μg/L; 4.63 vs 1.71 μg/g Crt. p < .001). A stepwise increase in the odds ratios for ADHD was observed with the increasing quartiles of children's urinary BPA (first quartile: reference category; second quartile adjusted OR: 1.79, 95% CI: 0.95-3.37; third quartile adjusted OR: 7.44, 95% CI: 3.91-14.1; fourth quartile adjusted OR: 9.41, 95% CI: 4.91-18.1). When the BPA levels were stratified by gender, the odds of ADHD among boys and girls increased significantly with urinary BPA concentrations (adjusted OR: 4.58, 95% CI: 2.84-7.37; adjusted OR: 2.83, 95% CI: 1.17-6.84). Urinary 8-OHdG concentrations in the ADHD children were significantly higher than those in the control group. Furthermore, the linear regression analysis results indicated that a significant relationship existed between BPA exposure and 8-OHdG levels (R = 0.257, p < .001). Our findings provide direct evidence that childhood BPA exposure may be related to ADHD and 8-OHdG concentrations for children. Moreover, BPA exposure could increase the higher occurrence of ADHD for boy than for girls.
Collapse
Affiliation(s)
- Yanru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Haibin Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hongxuan Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Caihui Cha
- Psychology Department, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China.
| | - Guanyong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
| | - Zhiwei Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou, 510640, China
| |
Collapse
|
34
|
Zheng X, Dupuis KT, Aly NA, Zhou Y, Smith FB, Tang K, Smith RD, Baker ES. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta 2018; 1037:265-273. [PMID: 30292301 DOI: 10.1016/j.aca.2018.02.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 10/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making their studies extremely time consuming. In this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). The collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.
Collapse
Affiliation(s)
- Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Kevin T Dupuis
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Noor A Aly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Yuxuan Zhou
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Francesca B Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States.
| |
Collapse
|
35
|
Lintelmann J, Wu X, Kuhn E, Ritter S, Schmidt C, Zimmermann R. Detection of monohydroxylated polycyclic aromatic hydrocarbons in urine and particulate matter using LC separations coupled with integrated SPE and fluorescence detection or coupled with high-resolution time-of-flight mass spectrometry. Biomed Chromatogr 2018; 32:e4183. [DOI: 10.1002/bmc.4183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/10/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jutta Lintelmann
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Xiao Wu
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Sebastian Ritter
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Claudia Schmidt
- Institute of Epidemiology II; Helmholtz Zentrum München GmbH; Neuherberg Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Cooperation Group ‘Comprehensive Molecular Analytics’; Helmholtz Zentrum München GmbH; Neuherberg Germany
- Joint Mass Spectrometry Centre, Institute of Chemistry, Chair of Analytical Chemistry; University of Rostock; Rostock Germany
| |
Collapse
|
36
|
Shang T, Wang P, Liu X, Jiang X, Hu Z, Lu X. Facile synthesis of porous single-walled carbon nanotube for sensitive detection of 8-Hydroxy-2′-deoxyguanosine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Lv Y, Lu S, Dai Y, Rui C, Wang Y, Zhou Y, Li Y, Pang Q, Fan R. Higher dermal exposure of cashiers to BPA and its association with DNA oxidative damage. ENVIRONMENT INTERNATIONAL 2017; 98:69-74. [PMID: 27729163 DOI: 10.1016/j.envint.2016.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/01/2016] [Accepted: 10/02/2016] [Indexed: 05/26/2023]
Abstract
Bisphenol A (BPA) is a widely used chemical in the production of many polycarbonate plastics, epoxy resin linings for food and beverage containers and thermal papers. Oral intakes from the contaminated diets were considered as the predominant source of BPA exposure for humans. However, due to the high levels of BPA on thermal receipts and their wide applications in our daily life, the amount of BPA be transferred to the skin after holding thermal paper should not be underestimated, particularly for cashiers. To investigate the contribution of BPA exposure levels via the dermal contact route and the relationship between BPA exposure level and oxidative DNA damage, six male volunteers were recruited and required to simulate the cashiers' work and handle the thermal receipts during the study period. Triclosan (TCS, an antimicrobial compound used widely in personal health and skin care products) was applied as a reference compound. Their urinary BPA, TCS and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were determined by high performance liquid chromatography/ tandem spectrometer (LC/MS/MS). The results showed that after handling the thermal receipts, the urinary BPA concentrations of volunteers increased 3 times of those before the experimental period. But TCS levels in urine kept stable. There existed a correlation between BPA exposure and 8-OHdG (R2=0.237, p<0.001), but not between TCS and 8-OHdG concentrations (R2=0.026, p<0.777), indicating that more BPA exposure could lead to higher oxidative DNA damage. That the increases in 8-OHdG levels in urine being almost consistent with those of BPA suggested that handling thermal receipts resulted in the increasing BPA intakes and BPA exposure was correlated with DNA oxidative damage. After 48h of the end of handling thermal receipts, the urinary BPA levels did not descend to the levels before experiment, suggesting that the excretion of BPA via dermal contact was over 48h. BPA exposure through dermal contact route contributed 51.9% to 84% to urinary BPA levels with the GM ratio of 70.9% for cashiers, indicating that it might be seriously underestimated for cashiers according to the previous studies. More attentions should be paid on the exposure of BPA via dermal penetration for cashiers.
Collapse
Affiliation(s)
- Yanshan Lv
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoyou Lu
- Shenzhen Centers for Disease Control and Prevention, Shenzhen 518055, China
| | - Yanyan Dai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Caiyan Rui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yongjun Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuanxiu Zhou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
38
|
Lv Y, Rui C, Dai Y, Pang Q, Li Y, Fan R, Lu S. Exposure of children to BPA through dust and the association of urinary BPA and triclosan with oxidative stress in Guangzhou, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1492-1499. [PMID: 27808329 DOI: 10.1039/c6em00472e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Both bisphenol A (BPA) and triclosan (TCS) are phenolic compounds widely used in a variety of household applications. These compounds could be released into the environment, enter the human body and cause a series of potential health hazards. Children are sensitive and susceptible to these contaminants. To investigate the potential oxidative DNA damage from exposure to BPA and TCS, ninety six urine samples of children (aged 3-6) and 57 dust samples were collected from a kindergarten in Guangzhou, China. The concentrations of urinary BPA, TCS and 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage) in urine were determined using a liquid chromatography tandem mass spectrometer. The geometric mean concentrations of urinary BPA, TCS and 8-OHdG were 1.08 μg L-1, 1.34 μg L-1 and 1.90 μg L-1, respectively. The results showed that both BPA and TCS exposures were associated with oxidative damage. Significant dose-effects existed between the urinary BPA, TCS levels and the 8-OHdG concentrations. Multiple linear regression analysis showed that one percent increase in BPA and in TCS could generate 0.15% and 0.081% increase in 8-OHdG in urine for children in Guangzhou. We also determined the concentrations of BPA in dust using high performance liquid chromatography. The mean concentration of BPA was 2.86 μg g-1 in indoor dust and 3.23 μg g-1 in outdoor dust. The dust contributes approximately 9.23% to the urinary BPA exposure for the children. In conclusion, BPA and TCS exposure correlates with oxidative DNA damage.
Collapse
Affiliation(s)
- Yanshan Lv
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Caiyan Rui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yanyan Dai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yanru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China. and Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
39
|
Urbancova K, Lankova D, Rossner P, Rossnerova A, Svecova V, Tomaniova M, Veleminsky M, Sram RJ, Hajslova J, Pulkrabova J. Evaluation of 11 polycyclic aromatic hydrocarbon metabolites in urine of Czech mothers and newborns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 577:S0048-9697(16)32353-1. [PMID: 28029453 DOI: 10.1016/j.scitotenv.2016.10.165] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a large group of ubiquitous contaminants of the environment, including food chain where they are released as by-products of incomplete combustion of an organic matter. Epidemiological studies have shown that exposure to PAHs correlated with increased incidence of cancer. Carcinogenicity is associated mainly with metabolites that are formed during metabolic degradation of these substances in exposed organism. In this study monohydroxylated PAHs (OH-PAHs), the major metabolites excreted into urine, were determined in 531 urine samples collected from mothers and their newborns from two localities of the Czech Republic - heavily air polluted Karvina and control locality of Ceske Budejovice and in two sampling rounds - August-October 2013 (summer, less air polluted season) and January-April 2014 (winter, more air polluted season). From all targeted analytes, naphthalene-2-ol was the most abundant compound present in 100% of the samples and it represented also the analyte with the highest concentration. Median concentration of ΣOH-PAHs in the urine of children was on average 1.6 times lower compared to the respective mother which correlates with higher intake of PAHs by mothers. ΣOH-PAHs concentrations determined in mothers' urine collected in the summer were comparable in both localities. No significant increase occurred in Ceske Budejovice in winter, while in samples from the Karvina region a statistically significant difference (α=0.05) in the amount of ΣOH-PAHs was observed. The median concentrations of ΣOH-PAHs in mothers' urine samples in the winter were 1.5 times higher than in the summer in the same locality. The amounts of ΣOH-PAHs in newborns' urine from Karvina in the winter season were 1.5 times higher than in the summer collected in the same locality and 3.3 times higher when compared with the less polluted locality of Ceske Budejovice.
Collapse
Affiliation(s)
- Katerina Urbancova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Darina Lankova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Pavel Rossner
- Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vlasta Svecova
- Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Monika Tomaniova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Milos Veleminsky
- Faculty of Health and Social Studies, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Radim J Sram
- Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
40
|
Guo C, Li X, Wang R, Yu J, Ye M, Mao L, Zhang S, Zheng S. Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2'-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep 2016; 6:32581. [PMID: 27585556 PMCID: PMC5009303 DOI: 10.1038/srep32581] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/10/2016] [Indexed: 01/12/2023] Open
Abstract
Oxidative DNA damage plays crucial roles in the pathogenesis of numerous diseases including cancer. 8-hydroxy-2′-deoxyguanosine (8-OHdG) is the most representative product of oxidative modifications of DNA, and urinary 8-OHdG is potentially the best non-invasive biomarker of oxidative damage to DNA. Herein, we developed a sensitive, specific and accurate method for quantification of 8-OHdG in human urine. The urine samples were pretreated using off-line solid-phase extraction (SPE), followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. By the use of acetic acid as an additive to the mobile phase, we improved the UPLC-MS/MS detection of 8-OHdG by 2.7−5.3 times. Using the developed strategy, we measured the contents of 8-OHdG in urine samples from 142 healthy volunteers and 84 patients with colorectal cancer (CRC). We observed increased levels of urinary 8-OHdG in patients with CRC and patients with tumor metastasis, compared to healthy controls and patients without tumor metastasis, respectively. Additionally, logistic regression analysis and receiver operator characteristic (ROC) curve analysis were performed. Our findings implicate that oxidative stress plays important roles in the development of CRC and the marked increase of urinary 8-OHdG may serve as a potential liquid biomarker for the risk estimation, early warning and detection of CRC.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Rong Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Lingna Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,International Health Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
41
|
Lu SY, Li YX, Zhang JQ, Zhang T, Liu GH, Huang MZ, Li X, Ruan JJ, Kannan K, Qiu RL. Associations between polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress in people living near e-waste recycling facilities in China. ENVIRONMENT INTERNATIONAL 2016; 94:161-169. [PMID: 27258657 DOI: 10.1016/j.envint.2016.05.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Emission of polycyclic aromatic hydrocarbons (PAHs) from e-waste recycling activities in China is known. However, little is known on the association between PAH exposure and oxidative damage to DNA and lipid content in people living near e-waste dismantling sites. In this study, ten hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and two biomarkers [8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA)] of oxidative stress were investigated in urine samples collected from people living in and around e-waste dismantling facilities, and in reference population from rural and urban areas in China. The urinary levels of ∑10OH-PAHs determined in e-waste recycling area (GM: 25.4μg/g Cre) were significantly higher (p<0.05) than those found in both rural (11.7μg/g Cre) and urban (10.9μg/g Cre) reference areas. The occupationally exposed e-waste workers (36.6μg/g Cre) showed significantly higher (p<0.01) urinary Σ10OH-PAHs concentrations than non-occupationally exposed people (23.2μg/g Cre) living in the e-waste recycling site. The differences in urinary Σ10OH-PAHs levels between smokers (23.4μg/g Cre) and non-smokers (24.7μg/g Cre) were not significant (p>0.05) in e-waste dismantling sites, while these differences were significant (p<0.05) in rural and urban reference areas; this indicated that smoking is not associated with elevated levels of PAH exposure in e-waste dismantling site. Furthermore, we found that urinary concentrations of Σ10OH-PAHs and individual OH-PAHs were significantly associated with elevated 8-OHdG, in samples collected from e-waste dismantling site; the levels of urinary 1-hydroxypyrene (1-PYR) (r=0.284, p<0.01) was significantly positively associated with MDA. Our results indicate that the exposure to PAHs at the e-waste dismantling site may have an effect on oxidative damage to DNA among selected participants, but this needs to be validated in large studies.
Collapse
Affiliation(s)
- Shao-You Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Yan-Xi Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jian-Qing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Tao Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Gui-Hua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, PR China
| | - Ming-Zhi Huang
- School of Geography and Planning, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ju-Jun Ruan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201, USA
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
42
|
Tang C, Tan J, Fan R, Zhao B, Tang C, Ou W, Jin J, Peng X. Quasi-targeted analysis of hydroxylation-related metabolites of polycyclic aromatic hydrocarbons in human urine by liquid chromatography–mass spectrometry. J Chromatogr A 2016; 1461:59-69. [DOI: 10.1016/j.chroma.2016.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
|
43
|
Guo Z, Liu X, Liu Y, Wu G, Lu X. Constructing a novel 8-hydroxy-2'-deoxyguanosine electrochemical sensor and application in evaluating the oxidative damages of DNA and guanine. Biosens Bioelectron 2016; 86:671-676. [PMID: 27471158 DOI: 10.1016/j.bios.2016.07.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/29/2016] [Accepted: 07/10/2016] [Indexed: 12/11/2022]
Abstract
8-Hydroxy-2'-deoxyguanosine (8-OHdG) is commonly identified as a biomarker of oxidative DNA damage. In this work, a novel and facile 8-OHdG sensor was developed based on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE). It exhibited good electrochemical responses toward the oxidation of 8-OHdG, and the linear ranges were 5.63×10(-8)-6.08×10(-6)M and 6.08×10(-6)-1.64×10(-5)M, with the detection limit of 1.88×10(-8)M (S/N=3). Moreover, the fabricated sensor was applied for the determination of 8-OHdG generated from damaged DNA and guanine, respectively, and the oxidation currents of 8-OHdG increased along with the damaged DNA and guanine within certain concentrations. These results could be used to evaluate the DNA damage, and provide useful information on diagnosing diseases caused by mutation and deficiency of the immunity system.
Collapse
Affiliation(s)
- Zhipan Guo
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 China.
| | - Yuelin Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 China
| | - Guofan Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 China.
| |
Collapse
|
44
|
Ren L, Fang J, Liu G, Zhang J, Zhu Z, Liu H, Lin K, Zhang H, Lu S. Simultaneous determination of urinary parabens, bisphenol A, triclosan, and 8-hydroxy-2′-deoxyguanosine by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Anal Bioanal Chem 2016; 408:2621-9. [DOI: 10.1007/s00216-016-9372-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 01/24/2023]
|
45
|
Lankova D, Urbancova K, Sram RJ, Hajslova J, Pulkrabova J. A novel strategy for the determination of polycyclic aromatic hydrocarbon monohydroxylated metabolites in urine using ultra-high-performance liquid chromatography with tandem mass spectrometry. Anal Bioanal Chem 2016; 408:2515-25. [DOI: 10.1007/s00216-016-9350-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 12/15/2022]
|
46
|
Li J, Lu S, Liu G, Zhou Y, Lv Y, She J, Fan R. Co-exposure to polycyclic aromatic hydrocarbons, benzene and toluene and their dose-effects on oxidative stress damage in kindergarten-aged children in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:74-80. [PMID: 25889546 DOI: 10.1016/j.scitotenv.2015.04.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), benzene and toluene (BT) are ubiquitous toxic pollutants in the environment. Children are sensitive and susceptible to exposure to these contaminants. To investigate the potential oxidative DNA damage from the co-exposure of PAHs and BT in children, 87 children (aged 3-6) from a kindergarten in Guangzhou, China, were recruited. Ten urinary PAHs and four BT metabolites, as well as 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage)in urine, were determined using a liquid chromatography tandem mass spectrometer. The results demonstrated that the levels of PAHs and BT in children from Guangzhou were 2-30 times higher than those in children from the other countries based on a comparison with recent data from the literature. In particular, the difference is more substantial for pyrene and volatile BT. Co-exposure to PAHs and BT could lead to additive oxidative DNA damage. Significant dose-effects were observed between the sum concentration of urinary monohydroxylated metabolites of PAHs (∑OH-PAHs), the sum concentration of the metabolites of BT (∑BT) and 8-OHdG levels. Every one percent increase in urinary PAHs and BT generated 0.33% and 0.02% increases in urinary 8-OHdG, respectively. We also determined that the urinary levels of PAHs and BT were negatively associated with the age of the children. Moreover, significant differences in the levels of ∑OH-PAHs and ∑BT were determined between 3- and 6-year-old children (p<0.05), which may be caused by different metabolism capabilities or inhalation frequencies. In conclusion, exposure to PAHs or BT could lead to oxidative DNA damage, and 8-OHdG is a good biomarker for indicating the presence of DNA damage. There exists a significant dose-effect relationship between PAH exposure, BT exposure and the concentration of 8-OHdG in urine. Toddlers (3-4 years old) face a higher burden of PAH and BT exposure compared with older children.
Collapse
Affiliation(s)
- Junnan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuanxiu Zhou
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yanshan Lv
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianwen She
- Environmental Health Laboratory Branch, California Department of Public Health, 850 Marina Bay Parkway, Richmond, CA 94804, United States
| | - Ruifang Fan
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
47
|
Zhang X, Hou H, Xiong W, Hu Q. Development of a method to detect three monohydroxylated polycyclic aromatic hydrocarbons in human urine by liquid chromatographic tandem mass spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:514320. [PMID: 25973283 PMCID: PMC4418005 DOI: 10.1155/2015/514320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
A liquid chromatographic tandem mass spectrometry method (LC-MS/MS) for the simultaneous determination of 1-hydroxypyrene (1-OHP), 3-hydroxybenzo[a]pyrene (3-OHBaP), and 3-hydroxybenz[a]anthracene (3-OHBaA) in human urine has been developed. With the exception of 3-OHBaP at a low spiking level, the average recoveries were greater than 80%. The method has good accuracy (72.1-107.7%) and reproducibility (1.8-11.4%) and was successfully used to study the uptake of pyrene, benzo[a]pyrene, and benzo[a]anthracene from cigarette smoke. The results indicated that urinary 1-OHP concentration in the smoking group (66.58 ± 70.91 ng/g creatinine) was higher than that observed in the nonsmoking group (58.16 ± 49.48 ng/g creatinine). Urinary 3-OHBaA concentrations in nonsmokers and smokers with 8 mg and 10 mg tar cigarettes were 10.98 ± 4.39 ng/g creatinine, 11.01 ± 13.30 ng/g creatinine, and 9.17 ± 12.89 ng/g creatinine, respectively. Urinary 3-OHBaP concentrations in nonsmokers and smokers with 8 mg and 13 mg tar cigarettes were 1.30 ± 0.20 ng/g creatinine, 2.83 ± 1.78 ng/g creatinine, and 6.00 ± 4.44 ng/g creatinine, respectively. Urinary 1-OHP levels exhibited a significant correlation with BaP yield in cigarette smoke under the Canadian intense smoking condition (y = 3.5563x + 30.171, R (2) = 0.9916, n = 227).
Collapse
Affiliation(s)
- Xiaotao Zhang
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, China
| | - Wei Xiong
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, China
| |
Collapse
|
48
|
Li J, Fan R, Lu S, Zhang D, Zhou Y, Lv Y. Exposure to polycyclic aromatic hydrocarbons could cause their oxidative DNA damage: a case study for college students in Guangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1770-1777. [PMID: 24691933 DOI: 10.1007/s11356-014-2769-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Human exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs) in cigarette smoking might result in generation of reactive oxygen species (ROS) and induce formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG). This study was designed to examine whether levels of 8-OHdG are associated with levels of urinary metabolites of PAHs. Two groups (smokers and non-smokers) were recruited from college students in Guangzhou, China. Their urine samples were collected and analyzed for ten urinary mono-hydroxylated PAHs (OH-PAHs) and 8-OHdG by liquid chromatography equipped with tandem mass spectrometer (LC/MS/MS). Multiple linear regression analysis was performed to examine correlations between urinary levels of 8-OHdG and OH-PAHs. No significant difference was observed for creatinine-adjusted OH-PAHs between smokers and non-smokers. The levels of 8-OHdG between smokers and non-smokers were comparative. OH-PAH levels in this study were 2-50 times higher than those in populations from other countries and areas. The estimated daily intake (EDI; μg/day) of PAHs ranged from 0.02 to 371.4, which were far lower than the reference doses (RfDs) specified by U.S. Environmental Protection Agency (EPA). Though smoking was a main factor, which affected the PAH exposure, it was not a dominant factor in the exposure to PAHs of Guangzhou college students. The environmental exposure could not be ignored. The sum concentrations of OH-PAHs (∑OH-PAHs) had a dose-increase relationship with 8-OHdG both for smokers and non-smokers, especially for smokers. Though people in Guangzhou bore higher PAH hazards, the estimated environmental risk was still under safe ranges.
Collapse
Affiliation(s)
- Junnan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
49
|
Motorykin O, Schrlau J, Jia Y, Harper B, Harris S, Harding A, Stone D, Kile M, Sudakin D, Massey Simonich SL. Determination of parent and hydroxy PAHs in personal PM₂.₅ and urine samples collected during Native American fish smoking activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:694-703. [PMID: 25461072 PMCID: PMC4261013 DOI: 10.1016/j.scitotenv.2014.10.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 05/20/2023]
Abstract
A method was developed for the measurement of 19 parent PAHs (PAHs) and 34 hydroxylated PAHs (OH-PAHs) in urine and personal air samples of particulate matter less than 2.5 μm in diameter (PM₂.₅) using GC-MS and validated using NIST SRM 3672 (Organic Contaminants in Smoker's Urine) and SRM 3673 (Organic Contaminants in Nonsmoker's Urine). The method was used to measure PAHs and OH-PAHs in urine and personal PM₂.₅ samples collected from the operators of two different fish smoking facilities (tipi and smoke shed) burning two different wood types (alder and apple) on the Confederated Tribes of Umatilla Indian Reservation (CTUIR) while they smoked salmon. Urine samples were spiked with β-glucuronidase/arylsulfatase to hydrolyze the conjugates of OH-PAHs and the PAHs and OH-PAHs were extracted using Plexa and C18 solid phases, in series. The 34 OH-PAHs were derivatized using MTBSTFA, and the mixture was measured by GC-MS. The personal PM₂.₅ samples were extracted using pressurized liquid extraction, derivatized with MTBSTFA and analyzed by GC-MS for PAHs and OH-PAHs. Fourteen isotopically labeled surrogates were added to accurately quantify PAHs and OH-PAHs in the urine and PM₂.₅ samples and three isotopically labeled internal standards were used to calculate the recovery of the surrogates. Estimated detection limits in urine ranged from 6.0 to 181 pg/ml for OH-PAHs and from 3.0 to 90 pg/ml for PAHs, and, in PM₂.₅, they ranged from 5.2 to 155 pg/m(3) for OH-PAHs and from 2.5 to 77 pg/m(3) for PAHs. The results showed an increase in OH-PAH concentrations in urine after 6h of fish smoking and an increase in PAH concentrations in air within each smoking facility. In general, the PAH exposure in the smoke shed was higher than in the tipi and the PAH exposure from burning apple wood was higher than burning alder.
Collapse
Affiliation(s)
- Oleksii Motorykin
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Jill Schrlau
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Yuling Jia
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Barbara Harper
- Department of Science and Engineering, Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR 97801, USA
| | - Stuart Harris
- Department of Science and Engineering, Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR 97801, USA
| | - Anna Harding
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - David Stone
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Molly Kile
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel Sudakin
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Staci L Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
50
|
Fan R, Li J, Chen L, Xu Z, He D, Zhou Y, Zhu Y, Wei F, Li J. Biomass fuels and coke plants are important sources of human exposure to polycyclic aromatic hydrocarbons, benzene and toluene. ENVIRONMENTAL RESEARCH 2014; 135:1-8. [PMID: 25261857 DOI: 10.1016/j.envres.2014.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 05/13/2023]
Abstract
Large amounts of carcinogenic polycyclic aromatic hydrocarbons (PAHs), benzene and toluene (BT) might be emitted from incomplete combustion reactions in both coal tar factories and biomass fuels in rural China. The health effects arising from exposure to PAHs and BT are a concern for residents of rural areas close to coal tar plants. To assess the environmental risk and major exposure sources, 100 coke plant workers and 25 farmers in Qujing, China were recruited. The levels of 10 mono-hydroxylated PAHs (OH-PAHs), four BT metabolites and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the urine collected from the subjects were measured. The 8-OHdG levels in the urine were determined to evaluate the oxidative DNA damage induced by the PAHs and BT. The results showed that the levels of the OH-PAHs, particularly those of 1-hydroxynathalene and 1-hydroxypyrene, in the farmers were 1-7 times higher than those in the workers. The concentrations of the BT metabolites were comparable between the workers and farmers. Although the exact work location within a coke oven plant might affect the levels of the OH-PAHs, one-way ANOVA revealed no significant differences for either the OH-PAHs levels or the BT concentrations among the three groups working at different work sites. The geometric mean concentration (9.17 µg/g creatinine) of 8-OHdG was significantly higher in the farmers than in the plant workers (6.27 µg/g creatinine). The levels of 8-OHdG did not correlate with the total concentrations of OH-PAHs and the total levels of BT metabolites. Incompletely combusted biomass fuels might be the major exposure source, contributing more PAHs and BT to the local residents of Qujing. The estimated daily intakes (EDIs) of naphthalene and fluorene for all of the workers and most of the farmers were below the reference doses (RfDs) recommended by the U.S. Environmental Protection Agency (EPA), except for the pyrene levels in two farmers. However, the EDIs of benzene in the workers and local farmers ranged from 590 to 7239 µg/day, and these levels were 2- to 30-fold higher than the RfDs recommended by the EPA. Biomass fuel combustion and industrial activities related to coal tar were the major sources of the PAH and BT exposure in the local residents. Using biomass fuels for household cooking and heating explains the higher exposure levels observed in the farmers relative to the workers at the nearby coal tar-related industrial facility.
Collapse
Affiliation(s)
- Ruifang Fan
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Junnan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Zhencheng Xu
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Dechun He
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou 510655, China
| | - Yuanxiu Zhou
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuanyuan Zhu
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Fusheng Wei
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Jihua Li
- Qujing Center for Disease Control and Prevention, Yunan 655099, China
| |
Collapse
|