1
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
2
|
Qiang Q, Manalo JM, Sun H, Zhang Y, Song A, Wen AQ, Wen YE, Chen C, Liu H, Cui Y, Nemkov T, Reisz JA, Edwards III G, Perreira FA, Kellems RE, Soto C, D’Alessandro A, Xia Y. Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming. PLoS Biol 2021; 19:e3001239. [PMID: 34138843 PMCID: PMC8211187 DOI: 10.1371/journal.pbio.3001239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia drives aging and promotes age-related cognition and hearing functional decline. Despite the role of erythrocytes in oxygen (O2) transport, their role in the onset of aging and age-related cognitive decline and hearing loss (HL) remains undetermined. Recent studies revealed that signaling through the erythrocyte adenosine A2B receptor (ADORA2B) promotes O2 release to counteract hypoxia at high altitude. However, nothing is known about a role for erythrocyte ADORA2B in age-related functional decline. Here, we report that loss of murine erythrocyte-specific ADORA2B (eAdora2b-/-) accelerates early onset of age-related impairments in spatial learning, memory, and hearing ability. eAdora2b-/- mice display the early aging-like cellular and molecular features including the proliferation and activation of microglia and macrophages, elevation of pro-inflammatory cytokines, and attenuation of hypoxia-induced glycolytic gene expression to counteract hypoxia in the hippocampus (HIP), cortex, or cochlea. Hypoxia sufficiently accelerates early onset of cognitive and cochlear functional decline and inflammatory response in eAdora2b-/- mice. Mechanistically, erythrocyte ADORA2B-mediated activation of AMP-activated protein kinase (AMPK) and bisphosphoglycerate mutase (BPGM) promotes hypoxic and metabolic reprogramming to enhance production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite triggering O2 delivery. Significantly, this finding led us to further discover that murine erythroblast ADORA2B and BPGM mRNA levels and erythrocyte BPGM activity are reduced during normal aging. Overall, we determined that erythrocyte ADORA2B-BPGM axis is a key component for anti-aging and anti-age-related functional decline.
Collapse
Affiliation(s)
- Qingfen Qiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Jeanne M. Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Alexander Q. Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of California at San Diego, La Jolla, California, United States of America
| | - Y. Edward Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - George Edwards III
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Fred A. Perreira
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Claudio Soto
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| |
Collapse
|
3
|
Kim JW, Byun MS, Yi D, Lee JH, Jeon SY, Ko K, Joung H, Jung G, Lee JY, Sohn CH, Lee YS, Kim YK, Lee DY. Blood Hemoglobin, in-vivo Alzheimer Pathologies, and Cognitive Impairment: A Cross-Sectional Study. Front Aging Neurosci 2021; 13:625511. [PMID: 33716712 PMCID: PMC7943867 DOI: 10.3389/fnagi.2021.625511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Despite known associations between low blood hemoglobin level and Alzheimer's disease (AD) or cognitive impairment, the underlying neuropathological links are poorly understood. We aimed to examine the relationships of blood hemoglobin levels with in vivo AD pathologies (i.e., cerebral beta-amyloid [Aβ] deposition, tau deposition, and AD-signature degeneration) and white matter hyperintensities (WMHs), which are a measure of cerebrovascular injury. We also investigated the association between hemoglobin level and cognitive performance, and then assessed whether such an association is mediated by brain pathologies. Methods: A total of 428 non-demented older adults underwent comprehensive clinical assessments, hemoglobin level measurement, and multimodal brain imaging, including Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, fluorodeoxyglucose (FDG)-PET, and magnetic resonance imaging. Episodic memory score and global cognition scores were also measured. Results: A lower hemoglobin level was significantly associated with reduced AD-signature cerebral glucose metabolism (AD-CM), but not Aβ deposition, tau deposition, or WMH volume. A lower hemoglobin level was also significantly associated with poorer episodic memory and global cognition scores, but such associations disappeared when AD-CM was controlled as a covariate, indicating that AD-CM has a moderating effect. Conclusion: The present findings suggest that low blood hemoglobin in older adults is associated with cognitive decline via reduced brain metabolism, which seems to be independent of those aspects of AD-specific protein pathologies and cerebrovascular injury that are reflected in PET and MRI measures.
Collapse
Affiliation(s)
- Jee Wook Kim
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, South Korea.,Department of Psychiatry, Hallym University College of Medicine, Chuncheon, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, South Korea
| | - Jun Ho Lee
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, South Korea
| | - So Yeon Jeon
- Department of Psychiatry, Chungnam National University Hospital, Daejeon, South Korea
| | - Kang Ko
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, South Korea
| | - Haejung Joung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Gijung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jun-Young Lee
- Department of Neuropsychiatry, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Rani R, Kumar A, Jaggi AS, Singh N. Pharmacological investigations on efficacy of Phlorizin a sodium-glucose co-transporter (SGLT) inhibitor in mouse model of intracerebroventricular streptozotocin induced dementia of AD type. J Basic Clin Physiol Pharmacol 2021; 32:1057-1064. [PMID: 33548170 DOI: 10.1515/jbcpp-2020-0330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/09/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The study has been commenced to discover the potential of Phlorizin (dual SGLT inhibitor) in streptozotocin induced dementia of Alzheimer's disease (AD) type. MATERIAL AND METHODS Injection of Streptozotocin (STZ) was given via i.c.v. route (3 mg/kg) to induce dementia of Alzheimer's type. In these animals learning and memory was evaluated using Morris water maze (MWM) test. Glutathione (GSH) and thiobarbituric acid reactive species (TBARS) level was quantified to evaluate the oxidative stress; cholinergic activity of brain was estimated in term of acetylcholinesterase (AChE) activity; and the levels of myeloperoxidase (MPO) were measured as inflammation marker. RESULTS The mice model had decreased performance in MWM, representing impairment of cognitive functions. Biochemical evaluation showed rise in TBARS level, MPO and AChE activity, and fall in GSH level. The histopathological study revealed severe infiltration of neutrophils. In the study, Phlorizin/Donepezil (serving as positive control) treatment mitigate streptozotocin induced cognitive decline, histopathological changes and biochemical alterations. CONCLUSIONS The results suggest that Phlorizin decreased cognitive function via its anticholinesterase, antioxidative, antiinflammatory effects and probably through SGLT inhibitory action. It can be conferred that SGLTs can be an encouraging target for the treatment of dementia of AD.
Collapse
Affiliation(s)
- Reena Rani
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amteshwar Singh Jaggi
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, India
| | - Nirmal Singh
- CNS Research Lab., Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
5
|
Blasko I, Defrancesco M, Oberacher H, Loacker L, Kemmler G, Marksteiner J, Humpel C. Plasma phosphatidylcholines and vitamin B12/folate levels are possible prognostic biomarkers for progression of Alzheimer's disease. Exp Gerontol 2021; 147:111264. [PMID: 33516907 DOI: 10.1016/j.exger.2021.111264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/11/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In clinical practice it is important to identify patients suffering from mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD). The purpose of this study is to investigate whether lipid metabolites and vitamin B12 and folate levels are effective biomarker for an accurate prediction of MCI-to-AD conversion. METHODS During the standard diagnostic assessment at our memory clinic 48 cognitively healthy subjects and MCI patients were recruited. These participants were followed up after 7-9 years. Blood was collected, various biochemical markers (including vitamin B12 and folate) analysed and plasma lipids were measured using the AbsoluteIDQ p150 Kit. RESULTS There was no significant change in lipid levels in controls converting to MCI. However, we found significant changes in five lipids in converters from controls to AD. Interestingly, also two lipids were altered when MCI re-converted to controls. Vitamin B12 levels were not affected by conversion but folate levels significantly decreased in MCI-AD conversion. CONCLUSIONS Taken together, our study provides evidence that some plasma lipids are significantly altered in subjects converting to AD. Future studies will investigate whether the peripheral lipid changes correspond with changes in the brain during the course of the disease. Although this is a small study, there are indications that lipids may be suitable as prognostic markers.
Collapse
Affiliation(s)
- Imrich Blasko
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria.
| | - Michaela Defrancesco
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorin Loacker
- Central Institute of Medicinal and Chemical Laboratory Diagnostics, University Hospital, Innsbruck, Austria
| | - Georg Kemmler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Christian Humpel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Gant JC, Kadish I, Chen KC, Thibault O, Blalock EM, Porter NM, Landfield PW. Aging-Related Calcium Dysregulation in Rat Entorhinal Neurons Homologous with the Human Entorhinal Neurons in which Alzheimer's Disease Neurofibrillary Tangles First Appear. J Alzheimers Dis 2019; 66:1371-1378. [PMID: 30412490 PMCID: PMC6294592 DOI: 10.3233/jad-180618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is the leading risk factor for idiopathic Alzheimer’s disease (AD), indicating that normal aging processes promote AD and likely are present in the neurons in which AD pathogenesis originates. In AD, neurofibrillary tangles (NFTs) appear first in entorhinal cortex, implying that aging processes in entorhinal neurons promote NFT pathogenesis. Using electrophysiology and immunohistochemistry, we find pronounced aging-related Ca2 + dysregulation in rat entorhinal neurons homologous with the human neurons in which NFTs originate. Considering that humans recapitulate many aspects of animal brain aging, these results support the hypothesis that aging-related Ca2 + dysregulation occurs in human entorhinal neurons and promotes NFT pathogenesis.
Collapse
Affiliation(s)
- John C Gant
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kuey-Chu Chen
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Olivier Thibault
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Eric M Blalock
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Nada M Porter
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Philip W Landfield
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
8
|
Kalász H, Ojha S, Tekes K, Szőke É, Mohanraj R, Fahim M, Adeghate E, Adem A. Pharmacognostical Sources of Popular Medicine To Treat Alzheimer's Disease. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2018; 12:23-35. [PMID: 29515678 PMCID: PMC5827296 DOI: 10.2174/1874104501812010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND A large number of classical and recently discovered plants are indicated in preventing and/or treating Alzheimer's disease (AD). OBJECTIVE Name of plants with their anti-AD effects are important for their further use and investigation. METHOD A short overview of AD is given; anti-Alzheimer plants are given in a Table. RESULTS Various medicinal plants are listed here as sources of popular medicines to be used in cases when patients are afraid of developing and/or suffer from AD. Some of these plants have been used for centuries. The major sources in the literature, over one hundred of references are given for plants that show beneficial effect on the progress of AD. CONCLUSION Plant extracts are widely used addition to the synthetic drugs approved by various administrative authorities to stop/slow down the progress of symptoms of AD.
Collapse
Affiliation(s)
- Huba Kalász
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O.Box 17666, Al-Ain, United Arab Emirates
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Nagyvárad tér 4, Hungary
| | - Éva Szőke
- Department of Pharmacognosy, Semmelweis University, 1085 Budapest, Üllői út 26, Hungary
| | - Rajesh Mohanraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O.Box 17666, Al-Ain, United Arab Emirates
| | - Mohamed Fahim
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University
| | - Ernest Adeghate
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O.Box 17666, Al-Ain, United Arab Emirates
| |
Collapse
|
9
|
Kosenko EA, Tikhonova LA, Montoliu C, Barreto GE, Aliev G, Kaminsky YG. Metabolic Abnormalities of Erythrocytes as a Risk Factor for Alzheimer's Disease. Front Neurosci 2018; 11:728. [PMID: 29354027 PMCID: PMC5760569 DOI: 10.3389/fnins.2017.00728] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a slowly progressive, neurodegenerative disorder of uncertain etiology. According to the amyloid cascade hypothesis, accumulation of non-soluble amyloid β peptides (Aβ) in the Central Nervous System (CNS) is the primary cause initiating a pathogenic cascade leading to the complex multilayered pathology and clinical manifestation of the disease. It is, therefore, not surprising that the search for mechanisms underlying cognitive changes observed in AD has focused exclusively on the brain and Aβ-inducing synaptic and dendritic loss, oxidative stress, and neuronal death. However, since Aβ depositions were found in normal non-demented elderly people and in many other pathological conditions, the amyloid cascade hypothesis was modified to claim that intraneuronal accumulation of soluble Aβ oligomers, rather than monomer or insoluble amyloid fibrils, is the first step of a fatal cascade in AD. Since a characteristic reduction of cerebral perfusion and energy metabolism occurs in patients with AD it is suggested that capillary distortions commonly found in AD brain elicit hemodynamic changes that alter the delivery and transport of essential nutrients, particularly glucose and oxygen to neuronal and glial cells. Another important factor in tissue oxygenation is the ability of erythrocytes (red blood cells, RBC) to transport and deliver oxygen to tissues, which are first of all dependent on the RBC antioxidant and energy metabolism, which finally regulates the oxygen affinity of hemoglobin. In the present review, we consider the possibility that metabolic and antioxidant defense alterations in the circulating erythrocyte population can influence oxygen delivery to the brain, and that these changes might be a primary mechanism triggering the glucose metabolism disturbance resulting in neurobiological changes observed in the AD brain, possibly related to impaired cognitive function. We also discuss the possibility of using erythrocyte biochemical aberrations as potential tools that will help identify a risk factor for AD.
Collapse
Affiliation(s)
- Elena A Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Lyudmila A Tikhonova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico, INCLIVA Instituto Investigación Sanitaria, Valencia, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gjumrakch Aliev
- GALLY International Biomedical Research Institute Inc., San Antonio, TX, United States
| | - Yury G Kaminsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
10
|
Oberacher H, Arnhard K, Linhart C, Diwo A, Marksteiner J, Humpel C. Targeted Metabolomic Analysis of Soluble Lysates from Platelets of Patients with Mild Cognitive Impairment and Alzheimer’s Disease Compared to Healthy Controls: Is PC aeC40:4 a Promising Diagnostic Tool? J Alzheimers Dis 2017; 57:493-504. [DOI: 10.3233/jad-160172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Herbert Oberacher
- Department of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Kathrin Arnhard
- Department of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Austria
| | - Caroline Linhart
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Austria
| | - Angela Diwo
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Medical University of Innsbruck, Austria
| |
Collapse
|
11
|
Ryu IH, Lee KY, Do SI. Aβ-affected pathogenic induction of S-nitrosylation of OGT and identification of Cys-NO linkage triplet. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:609-21. [DOI: 10.1016/j.bbapap.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022]
|
12
|
Koal T, Klavins K, Seppi D, Kemmler G, Humpel C. Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-β42, tau, and phospho-tau-181 levels. J Alzheimers Dis 2015; 44:1193-201. [PMID: 25408209 DOI: 10.3233/jad-142319] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a severe and chronic neurodegenerative disorder of the brain. The laboratory diagnosis is limited to the analysis of three biomarkers in cerebrospinal fluid (CSF): amyloid-β42 (Aβ42), total tau, and phospho-tau-181 (P-tau-181). However, there is a need to find more biomarkers in CSF that can improve the sensitivity and specificity. The aim of the present study was to analyze endogenous small metabolites (metabolome) in the CSF, which may provide potentially new insights into biochemical processes involved in AD. One hundred CSF samples were dichotomized by normal (n = 50) and pathological decreased Aβ42 and increased tau and P-tau-181 levels (n = 50; correlating to an AD-like pathology). These CSF samples were analyzed using the AbsoluteIDQ® p180 Kit (BIOCRATES Life Sciences), which included 40 acylcarnitines, 21 amino acids, 19 biogenic amines, 15 sphingolipids, and 90 glycerophospholipids. Our data show that two sphingomyelins (SM (d18:1/18:0) and SM (d18:1/18:1)), 5 glycerophospholipids (PC aa C32:0, PC aa C34:1, PC aa C36:1, PC aa C38:4 and PC aa C38:6), and 1 acylcarnitine (C3-DC-M/C5-OH) were significantly altered in the CSF with pathological "AD-like pathology". Sphingomyelin SM (d18:1/18:0) proved to be a specific (76%) and sensitive (66%) biomarker with a defined cut-off of 546 nM. Correct diagnoses for 21 out of 32 unknown samples could be achieved using this SM (d18:1/18:0) cut-off value. In conclusion, the sphingolipid SM (d18:1/18:0) is significantly increased in CSF of patients displaying pathological levels of Aβ42, tau, and P-tau-181.
Collapse
Affiliation(s)
| | | | | | - Georg Kemmler
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Klavins K, Koal T, Dallmann G, Marksteiner J, Kemmler G, Humpel C. The ratio of phosphatidylcholines to lysophosphatidylcholines in plasma differentiates healthy controls from patients with Alzheimer's disease and mild cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2015; 1:295-302. [PMID: 26744734 PMCID: PMC4700585 DOI: 10.1016/j.dadm.2015.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Metabolomic processes have been identified as being strongly linked to the development of Alzheimer's disease (AD). Thus, lipid metabolites appear to be highly useful as diagnostic substrates for the diagnosis of AD and mild cognitive impairment (MCI) in plasma. METHODS We analyzed plasma samples from controls (n = 35), MCI (n = 33), and AD patients (n = 43) using the AbsoluteIDQ p180 Kit (Biocrates Life Sciences), which included quantitative analysis of 40 acylcarnitines, 21 amino acids, 19 biogenic amines, 15 sphingolipids, 90 glycerophospholipids, and sum of hexoses. RESULTS We found that individual lipid metabolites can differentiate controls from MCI and AD with relevant significance. However, the ratio between PC aa C34:4 and lysoPC a C18:2 differentiates controls from MCI (P = .0000007) and from AD (P = .0000009) with greater significance. CONCLUSIONS The results provide evidence that the ratio of these two lipid metabolites is useful for diagnosing MCI and AD with an accuracy of 82%-85%.
Collapse
Affiliation(s)
| | | | | | | | - Georg Kemmler
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Huang L, Miao H, Sun Y, Meng F, Li X. Discovery of indanone derivatives as multi-target-directed ligands against Alzheimer's disease. Eur J Med Chem 2014; 87:429-39. [PMID: 25282266 DOI: 10.1016/j.ejmech.2014.09.081] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/20/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022]
Abstract
A series of indanone derivatives were designed, synthesized, and tested using a variety of assays to assess their potential as anti-Alzheimer's disease (AD) agents. The investigations assessed the activities of the agents for the inhibition of cholinesterases (AChE and BuChE), the inhibition of amyloid beta (Aβ) self-assembly, and the catalysis of the disassembly of preformed Aβ oligomers and measured their antioxidant activities. Our results demonstrate that most of the synthesized compounds demonstrated good inhibitory activity against AChE with IC50 values in the nanomolar range. In particular, compounds 9 (IC50 = 14.8 nM) and 14 (IC50 = 18.6 nM) exhibited markedly higher inhibitory activities than tacrine and similar activities to donepezil. In addition, 9 and 14 significantly inhibited Aβ aggregation (inhibition rates of 85.5% and 83.8%, respectively), catalysed the disaggregation of Aβ fibrils generated by self-induced Aβ aggregation, and exhibited antioxidant activity. Furthermore, these two compounds can cross the blood-brain barrier (BBB) in vitro. These properties highlight the potential of these new compounds to be developed as multi-functional drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ling Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Miao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fanchao Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Aliev G, Ashraf GM, Kaminsky YG, Sheikh IA, Sudakov SK, Yakhno NN, Benberin VV, Bachurin SO. Implication of the nutritional and nonnutritional factors in the context of preservation of cognitive performance in patients with dementia/depression and Alzheimer disease. Am J Alzheimers Dis Other Demen 2013; 28:660-70. [PMID: 24085255 PMCID: PMC10852765 DOI: 10.1177/1533317513504614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
It has been postulated that Alzheimer disease (AD) is a systemic process, which involves multiple pathophysiological factors. A combination of pharmacotherapy and nonpharmacological interventions has been proposed to treat AD and other dementia. The nonpharmacological interventions include but are not limited to increasing sensory input through physical and mental activities, in order to modify cerebral blood flow and implementing nutritional interventions such as diet modification and vitamins and nutraceuticals therapy to vitalize brain functioning. This article highlights the recent research findings regarding novel treatment strategies aimed at modifying natural course of the disease and delaying cognitive decline through simultaneous implementation of pharmacological and nonpharmacological modulators as standardized treatment protocols.
Collapse
Affiliation(s)
- Gjumrakch Aliev
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, USA
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yury G. Kaminsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Ishfaq Ahmed Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sergey K. Sudakov
- P.K. Anokhin Research Institute of Neurological Disorders, Russian Academy of Medical Sciences (RAMS), Moscow, Russian Federation
| | - Nikolay N. Yakhno
- Department of Neurological Disorders, I.M. Sechenov Moscow State Medical University, Moscow, Russian Federation
| | - Valery V. Benberin
- Medical Center of the Administration of the President of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russian Federation
| |
Collapse
|
16
|
Lymphocytes of patients with Alzheimer's disease display different DNA damage repair kinetics and expression profiles of DNA repair and stress response genes. Int J Mol Sci 2013; 14:12380-400. [PMID: 23752274 PMCID: PMC3709791 DOI: 10.3390/ijms140612380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 03/21/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, characterized by loss of memory and cognitive capacity. Given the limitations to analyze brain cells, it is important to study whether peripheral lymphocytes can provide biological markers for AD, an interesting approach, once they represent the overall condition of the organism. To that extent, we sought to find whether lymphocytes of AD patients present DNA damage and repair kinetics different from those found in elderly matched controls (EC group) under in vitro treatment with hydrogen peroxide. We found that AD patient cells indeed showed an altered DNA repair kinetics (comet assay). Real-time quantitative analysis of genes associated with DNA stress response also showed that FANCG and CDKN1A are upregulated in AD, while MTH1 is downregulated, compared with the control group. In contrast, the expression of ATM, ATR and FEN1 genes does not seem to differ between these groups. Interestingly, TP53 protein expression was increased in AD patients. Therefore, we found that kinetics of the stress response in the DNA were significantly different in AD patients, supporting the hypothesis that repair pathways may be compromised in AD and that peripheral lymphocytes can reveal this condition.
Collapse
|
17
|
Abstract
The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain.
Collapse
Affiliation(s)
- Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|
18
|
Rodrigues R, Smith MA, Wang X, Perry G, Lee HG, Zhu X, Petersen RB. Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. FUTURE NEUROLOGY 2012; 7:287-305. [PMID: 23086377 DOI: 10.2217/fnl.12.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) exhibits a complex etiology that simultaneously manifests as a complex cellular, neurobiological, molecular, anatomic-physiological and clinical entity. Other significant psychiatric conditions, such as depression and schizophrenia, may also present with complex and concurrent clinical and/or molecular phenotypes. These neuropsychiatric pathologies also originate from both environmental and genetic factors. We analyzed the molecular phenotypes of AD and discuss them with respect to the classical theories, which we integrated into mechanisms that share molecular and/or anatomical connections. Based on these mechanisms, we propose an interaction model and discuss the model in light of studies that refute or support it. Given the spectrum of AD phenotypes, we limit the scope of our discussion to a few, which facilitates concrete analysis. In addition, the study of specific, individual pathogenic phenotypes may be critical to defining the complex mechanisms leading to AD, thereby improving strategies for developing novel therapies.
Collapse
Affiliation(s)
- Roberto Rodrigues
- Ave. Icaraí Cristal 74 (Clinic), 90.810-000 Porto Alegre, Rio Grande do Sul (RS), Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 2012; 120:1060-71. [PMID: 22248073 PMCID: PMC3296820 DOI: 10.1111/j.1471-4159.2012.07660.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study describes the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes. Data show that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid, trigger the release of TNFα and IL-6 from astrocytes. Unsaturated fatty acids were unable to induce cytokine release from cultured astrocytes. Furthermore, the effects of palmitic acid on cytokine release require Toll-like receptor 4 rather than CD36 or Toll-like receptor 2, and do not depend on palmitic acid metabolism to palmitoyl-CoA. Inhibitor studies revealed that pharmacologic inhibition of p38 or p42/44 MAPK pathways prevents the pro-inflammatory effects of palmitic acid, whereas JNK and PI3K inhibition does not affect cytokine release. Depletion of microglia from primary astrocyte cultures using the lysosomotropic agent l-leucine methyl ester revealed that the ability of palmitic acid to trigger cytokine release is not dependent on the presence of microglia. Finally, data show that the essential ω-3 fatty acid docosahexaenoic acid acts in a dose-dependent manner to prevent the actions of palmitic acid on inflammatory signaling in astrocytes. Collectively, these data demonstrate the ability of saturated fatty acids to induce astrocyte inflammation in vitro. These data thus raise the possibility that high levels of circulating saturated fatty acids could cause reactive gliosis and brain inflammation in vivo, and could potentially participate in the reported adverse neurologic consequences of obesity and metabolic syndrome.
Collapse
|
20
|
Blalock EM, Buechel HM, Popovic J, Geddes JW, Landfield PW. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer's disease. J Chem Neuroanat 2011; 42:118-26. [PMID: 21756998 DOI: 10.1016/j.jchemneu.2011.06.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that threatens to reach epidemic proportions as our population ages. Although much research has examined molecular pathways associated with AD, relatively few such studies have focused on the disease's critical early stages. In a prior microarray study we correlated gene expression in hippocampus with degree of Alzheimer's disease and found close associations between upregulation of apparent glial transcription factor/epigenetic/tumor suppressor genes and incipient AD. The results suggested a new model in which AD pathology spreads along myelinated axons (Blalock et al., 2004). However, the microarray analyses were performed on RNA extracted from frozen hand-dissected hippocampal CA1 tissue blocks containing both gray and white matter, limiting the confidence with which transcriptional changes in gray matter could be distinguished from those in white matter. Here, we used laser capture microdissection (LCM) to exclude major white matter tracts while selectively collecting CA1 hippocampal gray matter from formalin-fixed, paraffin-embedded (FFPE) hippocampal sections of the same subjects assessed in our prior study. Microarray analyses of this gray matter-enriched tissue revealed many transcriptional changes similar to those seen in our past study and in studies by others, particularly for downregulated neuron-related genes. Additionally, the present analyses identified several previously undetected pathway alterations, including downregulation of molecules that stabilize ryanodine receptor Ca2+ release and upregulation of vasculature development. Conversely, we found a striking paucity of the upregulated changes in the putative glial and growth-related genes that had been strongly overrepresented in the prior mixed-tissue study. We conclude that FFPE tissue can be a reliable resource for microarray studies of brain tissue, that upregulation of growth-related epigenetic/transcription factors during incipient AD is predominantly localized in and around white matter (supporting our prior findings and model), and that novel alterations in vascular and ryanodine receptor-related pathways in gray matter are closely associated with incipient AD.
Collapse
Affiliation(s)
- Eric M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
21
|
Murray IVJ, Proza JF, Sohrabji F, Lawler JM. Vascular and metabolic dysfunction in Alzheimer's disease: a review. Exp Biol Med (Maywood) 2011; 236:772-82. [PMID: 21680755 DOI: 10.1258/ebm.2011.010355] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is thought to start years or decades prior to clinical diagnosis. Overt pathology such as protein misfolding and plaque formation occur at later stages, and factors other than amyloid misfolding contribute to the initiation of the disease. Vascular and metabolic dysfunctions are excellent candidates, as they are well-known features of AD that precede pathology or clinical dementia. While the general notion that vascular and metabolic dysfunctions contribute to the etiology of AD is becoming accepted, recent research suggests novel mechanisms by which these/such processes could possibly contribute to AD pathogenesis. Vascular dysfunction includes reduced cerebrovascular flow and cerebral amyloid angiopathy. Indeed, there appears to be an interaction between amyloid β (Aβ) and vascular pathology, where Aβ production and vascular pathology both contribute to and are affected by oxidative stress. One major player in the vascular pathology is NAD(P)H oxidase, which generates vasoactive superoxide. Metabolic dysfunction has only recently regained popularity in relation to its potential role in AD. The role of metabolic dysfunction in AD is supported by the increased epidemiological risk of AD associated with several metabolic diseases such as diabetes, dyslipidemia and hypertension, in which there is elevated oxidative damage and insulin resistance. Metabolic dysfunction is further implicated in AD as pharmacological inhibition of metabolism exacerbates pathology, and several metabolic enzymes of the glycolytic, tricarboxylic acid cycle (TCA) and oxidative phosphorylation pathways are damaged in AD. Recent studies have highlighted the role of insulin resistance, in contributing to AD. Thus, vascular and metabolic dysfunctions are key components in the AD pathology throughout the course of disease. The common denominator between vascular and metabolic dysfunction emerging from this review appears to be oxidative stress and Aβ. This review also provides a framework for evaluation of current and future therapeutics for AD.
Collapse
Affiliation(s)
- Ian V J Murray
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
This review focuses on recent developments in the use of natural products as therapeutics for Alzheimer's disease. The compounds span a diverse array of structural classes and are organized according to their mechanism of action, with the focus primarily on the major hypotheses. Overall, the review discusses more than 180 compounds and summarizes 400 references.
Collapse
Affiliation(s)
- Philip Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
23
|
Hoffman WH, Siedlak SL, Wang Y, Castellani RJ, Smith MA. Oxidative damage is present in the fatal brain edema of diabetic ketoacidosis. Brain Res 2010; 1369:194-202. [PMID: 21040714 DOI: 10.1016/j.brainres.2010.10.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 12/16/2022]
Abstract
Oxidative stress is implicated as a pathogenic factor in a spectrum of chronic diseases, notably, neurodegenerative disease. Noteworthy in this regard is that type 1 diabetes mellitus (T1DM) results in oxidative stress, leading to systemic complications of T1DM. We hypothesized that oxidative stress associated with diabetic ketoacidosis (DKA) of T1DM might have measurable brain sequelae. Consistent with this hypothesis are neurohistology and neuroradiologic studies of T1DM that suggest oxidative insults are involved in the chronic complications of diabetic encephalopathy. To further address the role of oxidative stress in an acute setting, specifically in fatal brain edema (BE) associated with DKA, we studied neuronal localization and levels of oxidative stress markers reported to be increased in other neurodegenerative conditions. We demonstrated increased levels of 8-hydroxyguanosine (8OHG), 4-hydroxynonenal (HNE), and heme oxygenase-1 (HO-1) in the pyramidal neurons of the hippocampus of DKA BE in comparison to controls. However, in the cerebellum, only 8OHG was increased in the Purkinje cells and other cells of the molecular layer. These results indicate a role for oxidative stress in the pathogenesis of T1DM encephalopathy.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Section of Pediatric Endocrinology, Medical College of Georgia, 1120 15th Street BG-1007Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
24
|
Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T, Nakamura M, Nunomura A, Perry G. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 2010; 19:363-72. [PMID: 20061651 DOI: 10.3233/jad-2010-1239] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is now established that oxidative stress is one of the earliest, if not the earliest, change that occurs in the pathogenesis of Alzheimer's disease (AD). Consistent with this, mild cognitive impairment (MCI), the clinical precursor of AD, is also characterized by elevations in oxidative stress. Since such stress does not operate in vacuo, in this study we sought to determine whether redox-active iron, a potent source of free radicals, was elevated in MCI and preclinical AD as compared to cognitively-intact age-matched control patients. Increased iron was found at the highest levels both in the cortex and cerebellum from the pre-clinical AD/MCI cases. Interestingly, glial accumulations of redox-active iron in the cerebellum were also evident in preclinical AD patients and tended to increase as patients became progressively cognitively impaired. Our findings suggests that an imbalance in iron homeostasis is a precursor to the neurodegenerative processes leading to AD and that iron imbalance is not necessarily unique to affected regions. In fact, an understanding of iron deposition in other regions of the brain may provide insights into neuroprotective strategies. Iron deposition at the preclinical stage of AD may be useful as a diagnostic tool, using iron imaging methods, as well as a potential therapeutic target, through metal ion chelators.
Collapse
Affiliation(s)
- Mark A Smith
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, White CL, Purpera MN, Uranga RM, Bruce-Keller AJ, Keller JN. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 2010; 114:1581-9. [PMID: 20557430 DOI: 10.1111/j.1471-4159.2010.06865.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Long term consumption of a high fat diet (HFD) contributes to increased morbidity and mortality. Yet the specific effects of HFD consumption on brain aging are poorly understood. In the present study 20-month old male C57Bl/6 mice were fed either 'western diet' (41% fat), very high fat lard diet (60% fat), or corresponding control diets for 16 weeks and then assessed for changes in metabolism and brain homeostasis. Although both HFDs increased adiposity and fasting blood glucose, only the high fat lard diet increased age-related oxidative damage (protein carbonyls) and impaired retention in the behavioral test. This selective increase in oxidative damage and cognitive decline was also associated with a decline in NF-E2-related factor 2 (Nrf2) levels and Nrf2 activity, suggesting a potential role for decreased antioxidant response. Taken together, these data suggest that while adiposity and insulin resistance following HFD consumption are linked to increased morbidity, the relationship between these factors and brain homeostasis during aging is not a linear relationship. More specifically, these data implicate impaired Nrf2 signaling and increased cerebral oxidative stress as mechanisms underlying HFD-induced declines in cognitive performance in the aged brain.
Collapse
|
26
|
Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, Dasuri K, Keller JN. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 2010; 114:344-61. [PMID: 20477933 PMCID: PMC2910139 DOI: 10.1111/j.1471-4159.2010.06803.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
Collapse
Affiliation(s)
- Romina M. Uranga
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | - Christopher D. Morrison
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Sun Ok Fernandez-Kim
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Philip J. Ebenezer
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
27
|
Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48:3030-59. [PMID: 19330877 DOI: 10.1002/anie.200802808] [Citation(s) in RCA: 486] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mind how you go: The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme beta- and gamma-secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid beta peptides, from which the disease-defining deposits of plaque in the brains of Alzheimer's patients originates.Research on senile dementia and Alzheimer's disease covers an extremely broad range of scientific activities. At the recent international meeting of the Alzheimer's Association (ICAD 2008, Chicago) more than 2200 individual scientific contributions were presented. The aim of this Review is to give an overview of the field and to outline its main areas, starting from behavioral abnormalities and visible pathological findings and then focusing on the molecular details of the pathology. The "amyloid hypothesis" of Alzheimer's disease is given particular attention, since the majority of the ongoing therapeutic approaches are based on its theoretical framework.
Collapse
Affiliation(s)
- Roland Jakob-Roetne
- F.Hoffmann-La Roche AG, Medicinal Chemistry, Bldg 92/8.10B, 4070 Basel, Switzerland.
| | | |
Collapse
|
28
|
Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer's disease. Neurosci Lett 2009; 460:180-4. [PMID: 19477221 DOI: 10.1016/j.neulet.2009.05.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 01/01/2023]
Abstract
Heme is an essential cell metabolite, intracellular regulatory molecule, and protein prosthetic group. Given the known alterations in heme metabolism and redox metal distribution and the up-regulation of heme oxygenase enzyme in Alzheimer's disease (AD), we hypothesized that heme dyshomeostasis plays a key role in the pathogenesis. To begin testing this hypothesis, we used qRT-PCR to quantify the expression of aminolevulinate synthase (ALAS1) and porphobilinogen deaminase (PBGD), rate-limiting enzymes in the heme biosynthesis pathway. The relative expression of ALAS1 mRNA, the first and rate-limiting enzyme for heme biosynthesis under normal physiological conditions, was significantly (p<0.05) reduced by nearly 90% in AD compared to control. Coordinately, the relative expression of PBGD mRNA, which encodes porphobilinogen deaminase, the third enzyme in the heme synthesis pathway and a secondary rate-limiting enzyme in heme biosynthesis, was also significantly (p<0.02) reduced by nearly 60% in AD brain compared to control and significantly related to apolipoprotein E genotype (p<0.005). In contrast, the relative expression of ALAD mRNA, which encodes aminolevulinate dehydratase, the second and a non-rate-limiting enzyme for heme biosynthesis, was unchanged between the two groups. Taken together, our results suggest regulation of cerebral heme biosynthesis is profoundly altered in AD and may contribute toward disease pathogenesis by affecting cell metabolism as well as iron homeostasis.
Collapse
|
29
|
Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. Brain 2009; 132:1820-32. [PMID: 19451179 DOI: 10.1093/brain/awp099] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It has been established for a long time that brain glucose metabolism is impaired in Alzheimer's disease. Recent studies have demonstrated that impaired brain glucose metabolism precedes the appearance of clinical symptoms, implying its active role in the development of Alzheimer's disease. However, the molecular mechanism by which this impairment contributes to the disease is not known. In this study, we demonstrated that protein O-GlcNAcylation, a common post-translational modification of nucleocytoplasmic proteins with beta-N-acetyl-glucosamine and a process regulated by glucose metabolism, was markedly decreased in Alzheimer's disease cerebrum. More importantly, the decrease in O-GlcNAc correlated negatively with phosphorylation at most phosphorylation sites of tau protein, which is known to play a crucial role in the neurofibrillary degeneration of Alzheimer's disease. We also found that hyperphosphorylated tau contained 4-fold less O-GlcNAc than non-hyperphosphorylated tau, demonstrating for the first time an inverse relationship between O-GlcNAcylation and phosphorylation of tau in the human brain. Downregulation of O-GlcNAcylation by knockdown of O-GlcNAc transferase with small hairpin RNA led to increased phosphorylation of tau in HEK-293 cells. Inhibition of the hexosamine biosynthesis pathway in rat brain resulted in decreased O-GlcNAcylation and increased phosphorylation of tau, which resembled changes of O-GlcNAcylation and phosphorylation of tau in rodent brains with decreased glucose metabolism induced by fasting, but not those in rat brains when protein phosphatase 2A was inhibited. Comparison of tau phosphorylation patterns under various conditions suggests that abnormal tau hyperphosphorylation in Alzheimer's disease brain may result from downregulation of both O-GlcNAcylation and protein phosphatase 2A. These findings suggest that impaired brain glucose metabolism leads to abnormal hyperphosphorylation of tau and neurofibrillary degeneration via downregulation of tau O-GlcNAcylation in Alzheimer's disease. Thus, restoration of brain tau O-GlcNAcylation and protein phosphatase 2A activity may offer promising therapeutic targets for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez-Kim SO, Hise TL, Keller JN, Ingram DK, Morrison CD, Bruce-Keller AJ. Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis 2009; 35:3-13. [PMID: 19374947 DOI: 10.1016/j.nbd.2009.04.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 12/21/2022] Open
Abstract
This study was undertaken to investigate the effects of prenatal and postnatal exposure to high fat diet on the brain. Female rats were divided into high fat diet (HFD) and control diet (CD) groups 4 weeks prior to breeding and throughout gestation and lactation. After weaning, male progeny were placed on a chow diet until 8 weeks old, and then segregated into HFD or CD groups. At 20 weeks old, rats were evaluated in the Morris water maze, and markers of oxidative stress and inflammation were documented in the brain. In comparison to rats fed CD, cognitive decline in HFD progeny from HFD dams manifested as a decline in retention, but not acquisition, in the water maze. HFD was also associated with significant increases in 3-nitrotyrosine, inducible nitric oxide synthase, IL-6, and glial markers Iba-1 and GFAP, with the largest increases frequently observed in HFD animals born to HFD dams. Thus, these data collectively suggest that HFD increases oxidative and inflammatory signaling in the brain, and further indicate that maternal HFD consumption might sensitize offspring to the detrimental effects of HFD.
Collapse
Affiliation(s)
- Christy L White
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jakob-Roetne R, Jacobsen H. Die Alzheimer-Demenz: von der Pathologie zu therapeutischen Ansätzen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Chernova T, Steinert JR, Guerin CJ, Nicotera P, Forsythe ID, Smith AG. Neurite degeneration induced by heme deficiency mediated via inhibition of NMDA receptor-dependent extracellular signal-regulated kinase 1/2 activation. J Neurosci 2007; 27:8475-85. [PMID: 17687025 PMCID: PMC6672932 DOI: 10.1523/jneurosci.0792-07.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The early stages of many neurodegenerative diseases and age-related degeneration are characterized by neurite damage and compromised synaptic function that precede neuronal cell death. We investigated the signaling mechanisms underlying neurite degeneration using cortical neuron cultures. Inhibition of heme synthesis caused neurite damage, without neuronal death, and was mediated by reduced NMDA receptor (NMDAR) expression and phosphorylation. The signaling toward the degenerative phenotype involved suppression of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, and electrophysiological recording showed that the neurodegeneration is accompanied by reduced NMDAR current and Ca2+ influx, as well as reduced voltage-gated sodium currents, consistent with compromised neurite integrity. Rescue from the degenerative phenotype by heme replacement was dependent on restoration of NR2B subunit phosphorylation and expression of NMDAR currents with higher Ca2+ permeability, consistent with triggering prosurvival ERK1/2 signaling to maintain and extend neurites. This study demonstrated a new mechanism of neurodegeneration in which impaired heme synthesis led to NMDAR signaling dysfunction, suppression of the prosurvival ERK1/2 pathway, and progressive fragmentation of neuronal projections.
Collapse
Affiliation(s)
- Tatyana Chernova
- Medical Research Council Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
33
|
Tatli M, Guzel A, Kizil G, Kavak V, Yavuz M, Kizil M. Comparison of the effects of maternal protein malnutrition and intrauterine growth restriction on redox state of central nervous system in offspring rats. Brain Res 2007; 1156:21-30. [PMID: 17512503 DOI: 10.1016/j.brainres.2007.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 04/05/2007] [Accepted: 04/13/2007] [Indexed: 01/07/2023]
Abstract
Both maternal protein malnutrition and intrauterine growth restriction (IUGR) have deleterious effects on brain development, but a comparison of these effects has not been previously reported. The objectives of this study were to investigate and compare the effects of both factors on the oxidative status of the central nervous system (CNS), including the spinal cord, in offspring rats. We evaluated various parameters of oxidative status and antioxidant enzyme activities of superoxide dismutase and catalase (CAT) in different regions of the CNS from 60-day-old rats subjected to prenatal and postnatal protein restrictions [middle protein restriction 12%, severe protein restriction (SPR) 4%] or IUGR produced by uterine artery ligation. Furthermore, we compared these study groups to each other and to control rats fed an isocaloric 24% protein diet. Results were analyzed using one-way ANOVA followed by Tukey's post hoc test. Both protein restrictions and IUGR altered various parameters of oxidative status. In all evaluated structures, protein restrictions resulted in increases in thiobarbituric acid-reactive substances level and index of lipid peroxidation (P<0.001), and in decreases in antioxidant enzyme activities (P<0.005). IUGR also increased lipid peroxidation levels in the blood samples (P<0.04) and protein oxidative damage in the cerebellum and cerebral cortex (P<0.005); however, no effects were detected on the spinal cord. The greatest decrease in CAT activity was in the cerebellum of rats fed with SPR diet (P<0.001). This study suggests that not only severe but also middle protein malnutrition have deleterious effects on CNS structures, including the spinal cord. Protein restriction has a greater effect on the redox state of the CNS than IUGR.
Collapse
Affiliation(s)
- Mehmet Tatli
- Department of Neurosurgery, Faculty of Medicine, University of Dicle, 21280 Diyarbakir, Turkey.
| | | | | | | | | | | |
Collapse
|
34
|
Casadesus G, Moreira PI, Nunomura A, Siedlak SL, Bligh-Glover W, Balraj E, Petot G, Smith MA, Perry G. Indices of metabolic dysfunction and oxidative stress. Neurochem Res 2007; 32:717-22. [PMID: 17342408 DOI: 10.1007/s11064-007-9296-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/18/2006] [Indexed: 11/30/2022]
Abstract
Metabolic alterations are a key player involved in the onset of Alzheimer disease pathophysiology and, in this review, we focus on diet, metabolic rate, and neuronal size differences that have all been shown to play etiological and pathological roles in Alzheimer disease. Specifically, one of the earliest manifestations of brain metabolic depression in these patients is a sustained high caloric intake meaning that general diet is an important factor to take in account. Moreover, atrophy in the vasculature and a reduced glucose transporter activity for the vessels is also a common feature in Alzheimer disease. Finally, the overall size of neurons is larger in cases of Alzheimer disease than that of age-matched controls and, in individuals with Alzheimer disease, neuronal size inversely correlates with disease duration and positively associates with oxidative stress. Overall, clarifying cellular and molecular manifestations involved in metabolic alterations may contribute to a better understanding of early Alzheimer disease pathophysiology.
Collapse
Affiliation(s)
- Gemma Casadesus
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Moreira PI, Zhu X, Lee HG, Honda K, Smith MA, Perry G. The (un)balance between metabolic and oxidative abnormalities and cellular compensatory responses in Alzheimer disease. Mech Ageing Dev 2006; 127:501-6. [PMID: 16516950 DOI: 10.1016/j.mad.2006.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2006] [Indexed: 11/27/2022]
Abstract
Compelling evidence supports the importance of metabolic abnormalities in Alzheimer disease pathogenesis. Indeed, that oxidative mechanisms are involved in the neuropathology associated with Alzheimer disease is evidenced by the large number of metabolic signs of oxidative stress as well as by specific markers of oxidative damage. However, in the initial stages of disease development, neurons adapt to the oxidative environment through the development of compensatory responses resulting in a shift of neuronal priority from normal function to basic survival.
Collapse
Affiliation(s)
- Paula I Moreira
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
36
|
Gouras GK, Almeida CG, Takahashi RH. Intraneuronal Abeta accumulation and origin of plaques in Alzheimer's disease. Neurobiol Aging 2006; 26:1235-44. [PMID: 16023263 DOI: 10.1016/j.neurobiolaging.2005.05.022] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/25/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
Plaques are a defining neuropathological hallmark of Alzheimer's disease (AD) and the major constituent of plaques, the beta-amyloid peptide (Abeta), is considered to play an important role in the pathophysiology of AD. But the biological origin of Abeta plaques and the mechanism whereby Abeta is involved in pathogenesis have been unknown. Abeta plaques were thought to form from the gradual accumulation and aggregation of secreted Abeta in the extracellular space. More recently, the accumulation of Abeta has been demonstrated to occur within neurons with AD pathogenesis. Moreover, intraneuronal Abeta accumulation has been reported to be critical in the synaptic dysfunction, cognitive dysfunction and the formation of plaques in AD. Here we provide a historical overview on the origin of plaques and a discussion on potential biological and therapeutic implications of intraneuronal Abeta accumulation for AD.
Collapse
Affiliation(s)
- Gunnar K Gouras
- Laboratory of Alzheimer's disease Neurobiology, Department of Neurology & Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA.
| | | | | |
Collapse
|
37
|
|
38
|
Jansson ET. Alzheimer disease is substantially preventable in the United States -- review of risk factors, therapy, and the prospects for an expert software system. Med Hypotheses 2005; 64:960-7. [PMID: 15780492 DOI: 10.1016/j.mehy.2004.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/06/2004] [Indexed: 11/16/2022]
Abstract
Epidemiology studies, including both regional incidence and the analysis of specific risk factors for Alzheimer's disease indicate that substantial prevention of the disease, in the 50-70 percent range, is a practical possibility for the United States. Epidemiology has identified a rich diversity of specific prevention strategies relating to nutrition, dietary supplements, lifestyle, food and environmental toxins, and in some cases medication, many of which have a capacity to reduce Alzheimer's risk by 50 percent or more. The interaction of these risk factors with brain biology is increasingly understood. In contrast, therapeutic strategies for un-prevented Alzheimer's generally prove incapable of delaying disease progression by more than 3-11 months, because extensive brain cell death occurs even in preclinical or mild cases. A public health program aimed at prevention can be fashioned with expert software packages, based on already identified risk factors. Such statistical analysis should allow the prediction of individual and group Alzheimer's risks of sufficient power to instruct the formulation of lifestyle, nutritional and environmental programs to substantially reduce disease incidence. A less satisfactory but complementary alternative is very early disease detection with therapeutic strategies focused on retardation of brain cell death, so that the person dies of another cause before the disease is clinically manifested.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of the Planet Earth, Inc., 701 E Street, SE, Suite 200, Washington, DC 20003, USA.
| |
Collapse
|
39
|
Atamna H, Frey WH. A role for heme in Alzheimer's disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci U S A 2004; 101:11153-8. [PMID: 15263070 PMCID: PMC503755 DOI: 10.1073/pnas.0404349101] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 11/18/2022] Open
Abstract
Heme is a common factor linking several metabolic perturbations in Alzheimer's disease (AD), including iron metabolism, mitochondrial complex IV, heme oxygenase, and bilirubin. Therefore, we determined whether heme metabolism was altered in temporal lobes obtained at autopsy from AD patients and age-matched nondemented subjects. AD brain demonstrated 2.5-fold more heme-b (P < 0.01) and 26% less heme-a (P = 0.16) compared with controls, resulting in a highly significant 2.9-fold decrease in heme-a/heme-b ratio (P < 0.001). Moreover, the strong Pearson correlation between heme-a and heme-b measured in control individuals (r(2) = 0.66, P < 0.002, n = 11) was abolished in AD subjects (r(2) = 0.076, P = 0.39, n = 12). The level of ferrochelatase (which makes heme-b in the mitochondrial matrix) in AD subjects was 4.2 times (P < 0.04) that in nondemented controls, suggesting up-regulated heme synthesis. To look for a possible connection between these observations and established mechanisms in AD pathology, we examined possible interactions between amyloid beta (A beta) and heme. A beta((1-40)) and A beta((1-42)) induced a redshift of 15-20 nm in the spectrum of heme-b and heme-a, suggesting that heme binds A beta, likely to one or more of the histidine residues. Lastly, in a tissue culture model, we found that clioquinol, a metal chelator in clinical trials for AD therapy, decreased intracellular heme. In light of these observations, we have proposed a model of AD pathobiology in which intracellular A beta complexes with free heme, thereby decreasing its bioavailability (e.g., heme-a) and resulting in functional heme deficiency. The model integrates disparate observations, including A beta, mitochondrial dysfunction, cholesterol, and the proposed efficacy of clioquinol.
Collapse
Affiliation(s)
- Hani Atamna
- Nutritional Genomics Center, Children's Hospital Oakland Research Institute, CA 94609, USA.
| | | |
Collapse
|