1
|
Sun S, Zhang X, Wang C, Yu Q, Yang H, Xu W, Wang T, Gao L, Meng X, Luo S, Zhang L, Chen Q, Zhang W. Combined application of myo-inositol and corn steep liquor enhances seedling growth and cold tolerance in cucumber and tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14422. [PMID: 38962815 DOI: 10.1111/ppl.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Low temperatures pose a common challenge in the production of cucumbers and tomatoes, hindering plant growth and, in severe cases, leading to plant death. In our investigation, we observed a substantial improvement in the growth of cucumber and tomato seedlings through the application of corn steep liquor (CSL), myo-inositol (MI), and their combinations. When subjected to low-temperature stress, these treatments resulted in heightened levels of photosynthetic pigments, thereby fostering enhanced photosynthesis in both tomato and cucumber plants. Furthermore, it contributed to a decrease in malondialdehyde (MDA) levels and electrolyte leakage (REP). The effectiveness of the treatment was further validated through the analysis of key gene expressions (CBF1, COR, MIOX4, and MIPS1) in cucumber. Particularly, noteworthy positive outcomes were noted in the treatment involving 0.6 mL L-1 CSL combined with 72 mg L-1 MI. This study provides valuable technical insights into leveraging the synergistic effects of inositol and maize leachate to promote early crop growth and bolster resistance to low temperatures.
Collapse
Affiliation(s)
- Shilong Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xinjun Zhang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Qi Yu
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Hongli Yang
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Weimin Xu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiangqing Meng
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Sha Luo
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Lianhong Zhang
- Syngenta Qihe trialing station, Syngenta (China) Investment Co. LTD, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Zhang D, Gu J, Xu Y, Yu X, Jin H. Exploring the mechanism of Huanglian ointment in alleviating wound healing after anal fistula surgery through metabolomics and proteomics. Heliyon 2024; 10:e29809. [PMID: 38699024 PMCID: PMC11064137 DOI: 10.1016/j.heliyon.2024.e29809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Anal fistula is a common anal and intestinal disease. The wound of anal fistula surgery is open and polluting, which is the most difficult to heal among all surgical incisions. To investigate the mechanism of Huanglian ointment (HLO) on wound healing after anal fistula incision. The S. aureus infected wound in SD rats were used to imitate poor healing wound after anal fistula surgery. SD rats with wound sites (n = 24) were randomly divided into four groups (Control group, Model group, Potassium permanganate (PP) treatment group, and HLO treatment group). The wound healing rate was evaluated, HE staining was used to evaluate the pathological changes of each group, ELISA was used to detect the secretion of inflammatory factors in each group, and the mechanism was explored through metabolomics and proteomics in plasma rat. Compared to other groups, the rate of wound healing in the HLO group was higher on days 7 and 14. Histological analysis showed that collagen and fibroblast in HLO rats were significantly increased, inflammatory cells were reduced, and vascular endothelial permeability was increased. ELISA results showed that the secretion of inflammatory factors in HLO rats was significantly lower. Significant proteins and metabolites were identified in the wound tissues of the infected rats and HLO-treated rats, which were mainly attributed to Cdc42, Ctnnb1, Actr2, Actr3, Arpc1b, Itgam, Itgb2, Cttn, Linoleic acid metabolism, d-Glutamine and d-glutamate metabolism, Phenylalanine, tyrosine and tryptophan biosynthesis, Phenylalanine metabolism, alpha-Linolenic acid metabolism, and Ascorbate and aldarate metabolism. In conclusion, this study showed that HLO can promote S. aureus infected wound healing, and the data provide a theoretical basis for the treatment of wounds after anal fistula surgery with HLO.
Collapse
Affiliation(s)
- Dongliang Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Colorectal and Anal Surgery, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, 212001, China
| | - Jiabo Gu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210011, China
| | - Yanyan Xu
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210011, China
| | - Xiaowen Yu
- Department of Colorectal and Anal Surgery, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, 212001, China
| | - Heiying Jin
- Department of Colorectal and Anal Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210011, China
| |
Collapse
|
3
|
Quiñones CO, Gesto-Borroto R, Wilson RV, Hernández-Madrigal SV, Lorence A. Alternative pathways leading to ascorbate biosynthesis in plants: lessons from the last 25 years. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2644-2663. [PMID: 38488689 DOI: 10.1093/jxb/erae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
l-Ascorbic acid (AsA) is an antioxidant with important roles in plant stress physiology, growth, and development. AsA also plays an essential role in human health, preventing scurvy. Humans do not synthesize AsA, which needs to be supplied via a diet rich in fresh produce. Research efforts have provided progress in the elucidation of a complex metabolic network with at least four routes leading to AsA formation in plants. In this review, three alternative pathways, namely the d-galacturonate, the l-gulose, and the myo-inositol pathways, are presented with the supporting evidence of their operation in multiple plant species. We critically discuss feeding studies using precursors and their conversion to AsA in plant organs, and research where the expression of key genes encoding enzymes involved in the alternative pathways showed >100% AsA content increase in the transgenics and in many cases accompanied by enhanced tolerance to multiple stresses. We propose that the alternative pathways are vital in AsA production in response to stressful conditions and to compensate in cases where the flux through the d-mannose/l-galactose pathway is reduced. The genes and enzymes that have been characterized so far in these alternative pathways represent important tools that are being used to develop more climate-tolerant crops.
Collapse
Affiliation(s)
- Cherryl O Quiñones
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Reinier Gesto-Borroto
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Rachael V Wilson
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Sara V Hernández-Madrigal
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, PO Box 419, State University, AR 72467, USA
| |
Collapse
|
4
|
Thakur N, Chaturvedi S, Tiwari S. Wheat derived glucuronokinase as a potential target for regulating ascorbic acid and phytic acid content with increased root length under drought and ABA stresses in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111671. [PMID: 36931562 DOI: 10.1016/j.plantsci.2023.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Glucuronokinase (GlcAK) converts glucuronic acid into glucuronic acid-1-phosphate, which is then converted into UDP-glucuronic acid (UDP-GlcA) via myo-inositol oxygenase (MIOX) pathway. UDP-GlcA acts as a precursor in the synthesis of nucleotide-sugar moieties forming cell wall biomass. GlcAK being present at the bifurcation point between UDP-GlcA and ascorbic acid (AsA) biosyntheses, makes it necessary to study its role in plants. In this study, the three homoeologs of GlcAK gene from hexaploid wheat were overexpressed in Arabidopsis thaliana. The GlcAK overexpressing transgenic lines showed decreased contents of AsA and phytic acid (PA) as compared to control plants. Root length and seed germination analyses under abiotic stress (drought and abscisic acid) conditions revealed enhanced root length in transgenic lines as compared to control plants. These results indicate that the MIOX pathway might be contributing towards AsA biosynthesis as evident by the decreased AsA content in the GlcAK overexpressing transgenic Arabidopsis thaliana plants. Findings of the present study will enhance the understanding of the involvement of GlcAK gene in MIOX pathway and subsequent physiological effects in plants.
Collapse
Affiliation(s)
- Neha Thakur
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Siddhant Chaturvedi
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
5
|
Murgia I, Midali A, Cimini S, De Gara L, Manasherova E, Cohen H, Paucelle A, Morandini P. The Arabidopsis thaliana Gulono-1,4 γ-lactone oxidase 2 (GULLO2) facilitates iron transport from endosperm into developing embryos and affects seed coat suberization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:712-723. [PMID: 36809732 DOI: 10.1016/j.plaphy.2023.01.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plants synthesize ascorbate (ASC) via the D-mannose/L-galactose pathway whereas animals produce ASC and H2O2via the UDP-glucose pathway, with Gulono-1,4 γ-lactone oxidases (GULLO) as the last step. A. thaliana has seven isoforms, GULLO1-7; previous in silico analysis suggested that GULLO2, mostly expressed in developing seeds, might be involved in iron (Fe) nutrition. We isolated atgullo2-1 and atgullo2-2 mutants, quantified ASC and H2O2 in developing siliques, Fe(III) reduction in immature embryos and seed coats. Surfaces of mature seed coats were analysed via atomic force and electron microscopies; suberin monomer and elemental compositions of mature seeds, including Fe, were profiled via chromatography and inductively coupled plasma-mass spectrometry. Lower levels of ASC and H2O2 in atgullo2 immature siliques are accompanied by an impaired Fe(III) reduction in seed coats and lower Fe content in embryos and seeds; atgullo2 seeds displayed reduced permeability and higher levels of C18:2 and C18:3 ω-hydroxyacids, the two predominant suberin monomers in A. thaliana seeds. We propose that GULLO2 contributes to ASC synthesis, for Fe(III) reduction into Fe(II). This step is critical for Fe transport from endosperm into developing embryos. We also show that alterations in GULLO2 activity affect suberin biosynthesis and accumulation in the seed coat.
Collapse
Affiliation(s)
- Irene Murgia
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy.
| | - Alessia Midali
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences ARO, Volcani Center, 68 HaMaccabim Rd., Rishon LeZion, 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences ARO, Volcani Center, 68 HaMaccabim Rd., Rishon LeZion, 7505101, Israel
| | - Alexis Paucelle
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, 78026, Versailles, Route de Saint-Cyr Cedex, France
| | - Piero Morandini
- Environmental Science and Policy Dept., University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
6
|
Xue C, Liu Z, Wang L, Li H, Gao W, Liu M, Zhao Z, Zhao J. The antioxidant defense system in Chinese jujube is triggered to cope with phytoplasma invasion. TREE PHYSIOLOGY 2020; 40:1437-1449. [PMID: 32483619 DOI: 10.1093/treephys/tpaa067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 04/18/2020] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) in plants increase dramatically under pathogen attack, and the antioxidant defense system is then triggered to protect the plant against the ROS. Jujube witches' broom disease (JWB), caused by phytoplasma, is a destructive disease of Chinese jujube. The results of fluorescence-based measurement revealed that ROS were overproduced within jujube leaves after phytoplasma invasion. Furthermore, analysis based on mRNA and metabolite levels revealed that ascorbic acid (AsA) metabolism was strengthened under phytoplasma stress. The high expression of genes involved in the AsA/glutathione (GSH) cycle and thioredoxin (Trx) synthesis in diseased leaves indicated that GSH and Trx actively respond to phytoplasma infection. Moreover, higher activities of enzymatic antioxidants and the upregulated expression of related genes were confirmed in diseased tissues. Both nonenzymatic and enzymatic antioxidants in the host jujube were strongly stimulated to cope with ROS caused by phytoplasma stress. Compared with that in the susceptible variety, the activities of glutathione S-transferase and peroxidase in the resistant variety at the earlier infection stage were higher, indicating that enzymes might be involved in the resistance to phytoplasma. These results highlight the roles of the antioxidant defense system of the host plant in the tolerance to phytoplasma invasion.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Zhihui Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
7
|
Munir S, Mumtaz MA, Ahiakpa JK, Liu G, Chen W, Zhou G, Zheng W, Ye Z, Zhang Y. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics 2020; 21:284. [PMID: 32252624 PMCID: PMC7132880 DOI: 10.1186/s12864-020-6708-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ascorbic acid (Vitamin C, AsA) is an antioxidant metabolite involved in plant development and environmental stimuli. AsA biosynthesis has been well studied in plants, and MIOX is a critical enzyme in plants AsA biosynthesis pathway. However, Myo-inositol oxygenase (MIOX) gene family members and their involvement in AsA biosynthesis and response to abiotic stress remain unclear. RESULTS In this study, five tomato genes encoding MIOX proteins and possessing MIOX motifs were identified. Structural analysis and distribution mapping showed that 5 MIOX genes contain different intron/exon patterns and unevenly distributed among four chromosomes. Besides, expression analyses indicated the remarkable expression of SlMIOX genes in different plant tissues. Furthermore, transgenic lines were obtained by over-expression of the MIOX4 gene in tomato. The overexpression lines showed a significant increase in total ascorbate in leaves and red fruits compared to control. Expression analysis revealed that increased accumulation of AsA in MIOX4 overexpression lines is possible as a consequence of the multiple genes involved in AsA biosynthesis. Myo inositol (MI) feeding in leaf and fruit implied that the Myo-inositol pathway improved the AsA biosynthesis in leaves and fruits. MIOX4 overexpression lines exhibited a better light response, abiotic stress tolerance, and AsA biosynthesis capacity. CONCLUSIONS These results showed that MIOX4 transgenic lines contribute to AsA biosynthesis, evident as better light response and improved oxidative stress tolerance. This study provides the first comprehensive analysis of the MIOX gene family and their involvement in ascorbate biosynthesis in tomato.
Collapse
Affiliation(s)
- Shoaib Munir
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Ali Mumtaz
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - John Kojo Ahiakpa
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guolin Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan, 430065, China
| | - Wei Zheng
- HZAU Chuwei Institute of Advanced Seeds, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- HZAU Chuwei Institute of Advanced Seeds, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- HZAU Chuwei Institute of Advanced Seeds, Wuhan, 430070, China.
| |
Collapse
|
8
|
Broad RC, Bonneau JP, Hellens RP, Johnson AA. Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E1790. [PMID: 32150968 PMCID: PMC7084844 DOI: 10.3390/ijms21051790] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/03/2023] Open
Abstract
Abiotic stresses, such as drought, salinity, and extreme temperatures, are major limiting factors in global crop productivity and are predicted to be exacerbated by climate change. The overproduction of reactive oxygen species (ROS) is a common consequence of many abiotic stresses. Ascorbate, also known as vitamin C, is the most abundant water-soluble antioxidant in plant cells and can combat oxidative stress directly as a ROS scavenger, or through the ascorbate-glutathione cycle-a major antioxidant system in plant cells. Engineering crops with enhanced ascorbate concentrations therefore has the potential to promote broad abiotic stress tolerance. Three distinct strategies have been utilized to increase ascorbate concentrations in plants: (i) increased biosynthesis, (ii) enhanced recycling, or (iii) modulating regulatory factors. Here, we review the genetic pathways underlying ascorbate biosynthesis, recycling, and regulation in plants, including a summary of all metabolic engineering strategies utilized to date to increase ascorbate concentrations in model and crop species. We then highlight transgene-free strategies utilizing genome editing tools to increase ascorbate concentrations in crops, such as editing the highly conserved upstream open reading frame that controls translation of the GDP-L-galactose phosphorylase gene.
Collapse
Affiliation(s)
- Ronan C. Broad
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Julien P. Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | | |
Collapse
|
9
|
Simkin AJ. Genetic Engineering for Global Food Security: Photosynthesis and Biofortification. PLANTS (BASEL, SWITZERLAND) 2019; 8:E586. [PMID: 31835394 PMCID: PMC6963231 DOI: 10.3390/plants8120586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Increasing demands for food and resources are challenging existing markets, driving a need to continually investigate and establish crop varieties with improved yields and health benefits. By the later part of the century, current estimates indicate that a >50% increase in the yield of most of the important food crops including wheat, rice and barley will be needed to maintain food supplies and improve nutritional quality to tackle what has become known as 'hidden hunger'. Improving the nutritional quality of crops has become a target for providing the micronutrients required in remote communities where dietary variation is often limited. A number of methods to achieve this have been investigated over recent years, from improving photosynthesis through genetic engineering, to breeding new higher yielding varieties. Recent research has shown that growing plants under elevated [CO2] can lead to an increase in Vitamin C due to changes in gene expression, demonstrating one potential route for plant biofortification. In this review, we discuss the current research being undertaken to improve photosynthesis and biofortify key crops to secure future food supplies and the potential links between improved photosynthesis and nutritional quality.
Collapse
Affiliation(s)
- Andrew John Simkin
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
10
|
Dos Santos CP, Batista MC, da Cruz Saraiva KD, Roque ALM, de Souza Miranda R, Alexandre E Silva LM, Moura CFH, Alves Filho EG, Canuto KM, Costa JH. Transcriptome analysis of acerola fruit ripening: insights into ascorbate, ethylene, respiration, and softening metabolisms. PLANT MOLECULAR BIOLOGY 2019; 101:269-296. [PMID: 31338671 DOI: 10.1007/s11103-019-00903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The first transcriptome coupled to metabolite analyses reveals major trends during acerola fruit ripening and shed lights on ascorbate, ethylene signalling, cellular respiration, sugar accumulation, and softening key regulatory genes. Acerola is a fast growing and ripening fruit that exhibits high amounts of ascorbate. During ripening, the fruit experience high respiratory rates leading to ascorbate depletion and a quickly fragile and perishable state. Despite its growing economic importance, understanding of its developmental metabolism remains obscure due to the absence of genomic and transcriptomic data. We performed an acerola transcriptome sequencing that generated over 600 million reads, 40,830 contigs, and provided the annotation of 25,298 unique transcripts. Overall, this study revealed the main metabolic changes that occur in the acerola ripening. This transcriptional profile linked to metabolite measurements, allowed us to focus on ascorbate, ethylene, respiration, sugar, and firmness, the major metabolism indicators for acerola quality. Our results suggest a cooperative role of several genes involved in AsA biosynthesis (PMM, GMP1 and 3, GME1 and 2, GGP1 and 2), translocation (NAT3, 4, 6 and 6-like) and recycling (MDHAR2 and DHAR1) pathways for AsA accumulation in unripe fruits. Moreover, the association of metabolites with transcript profiles provided a comprehensive understanding of ethylene signalling, respiration, sugar accumulation and softening of acerola, shedding light on promising key regulatory genes. Overall, this study provides a foundation for further examination of the functional significance of these genes to improve fruit quality traits.
Collapse
Affiliation(s)
- Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Federal Institute of Education, Science and Technology of Paraíba, Campus Princesa Isabel, Princesa Isabel, Paraíba, Brazil
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil
| | | | | | | | | | | | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
| |
Collapse
|
11
|
Nepal N, Yactayo‐Chang JP, Medina‐Jiménez K, Acosta‐Gamboa LM, González‐Romero ME, Arteaga‐Vázquez MA, Lorence A. Mechanisms underlying the enhanced biomass and abiotic stress tolerance phenotype of an Arabidopsis MIOX over-expresser. PLANT DIRECT 2019; 3:e00165. [PMID: 31497751 PMCID: PMC6718051 DOI: 10.1002/pld3.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/11/2019] [Accepted: 08/10/2019] [Indexed: 05/07/2023]
Abstract
Myo-inositol oxygenase (MIOX) is the first enzyme in the inositol route to ascorbate (L-ascorbic acid, AsA, vitamin C). We have previously shown that Arabidopsis plants constitutively expressing MIOX have elevated foliar AsA content and displayed enhanced growth rate, biomass accumulation, and increased tolerance to multiple abiotic stresses. In this work, we used a combination of transcriptomics, chromatography, microscopy, and physiological measurements to gain a deeper understanding of the underlying mechanisms mediating the phenotype of the AtMIOX4 line. Transcriptomic analysis revealed increased expression of genes involved in auxin synthesis, hydrolysis, transport, and metabolism, which are supported by elevated auxin levels both in vitro and in vivo, and confirmed by assays demonstrating their effect on epidermal cell elongation in the AtMIOX4 over-expressers. Additionally, we detected up-regulation of transcripts involved in photosynthesis and this was validated by increased efficiency of the photosystem II and proton motive force. We also found increased expression of amylase leading to higher intracellular glucose levels. Multiple gene families conferring plants tolerance/expressed in response to cold, water limitation, and heat stresses were found to be elevated in the AtMIOX4 line. Interestingly, the high AsA plants also displayed up-regulation of transcripts and hormones involved in defense including jasmonates, defensin, glucosinolates, and transcription factors that are known to be important for biotic stress tolerance. These results overall indicate that elevated levels of auxin and glucose, and enhanced photosynthetic efficiency in combination with up-regulation of abiotic stresses response genes underly the higher growth rate and abiotic stresses tolerance phenotype of the AtMIOX4 over-expressers.
Collapse
Affiliation(s)
- Nirman Nepal
- Arkansas Biosciences InstituteArkansas State UniversityState UniversityARUSA
| | | | - Karina Medina‐Jiménez
- Arkansas Biosciences InstituteArkansas State UniversityState UniversityARUSA
- INBIOTECAUniversidad VeracruzanaXalapaMéxico
| | | | | | | | - Argelia Lorence
- Arkansas Biosciences InstituteArkansas State UniversityState UniversityARUSA
- Department of Chemistry and PhysicsArkansas State UniversityState UniversityARUSA
| |
Collapse
|
12
|
Tyapkina DY, Kochieva EZ, Slugina MA. Vitamin C in fleshy fruits: biosynthesis, recycling, genes, and enzymes. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-ascorbic acid (vitamin C) is a plant secondary metabolite that has a variety of functions both in plant tissues and in the human body. Plants are the main source of vitamin C in human nutrition, especially citrus, rose hip, tomato, strawberry, pepper, papaya, kiwi, and currant fruits. However, in spite of the biological significance of L-ascorbic acid, the pathways of its biosynthesis in plants were fully understood only in 2007 by the example of a model plant Arabidopsis thaliana. In the present review, the main biosynthetic pathways of vitamin C are described: the L-galactose pathway, L-gulose pathway, galacturonic and myo-inositol pathway. To date, the best studied is the L-galactose pathway (Smyrnoff–Wheeler pathway). Only for this pathway all the enzymes and the entire cascade of reactions have been described. For other pathways, only hypothetical metabolites are proposed and not all the catalyzing enzymes have been identified. The key genes participating in ascorbic acid biosynthesis and accumulation in fleshy fruits are highlighted. Among them are L-galactose pathway proteins (GDP-mannose phosphorylase (GMP, VTC1), GDP-D-mannose epimerase (GME), GDP-L-galactose phosphorylase (GGP, VTC2/VTC5), L-galactose-1-phosphate phosphatase (GPP/VTC4), L-galactose-1-dehydrogenase (GalDH), and L-galactono1,4-lactone dehydrogenase (GalLDH)); D-galacturonic pathway enzymes (NADPH-dependent D-galacturonate reductase (GalUR)); and proteins, controlling the recycling of ascorbic acid (dehydroascorbate reductase (DHAR1) and monodehydroascorbate reductase (MDHAR)). Until now, there is no clear and unequivocal evidence for the existence of one predominant pathway of vitamin C biosynthesis in fleshy fruits. For example, the L-galactose pathway is predominant in peach and kiwi fruits, whereas the D-galacturonic pathway seems to be the most essential in grape and strawberry fruits. However, in some plants, such as citrus and tomato fruits, there is a switch between different pathways during ripening. It is noted that the final ascorbic acid content in fruits depends not only on biosynthesis but also on the rate of its oxidation and recirculation.
Collapse
Affiliation(s)
- D. Y. Tyapkina
- Institute of Bioengineering, Research Center of Biotechnology, RAS
| | - E. Z. Kochieva
- Institute of Bioengineering, Research Center of Biotechnology, RAS;
Lomonosov Moscow State University
| | - M. A. Slugina
- Institute of Bioengineering, Research Center of Biotechnology, RAS;
Lomonosov Moscow State University
| |
Collapse
|
13
|
Ntagkas N, Woltering E, Bouras S, de Vos RC, Dieleman JA, Nicole CC, Labrie C, Marcelis LF. Light-Induced Vitamin C Accumulation in Tomato Fruits is Independent of Carbohydrate Availability. PLANTS 2019; 8:plants8040086. [PMID: 30987209 PMCID: PMC6524381 DOI: 10.3390/plants8040086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022]
Abstract
L-ascorbate (ASC) is essential for human health. Therefore, there is interest in increasing the ASC content of crops like tomato. High irradiance induces accumulation of ASC in green tomato fruits. The D-mannose/L-galactose biosynthetic pathway accounts for the most ASC in plants. The myo-inositol and galacturonate pathways have been proposed to exist but never identified in plants. The D-mannose/L-galactose starts from D-glucose. In a series of experiments, we tested the hypothesis that ASC levels depend on soluble carbohydrate content when tomato fruits ripen under irradiances that stimulate ASC biosynthesis. We show that ASC levels considerably increased when fruits ripened under light, but carbohydrate levels did not show a parallel increase. When carbohydrate levels in fruits were altered by flower pruning, no effects on ASC levels were observed at harvest or after ripening under irradiances that induce ASC accumulation. Artificial feeding of trusses with sucrose increased carbohydrate levels, but did not affect the light-induced ASC levels. We conclude that light-induced accumulation of ASC is independent of the carbohydrate content in tomato fruits. In tomato fruit treated with light, the increase in ASC was preceded by a concomitant increase in myo-inositol.
Collapse
Affiliation(s)
- Nikolaos Ntagkas
- Horticulture and Product Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6709 PB Wageningen, The Netherlands.
| | - Ernst Woltering
- Horticulture and Product Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6709 PB Wageningen, The Netherlands.
- Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Sofoklis Bouras
- Horticulture and Product Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6709 PB Wageningen, The Netherlands.
| | - Ric Ch de Vos
- Business unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6709 PB Wageningen, The Netherlands.
| | - J Anja Dieleman
- Business unit Greenhouse Horticulture, Wageningen University and Research, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands.
| | - Celine Cs Nicole
- Signify Research, High Tech Campus 7, 5656 AE Eindhoven, The Netherlands.
| | - Caroline Labrie
- Business unit Greenhouse Horticulture, Wageningen University and Research, Violierenweg 1, 2665 MV Bleiswijk, The Netherlands.
| | - Leo Fm Marcelis
- Horticulture and Product Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6709 PB Wageningen, The Netherlands.
| |
Collapse
|
14
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
15
|
Aboobucker SI, Suza WP, Lorence A. Characterization of Two Arabidopsis L-Gulono-1,4-lactone Oxidases, AtGulLO3 and AtGulLO5, Involved in Ascorbate Biosynthesis. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 4:389-417. [PMID: 30112455 PMCID: PMC6088757 DOI: 10.20455/ros.2017.861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
L-Ascorbic acid (AsA, vitamin C) is an essential antioxidant for plants and animals. There are four known ascorbate biosynthetic pathways in plants: the L-galactose, L-gulose, D-galacturonate, and myo-inositol routes. These pathways converge into two AsA precursors: L-galactono-1,4-lactone and L-gulono-1,4-lactone (L-GulL). This work focuses on the study of L-gulono-1,4-lactone oxidase (GulLO), the enzyme that works at the intersect of the gulose and inositol pathways. Previous studies have shown that feeding L-gulono-1,4-lactone to multiple plants leads to increased AsA. There are also reports showing GulLO activity in plants. We describe the first detailed characterization of a plant enzyme specific to oxidize L-GulL to AsA. We successfully purified a recombinant Arabidopsis GulLO enzyme (called AtGulLO5) in a transient expression system. The biochemical properties of this enzyme are similar to the ones of bacterial isozymes in terms of substrate specificity, subcellular localization, use of flavin adenine dinucleotide (FAD) as electron acceptor, and specific activity. AtGulLO5 is an exclusive dehydrogenase with an absolute specificity for L-GulL as substrate thus differing from the existing plant L-galactono-1,4-lactone dehydrogenases and mammalian GulLOs. Feeding L-GulL to N. benthamiana leaves expressing AtGulLO5 constructs led to increased foliar AsA content, but it was not different from that of controls, most likely due to the observed low catalytic efficiency of AtGulLO5. Similar results were also obtained with another member of the AtGulLO family (AtGulLO3) that appears to have a rapid protein turnover. We propose that AsA synthesis through L-GulL in plants is regulated at the post-transcriptional level by limiting GulLO enzyme availability.
Collapse
Affiliation(s)
- Siddique I Aboobucker
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Current address: 2104 Agronomy Hall, Iowa State University, Ames, IA 50011, USA
| | - Walter P Suza
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Current address: 2104 Agronomy Hall, Iowa State University, Ames, IA 50011, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA
| |
Collapse
|
16
|
Cai X, Zhang C, Shu W, Ye Z, Li H, Zhang Y. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun 2016; 474:736-741. [PMID: 27157141 DOI: 10.1016/j.bbrc.2016.04.148] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
Abstract
Ascorbic acid (AsA) is an important antioxidant and its biosynthesis in plants has extensively been investigated. However, the key regulatory factors controlling the accumulation of AsA remain elusive. Here we report that tomato SlDof22, a member of the Dof family, negatively regulated AsA accumulation in tomato. RNA interference (RNAi) of SlDof22 in transgenic lines induced AsA levels, and affected the expression of genes in the D-mannose/L-galactose pathway and AsA recycling. In addition, SlSOS1 was significantly down-regulated in SlDof22 RNAi plants which resulted in reduced tolerance to salt stress. We further found that SlDof22 could bind to the promoter sequence of SlSOS1 gene by yeast one-hybrid analysis. Taken together, our data suggested that the Dof transcription factor SIDof22 involved in ascorbate accumulation and salt stress response in tomato.
Collapse
Affiliation(s)
- Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environment Science, Shanghai Normal University, Shanghai, 200234, China
| | - Chanjuan Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbo Shu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Aboobucker SI, Lorence A. Recent progress on the characterization of aldonolactone oxidoreductases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:171-85. [PMID: 26696130 PMCID: PMC4725720 DOI: 10.1016/j.plaphy.2015.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
L-Ascorbic acid (ascorbate, AsA, vitamin C) is essential for animal and plant health. Despite our dependence on fruits and vegetables to fulfill our requirement for this vitamin, the metabolic network leading to its formation in plants is just being fully elucidated. There is evidence supporting the operation of at least four biosynthetic pathways leading to AsA formation in plants. These routes use D-mannose/L-galactose, L-gulose, D-galacturonate, and myo-inositol as the main precursors. This review focuses on aldonolactone oxidoreductases, a subgroup of the vanillyl alcohol oxidase (VAO; EC 1.1.3.38) superfamily, enzymes that catalyze the terminal step in AsA biosynthesis in bacteria, protozoa, animals, and plants. In this report, we review the properties of well characterized aldonolactone oxidoreductases to date. A shared feature in these proteins is the presence of a flavin cofactor as well as a thiol group. The flavin cofactor in many cases is bound to the N terminus of the enzymes or to a recently discovered HWXK motif in the C terminus. The binding between the flavin moiety and the protein can be either covalent or non-covalent. Substrate specificity and subcellular localization differ among the isozymes of each kingdom. All oxidases among these enzymes possess dehydrogenase activity, however, exclusive dehydrogenases are also found. We also discuss recent evidence indicating that plants have both L-gulono-1,4-lactone oxidases and L-galactono-1,4-lactone dehydrogenases involved in AsA biosynthesis.
Collapse
Affiliation(s)
- Siddique I Aboobucker
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA; Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA.
| |
Collapse
|
18
|
Chen C, Sun X, Duanmu H, Yu Y, Liu A, Xiao J, Zhu Y. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress. PLoS One 2015; 10:e0129998. [PMID: 26091094 PMCID: PMC4474918 DOI: 10.1371/journal.pone.0129998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/16/2015] [Indexed: 02/04/2023] Open
Abstract
Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Ailin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- * E-mail:
| |
Collapse
|
19
|
Bruggeman Q, Prunier F, Mazubert C, de Bont L, Garmier M, Lugan R, Benhamed M, Bergounioux C, Raynaud C, Delarue M. Involvement of Arabidopsis Hexokinase1 in Cell Death Mediated by Myo-Inositol Accumulation. THE PLANT CELL 2015; 27:1801-14. [PMID: 26048869 PMCID: PMC4498202 DOI: 10.1105/tpc.15.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/18/2015] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Florence Prunier
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Christelle Mazubert
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Linda de Bont
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Marie Garmier
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Raphaël Lugan
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 CNRS, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Moussa Benhamed
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Catherine Bergounioux
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Cécile Raynaud
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| | - Marianne Delarue
- Université Paris-Sud, Institute of Plant Sciences Paris-Saclay IPS2 (Bâtiment 630), UMR CNRS-INRA 9213, Saclay Plant Sciences, 91405 Orsay, France
| |
Collapse
|
20
|
Venkatesh J, Park SW. Role of L-ascorbate in alleviating abiotic stresses in crop plants. BOTANICAL STUDIES 2014; 55:38. [PMID: 28510969 PMCID: PMC5432849 DOI: 10.1186/1999-3110-55-38] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/16/2013] [Indexed: 05/21/2023]
Abstract
L-ascorbic acid (vitamin C) is a major antioxidant in plants and plays a significant role in mitigation of excessive cellular reactive oxygen species activities caused by number of abiotic stresses. Plant ascorbate levels change differentially in response to varying environmental stress conditions, depending on the degree of stress and species sensitivity. Successful modulation of ascorbate biosynthesis through genetic manipulation of genes involved in biosynthesis, catabolism and recycling of ascorbate has been achieved. Recently, role of ascorbate in alleviating number of abiotic stresses has been highlighted in crop plants. In this article, we discuss the current understanding of ascorbate biosynthesis and its antioxidant role in order to increase our comprehension of how ascorbate helps plants to counteract or cope with various abiotic stresses.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Seoul, Gwangjin-gu South Korea
| | - Se Won Park
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Seoul, Gwangjin-gu South Korea
| |
Collapse
|
21
|
Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A. Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2013; 49:643-655. [PMID: 25767369 PMCID: PMC4354779 DOI: 10.1007/s11627-013-9568-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
l-Ascorbic acid (vitamin C) is an abundant metabolite in plant cells and tissues. Ascorbate functions as an antioxidant, as an enzyme cofactor, and plays essential roles in multiple physiological processes including photosynthesis, photoprotection, control of cell cycle and cell elongation, and modulation of flowering time, gene regulation, and senescence. The importance of this key molecule in regulating whole plant morphology, cell structure, and plant development has been clearly established via characterization of low vitamin C mutants of Arabidopsis, potato, tobacco, tomato, and rice. However, the consequences of elevating ascorbate content in plant growth and development are poorly understood. Here we demonstrate that Arabidopsis lines over-expressing a myo-inositol oxygenase or an l-gulono-1,4-lactone oxidase, containing elevated ascorbate, display enhanced growth and biomass accumulation of both aerial and root tissues. To our knowledge this is the first study demonstrating such a marked positive effect in plant growth in lines engineered to contain elevated vitamin C content. In addition, we present evidence showing that these lines are tolerant to a wide range of abiotic stresses including salt, cold, and heat. Total ascorbate content of the transgenic lines remained higher than those of controls under the abiotic stresses tested. Interestingly, exposure to pyrene, a polycyclic aromatic hydrocarbon and known inducer of oxidative stress in plants, leads to stunted growth of the aerial tissue, reduction in the number of root hairs, and inhibition of leaf expansion in wild type plants, while these symptoms are less severe in the over-expressers. Our results indicate the potential of this metabolic engineering strategy to develop crops with enhanced biomass, abiotic stress tolerance, and phytoremediation capabilities.
Collapse
Affiliation(s)
- Katherine A Lisko
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Raquel Torres
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Rodney S Harris
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Melinda Belisle
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280, USA
| | - Martha M Vaughan
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Berangère Jullian
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Boris I Chevone
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pedro Mendes
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Craig L Nessler
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA
| |
Collapse
|
22
|
Gallie DR. Increasing vitamin C content in plant foods to improve their nutritional value-successes and challenges. Nutrients 2013; 5:3424-46. [PMID: 23999762 PMCID: PMC3798912 DOI: 10.3390/nu5093424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 01/02/2023] Open
Abstract
Vitamin C serves as a cofactor in the synthesis of collagen needed to support cardiovascular function, maintenance of cartilage, bones, and teeth, as well as being required in wound healing. Although vitamin C is essential, humans are one of the few mammalian species unable to synthesize the vitamin and must obtain it through dietary sources. Only low levels of the vitamin are required to prevent scurvy but subclinical vitamin C deficiency can cause less obvious symptoms such as cardiovascular impairment. Up to a third of the adult population in the U.S. obtains less than the recommended amount of vitamin C from dietary sources of which plant-based foods constitute the major source. Consequently, strategies to increase vitamin C content in plants have been developed over the last decade and include increasing its synthesis as well as its recycling, i.e., the reduction of the oxidized form of ascorbic acid that is produced in reactions back into its reduced form. Increasing vitamin C levels in plants, however, is not without consequences. This review provides an overview of the approaches used to increase vitamin C content in plants and the successes achieved. Also discussed are some of the potential limitations of increasing vitamin C and how these may be overcome.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
23
|
Lisko KA, Hubstenberger JF, Phillips GC, Belefant-Miller H, McClung A, Lorence A. Ontogenetic changes in vitamin C in selected rice varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:41-6. [PMID: 23466746 PMCID: PMC3741106 DOI: 10.1016/j.plaphy.2013.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/24/2013] [Indexed: 05/08/2023]
Abstract
Vitamin C (L-ascorbic acid) is a key antioxidant for both plants and animals. In plants, ascorbate is involved in several key physiological processes including photosynthesis, cell expansion and division, growth, flowering, and senescence. In addition, ascorbate is an enzyme cofactor and a regulator of gene expression. During exposure to abiotic stresses, ascorbate counteracts excessive reactive oxygen species within the cell and protects key molecules, including lipids, proteins, and nucleic acids, from irreversible damage. In this study we focus on understanding how ascorbate levels are controlled in rice (Oryza sativa) during plant development and in response to light intensity and photoperiod. Our results indicate that in rice ascorbate metabolism follows a different pattern compared to other species. In the rice accessions we analyzed, total foliar ascorbate content increases during development and peaks at the vegetative 2-4 and the reproductive 4 stages, whereas other research has shown that in Arabidopsis thaliana and other dicots, ascorbate content declines with plant age. The pattern in rice does not seem to change when plants were grown under increasing light intensity: 150, 400 or 1200-1500 μmol m(-2) s(-1). We observed little diurnal variation in AsA content in rice and did not see a steady decline during the dark period as has been reported in other species such as Arabidopsis and tomato. The total foliar ascorbate content of twenty-three rice accessions from four major rice subgroups was compared. These genotypes differed as much as eight-fold in ascorbate content at the V2 stage indicating the potential to enhance vitamin C levels in genotypes of global interest via breeding approaches.
Collapse
Affiliation(s)
- Katherine A. Lisko
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - John F. Hubstenberger
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Gregory C. Phillips
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- College of Agriculture and Technology, Arkansas State University, P.O. Box 1080, State University, AR 72467, USA
| | - Helen Belefant-Miller
- USDA-ARS, Dale Bumpers National Rice Research Center, 2890 Hwy 130 East, Stuttgart, AR 72160, USA
| | - Anna McClung
- USDA-ARS, Dale Bumpers National Rice Research Center, 2890 Hwy 130 East, Stuttgart, AR 72160, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA
- Corresponding author. Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA. Tel.: +1 870 680 4322; fax: +1 870 972 2026. (A. Lorence)
| |
Collapse
|
24
|
Gallie DR. L-ascorbic Acid: a multifunctional molecule supporting plant growth and development. SCIENTIFICA 2013; 2013:795964. [PMID: 24278786 PMCID: PMC3820358 DOI: 10.1155/2013/795964] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/02/2012] [Indexed: 05/19/2023]
Abstract
L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps reflecting the importance of this molecule to plant health. Given the importance of ascorbic acid to human nutrition, several technologies have been developed to increase the ascorbic acid content of plants through the manipulation of biosynthetic or recycling pathways. This paper provides an overview of these approaches as well as the consequences that changes in ascorbic acid content have on plant growth and function. Discussed is the capacity of plants to tolerate changes in ascorbic acid content. The many functions that ascorbic acid serves in plants, however, will require highly targeted approaches to improve their nutritional quality without compromising their health.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA
| |
Collapse
|
25
|
Zhang Y. Enzymes Involved in Ascorbate Biosynthesis and Metabolism in Plants. ASCORBIC ACID IN PLANTS 2013. [DOI: 10.1007/978-1-4614-4127-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Cruz-Rus E, Amaya I, Valpuesta V. The challenge of increasing vitamin C content in plant foods. Biotechnol J 2012; 7:1110-21. [DOI: 10.1002/biot.201200041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 12/15/2022]
|
27
|
Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:390-7. [PMID: 22129455 DOI: 10.1111/j.1467-7652.2011.00668.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops.
Collapse
Affiliation(s)
- Sean Bulley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG. Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. J Biol Chem 2012; 287:14234-45. [PMID: 22393048 PMCID: PMC3340187 DOI: 10.1074/jbc.m112.341982] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/23/2012] [Indexed: 12/30/2022] Open
Abstract
The L-galactose (Smirnoff-Wheeler) pathway represents the major route to L-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-L-galactose phosphorylases converting GDP-L-galactose to L-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of L-ascorbate. Here we report that the L-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the L-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-L-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and L-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the L-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells.
Collapse
Affiliation(s)
| | | | | | - Carole L. Linster
- From the Departments of Chemistry and Biochemistry
- the de Duve Institute, Université Catholique de Louvain, BCHM 7539, Ave. Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | - Matteo Pellegrini
- Molecular, Cell, and Developmental Biology, and
- Institute of Genomics and Proteomics
| | - Sabeeha S. Merchant
- From the Departments of Chemistry and Biochemistry
- Institute of Genomics and Proteomics
- Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Steven G. Clarke
- From the Departments of Chemistry and Biochemistry
- Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
29
|
Alimohammadi M, de Silva K, Ballu C, Ali N, Khodakovskaya MV. Reduction of inositol (1,4,5)-trisphosphate affects the overall phosphoinositol pathway and leads to modifications in light signalling and secondary metabolism in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:825-35. [PMID: 21994174 PMCID: PMC3254682 DOI: 10.1093/jxb/err306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 05/07/2023]
Abstract
The phosphoinositol pathway is one of the major eukaryotic signalling pathways. The metabolite of the phosphoinositol pathway, inositol- (1,4,5) trisphosphate (InsP(3)), is a regulator of plant responses to a wide variety of stresses, including light, drought, cold, and salinity. It was found that the expression of InsP 5-ptase, the enzyme that hydrolyses InsP(3), also dramatically affects the levels of inositol phosphate metabolites and the secondary metabolites in transgenic tomato plants. Tomato plants expressing InsP 5-ptase exhibited a reduction in the levels of several important inositol phosphates, including InsP(1), InsP(2), InsP(3), and InsP(4). Reduced levels of inositol phosphates accompanied an increase in the accumulation of phenylpropanoids (rutin, chlorogenic acid) and ascorbic acid (vitamin C) in the transgenic fruits of tomato plants. The enhanced accumulation of these metabolites in transgenic tomato plants was in direct correspondence with the observed up-regulation of the genes that express the key enzymes of ascorbic acid metabolism (myo-inositol oxygenase, MIOX; L-galactono-γ-lactone dehydrogenase, GLDH) and phenylpropanoid metabolism (chalcone synthase, CHS1; cinnamoyl-CoA shikimate/quinate transferase, HCT). To understand the molecular links between the activation of different branches of plant metabolism and InsP(3) reduction in tomato fruits, the expression of transcription factors known to be involved in light signalling was analysed by real-time RT-PCR. The expression of LeHY5, SIMYB12, and LeELIP was found to be higher in fruits expressing InsP 5-ptase. These results suggest possible interconnections between phosphoinositol metabolism, light signalling, and secondary metabolism in plants. Our study also revealed the biotechnological potential for the genetic improvement of crop plants by the manipulation of the phosphoinositol pathway.
Collapse
Affiliation(s)
- Mohammad Alimohammadi
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Kanishka de Silva
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Clarisse Ballu
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
- CFAI EIA – ITII Poitou-Charentes, La Couronne, France, 16400
| | - Nawab Ali
- Graduate Institute of Technology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Mariya V. Khodakovskaya
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| |
Collapse
|
30
|
Goggin FL, Avila CA, Lorence A. Vitamin C content in plants is modified by insects and influences susceptibility to herbivory. Bioessays 2010; 32:777-90. [DOI: 10.1002/bies.200900187] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Donahue JL, Alford SR, Torabinejad J, Kerwin RE, Nourbakhsh A, Ray WK, Hernick M, Huang X, Lyons BM, Hein PP, Gillaspy GE. The Arabidopsis thaliana Myo-inositol 1-phosphate synthase1 gene is required for Myo-inositol synthesis and suppression of cell death. THE PLANT CELL 2010; 22:888-903. [PMID: 20215587 PMCID: PMC2861443 DOI: 10.1105/tpc.109.071779] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/28/2010] [Accepted: 02/18/2010] [Indexed: 05/19/2023]
Abstract
l-myo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the rate-limiting step in the synthesis of myo-inositol, a critical compound in the cell. Plants contain multiple MIPS genes, which encode highly similar enzymes. We characterized the expression patterns of the three MIPS genes in Arabidopsis thaliana and found that MIPS1 is expressed in most cell types and developmental stages, while MIPS2 and MIPS3 are mainly restricted to vascular or related tissues. MIPS1, but not MIPS2 or MIPS3, is required for seed development, for physiological responses to salt and abscisic acid, and to suppress cell death. Specifically, a loss in MIPS1 resulted in smaller plants with curly leaves and spontaneous production of lesions. The mips1 mutants have lower myo-inositol, ascorbic acid, and phosphatidylinositol levels, while basal levels of inositol (1,4,5)P(3) are not altered in mips1 mutants. Furthermore, mips1 mutants exhibited elevated levels of ceramides, sphingolipid precursors associated with cell death, and were complemented by a MIPS1-green fluorescent protein (GFP) fusion construct. MIPS1-, MIPS2-, and MIPS3-GFP each localized to the cytoplasm. Thus, MIPS1 has a significant impact on myo-inositol levels that is critical for maintaining levels of ascorbic acid, phosphatidylinositol, and ceramides that regulate growth, development, and cell death.
Collapse
Affiliation(s)
- Janet L. Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Shannon R. Alford
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Javad Torabinejad
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Rachel E. Kerwin
- Department of Plant Biology, University of California, Davis, California 95616
| | - Aida Nourbakhsh
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - W. Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Marcy Hernick
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Xinyi Huang
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Blair M. Lyons
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Pyae P. Hein
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Glenda E. Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
- Address correspondence to
| |
Collapse
|
32
|
Conversion of L-galactono-1,4-lactone to L-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis. Biosci Biotechnol Biochem 2008; 72:2598-607. [PMID: 18838812 DOI: 10.1271/bbb.80284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we focused on the effects of light irradiation and the addition of L-galactono-1,4-lactone (L-GalL) on the conversion of exogenous L-GalL to L-ascorbate (AsA) and the total AsA pool size in detached leaves of Arabidopsis plants and transgenic plants expressing the rat L-gulono-1,4-lactone oxidase gene. Increases in the total AsA level in L-GalL-treated leaves depended entirely on light irradiation. Treatment with an inhibitor of photosynthetic electron transport together with L-GalL reduced the increase in total AsA under light. Light, particularly the redox state of photosynthetic electron transport, appeared to play an important role in the regulation of the conversion of L-GalL to AsA in the mitochondria, reflecting the cellular level of AsA in plants.
Collapse
|
33
|
Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:673-89. [PMID: 17877701 DOI: 10.1111/j.1365-313x.2007.03266.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts GDP-L-galactose to L-galactose 1-P. We show that a GDP-L-galactose phosphorylase, encoded by the Arabidopsis thaliana VTC2 gene, catalyses this step in the ascorbate biosynthetic pathway. Furthermore, a homologue of VTC2, At5g55120, encodes a second GDP-L-galactose phosphorylase with similar properties to VTC2. Two At5g55120 T-DNA insertion mutants (vtc5-1 and vtc5-2) have 80% of the wild-type ascorbate level. Double mutants were produced by crossing the loss-of-function vtc2-1 mutant with each of the two vtc5 alleles. These show growth arrest immediately upon germination and the cotyledons subsequently bleach. Normal growth was restored by supplementation with ascorbate or L-galactose, indicating that both enzymes are necessary for ascorbate generation. vtc2-1 leaves contain more mannose 6-P than wild-type. We conclude that the GDP-mannose pathway is the only significant source of ascorbate in A. thaliana seedlings, and that ascorbate is essential for seedling growth. A. thaliana leaves accumulate more ascorbate after acclimatization to high light intensity. VTC2 expression and GDP-L-galactose phosphorylase activity rapidly increase on transfer to high light, but the activity of other enzymes in the GDP-mannose pathway is little affected. VTC2 and At5g55120 (VTC5) expression also peak in at the beginning of the light cycle and are controlled by the circadian clock. The GDP-L-galactose phosphorylase step may therefore play an important role in controlling ascorbate biosynthesis.
Collapse
Affiliation(s)
- John Dowdle
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | | | | | | | | |
Collapse
|
34
|
Laing WA, Wright MA, Cooney J, Bulley SM. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci U S A 2007; 104:9534-9. [PMID: 17485667 PMCID: PMC1866185 DOI: 10.1073/pnas.0701625104] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Indexed: 11/18/2022] Open
Abstract
The gene for one postulated enzyme that converts GDP-L-galactose to L-galactose-1-phosphate is unknown in the L-galactose pathway of ascorbic acid biosynthesis and a possible candidate identified through map-based cloning is the uncharacterized gene At4g26850. We identified a putative function for At4g26850 using PSI-Blast and motif searching to show it was a member of the histidine triad superfamily, which includes D-galactose uridyltransferase. We cloned and expressed this Arabidopsis gene and the homologous gene from Actinidia chinensis in Escherichia coli and assayed the expressed protein for activities related to converting GDP-L-galactose to L-galactose-1-P. The expressed protein is best described as a GDP-L-galactose-hexose-1-phosphate guanyltransferase (EC 2.7.7.), catalyzing the transfer of GMP from GDP-l-galactose to a hexose-1-P, most likely D-mannose-1-phosphate in vivo. Transient expression of this A. chinensis gene in tobacco leaves resulted in a >3-fold increase in leaf ascorbate as well as a 50-fold increase in GDP-L-galactose-D-mannose-1-phosphate guanyltransferase activity.
Collapse
Affiliation(s)
- William A Laing
- Horticultural and Food Research Institute of New Zealand, PB 92160, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
35
|
Foyer CH, Kiddle G, Verrier P. Transcriptional profiling approaches to understanding how plants regulate growth and defence: a case study illustrated by analysis of the role of vitamin C. EXS 2007; 97:55-86. [PMID: 17432263 DOI: 10.1007/978-3-7643-7439-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
In this chapter, basic technical aspects concerning the design of DNA microarray experiments are discussed including sample preparation, hybridisation conditions and statistical significance of the acquired data are detailed. Given that microarrays are perhaps the most used tool in plant systems biology there is much experience in the pitfalls in using them. Herein important considerations are presented for both the experimental biologists and data analyst in order to maximise the utility of these resources. Finally a case study using the analysis of vitamin C deficient plants is presented to illustrate the power of this approach in enhancing comprehension of important and complex biological functions.
Collapse
Affiliation(s)
- Christine H Foyer
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | |
Collapse
|
36
|
Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, Wang D. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:399-413. [PMID: 17217471 DOI: 10.1111/j.1365-313x.2006.02967.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phosphomannomutase (PMM) catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate. However, systematic molecular and functional investigations on PMM from higher plants have hitherto not been reported. In this work, PMM cDNAs were isolated from Arabidopsis, Nicotiana benthamiana, soybean, tomato, rice and wheat. Amino acid sequence comparisons indicated that plant PMM proteins exhibited significant identity to their fungal and mammalian orthologs. In line with the similarity in primary structure, plant PMM complemented the sec53-6 temperature sensitive mutant of Saccharomyces cerevisiae. Histidine-tagged Arabidopsis PMM (AtPMM) purified from Escherichia coli converted mannose-1-phosphate into mannose-6-phosphate and glucose-1-phosphate into glucose-6-phosphate, with the former reaction being more efficient than the latter one. In Arabidopsis and N. benthamiana, PMM was constitutively expressed in both vegetative and reproductive organs. Reducing the PMM expression level through virus-induced gene silencing caused a substantial decrease in ascorbic acid (AsA) content in N. benthamiana leaves. Conversely, raising the PMM expression level in N. benthamiana using viral-vector-mediated ectopic expression led to a 20-50% increase in AsA content. Consistent with this finding, transgenic expression of an AtPMM-GFP fusion protein in Arabidopsis also increased AsA content by 25-33%. Collectively, this study improves our understanding on the molecular and functional properties of plant PMM and provides genetic evidence on the involvement of PMM in the biosynthesis of AsA in Arabidopsis and N. benthamiana plants.
Collapse
Affiliation(s)
- Weiqiang Qian
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Frank A Loewus
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
38
|
Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 2006; 281:15662-70. [PMID: 16595667 DOI: 10.1074/jbc.m601409200] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, a proposed ascorbate (vitamin C) biosynthesis pathway occurs via GDP-D-mannose (GDP-D-Man), GDP-L-galactose (GDP-L-Gal), and L-galactose. However, the steps involved in the synthesis of L-Gal from GDP-L-Gal in planta are not fully characterized. Here we present evidence for an in vivo role for L-Gal-1-P phosphatase in plant ascorbate biosynthesis. We have characterized a low ascorbate mutant (vtc4-1) of Arabidopsis thaliana, which exhibits decreased ascorbate biosynthesis. Genetic mapping and sequencing of the VTC4 locus identified a mutation (P92L) in a gene with predicted L-Gal-1-P phosphatase activity (At3g02870). Pro-92 is within a beta-bulge that is conserved in related myo-inositol monophosphatases. The mutation is predicted to disrupt the positioning of catalytic amino acid residues within the active site. Accordingly, L-Gal-1-P phosphatase activity in vtc4-1 was approximately 50% of wild-type plants. In addition, vtc4-1 plants incorporate significantly more radiolabel from [2-(3)H]Man into L-galactosyl residues suggesting that the mutation increases the availability of GDP-L-Gal for polysaccharide synthesis. Finally, a homozygous T-DNA insertion line, which lacks a functional At3g02870 gene product, is also ascorbate-deficient (50% of wild type) and deficient in L-Gal-1-P phosphatase activity. Genetic complementation tests revealed that the insertion mutant and VTC4-1 are alleles of the same genetic locus. The significantly lower ascorbate and perturbed L-Gal metabolism in vtc4-1 and the T-DNA insertion mutant indicate that L-Gal-1-P phosphatase plays a role in plant ascorbate biosynthesis. The presence of ascorbate in the T-DNA insertion mutant suggests there is a bypass to this enzyme or that other pathways also contribute to ascorbate biosynthesis.
Collapse
Affiliation(s)
- Patricia L Conklin
- Department of Biological Sciences, State University of New York, Cortland, New York 13045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
van Hellemond EW, Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH. Occurrence and Biocatalytic Potential of Carbohydrate Oxidases. ADVANCES IN APPLIED MICROBIOLOGY 2006; 60:17-54. [PMID: 17157632 DOI: 10.1016/s0065-2164(06)60002-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Erik W van Hellemond
- Laboratory of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH. Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. PLANT PHYSIOLOGY 2005; 139:1291-303. [PMID: 16244149 PMCID: PMC1283766 DOI: 10.1104/pp.105.067686] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Programmed cell death, developmental senescence, and responses to pathogens are linked through complex genetic controls that are influenced by redox regulation. Here we show that the Arabidopsis (Arabidopsis thaliana) low vitamin C mutants, vtc1 and vtc2, which have between 10% and 25% of wild-type ascorbic acid, exhibit microlesions, express pathogenesis-related (PR) proteins, and have enhanced basal resistance against infections caused by Pseudomonas syringae. The mutants have a delayed senescence phenotype with smaller leaf cells than the wild type at maturity. The vtc leaves have more glutathione than the wild type, with higher ratios of reduced glutathione to glutathione disulfide. Expression of green fluorescence protein (GFP) fused to the nonexpressor of PR protein 1 (GFP-NPR1) was used to detect the presence of NPR1 in the nuclei of transformed plants. Fluorescence was observed in the nuclei of 6- to 8-week-old GFP-NPR1 vtc1 plants, but not in the nuclei of transformed GFP-NPR1 wild-type plants at any developmental stage. The absence of senescence-associated gene 12 (SAG12) mRNA at the time when constitutive cell death and basal resistance were detected confirms that elaboration of innate immune responses in vtc plants does not result from activation of early senescence. Moreover, H2O2-sensitive genes are not induced at the time of systemic acquired resistance execution. These results demonstrate that ascorbic acid abundance modifies the threshold for activation of plant innate defense responses via redox mechanisms that are independent of the natural senescence program.
Collapse
Affiliation(s)
- Valeria Pavet
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Cordoba 5000, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wolucka BA, Goossens A, Inzé D. Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2527-38. [PMID: 16061506 DOI: 10.1093/jxb/eri246] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vitamin C (L-ascorbic acid) is an important primary metabolite of plants that functions as an antioxidant, an enzyme cofactor, and a cell-signalling modulator in a wide array of crucial physiological processes, including biosynthesis of the cell wall, secondary metabolites and phytohormones, stress resistance, photoprotection, cell division, and growth. Plants synthesize ascorbic acid via de novo and salvage pathways, but the regulation of its biosynthesis and the mechanisms behind ascorbate homeostasis are largely unknown. Jasmonic acid and its methyl ester (jasmonates) mediate plant responses to many biotic and abiotic stresses by triggering a transcriptional reprogramming that allows cells to cope with pathogens and stress. By using 14C-mannose radiolabelling combined with HPLC and transcript profiling analysis, it is shown that methyl jasmonate treatment increases the de novo synthesis of ascorbic acid in Arabidopsis and tobacco Bright Yellow-2 (BY-2) suspension cells. In BY-2 cells, this stimulation coincides with enhanced transcription of at least two late methyl jasmonate-responsive genes encoding enzymes for vitamin C biosynthesis: the GDP-mannose 3'',5''-epimerase and a putative L-gulono-1,4-lactone dehydrogenase/oxidase. As far as is known, this is the first report of a hormonal regulation of vitamin C biosynthesis in plants. Finally, the role of ascorbic acid in jasmonate-regulated stress responses is reviewed.
Collapse
Affiliation(s)
- Beata A Wolucka
- Pasteur Institute of Brussels, Engeland Street 642, B-1180 Brussels, Belgium.
| | | | | |
Collapse
|
42
|
Abstract
Although many important and valuable traits are associated with plant natural products, engineering natural product pathways for plant improvement has often been limited by a lack of understanding of their biochemistry, and by the need for coordinate regulation of multiple gene activities. New approaches are facilitating both the discovery of genes that encode natural products and pathway engineering. Notable successes have been reported in altering complex pathways to improve plant quality and resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA.
| |
Collapse
|
43
|
Valpuesta V, Botella MA. Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. TRENDS IN PLANT SCIENCE 2004; 9:573-7. [PMID: 15564123 DOI: 10.1016/j.tplants.2004.10.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The biosynthetic pathway of L-ascorbic acid (vitamin C) in plants has been established for several years. However, recent reports describe alternative pathways, revealing a more complex picture of L-ascorbic acid biosynthesis than had been expected. GDP-L-gulose and myo-inositol are proposed as new intermediates in L-ascorbic acid biosynthesis, indicating that part of the animal pathway might also be operating in plants. Enzymatic studies on the GDP-mannose- 3',5'-epimerase and L-galactono-1,4-lactone dehydrogenase suggest that they are important regulatory steps for L-ascorbic acid biosynthesis.
Collapse
Affiliation(s)
- Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
| | | |
Collapse
|
44
|
Tedone L, Hancock RD, Alberino S, Haupt S, Viola R. Long-distance transport of L-ascorbic acid in potato. BMC PLANT BIOLOGY 2004; 4:16. [PMID: 15377389 PMCID: PMC521686 DOI: 10.1186/1471-2229-4-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 09/17/2004] [Indexed: 05/18/2023]
Abstract
BACKGROUND Following on from recent advances in plant AsA biosynthesis there is increasing interest in elucidating the factors contributing to the L-ascorbic acid (AsA) content of edible crops. One main objective is to establish whether in sink organs such as fruits and tubers, AsA is synthesised in situ from imported photoassimilates or synthesised in source tissues and translocated via the phloem. In the current work we test the hypothesis that long-distance transport is involved in AsA accumulation within the potato tuber, the most significant source of AsA in the European diet. RESULTS Using the EDTA exudation technique we confirm the presence of AsA in the phloem of potato plants and demonstrate a correlation between changes in the AsA content of source leaves and that of phloem exudates. Comparison of carboxyflourescein and AgNO3 staining is suggestive of symplastic unloading of AsA in developing tubers. This hypothesis was further supported by the changes in AsA distribution during tuber development which closely resembled those of imported photoassimilates. Manipulation of leaf AsA content by supply of precursors to source leaves resulted in increased AsA content of developing tubers. CONCLUSION Our data provide strong support to the hypothesis that long-distance transport of AsA occurs in potato. We also show that phloem AsA content and AsA accumulation in sink organs can be directly increased via manipulation of AsA content in the foliage. We are now attempting to establish the quantitative contribution of imported AsA to overall AsA accumulation in developing potato tubers via transgenic approaches.
Collapse
Affiliation(s)
- Luigi Tedone
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
- Dipartimento di Scienze delle Produzioni Vegetali, Universita degli Studi di Bari, Italy
| | - Robert D Hancock
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Salvatore Alberino
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
- University of Naples "Federico II", Department of Soil, Plant and Environmental Sciences, Via Universita' 100 – 80055 Portici, Italy
| | - Sophie Haupt
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Roberto Viola
- Unit of Plant Biochemistry, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|