1
|
Bisikirska B, Labella R, Cuesta-Dominguez A, Luo N, De Angelis J, Mosialou I, Lin CS, Beck D, Lata S, Shyu PT, McMahon DJ, Guo E, Hagen J, Chung WK, Shane E, Cohen A, Kousteni S. Melatonin receptor 1A variants as genetic cause of idiopathic osteoporosis. Sci Transl Med 2024; 16:eadj0085. [PMID: 39413162 DOI: 10.1126/scitranslmed.adj0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
Idiopathic osteoporosis (IOP) is a rare form of early-onset osteoporosis diagnosed in patients with no known metabolic or hormonal cause of bone loss and unknown pathogenesis. Patients with IOP commonly report both childhood fractures and family history of osteoporosis, raising the possibility of genetic etiologies of IOP. Whole-exome sequencing analyses of different IOP cohorts identified multiple variants in melatonin receptor 1A (MTNR1A) with a potential pathogenic outcome. A rare MTNR1A variant (rs374152717) was found in members of an Ashkenazi Jewish family with IOP, and an MTNR1A variant (rs28383653) was found in a nonrelated female IOP cohort (4%). Both variants occur at a substantially higher frequency in Ashkenazi Jewish individuals than in the general population. We investigated consequences of the heterozygous (rs374152717) variant [MTNR1Ac.184+1G>T (MTNR1Ac.184+1G>T)] on bone physiology. A mouse model of the human rs374152717 variant reproduced the low bone mass (BM) phenotype of young-adult patients with IOP. Low BM occurred because of induction of senescence in mutant osteoblasts followed by compromised differentiation and function. In human cells, introduction of rs374152717 led to translation of a nonfunctional protein and subsequent dysregulation of melatonin signaling. These studies provide evidence that MTNR1A mutations entail a genetic etiology of IOP and establish the rs374152717 variant as a loss-of-function allele that impairs bone turnover by inducing senescence in osteoblasts. The higher prevalence of the MTNR1A variants identified in IOP cohorts versus the general population indicates a greater risk of IOP in those carrying these variants, especially Ashkenazi Jewish individuals bearing the rs374152717 variant.
Collapse
Affiliation(s)
- Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Alvaro Cuesta-Dominguez
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Na Luo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jessica De Angelis
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - David Beck
- New York University Grossman School of Medicine, New York, NY 10012, USA
| | - Sneh Lata
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter Timothy Shyu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Donald J McMahon
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jacob Hagen
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elizabeth Shane
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Adi Cohen
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Benítez-King G, Argueta J, Miranda-Riestra A, Muñoz-Delgado J, Estrada-Reyes R. Interaction of the Melatonin/Ca 2+-CaM Complex with Calmodulin Kinase II: Physiological Importance. Mol Pharmacol 2024; 106:3-12. [PMID: 38811168 DOI: 10.1124/molpharm.123.000812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Melatonin N-acetyl-5-methoxytriptamine is an ancient molecule which synchronizes the internal biologic activity with the environmental photoperiod. It is synthesized by the pineal gland during the night and released to the general circulation, where it reaches nanomolar concentrations. The indolamine acts through melatonin receptors and binds to different proteins such as calmodulin: a phylogenetically conserved protein which is the main transductor of the calcium signaling. In this review, we will describe evidence supporting that melatonin binds to calmodulin in presence of calcium, and we discuss the effects of this indolamine on the activity of calmodulin kinase II as an inhibitor and as stimulator of calmodulin-dependent protein kinase II activity. We also provide a literature review supporting the relevance of melatonin binding to calmodulin in the regulation of circadian rhythms in unicellular organisms, as well as in neuronal development in mammals as an ancient, conserved mechanism. Finally, we highlight the importance of antioxidant effects of melatonin on calmodulin preservation. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin binds to calmodulin. We discuss the dual effect of melatonin on the activity of calmodulin kinase II, the possible mechanisms involved, and the relevance on regulation of circadian rhythms and neurodevelopment. Finally, we describe evidence supporting that the binding of melatonin to calmodulin hydrophobic pockets may prevent the oxidation of methionine species with a shielding effect that preserves the functionality of calmodulin.
Collapse
Affiliation(s)
- Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Armida Miranda-Riestra
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Jairo Muñoz-Delgado
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| |
Collapse
|
3
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Karkehabadi H, Abbasi R, Najafi R, Khoshbin E. The effects of melatonin on the viability and osteogenic/odontogenic differentiation of human stem cells from the apical papilla. Mol Biol Rep 2023; 50:8959-8969. [PMID: 37715020 DOI: 10.1007/s11033-023-08747-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND An experimental study was conducted to examine whether melatonin influences osteogenic/odontogenic differentiation of human stem cells derived from the apical papilla (hSCAPs). MATERIALS AND METHODS In order to isolate hSCAPs, the undeveloped root of a third molar of a human tooth was used. Melatonin was administered to the experimental groups in an osteogenic medium. No treatment was administered to the control group. The methyl thiazolyl tetrazolium (MTT) assay was performed on days 1, 2, and 3 to assess cell viability (n = 8). A determination of odontogenic/osteogenic differentiation was accomplished using alkaline phosphatase (ALP) activity alizarin red staining (ARS) (n = 6), and the expression of osteogenic genes by real-time polymerase chain reaction (RT-PCR) (n = 3) on days 1, 2, and 7. Evaluation of the data was conducted using SPSS version 18. All experiments were conducted at least three times. The Mann Whitney U test, the ANOVA analysis, Tukey's test, and t-test was implemented to analyze the data (α = 0.05). RESULTS After 24 h, 48 h, and 72 h, No significant difference was observed between the control group and the melatonin treatment group in terms of viability of hSCAPs. (from 1 up to 10 µg/ml) (P > 0.05). The assessment of ARS and ALP activity showed that melatonin treatment enhanced osteogenic differentiation of hSCAPs (P < 0.001). Melatonin treatment caused hSCAPs to show an increase of genes related to osteogenic/odontogenic differentiation. These genes included ALP, dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1), and bone sialoprotein (BSP) (P < 0.001). CONCLUSIONS Melatonin treatment enhanced osteogenic/odontogenic differentiation of hSCAPs with a dose dependent effect on cell viability.
Collapse
Affiliation(s)
- Hamed Karkehabadi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roshanak Abbasi
- Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Molecular & Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Khoshbin
- Department of Endodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran.
- Hamadan Dental School, Shahid Fahmideh Street, PO Box 6517838677, Hamadan, Iran.
| |
Collapse
|
5
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
6
|
Helmi YY, Papenkordt N, Rennar G, Gbahou F, El-Hady AK, Labani N, Schmidtkunz K, Boettcher S, Jockers R, Abdel-Halim M, Jung M, Zlotos DP. Melatonin-vorinostat hybrid ligands show higher histone deacetylase and cancer cell growth inhibition than vorinostat. Arch Pharm (Weinheim) 2023; 356:e2300149. [PMID: 37339785 DOI: 10.1002/ardp.202300149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.
Collapse
Affiliation(s)
- Youssef Y Helmi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| | - Niklas Papenkordt
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Georg Rennar
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Florence Gbahou
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Ahmed K El-Hady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capitol, Cairo, Egypt
| | - Nedjma Labani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Stefan Boettcher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbruecken, Germany
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|
7
|
Vicente JM, Lescano CH, Bordin S, Mónica FZ, Gobbi G, Anhê GF. Agomelatine inhibits platelet aggregation through melatonin receptor-dependent and independent mechanisms. Life Sci 2023:121906. [PMID: 37394096 DOI: 10.1016/j.lfs.2023.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
AIMS Melatonin is known to inhibit platelet aggregation induced by arachidonic acid (AA). In the present study we investigated whether agomelatine (Ago), an antidepressant with agonist activity at melatonin receptor 1 (MT1) and MT2 could reduce platelets aggregation and adhesion. MAIN METHODS Human platelets from healthy donors were used to test the in vitro effects of Ago in the presence of different platelet activators. We performed aggregation and adhesion assays, thromboxane B2 (TxB2), cAMP and cGMP measurements, intra-platelet calcium registration and flow cytometry assays. KEY FINDINGS Our data revealed that different concentrations of Ago reduced AA- and collagen-induced human platelet aggregation in vitro. Ago also reduced AA-induced increase in thromboxane B2 (TxB2) production, intracellular calcium levels and P-selectin expression at plasma membrane. The effects of Ago in AA-activated platelets were likely dependent on MT1 as they were blocked by luzindole (a MT1/MT2 antagonist) and mimicked by the MT1 agonist UCM871 in a luzindole-sensitive manner. The MT2 agonist UCM924 was also able to inhibit platelet aggregation, but this response was not affected by luzindole. On the other hand, although UCM871 and UCM924 reduced collagen-induced platelet aggregation and adhesion, inhibition of collagen-induced platelet aggregation by Ago was not mediated by melatonin receptors because it was not affected by luzindole. SIGNIFICANCE The present data show that Ago suppresses human platelet aggregation and suggest that this antidepressant may have the potential to prevent atherothrombotic ischemic events by reducing thrombus formation and vessel occlusion.
Collapse
Affiliation(s)
- Julia Modesto Vicente
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Caroline Honaiser Lescano
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| |
Collapse
|
8
|
Martin-García D, Téllez T, Redondo M, García-Aranda M. Calcium Homeostasis in the Development of Resistant Breast Tumors. Cancers (Basel) 2023; 15:2872. [PMID: 37296835 PMCID: PMC10251880 DOI: 10.3390/cancers15112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is one of the main health problems worldwide. Only in 2020, this disease caused more than 19 million new cases and almost 10 million deaths, with breast cancer being the most diagnosed worldwide. Today, despite recent advances in breast cancer treatment, a significant percentage of patients will either not respond to therapy or will eventually experience lethal progressive disease. Recent studies highlighted the involvement of calcium in the proliferation or evasion of apoptosis in breast carcinoma cells. In this review, we provide an overview of intracellular calcium signaling and breast cancer biology. We also discuss the existing knowledge on how altered calcium homeostasis is implicated in breast cancer development, highlighting the potential utility of Ca2+ as a predictive and prognostic biomarker, as well as its potential for the development of new pharmacological treatments to treat the disease.
Collapse
Affiliation(s)
- Desirée Martin-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
| | - Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| |
Collapse
|
9
|
Sadoughi F, Dana PM, Asemi Z, Shafabakhash R, Mohammadi S, Heidar Z, Mirzamoradi M, Targhazeh N, Mirzaei H. Molecular and cellular mechanisms of melatonin in breast cancer. Biochimie 2022; 202:26-33. [PMID: 35341930 DOI: 10.1016/j.biochi.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Breast cancer is considered as one of the most important health problems due to its poor prognosis and high rate of mortality and new diagnosed cases. Annually, a great number of deaths are reported in men and women; this means that despite all the improvements in cancer diagnosis and treatment, still, an intense need for more effective approaches exists. Melatonin is a multivalent compound which has a hand in several cellular and molecular processes and therefore, is an appropriate candidate for treatment of many diseases like cancer. Currently, considerable properties of this agent have oriented the research towards investigating its effects specifically in breast cancer. In this review, we gathered a bunch of evidence in order to give a new sight for breast cancer treatment utilizing melatonin. We expect that in coming years, melatonin will become one of the most common therapeutic drugs with lesser side-effects than other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Rana Shafabakhash
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
10
|
Bastani S, Akbarzadeh M, Rastgar Rezaei Y, Farzane A, Nouri M, Mollapour Sisakht M, Fattahi A, Akbarzadeh M, Reiter RJ. Melatonin as a Therapeutic Agent for the Inhibition of Hypoxia-Induced Tumor Progression: A Description of Possible Mechanisms Involved. Int J Mol Sci 2021; 22:10874. [PMID: 34639215 PMCID: PMC8509383 DOI: 10.3390/ijms221910874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Hypoxia has an important role in tumor progression via the up-regulation of growth factors and cellular adaptation genes. These changes promote cell survival, proliferation, invasion, metastasis, angiogenesis, and energy metabolism in favor of cancer development. Hypoxia also plays a central role in determining the resistance of tumors to chemotherapy. Hypoxia of the tumor microenvironment provides an opportunity to develop new therapeutic strategies that may selectively induce apoptosis of the hypoxic cancer cells. Melatonin is well known for its role in the regulation of circadian rhythms and seasonal reproduction. Numerous studies have also documented the anti-cancer properties of melatonin, including anti-proliferation, anti-angiogenesis, and apoptosis promotion. In this paper, we hypothesized that melatonin exerts anti-cancer effects by inhibiting hypoxia-induced pathways. Considering this action, co-administration of melatonin in combination with other therapeutic medications might increase the effectiveness of anti-cancer drugs. In this review, we discussed the possible signaling pathways by which melatonin inhibits hypoxia-induced cancer cell survival, invasion, migration, and metabolism, as well as tumor angiogenesis.
Collapse
Affiliation(s)
- Sepideh Bastani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz 51368, Iran;
- Stem Cell And Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Moloud Akbarzadeh
- Stem Cell And Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz 51368, Iran;
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Azarbaijan Shahid Madani University, Tabriz 51368, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Ali Farzane
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran 11369, Iran;
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran 11369, Iran;
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51368, Iran;
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen–Nürnberg, Comprehensive Cancer Center ER-EMN, 91054 Erlangen, Germany
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| |
Collapse
|
11
|
Askari H, Sanadgol N, Azarnezhad A, Tajbakhsh A, Rafiei H, Safarpour AR, Gheibihayat SM, Raeis-Abdollahi E, Savardashtaki A, Ghanbariasad A, Omidifar N. Kidney diseases and COVID-19 infection: causes and effect, supportive therapeutics and nutritional perspectives. Heliyon 2021; 7:e06008. [PMID: 33495739 PMCID: PMC7817396 DOI: 10.1016/j.heliyon.2021.e06008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, the novel coronavirus disease 2019 (COVID-19), has attracted the attention of scientists where it has a high mortality rate among older adults and individuals suffering from chronic diseases, such as chronic kidney diseases (CKD). It is important to elucidate molecular mechanisms by which COVID-19 affects the kidneys and accordingly develop proper nutritional and pharmacological strategies. Although numerous studies have recently recommended several approaches for the management of COVID-19 in CKD, its impact on patients with renal diseases remains the biggest challenge worldwide. In this paper, we review the most recent evidence regarding causality, potential nutritional supplements, therapeutic options, and management of COVID-19 infection in vulnerable individuals and patients with CKD. To date, there is no effective treatment for COVID-19-induced kidney dysfunction, and current treatments are yet limited to anti-inflammatory (e.g. ibuprofen) and anti-viral medications (e.g. Remdesivir, and Chloroquine/Hydroxychloroquine) that may increase the chance of treatment. In conclusion, the knowledge about kidney damage in COVID-19 is very limited, and this review improves our ability to introduce novel approaches for future clinical trials for this contiguous disease.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Asaad Azarnezhad
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rafiei
- Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ghanbariasad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Navid Omidifar
- Biotechnology Research Center, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Sadiq Z, Varghese E, Büsselberg D. Cisplatin's dual-effect on the circadian clock triggers proliferation and apoptosis. Neurobiol Sleep Circadian Rhythms 2020; 9:100054. [PMID: 33364523 PMCID: PMC7752721 DOI: 10.1016/j.nbscr.2020.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/16/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock, which generates the internal daily rhythm largely mediated through release of melatonin, can be disrupted in various ways. Multiple factors result in a disruption of the circadian cycle in the clinical context, of interest are anti-cancer drugs such as cisplatin. Cisplatin modulates the circadian clock through two mechanisms: 1) the circadian clock control of DNA excision repair and 2) the effect of circadian clock disruption on apoptosis. Cisplatin can stimulate multiple classified molecules, including DNA repair factors, DNA damage recognition factors and transcription factors in drug resistance and cisplatin-induced signal transduction. These factors interact with each other and can be transformed by DNA damage. Hence, these molecular interactions are intimately involved in cell proliferation and damage-induced apoptosis. Cisplatin has a dual-effect on circadian genes: upregulation of CLOCK expression causes an increase in proliferation but upregulation of BMAL1 expression causes an increase in apoptosis. Therefore, the interference of circadian genes by cisplatin can have multiple, opposing effects on apoptosis and cell proliferation, which may have unintended pro-cancer effects. Melatonin and intracellular Ca2+ also have a dual-effect on cell proliferation and apoptosis and can disrupt circadian rhythms. Cisplatin has a dual-effect on components of the circadian clock, increasing or decreasing cell proliferation and apoptosis. DNA excision repair and apoptosis are controlled by circadian rhythms. When cisplatin is combined with other agents, the effects are enhanced. These findings provide clinicians with the prospect to create effective chrono-cisplatin regimens for patients.
Collapse
Affiliation(s)
- Zuhair Sadiq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| |
Collapse
|
13
|
Kong X, Gao R, Wang Z, Wang X, Fang Y, Gao J, Reiter RJ, Wang J. Melatonin: A Potential Therapeutic Option for Breast Cancer. Trends Endocrinol Metab 2020; 31:859-871. [PMID: 32893084 DOI: 10.1016/j.tem.2020.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Melatonin has significant inhibitory effects in numerous cancers, especially breast cancer. In estrogen receptor (ER)-positive human breast cancer, the oncostatic actions of melatonin are mainly achieved by suppressing ER mRNA expression and ER transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of nuclear receptors, estrogen-metabolizing enzymes, and the expression of related genes. Furthermore, melatonin suppresses tumor aerobic glycolysis, critical cell-signaling pathways relevant to cell proliferation, survival, metastasis, and overcomes drug resistance. Studies in animal and human models indicate that disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer, resulting in resistance to hormone therapy and chemotherapy, which may be reversed by melatonin.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Yang L, Sun Q, Wang Y, Chan Z. Global transcriptomic network of melatonin regulated root growth in Arabidopsis. Gene 2020; 764:145082. [PMID: 32858176 DOI: 10.1016/j.gene.2020.145082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Melatonin functions as a plant growth regulator in a concentration-dependent manner. In this study, we investigated the effects of melatonin on root growth and dissected underlined mechanisms. The results showed that melatonin up to 1000 μM inhibited primary root growth, but promoted lateral root development. Through RNA sequencing analysis, functions of differentially expressed genes were mainly involved in stress response, signaling transduction, transport, hormone metabolism and amino acid metabolism. Genes involving in jasmonate (JA), brassinosteroid (BR) and cytokinin (CK) biosynthesis were inhibited, but these in ethylene (ET), strigolactone (SL) and gibberellins (GA) biosynthetic pathways were activated after melatonin treatment. The majority of zinc finger proteins (ZFPs), Calmodulin-like (CMLs), NAM, ATAF1/2, and CUC2 (NACs) and ubiquitination related genes (RING/U-box and F-box) were upregulated, which possibly acted downstream of integrated hormone signals to mediate root growth. This study characterized melatonin modulated networks in regulating root growth.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qi Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Xiang P, Wang K, Bi J, Li M, He RW, Cui D, Ma LQ. Organic extract of indoor dust induces estrogen-like effects in human breast cancer cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138505. [PMID: 32481214 DOI: 10.1016/j.scitotenv.2020.138505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Indoor dust often contains organic contaminants, which adversely impacts human health. In this study, the organic contaminants in the indoor dust from commercial offices and residential houses in Nanjing, China were extracted and their effects on human breast cancer cells (MCF-7) were investigated. Both dust extracts promoted proliferation of MCF-7 cells at ≤24 μg/100 μL, with cell viability being decreased with increasing dust concentrations. Based on LC50, house dust was less toxic than office dust. At 8 μg/100 μL, both extracts caused more MCF-7 cells into active cycling (G2/M + S) and increased intracellular Ca2+ influx, with house dust inducing stronger effects than office dust. Further, the expression of estrogen-responsive genes for TFF1 and EGR3 was enhanced by 3-9 and 4-9 folds, while the expression of cell cycle regulatory genes for cyclin D was enhanced by 2-5 folds. The results suggested that organic dust extract influenced cell viability, altered cell cycle, increased intracellular Ca2+ levels, and activated cell cycle regulatory and estrogen-responsive gene expressions, with house dust showing lower cytotoxicity but higher estrogenic potential on MCF-7 cells. The results indicate the importance of reducing organic contaminants in indoor dust to mitigate their adverse impacts on human health.
Collapse
Affiliation(s)
- Ping Xiang
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Wang
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Jue Bi
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Mengying Li
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Rui-Wen He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Daolei Cui
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Song YJ, Zhong CB, Wu W. Cardioprotective effects of melatonin: Focusing on its roles against diabetic cardiomyopathy. Biomed Pharmacother 2020; 128:110260. [PMID: 32447213 DOI: 10.1016/j.biopha.2020.110260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a pineal-produced indole known for its anti-aging, antiapoptotic and antioxidant properties. In past decades, the protective potentials of melatonin for cardiovascular diseases, such as atherosclerosis and myocardial infarction, have been widely revealed, triggering more investigations focused on other cardioprotective effects of melatonin. Recently, the roles of melatonin in diabetic cardiomyopathy (DCM) have attracted increased attention. In this regard, researchers found that melatonin attenuated cardiac fibrosis and hypertrophy, thus interrupting the development of DCM. Retinoid-related orphan receptor α is a key melatonin receptor that contributed to the cardioprotective effect of melatonin in hearts with DCM. For the downstream mechanisms, the inhibition of mammalian STE20-like kinase 1 plays a pivotal role, which exerts antiapoptotic and proautophagic effects, thus enhancing cardiac tolerance in high-glucose conditions. In addition, other signalling mechanisms, such as sirtuin-1/peroxisome proliferator-activated receptor gamma-coactivator alpha and endoplasmic reticulum-related signalling, are also involved in the protective effects of melatonin on cardiomyocytes under diabetic conditions. This review will focus on the protective signalling mechanisms regulated by melatonin and provide a better understanding of the therapeutic applications of melatonin signalling in DCM.
Collapse
Affiliation(s)
- Yan-Jun Song
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| | - Chong-Bin Zhong
- Department of Cardiology, Heart Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, PR China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| |
Collapse
|
17
|
Bao B, Gao D, Li N, Wu M, Xing C. Near-Infrared Light Regulation of Tumor PI3K/Akt Signaling Pathway for Enhancing Cancer Cell Apoptosis through Conjugated Polymer Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:2428-2437. [PMID: 35025292 DOI: 10.1021/acsabm.0c00161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM), as a calcium binding protein involved in the signal pathways of many life activities such as cell proliferation and apoptosis, can be regulated with the near-infrared (NIR) light-based photothermal conversion. Here, we build a conjugated polymer nanoparticle (CPNs-C) by assembling polypyrrole dione and dipalmitoyl phosphatidylethanolamine-polyethylene glycol-maleimide with a calmodulin antibody modified on the surface, which is NIR light-responsive for photothermally inducing apoptosis of cancer cells. Under near-infrared light irradiation, protein kinase B (Akt) and phosphatidylinositol 3-kinase, which bind to CaM, reduce the degree of phosphorylation due to the photothermal effect of CPNs-C, thus inhibiting the recruitment of Akt on the cell membrane. Therefore, the phosphorylation of GSK-3β downstream of the signaling pathway is reduced, and the phosphorylation of FoxO3a is enhanced, which can promote apoptosis of cancer cells. Compared with the photothermal effect of traditional CPNs, CPNs-C exhibits higher efficiency to regulate signaling pathways to promote cancer cells toward apoptosis. This strategy of utilizing NIR light to regulate the tumor apoptotic signaling pathway provides an effective way to enhance cancer cell apoptosis with high efficiency.
Collapse
Affiliation(s)
- Benkai Bao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300400, P.R. China
| | - Dong Gao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300400, P.R. China
| | - Ning Li
- School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130, P. R. China
| | - Manman Wu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300400, P.R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300400, P.R. China
| |
Collapse
|
18
|
Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov 2020; 6:14. [PMID: 32194980 PMCID: PMC7073332 DOI: 10.1038/s41421-020-0153-3] [Citation(s) in RCA: 1008] [Impact Index Per Article: 201.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV-host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the "Complementary Exposure" pattern: the targets of the drugs both hit the HCoV-host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Jiayu Shen
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Yin Huang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - William Martin
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195 USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| |
Collapse
|
19
|
Colunga Biancatelli RML, Berrill M, Mohammed YH, Marik PE. Melatonin for the treatment of sepsis: the scientific rationale. J Thorac Dis 2020; 12:S54-S65. [PMID: 32148926 DOI: 10.21037/jtd.2019.12.85] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis affects 30 million people worldwide, leading to 6 million deaths every year (WHO), and despite decades of research, novel initiatives are drastically needed. According to the current literature, oxidative imbalance and mitochondrial dysfunction are common features of septic patients that can cause multiorgan failure and death. Melatonin, alongside its traditionally accepted role as the master hormonal regulator of the circadian rhythm, is a promising adjunctive drug for sepsis through its anti-inflammatory, antiapoptotic and powerful antioxidant properties. Several animal models of sepsis have demonstrated that melatonin can prevent multiorgan dysfunction and improve survival through restoring mitochondrial electron transport chain (ETC) function, inhibiting nitric oxide synthesis and reducing cytokine production. The purpose of this article is to review the current evidence for the role of melatonin in sepsis, review its pharmacokinetic profile and virtual absence of side effects. While clinical data is limited, we propose the adjunctive use of melatonin is patients with severe sepsis and septic shock.
Collapse
Affiliation(s)
- Ruben Manuel Luciano Colunga Biancatelli
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, USA.,Policlinico Umberto I, La Sapienza University of Rome, Rome, Italy
| | - Max Berrill
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, USA.,St. Peter's Hospital, Department of Respiratory Medicine, London, UK
| | - Yassen H Mohammed
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
20
|
Beriwal N, Namgyal T, Sangay P, Al Quraan AM. Role of immune-pineal axis in neurodegenerative diseases, unraveling novel hybrid dark hormone therapies. Heliyon 2019; 5:e01190. [PMID: 30775579 PMCID: PMC6360340 DOI: 10.1016/j.heliyon.2019.e01190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
The anti-oxidant effects of melatonin and the immune-pineal axis are well established. However, how they play a role in the pathogenesis of neurodegenerative diseases is not well elucidated. A better understanding of this neuro-immuno-endocrinological link can help in the development of novel therapies with higher efficacy to alleviate symptomatology, slow disease progression and improve the quality of life. Recent studies have shown that the immune-pineal axis acts as an immunological buffer, neurohormonal switch and it also intricately links the pathogenesis of neurodegenerative diseases (like Multiple sclerosis, Alzheimer's disease, Parkinson's disease) and inflammation at a molecular level. Furthermore, alteration in circadian melatonin production is seen in neurodegenerative diseases. This review will summarise the mechanics by which the immune-pineal axis and neuro-immuno-endocrinological disturbances affect the pathogenesis and progression of neurodegenerative diseases. It will also explore, how this understanding will help in the development of novel hybrid melatonin hormone therapies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nitya Beriwal
- Department of Research, California Institute of Behavioral Neurosciences and Psychology, 4751, Mangels Boulevard, Fairfield, 94534, CA, USA
| | | | | | | |
Collapse
|
21
|
Effects of melatonin on the proliferation and differentiation of human dental pulp cells. Arch Oral Biol 2017; 83:33-39. [DOI: 10.1016/j.archoralbio.2017.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 06/10/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
|
22
|
Proietti S, Cucina A, Minini M, Bizzarri M. Melatonin, mitochondria, and the cancer cell. Cell Mol Life Sci 2017; 74:4015-4025. [PMID: 28785807 PMCID: PMC11107593 DOI: 10.1007/s00018-017-2612-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
The long-recognized fact that oxidative stress within mitochondria is a hallmark of mitochondrial dysfunction has stimulated the development of mitochondria-targeted antioxidant therapies. Melatonin should be included among the pharmacological agents able to modulate mitochondrial functions in cancer, given that a number of relevant melatonin-dependent effects are triggered by targeting mitochondrial functions. Indeed, melatonin may modulate the mitochondrial respiratory chain, thus antagonizing the cancer highly glycolytic bioenergetic pathway of cancer cells. Modulation of the mitochondrial respiratory chain, together with Ca2+ release and mitochondrial apoptotic effectors, may enhance the spontaneous or drug-induced apoptotic processes. Given that melatonin may efficiently counteract the Warburg effect while stimulating mitochondrial differentiation and mitochondrial-based apoptosis, it is argued that the pineal neurohormone could represent a promising new perspective in cancer treatment strategy.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery, "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery, "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Mirko Minini
- Department of Surgery, "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
23
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
24
|
Effect of Melatonin and Calmodulin in an Idiopathic Scoliosis Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8460291. [PMID: 28042574 PMCID: PMC5155075 DOI: 10.1155/2016/8460291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/10/2016] [Indexed: 11/18/2022]
Abstract
Background. To explore influence of continuous illumination, luzindole, and Tamoxifen on incidence of scoliosis model of rats. Methods. Thirty-two one-month-old female rats were rendered into bipedal rats. The bipedal rats were divided into 4 groups: group A by intraperitoneal injection of luzindole and continuous illumination; group B by intraperitoneal injection of luzindole only; group C by intraperitoneal injection of luzindole and oral administration of Tamoxifen; and group D by intraperitoneal injection of equivalent saline. Radiographs were taken at 8th week and 16th week, and incidence and the Cobb angles of scoliosis were calculated. At 16th week, all rats were sacrificed. Before the sacrifice, the levels of calmodulin were measured in each group. Results. At 8th week, scoliosis occurred in groups A and B, with an incidence of 75% and 12.5%, respectively, while rats in group C or D had no scoliosis. At 16th week, scoliosis incidences in groups A and B were 57% and 62.5%, respectively. No scoliosis occurred in group C or D. Calmodulin in platelets in group B was significantly different, compared with groups A and D. There was no significant difference in calmodulin in platelets in groups B and C. Conclusion. By intraperitoneal injection of luzindole in bipedal rats, scoliosis rat models could be successfully made. Under light, incidence of scoliosis may be increased at an early period but it is reversible. Tamoxifen can suppress natural process of scoliosis.
Collapse
|
25
|
Loureiro R, Magalhães-Novais S, Mesquita KA, Baldeiras I, Sousa IS, Tavares LC, Barbosa IA, Oliveira PJ, Vega-Naredo I. Melatonin antiproliferative effects require active mitochondrial function in embryonal carcinoma cells. Oncotarget 2016; 6:17081-96. [PMID: 26025920 PMCID: PMC4627293 DOI: 10.18632/oncotarget.4012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/08/2015] [Indexed: 12/28/2022] Open
Abstract
Although melatonin oncostatic and cytotoxic effects have been described in different types of cancer cells, the specific mechanisms leading to its antitumoral effects and their metabolic context specificity are still not completely understood. Here, we evaluated the effects of melatonin in P19 embryonal carcinoma stem cells (CSCs) and in their differentiated counterparts, cultured in either high glucose medium or in a galactose (glucose-free) medium which leads to glycolytic suppression and increased mitochondrial metabolism. We found that highly glycolytic P19 CSCs were less susceptible to melatonin antitumoral effects while cell populations relying on oxidative metabolism for ATP production were more affected. The observed antiproliferative action of melatonin was associated with an arrest at S-phase, decreased oxygen consumption, down-regulation of BCL-2 expression and an increase in oxidative stress culminating with caspase-3-independent cell death. Interestingly, the combined treatment of melatonin and dichloroacetate had a synergistic effect in cells grown in the galactose medium and resulted in an inhibitory effect in the highly resistant P19 CSCs. Melatonin appears to exert its antiproliferative activity in P19 carcinoma cells through a mitochondrially-mediated action which in turn allows the amplification of the effects of dichloroacetate, even in cells with a more glycolytic phenotype.
Collapse
Affiliation(s)
- Rute Loureiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Silvia Magalhães-Novais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Katia A Mesquita
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ines Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel S Sousa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ludgero C Tavares
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ines A Barbosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ignacio Vega-Naredo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Morphology and Cell Biology, University of Oviedo, Oviedo, Spain
| |
Collapse
|
26
|
Melatonin, an inhibitory agent in breast cancer. Breast Cancer 2016; 24:42-51. [PMID: 27017208 DOI: 10.1007/s12282-016-0690-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The heterogeneous nature of breast cancer makes it one of the most challenging cancers to treat. Due to the stimulatory effect of estrogen in mammary cancer progression, anti-estrogenic agents like melatonin have found their way into breast cancer treatment. Further studies confirmed a reverse correlation between nocturnal melatonin levels and the development of mammary cancer. In this study we reviewed the molecular inhibitory effects of melatonin in breast cancer therapy. METHODS To open access the articles, Google scholar and science direct were used as a motor search. We used from valid external and internal databases. To reach the search formula, we determined mean key words like breast cancer, melatonin, cell proliferation and death. To retrieval the related articles, we continuously search the articles from 1984 to 2015. The relevance and the quality of the 480 articles were screened; at least we selected 80 eligible articles about melatonin molecular mechanism in breast cancer. RESULT The results showed that melatonin not only inhibits breast cancer cell growth, but also is capable of inhibiting angiogenesis, cancer cell invasion, and telomerase activity. Interestingly this hormone is able to induce apoptosis through the suppression or induction of a wide range of signaling pathways. Moreover, it seems that the concomitant administration of melatonin with other conventional chemotherapy agents had beneficial effects for patients with breast cancer, by alleviating unfavorable effects of those agents and enhancing their efficacy. CONCLUSION The broad inhibitory effects of melatonin in breast cancer make it a promising agent and may add it to the list of potential drugs in treatment of this cancer.
Collapse
|
27
|
Cebrián-Pérez JA, Casao A, González-Arto M, dos Santos Hamilton TR, Pérez-Pé R, Muiño-Blanco T. Melatonin in sperm biology: breaking paradigms. Reprod Domest Anim 2015; 49 Suppl 4:11-21. [PMID: 25277428 DOI: 10.1111/rda.12378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
Melatonin is a ubiquitous molecule, present in a wide range of organisms, and involved in multiple functions. Melatonin relays the information about the photoperiod to the tissues that express melatonin-binding sites in both central and peripheral nervous systems. This hormone has a complex mechanism of action. It can cross the cell plasma membrane and exert its actions in all cells of the body. Certain melatonin actions are mediated by receptors that belong to the superfamily of G-protein-coupled receptors (GPCRs), the MT1 and MT2 membrane. Melatonin can also bind to calmodulin as well as to nuclear receptors of the retinoic acid receptor family, RORα1, RORα2 and RZRβ. The purpose of this review is to report on recent developments in the physiological role of melatonin and its receptors. Specific issues concerning the biological function of melatonin in mammalian seasonal reproduction and spermatozoa are considered. The significance of the continuous presence of melatonin in seminal plasma with a fairly constant concentration is also discussed.
Collapse
Affiliation(s)
- J A Cebrián-Pérez
- Departamento de Bioquímica y Biología Molecular y Celular, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask DE. Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 2015; 22:R183-204. [PMID: 25876649 PMCID: PMC4457700 DOI: 10.1530/erc-15-0030] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 12/19/2022]
Abstract
The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin suppresses ERα mRNA expression and ERα transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of other members of the nuclear receptor superfamily, estrogen-metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (the Warburg effect) and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type-specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways, including inhibition of p38 MAPK and repression of epithelial-mesenchymal transition (EMT). Studies have demonstrated that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models has indicated that LEN-induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer and drives breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms that underpin the epidemiologic demonstration of elevated breast cancer risk in night-shift workers and other individuals who are increasingly exposed to LEN.
Collapse
Affiliation(s)
- Steven M Hill
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Robert T Dauchy
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Shulin Xiang
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Samantha Brimer
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Lulu Mao
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Adam Hauch
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Peter W Lundberg
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Whitney Summers
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Lin Yuan
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Tripp Frasch
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - David E Blask
- Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA Department of Structural and Cellular BiologyTulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, Louisiana 70112, USADepartment of SurgeryTulane Cancer Center and Louisiana Cancer Research ConsortiumCircadian Cancer Biology GroupTulane Center for Circadian BiologyTulane University School of Medicine, New Orleans, Louisiana 70112, USA
| |
Collapse
|
29
|
Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release. J Cell Mol Med 2014; 18:1060-70. [PMID: 24548607 PMCID: PMC4508145 DOI: 10.1111/jcmm.12250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/18/2014] [Indexed: 01/12/2023] Open
Abstract
Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release.
Collapse
Affiliation(s)
- Dong-Dong Liu
- School of Life Sciences, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
30
|
Proietti S, Cucina A, Reiter RJ, Bizzarri M. Molecular mechanisms of melatonin's inhibitory actions on breast cancers. Cell Mol Life Sci 2013; 70:2139-57. [PMID: 23007844 PMCID: PMC11113894 DOI: 10.1007/s00018-012-1161-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/07/2023]
Abstract
Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Clinical and Molecular Medicine, University “La Sapienza”, Rome, Italy
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Alessandra Cucina
- Department of Surgery “P.Valdoni”, University “La Sapienza”, Rome, Italy
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX USA
| | - Mariano Bizzarri
- Systems Biology Group Laboratory, Department of Experimental Medicine, University “La Sapienza”, 14-16, Via Antonio Scarpa, Rome, 00161 Italy
| |
Collapse
|
31
|
Anderson G, Beischlag TV, Vinciguerra M, Mazzoccoli G. The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochem Pharmacol 2013; 85:1405-16. [PMID: 23438471 DOI: 10.1016/j.bcp.2013.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Abstract
Life forms populating the Earth must face environmental challenges to assure individual and species survival. The strategies predisposed to maintain organismal homeostasis and grant selective advantage rely on anticipatory phenomena facing periodic modifications, and compensatory phenomena facing unpredictable changes. Biological processes bringing about these responses are respectively driven by the circadian timing system, a complex of biological oscillators entrained to the environmental light/dark cycle, and by regulatory and metabolic networks that precisely direct the body's adjustments to variations of external conditions and internal milieu. A critical role in organismal homeostatic functions is played by the aryl hydrocarbon receptor (AHR) complex, which senses environmental and endogenous compounds, influences metabolic responses controlling phase I/II gene expression, and modulates vital phenomena such as development, inflammation and adaptive immunity. A physiological cross-talk between circadian and AHR signaling pathways has been evidenced. The alteration of AHR signaling pathway deriving from genetic damage with polymorphisms or mutations, or produced by exogenous or endogenous AHR activation, and chronodisruption caused by mismatch between the body's internal clock and geophysical time/social schedules, are capable of triggering pathological mechanisms involved in metabolic, immune-related and neoplastic diseases. On the other hand, the molecular components of the circadian clock circuitry and AHR signaling pathway may represent useful tools for preventive interventions and valuable targets of therapeutic approaches.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Centre/Communications, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
32
|
Blask DE, Hill SM, Dauchy RT, Xiang S, Yuan L, Duplessis T, Mao L, Dauchy E, Sauer LA. Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res 2011; 51:259-69. [PMID: 21605163 PMCID: PMC3162043 DOI: 10.1111/j.1600-079x.2011.00888.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular, dietary, and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light at night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT(1) melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT(1) -induced activation of G(αi2) signaling and reduction of 3',5'-cyclic adenosine monophosphate (cAMP) levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super-family, enzymes involved in estrogen metabolism, expression/activation of telomerase, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT(1) -mediated suppression of cAMP leading to blockade of linoleic acid uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN-induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.
Collapse
Affiliation(s)
- David E Blask
- Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, LA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hill SM, Blask DE, Xiang S, Yuan L, Mao L, Dauchy RT, Dauchy EM, Frasch T, Duplesis T. Melatonin and associated signaling pathways that control normal breast epithelium and breast cancer. J Mammary Gland Biol Neoplasia 2011; 16:235-45. [PMID: 21773809 DOI: 10.1007/s10911-011-9222-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022] Open
Abstract
This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular and metabolic signaling mechanisms involved in human breast cancer growth and the associated consequences of circadian disruption by exposure to light-at-night (LAN). The anti-proliferative effects of the circadian melatonin signal are, in general, mediated through mechanisms involving the activation of MT(1) melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor-positive (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT(1)-induced activation of G(αi2) signaling and reduction of cAMP levels. Melatonin also regulates the transcriptional activity of additional members of the nuclear receptor super-family, enzymes involved in estrogen metabolism, and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and matrix metalloproteinase expression. Melatonin also inhibits the growth of human breast cancer xenografts via MT(1)-mediated suppression of cAMP leading to a blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Finally, studies in both rats and humans indicate that light-at-night (LAN) induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism, and signaling, providing the strongest mechanistic support, thus far, for epidemiological studies demonstrating the elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN.
Collapse
Affiliation(s)
- Steven M Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li HJ, Wang LY, Qu HN, Yu LH, Burnstock G, Ni X, Xu M, Ma B. P2Y2 receptor-mediated modulation of estrogen-induced proliferation of breast cancer cells. Mol Cell Endocrinol 2011; 338:28-37. [PMID: 21356271 DOI: 10.1016/j.mce.2011.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/28/2011] [Accepted: 02/18/2011] [Indexed: 11/30/2022]
Abstract
It is known that estrogen promotes the proliferation of breast cancer cells. Agonists to P2Y(2) receptors promote or suppress proliferation in different cancers. In the present study, the methods of methylthiazoltetrazolium (MTT) assay, real-time RT-PCR, Western blot and fluorescent calcium imaging analysis were used to investigate whether P2Y(2) receptors play a role in the effects of estrogen on the breast cancer cell lines, MCF-7 and MDA-MB-231. We found that P2Y(2) receptors were expressed in both the estrogen receptor alpha (ER(α))-positive breast cancer cell line MCF-7 and the ER(α)-negative breast cancer cell line MDA-MB-231. 17β-Estradiol (17β-E(2)) (1 pM to 1000 nM) promoted proliferation of MCF-7 cells, which was blocked by the ER antagonist ICI 182,780 (1 μM) and the ER(α) antagonist methyl-piperidino-pyrazole (MPP, 50 μM), but not by the ER(β) antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP, 50 μM) or ER(β) small interfering RNA. The P2Y(2) and P2Y(4) receptor agonist UTP (10-100 μM) suppressed the viability of breast cancer cells in both MCF-7 and MDA-MB-231 cells. The effect was blocked by suramin (10-100 μM), known to be an effective antagonist against P2Y(2), but not P2Y(4), receptor-mediated responses. 17β-E(2) played a more positive role in promoting proliferation in MCF-7 cells when suramin blocked the functional P2Y(2) receptors. 17β-E(2) (0.1-1000 nM) downregulated the expression of P2Y(2) receptors in terms of both mRNA and protein levels in MCF-7 cells. The effect was blocked by ICI 182,780 and MPP, but not PHTPP or ER(β) small interfering RNA. 17β-E(2) did not affect the expression of P2Y(2) receptors in MDA-MB-231. UTP (10-100 μM) led to a sharp increase in intracellular Ca(2+) in MCF-7 cells. Pre-incubation with 17β-E(2) (0.1 μM) attenuated UTP-induced [Ca(2+)](i), which was blocked by ICI182,780 and MPP, but not PHTPP. It is suggested that estrogen, via ER(α) receptors, promotes proliferation of breast cancer cells by down-regulating P2Y(2) receptor expression and attenuating P2Y(2)-induced increase of [Ca(2+)](i).
Collapse
Affiliation(s)
- Han-jun Li
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mao L, Cheng Q, Guardiola-Lemaître B, Schuster-Klein C, Dong C, Lai L, Hill SM. In vitro and in vivo antitumor activity of melatonin receptor agonists. J Pineal Res 2010; 49:210-21. [PMID: 20609073 DOI: 10.1111/j.1600-079x.2010.00781.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Melatonin has been shown to inhibit the proliferation of estrogen receptor α (ERα)-positive human breast cancer cells in vitro and suppress the growth of carcinogen-induced mammary tumors in rats. Melatonin's antiproliferative effect is mediated, at least in part, through the MT1 melatonin receptor and mechanisms involving modulation of the estrogen-signaling pathway. To develop melatonin analogs with greater therapeutic effects, we have examined the in vitro and in vivo antimitotic activity of two MT1/MT2 melatonin receptor agonists, S23219-1 and S23478-1. In our studies, both agonists are quite effective at suppressing the growth of MCF-7 human breast cancer cells. At a concentration of 10⁻⁶ m, S23219-1 and S23478-1 inhibited the growth of MCF-7 cells by 60% and 73%, respectively. However, S23478-1 is more effective than melatonin and S23219-1 at repressing the expression and transactivation of the ERα, and modulating the expression of pancreatic spasmolytic polypeptide (pS2), an estrogen-regulated gene. The melatonin agonist S23478-1 exhibited enhanced antitumor potency in the subsequent studies in our animal model. At a dosage of 25 mg/kg/day, S23478-1 is more efficacious than melatonin at inducing regression of the established N-nitroso-N-methyl-urea-induced rat mammary tumors. This dose of S23478-1 (25 mg/kg/day) generated a significant (P < 0.05) overall regression response of 52%. Furthermore, at this dosage, S23478-1 is more effective than melatonin at suppressing the estrogen-signaling pathway and promoting tumor cell apoptosis, significantly increasing the expression of the pro-apoptotic protein Bax, while decreasing the expression of ERα and the anti-apoptotic protein Bcl-2.
Collapse
Affiliation(s)
- Lulu Mao
- Department of Structural & Cellular Biology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Sharkey JT, Cable C, Olcese J. Melatonin sensitizes human myometrial cells to oxytocin in a protein kinase C alpha/extracellular-signal regulated kinase-dependent manner. J Clin Endocrinol Metab 2010; 95:2902-8. [PMID: 20382690 PMCID: PMC2902072 DOI: 10.1210/jc.2009-2137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT Studies have shown that labor occurs primarily in the night/morning hours. Recently, we identified the human myometrium as a target for melatonin (MEL), the neuroendocrine output signal coding for circadian night. OBJECTIVE The purpose of this study was to determine the signaling pathway underlying the effects of MEL on contractility and the contractile machinery in immortalized human myometrial cells. DESIGN To ascertain the signaling pathway of MEL leading to its effects on myometrial contractility in vitro, we performed gel retraction assays with cells exposed to iodo-MEL (I-MEL) with or without oxytocin and the Rho kinase inhibitor Y27632. I-MEL effects on inositol trisphosphate (IP(3))/diacylglycerol (DAG)/protein kinase C (PKC) signaling were also investigated. Additionally, we assayed for caldesmon phosphorylation and ERK1/2 activation. RESULTS I-MEL was found to activate PKC alpha via the phospholipase C/IP(3)/DAG signaling pathway, which was confirmed by PKC enzyme assay. I-MEL did not affect myosin light chain phosphatase activity, and its effects on contractility were insensitive to Rho kinase inhibition. I-MEL did increase phosphorylation of ERK1/2 and caldesmon, which was inhibited by the MAPK kinase inhibitor PD98059 or the PKC inhibitor C1. CONCLUSIONS MEL sensitizes myometrial cells to subsequent procontractile signals in vitro through activation of the phospholipase C/IP(3)/DAG signaling pathway, resulting in specific activation of PKC alpha and ERK1/2, thereby phosphorylating caldesmon, which increases actin availability for myosin binding and cross-bridging. In vivo, this sensitization would provide a mechanism for the increased nocturnal uterine contractility and labor that has been observed in late-term human pregnancy.
Collapse
Affiliation(s)
- James T Sharkey
- Florida State University College of Medicine, Department of Biomedical Sciences, 1115 West Call Street, Tallahassee Florida 32306-4300, USA
| | | | | |
Collapse
|
37
|
Hill SM, Frasch T, Shulin Xiang, Lin Yuan, Duplessis T, Lulu Mao. Molecular Mechanisms of Melatonin Anticancer Effects. Integr Cancer Ther 2009; 8:337-46. [DOI: 10.1177/1534735409353332] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The authors have shown that, via activation of its MT1 receptor, melatonin modulates the transcriptional activity of various nuclear receptors and the proliferation of both ERα+ and ERα- human breast cancer cells. Employing dominant-negative (DN) and dominant-positive (DP) G proteins, it was demonstrated that Gα i2 proteins mediate the suppression of estrogen-induced ERα transcriptional activity by melatonin, whereas the Gαq proteins mediate the enhancement of retinoid-induced RARα transcriptional activity by melatonin. In primary human breast tumors, the authors’ studies demonstrate an inverse correlation between ERα and MT1 receptor expression, and confocal microscopic studies demonstrate that the MT1I receptor is localized to the caveoli and that its expression can be repressed by estrogen and melatonin. Melatonin, via activation of its MT1 receptor, suppresses the development and growth of breast cancer by regulation of growth factors, regulation of gene expression, regulation of clock genes, inhibition of tumor cell invasion and metastasis, and even regulation of mammary gland development. The authors have previously reported that the clock gene, Period 2 ( Per2), is not expressed in human breast cancer cells but that its reexpression in breast cancer cells results in increased expression of p53 and induction of apoptosis. The authors demonstrate that melatonin, via repression of RORα transcriptional activity, blocks the expression of the clock gene BMAL1 . Melatonin’s blockade of BMAL1 expression is associated with the decreased expression of SIRT1, a member of the Silencing Information Regulator family and a histone and protein deacetylase that inhibits the expression of DNA repair enzymes (p53, BRCA1 & 2, and Ku70) and the expression of apoptosis-associated genes. Finally, the authors developed an MMTV-MT1-flag mammary knock-in transgenic mouse that displays reduced ductal branching, ductal epithelium proliferation, and reduced terminal end bud formation during puberty and pregnancy. Lactating female MT1 transgenic mice show a dramatic reduction in the expression of β-casein and whey acidic milk proteins. Further analyses showed significantly reduced ERα expression in mammary glands of MT1 transgenic mice. These results demonstrate that the MT1 receptor is a major transducer of melatonin’s actions in the breast, suppressing mammary gland development and mediating the anticancer actions of melatonin through multiple pathways.
Collapse
Affiliation(s)
| | | | | | - Lin Yuan
- Tulane University, New Orleans, LA, USA
| | | | - Lulu Mao
- Tulane University, New Orleans, LA, USA
| |
Collapse
|
38
|
Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives. Expert Rev Mol Med 2009; 11:e5. [PMID: 19193248 DOI: 10.1017/s1462399409000982] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies have suggested that the pineal hormone melatonin may protect against breast cancer, and the mechanisms underlying its actions are becoming clearer. Melatonin works through receptors and distinct second messenger pathways to reduce cellular proliferation and to induce cellular differentiation. In addition, independently of receptors melatonin can modulate oestrogen-dependent pathways and reduce free-radical formation, thus preventing mutation and cellular toxicity. The fact that melatonin works through a myriad of signalling cascades that are protective to cells makes this hormone a good candidate for use in the clinic for the prevention and/or treatment of cancer. This review summarises cellular mechanisms governing the action of melatonin and then considers the potential use of melatonin in breast cancer prevention and treatment, with an emphasis on improving clinical outcomes.
Collapse
|
39
|
Wu X, Liu W, Dai H, Chen G. A novel sensitive biosensor for Ca2+ based on electropolymerized melatonin modified electrode. Electrochem commun 2009. [DOI: 10.1016/j.elecom.2008.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
40
|
Lai L, Yuan L, Chen Q, Dong C, Mao L, Rowan B, Frasch T, Hill SM. The Galphai and Galphaq proteins mediate the effects of melatonin on steroid/thyroid hormone receptor transcriptional activity and breast cancer cell proliferation. J Pineal Res 2008; 45:476-88. [PMID: 18705646 PMCID: PMC4879591 DOI: 10.1111/j.1600-079x.2008.00620.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin, via its MT1 receptor, but not the MT2 receptor, can modulate the transcriptional activity of various nuclear receptors - estrogen receptor alpha (ERalpha) and retinoic acid receptor alpha (RARalpha), but not ERbeta- in MCF-7, T47D, and ZR-75-1 human breast cancer cell lines. The anti-proliferative and nuclear receptor modulatory actions of melatonin are mediated via the MT1 G protein-coupled receptor expressed in human breast cancer cells. However, the specific G proteins and associated pathways involved in the nuclear receptor transcriptional regulation by melatonin are not yet clear. Upon activation, the MT1 receptor specifically couples to the G(alphai2), G(alphai3), G(alphaq), and G(alphall) proteins, and via activation of G(alphai2) proteins, melatonin suppresses forskolin-induced 3',5'-cyclic adenosine monophosphate production, while melatonin activation of G(alphaq), is able to inhibit phospholipid hydrolysis and ATP's induction of inositol triphosphate production in MCF-7 breast cancer cells. Employing dominant-negative and dominant-positive) forms of these G proteins, we demonstrate that G(alphai2) proteins mediate the suppression of estrogen-induced ERalpha transcriptional activity by melatonin, while the G(q) protein mediates the enhancement of retinoid-induced RARalpha transcriptional activity by melatonin. However, the growth-inhibitory actions of melatonin are mediated via both G(alphai2) and G(alphaq) proteins.
Collapse
MESH Headings
- Blotting, Western
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Colforsin/pharmacology
- Cyclic AMP/analysis
- Cyclic GMP/analysis
- Estrogens/physiology
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/physiology
- Gene Expression Regulation
- Humans
- Immunoprecipitation
- Luciferases
- Melatonin/physiology
- Phosphorus Radioisotopes
- Radioimmunoassay
- Receptor, Melatonin, MT1/physiology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Retinoic Acid Receptor alpha
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Ling Lai
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lin Yuan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qi Chen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chunmin Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lulu Mao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Brian Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tripp Frasch
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Steven M. Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
41
|
Korkmaz A, Sanchez-Barcelo EJ, Tan DX, Reiter RJ. Role of melatonin in the epigenetic regulation of breast cancer. Breast Cancer Res Treat 2008; 115:13-27. [PMID: 18592373 DOI: 10.1007/s10549-008-0103-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/12/2008] [Indexed: 11/24/2022]
Abstract
The oncostatic properties of melatonin as they directly or indirectly involve epigenetic mechanisms of cancer are reviewed with a special focus on breast cancer. Five lines of evidence suggest that melatonin works via epigenetic processes: (1) melatonin influences transcriptional activity of nuclear receptors (ERalpha, GR and RAR) involved in the regulation of breast cancer cell growth; (2) melatonin down-regulates the expression of genes responsible for the local synthesis or activation of estrogens including aromatase, an effect which may be mediated by methylation of the CYP19 gene or deacetylation of CYP19 histones; (3) melatonin inhibits telomerase activity and expression induced by either natural estrogens or xenoestrogens; (4) melatonin modulates the cell cycle through the inhibition of cyclin D1 expression; (5) melatonin influences circadian rhythm disturbances dependent on alterations of the light/dark cycle (i.e., light at night) with the subsequent deregulation of PER2 which acts as a tumor suppressor gene.
Collapse
Affiliation(s)
- Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey.
| | | | | | | |
Collapse
|
42
|
Janecka IP. Colon Cancer and Physical Activity: A Content Analysis of Reciprocal Relationship. Clin Med Oncol 2007. [DOI: 10.4137/cmo.s299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Colon cancer is among the leading causes of cancer mortality and its incidence is increasing worldwide. This is true in spite of broad basic research into colon cancer while, concurrently, physical activity has been shown to offer significant preventive potential. This background led to the formulation of the following research questions: • Why is physical activity so effective in decreasing the incidence of colon cancer? • Is there a common denominator to colon cancer and physical activity, which has a reciprocal function? • Knowing the potential for public health impact of physical activity on colon cancer, has physical activity-colon cancer relationship been in the forefront of research efforts? Methods Content analysis of archival literature has been carried out on census of 32,822 message units, extracted from the National Library of Medicine and its PubMed database. The following search terms were used: colon cancer, physical activity, melatonin, age/genetics, diet (obesity, vitamin D, calcium), immunity/inflammation, and bioactive substances incorporating insulin-like growth factor 1, interleukins, and prostaglandins. The research timeframe for each category began with the first article published and ended with the last one printed in 2005. Results/Conclusions The effectiveness of physical activity in decreasing the incidence of colon cancer is likely the result of its biologic activity within not one or two but all of the major known colon cancer etiologies, demonstrating a powerful reciprocal relationship. Melatonin is identified as a plausible common denominator of colon cancer and physical activity. The greatest volume of publications deals with colon cancer and genetics. A significant societal health care impact could be achieved by adopting physical activity as a major cancer control strategy.
Collapse
|
43
|
Mizrak B, Celbiş O, Parlakpinar H, Olmez E. Effect of melatonin and atenolol on carbon monoxide cardiotoxicity: an experimental study in rats. Basic Clin Pharmacol Toxicol 2006; 98:565-8. [PMID: 16700818 DOI: 10.1111/j.1742-7843.2006.pto_266.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to define the characteristics of heart rates and myocardial changes in rats exposed to carbon monoxide (CO), and the effects of reoxygenation, atenolol (a beta-blocker) and melatonin after sublethal CO intoxication. Widespread use of beta-blockers in cardiology practice and growing literature on the positive effect of melatonin in ischaemia reperfusion lead us to question their effects in case of CO intoxication. Rats were exposed to CO. After sublethal intoxication the rats were reoxygenated with ambient air. Subsequently blood values, electrocardiographic recordings and pathological changes were examined for each groups. Five rats died after CO intoxication in the control group: no myocardial changes were seen in light microscopy. However, myocardium of seven reoxygenated rats presented contraction bands. Seven reoxygenated rats pretreated with atenolol had a higher number of contraction bands of myocardial cells. Seven reoxygenated rats pretreated with melatonin had more contraction bands than reoxygenated rats, and heart rate recordings of these animals revealed a profund and sustained bradycardia. Thus, melatonin and atenolol appear to have some adverse effects in CO intoxication on the myocardial cells.
Collapse
Affiliation(s)
- Bülent Mizrak
- Department of Pathology, Inönü University Medical School, Malatya, Turkey.
| | | | | | | |
Collapse
|
44
|
Witt-Enderby PA, Radio NM, Doctor JS, Davis VL. Therapeutic treatments potentially mediated by melatonin receptors: potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy. J Pineal Res 2006; 41:297-305. [PMID: 17014686 DOI: 10.1111/j.1600-079x.2006.00369.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin's therapeutic potential is grossly underestimated because its functional roles are diverse and its mechanism(s) of action are complex and varied. Melatonin produces cellular effects via a variety of mechanisms in a receptor independent and dependent manner. In addition, melatonin is a chronobiotic agent secreted from the pineal gland during the hours of darkness. This diurnal release of melatonin impacts the sensitivity of melatonin receptors throughout a 24-hr period. This changing sensitivity probably contributes to the narrow therapeutic window for use of melatonin in treating sleep disorders, that is, at the light-to-dark (dusk) or dark-to-light (dawn) transition states. In addition to the cyclic changes in melatonin receptors, many genes cycle over the 24-hr period, independent or dependent upon the light/dark cycle. Interestingly, many of these genes support a role for melatonin in modulating metabolic and cardiovascular physiology as well as bone metabolism and immune function and detoxification of chemical agents and cancer reduction. Melatonin also enhances the actions of a variety of drugs or hormones; however, the role of melatonin receptors in modulating these processes is not known. The goal of this review is to summarize the evidence related to the utility of melatonin as a therapeutic agent by focusing on its other potential uses besides sleep disorders. In particular, its use in cancer prevention, osteoporosis and, as an adjuvant to other therapies are discussed. Also, the role that melatonin and, particularly, its receptors play in these processes are highlighted.
Collapse
Affiliation(s)
- Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| | | | | | | |
Collapse
|
45
|
Cos S, González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ. Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. ACTA ACUST UNITED AC 2006; 30:118-28. [PMID: 16647824 DOI: 10.1016/j.cdp.2006.03.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Melatonin exerts oncostatic effects on different kinds of tumors, especially on endocrine-responsive breast cancer. The most common conclusion is that melatonin reduces the incidence and growth of chemically induced mammary tumors, in vivo, and inhibits the proliferation and metastatic behavior of human breast cancer cells, in vitro. Both studies support the hypothesis that melatonin oncostatic actions on hormone-dependent mammary tumors are mainly based on its anti-estrogenic actions. METHODS AND RESULTS Two different mechanisms have been proposed to explain how melatonin reduces the development of breast cancer throughout its interactions with the estrogen-signaling pathways: (a) the indirect neuroendocrine mechanism which includes the melatonin down-regulation of the hypothalamic-pituitary reproductive axis and the consequent reduction of circulating levels of gonadal estrogens and (b) direct melatonin actions at tumor cell level. Melatonin's direct effect on mammary tumor cells is that it interferes with the activation of the estrogen receptor, thus behaving as a selective estrogen receptor modulator. Melatonin also regulates the activity of the aromatases, the enzymes responsible for the local synthesis of estrogens, thus behaving as a selective estrogen enzyme modulator. CONCLUSIONS The same molecule has both properties to selectively neutralize the effects of estrogens on the breast and the local biosynthesis of estrogens from androgens, one of the main objectives of recent antitumor pharmacological therapeutic strategies. It is these action mechanisms that collectively make melatonin an interesting anticancer drug in the prevention and treatment of estrogen-dependent tumors, since it has the advantage of acting at different levels of the estrogen-signaling pathways.
Collapse
Affiliation(s)
- Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, 39011 Santander, Spain.
| | | | | | | | | | | |
Collapse
|
46
|
Lee WJ, Monteith GR, Roberts-Thomson SJ. Calcium transport and signaling in the mammary gland: targets for breast cancer. Biochim Biophys Acta Rev Cancer 2005; 1765:235-55. [PMID: 16410040 DOI: 10.1016/j.bbcan.2005.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 12/30/2022]
Abstract
The mammary gland is subjected to extensive calcium loads during lactation to support the requirements of milk calcium enrichment. Despite the indispensable nature of calcium homeostasis and signaling in regulating numerous biological functions, the mechanisms by which systemic calcium is transported into milk by the mammary gland are far from completely understood. Furthermore, the implications of calcium signaling in terms of regulating proliferation, differentiation and apoptosis in the breast are currently uncertain. Deregulation of calcium homeostasis and signaling is associated with mammary gland pathophysiology and as such, calcium transporters, channels and binding proteins represent potential drug targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Won Jae Lee
- School of Pharmacy, Steele Building, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
47
|
Kobayashi H, Kromminga A, Dunlop TW, Tychsen B, Conrad F, Suzuki N, Memezawa A, Bettermann A, Aiba S, Carlberg C, Paus R. A role of melatonin in neuroectodermal-mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors. FASEB J 2005; 19:1710-2. [PMID: 16030176 DOI: 10.1096/fj.04-2293fje] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since mammalian skin expresses the enzymatic apparatus for melatonin synthesis, it may be an extrapineal site of melatonin synthesis. However, evidence is still lacking that this is really the case in situ. Here, we demonstrate melatonin-like immunoreactivity (IR) in the outer root sheath (ORS) of mouse and human hair follicles (HFs), which corresponds to melatonin, as shown by radioimmunoassay and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The melatonin concentration in organ-cultured mouse skin, mouse vibrissae follicles, and human scalp HFs far exceeds the respective melatonin serum level and is significantly increased ex vivo by stimulation with norepinephrine (NE), the key stimulus for pineal melatonin synthesis. By real-time PCR, transcripts for the melatonin membrane receptor MT2 and for the nuclear mediator of melatonin signaling, retinoid orphan receptor alpha (ROR)alpha, are detectable in murine back skin. Transcript levels for these receptors fluctuate in a hair cycle-dependent manner, and are maximal during apoptosis-driven HF regression (catagen). Melatonin may play a role in hair cycle regulation, since its receptors (MT2 and RORalpha) are expressed in murine skin in a hair cycle-dependent manner, and because it inhibits keratinocyte apoptosis and down-regulates ERalpha expression. Therefore, the HF is both, a prominent extrapineal melatonin source, and an important peripheral melatonin target tissue. Regulated intrafollicular melatonin synthesis and signaling may play a previously unrecognized role in the endogenous controls of hair growth, for example, by modulating keratinocyte apoptosis during catagen and by desensitizing the HF to estrogen signaling. As a prototypic neuroectodermal-mesodermal interaction model, the HF can be exploited for dissecting the obscure role of melatonin in such interactions in peripheral tissues.
Collapse
Affiliation(s)
- Hiromi Kobayashi
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kiefer TL, Lai L, Yuan L, Dong C, Burow ME, Hill SM. Differential regulation of estrogen receptor alpha, glucocorticoid receptor and retinoic acid receptor alpha transcriptional activity by melatonin is mediated via different G proteins. J Pineal Res 2005; 38:231-9. [PMID: 15813899 DOI: 10.1111/j.1600-079x.2004.00198.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melatonin has been shown to bind to the MT1 G protein-coupled receptor (GPCR) in MCF-7 breast cancer cells to modulate the estrogen response pathway suppressing estrogen-induced estrogen receptor alpha (ERalpha) transcriptional activity, blunting ER/DNA binding activity and suppressing cell proliferation. In these studies we have examined the effect of melatonin on the transcriptional activity of the ERalpha and other members of the steroid/thyroid hormone receptor superfamily, namely, the glucocorticoid receptor (GR) and the retinoic acid receptor alpha (RARalpha). As with the ERalpha, melatonin represses ligand (dexamethasone)-induced activation of the GR. This effect of melatonin on ERalpha and GR is blocked by pertussis toxin (PTX) suggesting that melatonin's actions may be mediated via a PTX-sensitive G(alphai) protein. In contrast, melatonin potentiates the action of all-trans-retinoic acid on RARalpha transcriptional activation and enhances RARalpha/DNA binding activity, an action which is not PTX-sensitive. Expression of a dominant-positive G(alphai2) protein, with which the MT1 receptor has been shown to couple, is able to mimic the effect of melatonin on ERalpha but not RARalpha transcriptional activation in breast cancer cells. This demonstrates that GPCRs can modulate the transcriptional activity of various steroid receptors in response to their ligand through activation of different G protein signaling pathways.
Collapse
Affiliation(s)
- Todd L Kiefer
- Tulane Cancer Center, Tulane University Medical School, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sánchez-Barceló EJ, Cos S, Mediavilla D, Martínez-Campa C, González A, Alonso-González C. Melatonin-estrogen interactions in breast cancer. J Pineal Res 2005; 38:217-22. [PMID: 15813897 DOI: 10.1111/j.1600-079x.2004.00207.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this article, we review the experimental data supporting an oncostatic role of melatonin on hormone-dependent mammary tumors. Beginning with the evidence on the role of estrogens in breast cancer etiology and mammary tumor growth, we summarize the actual therapeutic strategies with estrogens as a target. Additionally, we demonstrate that melatonin fulfills all the requirements to be considered as an antiestrogenic drug which shares properties with drugs of the two main pharmacological groups of substances which interact with the estrogen-signaling pathways such as: (i) drugs that act through the estrogen receptor interfering with the effects of endogenous estrogens; and (ii) drugs that interfere with the synthesis of estrogens by inhibiting the enzymes controlling the interconversion from their androgenic precursors. Furthermore, melatonin decreases circulating levels of estradiol. These three antiestrogenic mechanisms suggest that melatonin may have an important role in the prevention and treatment of hormone-dependent mammary cancer.
Collapse
Affiliation(s)
- Emilio J Sánchez-Barceló
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| | | | | | | | | | | |
Collapse
|
50
|
Turjanski AG, Estrin DA, Rosenstein RE, McCormick JE, Martin SR, Pastore A, Biekofsky RR, Martorana V. NMR and molecular dynamics studies of the interaction of melatonin with calmodulin. Protein Sci 2005; 13:2925-38. [PMID: 15498938 PMCID: PMC2286588 DOI: 10.1110/ps.04611404] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pineal hormone melatonin (N-acetyl-5-methoxytryptamine) is thought to modulate the calcium/calmodulin signaling pathway either by changing intracellular Ca(2+) concentration via activation of its G-protein-coupled membrane receptors, or through a direct interaction with calmodulin (CaM). The present work studies the direct interaction of melatonin with intact calcium-saturated CaM both experimentally, by fluorescence and nuclear magnetic resonance spectroscopies, and theoretically, by molecular dynamics simulations. The analysis of the experimental data shows that the interaction is calcium-dependent. The affinity, as obtained from monitoring (15)N and (1)H chemical shift changes for a melatonin titration, is weak (in the millimolar range) and comparable for the N- and C-terminal domains. Partial replacement of diamagnetic Ca(2+) by paramagnetic Tb(3+) allowed the measurement of interdomain NMR pseudocontact shifts and residual dipolar couplings, indicating that each domain movement in the complex is not correlated with the other one. Molecular dynamics simulations allow us to follow the dynamics of melatonin in the binding pocket of CaM. Overall, this study provides an example of how a combination of experimental and theoretical approaches can shed light on a weakly interacting system of biological and pharmacological significance.
Collapse
Affiliation(s)
- Adrián G Turjanski
- Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|