1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Láng T, Dimén D, Oláh S, Puska G, Dobolyi A. Medial preoptic circuits governing instinctive social behaviors. iScience 2024; 27:110296. [PMID: 39055958 PMCID: PMC11269931 DOI: 10.1016/j.isci.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The medial preoptic area (MPOA) has long been implicated in maternal and male sexual behavior. Modern neuroscience methods have begun to reveal the cellular networks responsible, while also implicating the MPOA in other social behaviors, affiliative social touch, and aggression. The social interactions rely on input from conspecifics whose most important modalities in rodents are olfaction and somatosensation. These inputs bypass the cerebral cortex to reach the MPOA to influence the social function. Hormonal inputs also directly act on MPOA neurons. In turn, the MPOA controls social responses via various projections for reward and motor output. The MPOA thus emerges as one of the major brain centers for instinctive social behavior. While key elements of MPOA circuits have been identified, a synthesis of these new data is now provided for further studies to reveal the mechanisms by which the area controls social interactions.
Collapse
Affiliation(s)
- Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Diána Dimén
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Addiction and Neuroplasticity Laboratory, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Szilvia Oláh
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
3
|
Tagawa N, Mori K, Koebis M, Aiba A, Iino Y, Tsuneoka Y, Funato H. Activation of lateral preoptic neurons is associated with nest-building in male mice. Sci Rep 2024; 14:8346. [PMID: 38594484 PMCID: PMC11004109 DOI: 10.1038/s41598-024-59061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 04/11/2024] Open
Abstract
Nest-building behavior is a widely observed innate behavior. A nest provides animals with a secure environment for parenting, sleep, feeding, reproduction, and temperature maintenance. Since animal infants spend their time in a nest, nest-building behavior has been generally studied as parental behaviors, and the medial preoptic area (MPOA) neurons are known to be involved in parental nest-building. However, nest-building of singly housed male mice has been less examined. Here we show that male mice spent longer time in nest-building at the early to middle dark phase and at the end of the dark phase. These two periods are followed by sleep-rich periods. When a nest was removed and fresh nest material was introduced, both male and female mice built nests at Zeitgeber time (ZT) 6, but not at ZT12. Using Fos-immunostaining combined with double in situ hybridization of Vgat and Vglut2, we found that Vgat- and Vglut2-positive cells of the lateral preoptic area (LPOA) were the only hypothalamic neuron population that exhibited a greater number of activated cells in response to fresh nest material at ZT6, compared to being naturally awake at ZT12. Fos-positive LPOA neurons were negative for estrogen receptor 1 (Esr1). Both Vgat-positive and Vglut2-positive neurons in both the LPOA and MPOA were activated at pup retrieval by male mice. Our findings suggest the possibility that GABAergic and glutamatergic neurons in the LPOA are associated with nest-building behavior in male mice.
Collapse
Affiliation(s)
- Natsuki Tagawa
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Keita Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Atsu Aiba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan.
| | - Hiromasa Funato
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan.
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
4
|
Romero-Morales L, García-Saucedo B, Martínez-Torres M, Cárdenas M, Cárdenas-Vázquez R, Luis J. Neural activation associated with maternal and aversive interactions with pups in the Mongolian gerbil (Meriones unguiculatus). Behav Brain Res 2023; 437:114153. [PMID: 36220415 DOI: 10.1016/j.bbr.2022.114153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
According to approach-avoidance model, virgin female laboratory rats display maternal behaviour when the tendency to approach and interact with the pup is stronger than avoiding it. A positive neural mechanism that includes the medial preoptic area (mPOA)/bed nucleus of the stria terminalis (BNST) and a negative mechanism that involves the anterior hypothalamic nucleus (AHN)/ventromedial nucleus (VMN)/ periaqueductal grey (PAG) underlie to these behaviours. Unlike virgin rats, which avoid the pups, virgin females Mongolian gerbils (Meriones unguiculatus) can be immediately either maternal or aggressive with the pups. Furthermore, the Mongolian gerbil is monogamous and biparental species. Despite these difference, we hypothesised that maternal and aggressive interaction with the pups could activate mPOA/BNST and AHN/VMH/PAG, respectively, and that maternal response could be associated with high concentrations of estradiol (E2). Twenty virgin maternal females and 20 aggressive toward the pups were selected. Ten maternal females interacted with the pups (MAT-pups) and 10 with candy (MAT-candy). Of the 20 aggressive females, 10 interacted with the pups (AGG-pups) and 10 with candy (AGG-candy). Immediately after the test, blood samples were taken to quantify E2. The brains were dissected for c-Fos immunohistochemistry. MAT-pups females had significantly higher activation in mPOA/BNST than MAT-candy females, while AGG-pups showed significant activation in AHN/VMH/PAG compared with AGG-candy females. The maternal response was associated with high concentrations of E2. These results suggested a positive and a negative mechanism in the regulation of maternal behaviour in the Mongolian gerbil, and that the immediate maternal response could be due to high E2 concentrations.
Collapse
Affiliation(s)
- Luis Romero-Morales
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Brenda García-Saucedo
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Mario Cárdenas
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, Mexico.
| | - René Cárdenas-Vázquez
- Laboratorio de Biología Animal Experimental, Depto. de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico
| | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| |
Collapse
|
5
|
Mayer HS, Rosinger ZJ, Kruithof VB, Mishra S, BlackOwl AL, Stolzenberg DS. Effects of maternal experience on pup-induced activation of maternal neural circuits in virgin mice. Horm Behav 2022; 141:105129. [PMID: 35168026 PMCID: PMC10866554 DOI: 10.1016/j.yhbeh.2022.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
Abstract
Maternal experience can promote a long-lasting increase in maternal motivation. This maintenance of caregiving behaviors, rather than avoidant or agnostic responses towards young, is advantageous for the survival of subsequent offspring. We have previously reported that maternal motivation is associated with differential immediate early gene expression in central motivation circuits and aversion circuits. Here we ask how these circuits come to differentially respond to infant cues. We used Targeted Recombination in Active Populations (TRAP) to identify cells that respond to pups in maternally hesitant TRAP2;Ai14 virgin female mice. Following an initial 60 min exposure to foster pups, virgin TRAP2;Ai14 mice were injected with 4-hydroxytamoxifen to induce recombination in c-Fos expressing cells and subsequent permanent expression of a red fluorescent reporter. We then examined whether the same cells that encode pup cues are reactivated during maternal memory retrieval two weeks later using c-Fos immunohistochemistry. Whereas initial pup exposure induced c-Fos activation exclusively in the medial preoptic area (MPOA), following repeated experience, c-Fos expression was significantly higher than baseline in multiple regions of maternal and central aversion circuits (e.g., ventral bed nucleus of the stria terminalis, nucleus accumbens, basolateral amygdala, prefrontal cortex, medial amygdala, and ventromedial nucleus of the hypothalamus). Further, cells in many of these sites were significantly reactivated during maternal memory retrieval. These data suggest that cells across both maternal motivation and central aversion circuits are stably responsive to pups and thus may form the cellular representation of maternal memory.
Collapse
Affiliation(s)
- Heather S Mayer
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Vivian B Kruithof
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Shambhavi Mishra
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Anthony L BlackOwl
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America
| | - Danielle S Stolzenberg
- Department of Psychology, University of California, Davis, One Shields Ave., Davis, CA 95616, United States of America.
| |
Collapse
|
6
|
Oxytocin Facilitates Allomaternal Behavior under Stress in Laboratory Mice. eNeuro 2022; 9:ENEURO.0405-21.2022. [PMID: 35017259 PMCID: PMC8868028 DOI: 10.1523/eneuro.0405-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (Oxt) controls reproductive physiology and various kinds of social behaviors, but the exact contribution of Oxt to different components of parental care still needs to be determined. Here, we illustrate the neuroanatomical relations of the parental nurturing-induced neuronal activation with magnocellular Oxt neurons and fibers in the medial preoptic area (MPOA), the brain region critical for parental and alloparental behaviors. We used genetically-targeted mouse lines for Oxt, Oxt receptor (Oxtr), vasopressin receptor 1a (Avpr1a), vasopressin receptor 1b (Avpr1b), and thyrotropin-releasing hormone (Trh) to systematically examine the role of Oxt-related signaling in pup-directed behaviors. The Oxtr-Avpr1a-Avpr1b triple knock-out (TKO), and Oxt-Trh-Avpr1a-Avpr1b quadruple KO (QKO) mice were grossly healthy and fertile, except for their complete deficiency in milk ejection and modest deficiency in parturition secondary to maternal loss of the Oxt or Oxtr gene. In our minimal stress conditions, pup-directed behaviors in TKO and QKO mothers and fathers, virgin females and males were essentially indistinguishable from those of their littermates with other genotypes. However, Oxtr KO virgin females did show decreased pup retrieval in the pup-exposure assay performed right after restraint stress. This stress vulnerability in the Oxtr KO was abolished by the additional Avpr1b KO. The general stress sensitivity, as measured by plasma cortisol elevation after restraint stress or by the behavioral performance in the open field (OF) and elevated plus maze (EPM), were not altered in the Oxtr KO but were reduced in the Avpr1b KO females, indicating that the balance of neurohypophysial hormones affects the outcome of pup-directed behaviors.
Collapse
|
7
|
Romero-Morales L, García-Saucedo B, Martínez-Torres M, Cárdenas-Vázquez R, Álvarez-Rodríguez C, Carmona A, Luis J. PATERNAL AND INFANTICIDAL BEHAVIOR IN THE MONGOLIAN GERBIL (Meriones unguiculatus): AN APPROACH TO NEUROENDOCRINE REGULATION. Behav Brain Res 2021; 415:113520. [PMID: 34389425 DOI: 10.1016/j.bbr.2021.113520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022]
Abstract
This study aimed to provide evidence on estrogen and androgen pathways regulating the Mongolian gerbil's paternal and infanticidal behaviors (Meriones unguiculatus). We analyzed estrogen receptor alpha (ERα) and androgen receptor (AR) distribution in the medial preoptic area (mPOA), the bed nucleus of stria terminalis (BNST), as well as the anterior hypothalamic nucleus (AHN), the ventromedial hypothalamus nucleus (VMH), and the periaqueductal gray area (PAG) nuclei activated when males interact paternally or aggressively with the pups, respectively. Twenty aggressive males towards the pups and 10 paternal were selected through a screen paternal behavior test. Three groups of 10 males each were formed: paternal males (PAT), males with testosterone (T)-induced paternal behavior (T-PAT), and aggressive males (AGG). Male gerbils could interact with a pup for a few minutes, and their brains were removed and dissected for ERα and AR immunoreactivity (ir). The results showed that in T-PAT and PAT males, the number of ERα-ir and AR-ir cells in the mPOA/BNST was significantly higher than in AGG males. In AGG males, the number of ERα-ir and AR-ir cells in the AHN/VMH/PAG was significantly higher than PAT and T-PAT males. This difference in the presence of ERα and AR in nuclei activated in paternal interactions in the Mongolian gerbil supports the idea that these receptors participate in regulating paternal behavior. Also, these results suggest, for the first time, that they could be involved in the infanticidal behavior in this rodent.
Collapse
Affiliation(s)
- Luis Romero-Morales
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Brenda García-Saucedo
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - René Cárdenas-Vázquez
- Laboratorio de Biología Animal Experimental, Depto. de Biología Celular, Facultad de Ciencias, UNAM, Mexico.
| | - Carmen Álvarez-Rodríguez
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | | | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| |
Collapse
|
8
|
Tsuneoka Y, Funato H. Cellular Composition of the Preoptic Area Regulating Sleep, Parental, and Sexual Behavior. Front Neurosci 2021; 15:649159. [PMID: 33867927 PMCID: PMC8044373 DOI: 10.3389/fnins.2021.649159] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The preoptic area (POA) has long been recognized as a sleep center, first proposed by von Economo. The POA, especially the medial POA (MPOA), is also involved in the regulation of various innate functions such as sexual and parental behaviors. Consistent with its many roles, the MPOA is composed of subregions that are identified by different gene and protein expressions. This review addresses the current understanding of the molecular and cellular architecture of POA neurons in relation to sleep and reproductive behavior. Optogenetic and pharmacogenetic studies have revealed a diverse group of neurons within the POA that exhibit different neural activity patterns depending on vigilance states and whose activity can enhance or suppress wake, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) sleep. These sleep-regulating neurons are not restricted to the ventrolateral POA (VLPO) region but are widespread in the lateral MPOA and LPOA as well. Neurons expressing galanin also express gonadal steroid receptors and regulate motivational aspects of reproductive behaviors. Moxd1, a novel marker of sexually dimorphic nuclei (SDN), visualizes the SDN of the POA (SDN-POA). The role of the POA in sleep and other innate behaviors has been addressed separately; more integrated observation will be necessary to obtain physiologically relevant insight that penetrates the different dimensions of animal behavior.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
A Scientometric Approach to Review the Role of the Medial Preoptic Area (MPOA) in Parental Behavior. Brain Sci 2021; 11:brainsci11030393. [PMID: 33804634 PMCID: PMC8003755 DOI: 10.3390/brainsci11030393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Research investigating the neural substrates underpinning parental behaviour has recently gained momentum. Particularly, the hypothalamic medial preoptic area (MPOA) has been identified as a crucial region for parenting. The current study conducted a scientometric analysis of publications from 1 January 1972 to 19 January 2021 using CiteSpace software to determine trends in the scientific literature exploring the relationship between MPOA and parental behaviour. In total, 677 scientific papers were analysed, producing a network of 1509 nodes and 5498 links. Four major clusters were identified: “C-Fos Expression”, “Lactating Rat”, “Medial Preoptic Area Interaction” and “Parental Behavior”. Their content suggests an initial trend in which the properties of the MPOA in response to parental behavior were studied, followed by a growing attention towards the presence of a brain network, including the reward circuits, regulating such behavior. Furthermore, while attention was initially directed uniquely to maternal behavior, it has recently been extended to the understanding of paternal behaviors as well. Finally, although the majority of the studies were conducted on rodents, recent publications broaden the implications of previous documents to human parental behavior, giving insight into the mechanisms underlying postpartum depression. Potential directions in future works were also discussed.
Collapse
|
10
|
Lonstein JS, Charlier TD, Pawluski JL, Aigueperse N, Meurisse M, Lévy F, Lumineau S. Fos expression in the medial preoptic area and nucleus accumbens of female Japanese quail (Coturnix japonica) after maternal induction and interaction with chicks. Physiol Behav 2021; 234:113357. [PMID: 33582165 DOI: 10.1016/j.physbeh.2021.113357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
The neural system underlying maternal caregiving has often been studied using laboratory rodents and a few other mammalian species. This research shows that the medial preoptic area (mPOA) integrates sensory cues from the young that, along with hormonal and other environmental signals, control maternal acceptance of neonates. The mPOA then activates the mesolimbic system to drive maternal motivation and caregiving activities. How components of this neural system respond to maternal experience and exposure to young in non-mammals has rarely been examined. To gain more insight into this question, virgin female Japanese quail (Coturnix japonica) were induced to be maternal through four days of continuous exposure to chicks (Maternal), or were not exposed to chicks (Non-Maternal). Chicks were removed overnight from the Maternal group and half the females from each group were then exposed to chicks for 90 minutes (Exposed), or not exposed to chicks (Non-Exposed), before euthanasia. The number of Fos-immunoreactive (Fos-ir) cells was examined as a marker of neuronal activation. As expected, repeated exposure to chicks induced caregiving behavior in the Maternal females, which persisted after the overnight separation, suggesting the formation of a maternal memory. In contrast, Non-Maternal females were aggressive and rejected the chicks when exposed to them. Exposed females, whether or not they were given prior experience with chicks (i.e., regardless if they accepted or rejected chicks during the exposure before euthanasia), had more Fos-ir cells in the mPOA compared to Non-Exposed females. In the nucleus accumbens (NAC), the number of Fos-ir cells was high in all Maternal females whether or not they were Exposed to chicks again before euthanasia. In the lateral bed nucleus of the stria terminalis, a site involved in general stress responding, groups did not differ in the number of Fos-ir cells. These data indicate a conserved role for the mPOA and NAC in maternal caregiving across vertebrates, with the mPOA acutely responding to the salience rather than valence of offspring cues, and the NAC showing longer-term changes in activity after a positive maternal experience even without a recent exposure to young.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, 48824, United States.
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France
| | - Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France
| | - Nadege Aigueperse
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Maryse Meurisse
- Unité de Physiologie de la Reproduction et des Comportemenst (PRC), INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Frédéric Lévy
- Unité de Physiologie de la Reproduction et des Comportemenst (PRC), INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Sophie Lumineau
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| |
Collapse
|
11
|
Inagaki TK, Meyer ML. Individual differences in resting-state connectivity and giving social support: implications for health. Soc Cogn Affect Neurosci 2020; 15:1076-1085. [PMID: 31269205 PMCID: PMC7657449 DOI: 10.1093/scan/nsz052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
There is a growing appreciation for the health benefits of giving support, though variability in such behavior exists. Based on the possibility that the dorsomedial (DMPFC) default network subsystem is associated with social thinking and behavior, integrity of this subsystem may facilitate giving support to others. The current study tested associations between DMPFC subsystem connectivity at rest and tendencies related to giving support. During a functional magnetic resonance imaging session, 45 participants completed an emotional social cues task, a resting-state scan and self-report measures of social support. Supportive behavior during the month following the scan was also assessed. Greater DMPFC subsystem connectivity at rest was associated with greater support giving (though not receiving or perceiving support) at the time of the scan and one month later. Results held after adjusting for extraversion. In addition, greater resting-state DMPFC subsystem connectivity was associated with attenuated dorsal anterior cingulate cortex, anterior insula and amygdala activity to others’ negative emotional social cues, suggesting that DMPFC subsystem integrity at rest is also associated with the dampened withdrawal response proposed to facilitate care for others in need. Together, results begin to hint at an additional role for the ‘default’ social brain: giving support to others.
Collapse
Affiliation(s)
- Tristen K Inagaki
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Meghan L Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
12
|
Alsina-Llanes M, Olazábal DE. Prefrontal cortex is associated with the rapid onset of parental behavior in inexperienced adult mice (C57BL/6). Behav Brain Res 2020; 385:112556. [PMID: 32087184 DOI: 10.1016/j.bbr.2020.112556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/28/2022]
Abstract
There is significant variability in the immediate behavioral response displayed by inexperienced adult mice when exposed to pups for the first time. The aim of this study was to determine which brain regions were engaged (higher c-Fos-immunoreactivity, c-Fos-ir) when virgin females, that were exposed to pups for 15 or 60 min, displayed full parental behavior (FPB), partial parental behavior (PPB), or non-parental behavior (NPB), or virgin males displayed PPB or infanticidal behavior (IB). The number of c-Fos-ir neurons in the prelimbic cortex (PL) was higher in parental females than in the NPB group (after a 15-min exposure), and the group not exposed to pups (NE). C-Fos expression in the nucleus accumbens (NA) was increased in most groups of females exposed to pups compared to NE. Higher c-Fos-ir was also found in the shell subregion of the NA in infanticidal males, compared to males NE. The cortical (CoA) and medial (MA) amygdala also showed higher c-Fos-ir in parental females compared to NE animals. However, PPB and IB male groups also exhibited higher c-Fos-ir in the CoA and MA compared to the NE group. The expression of c-Fos in the different subregions of medial preoptic area and the ventromedial nucleus of the hypothalamus was not specifically associated with either parental or infanticidal behavior. No brain activation in males was specifically associated with infanticidal behavior. Our results suggest that 15 min of exposure to pups is enough to detect brain regions associated with parental behavior (PL) or pups processing (NA, MA, CoA) in mice. The PL might participate in the immediate onset of parental behavior in virgin females, coordinating and planning its rapid execution.
Collapse
Affiliation(s)
- M Alsina-Llanes
- Departamento de Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| | - D E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR, Uruguay.
| |
Collapse
|
13
|
Mayer HS, Crepeau M, Duque-Wilckens N, Torres LY, Trainor BC, Stolzenberg DS. Histone deacetylase inhibitor treatment promotes spontaneous caregiving behaviour in non-aggressive virgin male mice. J Neuroendocrinol 2019; 31:e12734. [PMID: 31081252 PMCID: PMC7571573 DOI: 10.1111/jne.12734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023]
Abstract
The majority of mammalian species are uniparental, with the mother solely providing care for young conspecifics, although fathering behaviours can emerge under certain circumstances. For example, a great deal of individual variation in response to young pups has been reported in multiple inbred strains of laboratory male mice. Furthermore, sexual experience and subsequent cohabitation with a female conspecific can induce caregiving responses in otherwise indifferent, fearful or aggressive males. Thus, a highly conserved parental neural circuit is likely present in both sexes; however, the extent to which infants are capable of activating this circuit may vary. In support of this idea, fearful or indifferent responses toward pups in female mice are linked to greater immediate early gene (IEG) expression in a fear/defensive circuit involving the anterior hypothalamus compared to that in an approach/attraction circuit involving the ventral tegmental area. However, experience with infants, particularly in combination with histone deacetylase inhibitor (HDACi) treatment, can reverse this pattern of pup-induced activation of fear/defence circuitry and promote approach behaviour. Thus, HDACi treatment may increase the transcription of primed/poised genes that play a role in the activation and selection of a maternal approach circuit in response to pup stimuli. In the present study, we investigated whether HDACi treatment would impact behavioural response selection and associated IEG expression changes in virgin male mice that are capable of ignoring, attacking or caring for pups. The results obtained indicate that systemic HDACi treatment induces spontaneous caregiving behaviour in non-aggressive male mice and alters the pattern of pup-induced IEG expression across a fear/defensive neural circuit.
Collapse
Affiliation(s)
- Heather S Mayer
- Department of Psychology, University of California, Davis, Davis, California
| | - Marc Crepeau
- Department of Psychology, University of California, Davis, Davis, California
| | | | - Lisette Y Torres
- Department of Psychology, University of California, Davis, Davis, California
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, Davis, California
| | | |
Collapse
|
14
|
Stolzenberg DS, Mayer HS. Experience-dependent mechanisms in the regulation of parental care. Front Neuroendocrinol 2019; 54:100745. [PMID: 31009675 PMCID: PMC7347228 DOI: 10.1016/j.yfrne.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
Maternal behavior is a defining characteristic of mammals, which is regulated by a core, conserved neural circuit. However, mothering behavior is not always a default response to infant conspecifics. For example, initial fearful, fragmented or aggressive responses toward infants in laboratory rats and mice can give way to highly motivated and organized caregiving behaviors following appropriate hormone exposure or repeated experience with infants. Therefore hormonal and/or experiential factors must be involved in determining the extent to which infants access central approach and avoidance neural systems. In this review we describe evidence supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents. Additionally, we discuss the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States.
| | - Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States
| |
Collapse
|
15
|
Sexually Dimorphic Control of Parenting Behavior by the Medial Amygdala. Cell 2019; 176:1206-1221.e18. [PMID: 30773317 DOI: 10.1016/j.cell.2019.01.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/29/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022]
Abstract
Social behaviors, including behaviors directed toward young offspring, exhibit striking sex differences. Understanding how these sexually dimorphic behaviors are regulated at the level of circuits and transcriptomes will provide insights into neural mechanisms of sex-specific behaviors. Here, we uncover a sexually dimorphic role of the medial amygdala (MeA) in governing parental and infanticidal behaviors. Contrary to traditional views, activation of GABAergic neurons in the MeA promotes parental behavior in females, while activation of this population in males differentially promotes parental versus infanticidal behavior in an activity-level-dependent manner. Through single-cell transcriptomic analysis, we found that molecular sex differences in the MeA are specifically represented in GABAergic neurons. Collectively, these results establish crucial roles for the MeA as a key node in the neural circuitry underlying pup-directed behaviors and provide important insight into the connection between sex differences across transcriptomes, cells, and circuits in regulating sexually dimorphic behavior.
Collapse
|
16
|
Mayer HS, Helton J, Torres LY, Cortina I, Brown WM, Stolzenberg DS. Histone deacetylase inhibitor treatment induces postpartum-like maternal behavior and immediate early gene expression in the maternal neural pathway in virgin mice. Horm Behav 2019; 108:94-104. [PMID: 29499221 PMCID: PMC6135716 DOI: 10.1016/j.yhbeh.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/02/2018] [Accepted: 02/24/2018] [Indexed: 01/29/2023]
Abstract
The peripartum period is associated with the onset of behaviors that shelter, feed and protect young offspring from harm. The neural pathway that regulates caregiving behaviors has been mapped in female rats and is conserved in mice. However, rats rely on late gestational hormones to shift their perception of infant cues from aversive to attractive, whereas laboratory mice are "spontaneously" maternal, but their level of responding depends on experience. For example, pup-naïve virgin female mice readily care for pups in the home cage, but avoid pups in a novel environment. In contrast, pup-experienced virgin mice care for pups in both contexts. Thus, virgin mice rely on experience to shift their perception of infant cues from aversive to attractive in a novel context. We hypothesize that alterations in immediate early gene activation may underlie the experience-driven shift in which neural pathways (fear/avoidance versus maternal/approach) are activated by pups to modulate context-dependent changes in maternal responding. Here we report that the effects of sodium butyrate, a drug that allows for an amplification of experience-induced histone acetylation and gene expression in virgins, are comparable to the natural onset of caregiving behaviors in postpartum mice and induce postpartum-like patterns of immediate early gene expression across brain regions. These data suggest that pups can activate a fear/defensive circuit in mice and experience-driven improvements in caregiving behavior could be regulated in part through decreased activation of this pathway.
Collapse
Affiliation(s)
- Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Jamie Helton
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Lisette Y Torres
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Ignacio Cortina
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Whitney M Brown
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA
| | - Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave. Davis, CA 95616, USA.
| |
Collapse
|
17
|
Tsuneoka Y. Molecular neuroanatomy of the mouse medial preoptic area with reference to parental behavior. Anat Sci Int 2018; 94:39-52. [DOI: 10.1007/s12565-018-0468-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/28/2018] [Indexed: 11/28/2022]
|
18
|
Dobolyi A, Cservenák M, Young LJ. Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Front Neuroendocrinol 2018; 51:102-115. [PMID: 29842887 PMCID: PMC6175608 DOI: 10.1016/j.yfrne.2018.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022]
Abstract
Critically important components of the maternal neural circuit in the preoptic area robustly activated by suckling were recently identified. In turn, suckling also contributes to hormonal adaptations to motherhood, which includes oxytocin release and consequent milk ejection. Other reproductive or social stimuli can also trigger the release of oxytocin centrally, influencing parental or social behaviors. However, the neuronal pathways that transfer suckling and other somatosensory stimuli to the preoptic area and oxytocin neurons have been poorly characterized. Recently, a relay center of suckling was determined and characterized in the posterior intralaminar complex of the thalamus (PIL). Its neurons containing tuberoinfundibular peptide 39 project to both the preoptic area and oxytocin neurons in the hypothalamus. The present review argues that the PIL is a major relay nucleus conveying somatosensory information supporting maternal behavior and oxytocin release in mothers, and may be involved more generally in social cue evoked oxytocin release, too.
Collapse
Affiliation(s)
- Arpad Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, USA.
| |
Collapse
|
19
|
Romero-Morales L, Cárdenas M, Martínez-Torres M, García-Saucedo B, Carmona A, Luis J. Neuronal activation associated with paternal and aversive interactions toward pups in the Mongolian gerbils (Meriones unguiculatus). Horm Behav 2018; 105:47-57. [PMID: 30056092 DOI: 10.1016/j.yhbeh.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Approach/avoid model is used to analyze the neural regulation of maternal behavior in the laboratory rat. This model proposes that the medial preoptic area (mPOA) and bed nucleus of stria terminalis (BNST) are brain regions involved in facilitating mechanisms. By contrast, anterior hypothalamic nucleus (AHN), ventromedial hypothalamic nucleus (VMH), and periaqueductal gray participate in the inhibiting mechanisms of neural regulation of maternal behavior. We hypothesized that there are also facilitating and inhibiting mechanisms in the neural regulation of paternal behavior. Here, we determined which neural areas are activated during paternal and aversive interactions with pups in the Mongolian gerbils (Meriones unguiculatus). By testing paternal behavior, we selected 40 males aggressive toward pups and 20 paternal males. These males were organized into six groups of 10 animals in each group: aggressive males that interacted with pups (AGG-pups) or candy (AGG-candy), paternal males that interacted with pups (PAT-pups) or candy (PAT-candy), and males with testosterone (T)-induced paternal behavior that interacted with pups (IPAT-pups) or candy (IPAT-candy). After interacting with pups or candy, the brains were extracted and analyzed for immunoreactivity (ir) with c-fos. Males that interacted with pups had significantly higher c-fos-ir in the mPOA/BNST than males that interacted with candy. Males that displayed aggression had significantly higher c-fos-ir in the AHN, VMH, and periaqueductal gray than aggressive males that interacted with candy. These results suggest that in the neural regulation of paternal behavior in the Mongolian gerbil underlie positive and negative mechanisms as occurs in maternal behavior.
Collapse
Affiliation(s)
- Luis Romero-Morales
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico; Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Mario Cárdenas
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, Mexico.
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Brenda García-Saucedo
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - Agustín Carmona
- Laboratorio de Biología Experimental, Depto. De Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico.
| | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| |
Collapse
|
20
|
Prolactin-induced and neuronal activation in the brain of mother mice. Brain Struct Funct 2018; 223:3229-3250. [PMID: 29802523 DOI: 10.1007/s00429-018-1686-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/12/2018] [Indexed: 12/18/2022]
Abstract
Nursing has important consequences on mothers. To separate the prolactin-mediated and the neuronally-mediated actions of nursing, neurons directly affected by prolactin were visualized using pSTAT5 immunohistochemistry in relation to Fos-expressing neurons in suckled mother mice. In response to pup exposure following 22-h pup deprivation, we found a markedly elevated number of pSTAT5-containing neurons in several brain regions, including the lateral septum, medial amygdaloid nucleus, subparafascicular area, caudal periaqueductal gray, dorsal raphe, lateral parabrachial nucleus, nucleus of the solitary tract, and the periventricular, medial preoptic, paraventricular, arcuate and ventromedial nuclei of the hypothalamus. Pup exposure also induced Fos expression in all of these brain regions except the arcuate and ventromedial hypothalamic nuclei. Bromocriptine treatment known to reduce prolactin levels eliminated pSTAT5 from most brain regions while it did not affect Fos activation following suckling. The degree of colocalization for pSTAT5 and Fos ranged from 8 to 80% in the different brain regions suggesting that most neurons responding to pup exposure in mother mice are driven either by prolactin or direct neuronal input from the pups, while the number of neurons affected by both types of inputs depends on the examined brain area. In addition, both pSTAT5 and Fos were also double-labeled with estrogen receptor alpha (ERα) in mother mice, which revealed a very high degree of colocalization between pSTAT5 and ERα with much less potential interaction between Fos- and ERα-containing neurons suggesting that estrogen-sensitive neurons are more likely to be affected by prolactin than by direct neuronal activation.
Collapse
|
21
|
Inagaki TK. Neural mechanisms of the link between giving social support and health. Ann N Y Acad Sci 2018; 1428:33-50. [DOI: 10.1111/nyas.13703] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tristen K. Inagaki
- Department of Psychology; University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
22
|
Okabe S, Tsuneoka Y, Takahashi A, Ooyama R, Watarai A, Maeda S, Honda Y, Nagasawa M, Mogi K, Nishimori K, Kuroda M, Koide T, Kikusui T. Pup exposure facilitates retrieving behavior via the oxytocin neural system in female mice. Psychoneuroendocrinology 2017; 79:20-30. [PMID: 28246032 DOI: 10.1016/j.psyneuen.2017.01.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
Abstract
Parental behavior in mammals is innate, but it is also facilitated by social experience, specifically social interactions between the parent and infant. Social interactions with infants also induce the alloparental behavior of virgin animals. Oxytocin (OT) plays an important role in mediating alloparental behavior. Although parental behavior is modulated by the medial preoptic area (MPOA) and adjacent regions, it is unclear how OT acts in these regions as a control mechanism of alloparental behavior promoted by adult-pup interaction. The aim of this study was to investigate the role of OT for facilitating effects of adult-pup interactions on alloparental behavior via neural activity of preoptic area (POA), including MPOA and adjacent area. For this purpose, we conducted behavioral tests and examined the neural activity of the OT system in POA. Virgin female mice that were repeatedly exposed to pups showed shorter retrieving latencies and higher number of c-Fos expressing neurons in POA, particular in lateral preoptic area (LPO) compared to control animals that were exposed to pups only one time. In addition, repeated pup exposure increased the proportion of OT neurons and OTR neurons expressing c-Fos in POA. The concentration of OT also significantly increased in the POA. Finally, infusion of an OT antagonist into the POA area blocked the facilitating effects of repeated pup exposure on retrieving behavior. These results demonstrated that the facilitating effects of repeated pup exposure on alloparental behavior occurred via an organizational role of the OT system.
Collapse
Affiliation(s)
- Shota Okabe
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Toho University School of Medicine, Tokyo, 143-8540 Japan
| | - Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Japan; Department of Genetics, SOKENDAI, Mishima, Japan
| | - Rumi Ooyama
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Akiyuki Watarai
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Sayaka Maeda
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Yuka Honda
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Miho Nagasawa
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Masaru Kuroda
- Department of Anatomy, Toho University School of Medicine, Tokyo, 143-8540 Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Japan; Department of Genetics, SOKENDAI, Mishima, Japan
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan.
| |
Collapse
|
23
|
Gómora-Arrati P, Dominguez G, Ågmo A. GABA Receptors in the Medial Preoptic Area Modulate the Onset of Oestradiol-Induced Maternal Behaviour in Hysterectomised-Ovariectomised, Pregnant Rats. J Neuroendocrinol 2016; 28. [PMID: 27631525 DOI: 10.1111/jne.12434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 11/30/2022]
Abstract
We studied the participation of GABA neurotransmission in the medial preoptic area (mPOA) with respect to the onset of the pup retrieval response and nest building. Pregnant female rats were implanted with bilateral cannulae in the mPOA on day 12 of pregnancy and, on day 16, the females were hysterectomised and ovariectomised and given 200 μg/kg of oestradiol benzoate. Two days later, the females received one of the following intracerebral drug treatments: GABAB agonist baclofen (200 ng); GABAB antagonist phaclofen (1 μg); GABAA antagonist bicuculline (60 ng); or physiological saline. Five minutes after intracerebral infusion, three foster pups were introduced into the females' home cage. The subjects were observed for pup grouping (retrieval) during 15 min, after which the pups were left with the female. During the next 12 h, an observation was made every 1 h to determine whether the pups had been grouped (retrieved) or not. The GABAB agonist baclofen reduced the proportion of females retrieving pups from 4 to 8 h following pup introduction. By contrast, both the GABAA antagonist bicuculline and the GABAB antagonist phaclofen enhanced the proportion of females retrieving pups during the first 3 h of observation. The latency to pup retrieval in subjects treated with the GABAB agonist baclofen was significantly longer than that in subjects given any of the antagonists. All females built a nest but baclofen reduced nest quality. These data show that activation of GABAB receptors in the mPOA has an inhibitory effect on basic maternal behaviours, whereas blockade of either the GABAA or GABAB receptor facilitates pup retrieval. It is possible that reduced GABAergic tone in the mPOA is a key element in the initiation of maternal behaviours in postparturient rats.
Collapse
Affiliation(s)
- P Gómora-Arrati
- Centro de Investigación en Reproducción Animal, CINVESTAV-UAT, Tlaxcala, Mexico
| | - G Dominguez
- Centro de Investigación en Reproducción Animal, CINVESTAV-UAT, Tlaxcala, Mexico
| | - A Ågmo
- Department of Psychology, University of Tromsø, Tromsø, Norway
| |
Collapse
|
24
|
Slattery DA, Hillerer KM. The maternal brain under stress: Consequences for adaptive peripartum plasticity and its potential functional implications. Front Neuroendocrinol 2016; 41:114-28. [PMID: 26828151 DOI: 10.1016/j.yfrne.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
The peripartum period represents a time during which all mammalian species undergo substantial physiological and behavioural changes, which prepare the female for the demands of motherhood. In addition to behavioural and physiological alterations, numerous brain regions, such as the medial prefrontal cortex, olfactory bulb, medial amygdala and hippocampus are subject to substantial peripartum-associated neuronal, dendritic and synaptic plasticity. These changes, which are temporally- and spatially-distinct, are strongly influenced by gonadal and adrenal hormones, such as estrogen and cortisol/corticosterone, which undergo dramatic fluctuations across this period. In this review, we describe our current knowledge regarding these plasticity changes and describe how stress affects such normal adaptations. Finally, we discuss the mechanisms potentially underlying these neuronal, dendritic and synaptic changes and their functional relevance for the mother and her offspring.
Collapse
Affiliation(s)
- David A Slattery
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
25
|
Alvisi RD, Diniz GB, Da-Silva JM, Bittencourt JC, Felicio LF. Suckling-induced Fos activation and melanin-concentrating hormone immunoreactivity during late lactation. Life Sci 2016; 148:241-6. [PMID: 26874026 DOI: 10.1016/j.lfs.2016.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/15/2023]
Abstract
AIMS Melanin-concentrating hormone (MCH) is implicated in the control of food intake, body weight regulation and energy homeostasis. Lactation is an important physiological model to study the hypothalamic integration of peripheral sensory signals, such as suckling stimuli and those related to energy balance. MCH can be detected in the medial preoptic area (MPOA), especially around the 19th day of lactation, when this hormone is described as displaying a peak synthesis followed by a decrease after weaning. The physiological significance of this phenomenon is unclear. Therefore, we aimed to investigate hypothalamic changes associated to sensory stimulation by the litter, in special its influence over MCH synthesis. MAIN METHODS Female Wistar rats (n=56) were euthanized everyday from lactation days 15-21, with or without suckling stimulus (WS and NS groups, respectively). MCH and Fos immunoreactivity were evaluated in the MPOA and lateral and incerto-hypothalamic areas (LHA and IHy). KEY FINDINGS Suckling stimulus induced Fos synthesis in all regions studied. An increase on the number of suckling-induced Fos-ir neurons could be detected in the LHA after the 18th day. Conversely, the amount of MCH decreased in the MPOA from days 15-21, independent of suckling stimulation. No colocalization between MCH and Fos could be detected in any region analyzed. SIGNIFICANCE Suckling stimulus is capable of stimulating hypothalamic regions not linked to maternal behavior, possibly to mediate energy balance aspects of lactation. Although dams are hyperphagic before weaning, this behavioral change does not appear to be mediated by MCH.
Collapse
Affiliation(s)
- R D Alvisi
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - G B Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - J M Da-Silva
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - J C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo, Sao Paulo 05508-030, Brazil
| | - L F Felicio
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil.
| |
Collapse
|
26
|
Olazábal DE, Alsina-Llanes M. Are age and sex differences in brain oxytocin receptors related to maternal and infanticidal behavior in naïve mice? Horm Behav 2016; 77:132-40. [PMID: 25910577 DOI: 10.1016/j.yhbeh.2015.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/04/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022]
Abstract
This article is part of a Special Issue "Parental Care". There is significant variability in the behavioral responses displayed by naïve young and adult mice when first exposed to pups. This variability has been associated with differences in the expression of oxytocin receptors (OXTRs) in the brain in several species. Experiment I investigated the behavioral responses of juvenile, adolescent, and adult CB57BL/6 males and females when first exposed to pups. We found an age increase in maternal females (11% of juveniles, 20% of adolescents, and 50% of young adults), and infanticidal males (0% of juveniles, 30% of adolescents, 44.5% of young adults, and 100% of older adults). Experiment II investigated OXTR density in the brain of juvenile and adult mice. Our results revealed an age decline in the density of OXTR in several brain regions, including the lateral septum, cingulated and posterior paraventricular thalamic nucleus in both males and females. Adult females had higher OXTR density in the ventromedial nucleus/postero-ventral hypothalamus (VMH) and the accessory olfactory bulb (AOB), but lower density in the ventral region of the lateral septum (LSv) than juveniles. Males had lower OXTR density in the anterior olfactory area (AOA) compared to juveniles. No age or sex differences were found in the medial preoptic area, and amygdaloid nuclei, among other brain regions. This study suggests that 1) maturation of parental and infanticidal behavioral responses is not reached until adulthood; 2) the pattern of development of OXTR in the mouse brain is unique, region specific, and differs from that observed in other rodents; 3) either up or down regulation of OXTR in a few brain regions (VMH/AOB/LSv/AOA) might contribute to age or sex differences in parental or infanticidal behavior.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR, Montevideo, Uruguay.
| | | |
Collapse
|
27
|
Brusco J, Merlo S, Ikeda ÉT, Petralia RS, Kachar B, Rasia-Filho AA, Moreira JE. Inhibitory and multisynaptic spines, and hemispherical synaptic specialization in the posterodorsal medial amygdala of male and female rats. J Comp Neurol 2015; 522:2075-88. [PMID: 24318545 DOI: 10.1002/cne.23518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 12/23/2022]
Abstract
The density of dendritic spines is sexually dimorphic and variable throughout the female estrous cycle in the rat posterodorsal medial amygdala (MePD), a relevant area for the modulation of reproductive behavior in rats. The local synaptic activity differs between hemispheres in prepubertal animals. Here we used serial section transmission electron microscopy to produce 3D reconstructions of dendritic shafts and spines to characterize synaptic contacts on MePD neurons of both hemispheres in adult males and in females along the estrous cycle. Pleomorphic spines and nonsynaptic filopodia occur in the MePD. On average, 8.6% of dendritic spines received inputs from symmetric gamma-aminobutyric acid (GABA)-immunoreactive terminals, whereas 3.6% received two synaptic contacts on the spine head, neck, or base. Presynaptic terminals in female right MePD had a higher density of synaptic vesicles and docked vesicles than the left MePD, suggesting a higher rate of synaptic vesicle release in the right MePD of female rats. In contrast, males did not show laterality in any of those parameters. The proportion of putative inhibitory synapses on dendritic shafts in the right MePD of females in proestrus was higher than in the left MePD, and higher than in the right MePD in males, or in females in diestrus or estrus. This work shows synaptic laterality depending on sex and estrous cycle phase in mature MePD neurons. Most likely, sexual hormone effects are lateralized in this brain region, leading to higher synaptic activity in the right than in the left hemisphere of females, mediating timely neuroendocrine and social/reproductive behavior.
Collapse
Affiliation(s)
- Janaina Brusco
- Department of Neuroscience and Behavior, University of São Paulo, School of Medicine at Ribeirão Preto, Ribeirão Preto, SP, 14049-900, Brazil; National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Chambers JE, Greim H, Kendall RJ, Segner H, Sharpe RM, Van Der Kraak G. Human and ecological risk assessment of a crop protection chemical: a case study with the azole fungicide epoxiconazole. Crit Rev Toxicol 2013; 44:176-210. [DOI: 10.3109/10408444.2013.855163] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Olazábal DE, Pereira M, Agrati D, Ferreira A, Fleming AS, González-Mariscal G, Lévy F, Lucion AB, Morrell JI, Numan M, Uriarte N. Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neurosci Biobehav Rev 2013; 37:1875-92. [PMID: 23608126 DOI: 10.1016/j.neubiorev.2013.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/08/2013] [Indexed: 12/30/2022]
Abstract
Maternal behavior is species-specific and expressed under different physiological conditions, and contexts. It is the result of neural processes that support different forms (e.g. postpartum, cycling sensitized and spontaneous maternal behavior) and modalities of mother-offspring interaction (e.g. maternal interaction with altricial/precocious young; selective/non-selective bond). To understand how the brain adapts to and regulates maternal behavior in different species, and physiological and social conditions we propose new neural models to explain different forms of maternal expression (e.g. sensitized and spontaneous maternal behavior) and the behavioral changes that occur across the postpartum period. We emphasize the changing role of the medial preoptic area in the neural circuitry that supports maternal behavior and the cortical regulation and adjustment of ongoing behavioral performance. Finally, we discuss how our accumulated knowledge about the psychobiology of mothering in animal models supports the validity of animal studies to guide our understanding of human mothering and to improve human welfare and health.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Avda. Gral. Flores 2125, CP 11800, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO. Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 2013; 521:1633-63. [DOI: 10.1002/cne.23251] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/05/2012] [Accepted: 10/25/2012] [Indexed: 01/20/2023]
|
31
|
siRNA silencing of estrogen receptor-α expression specifically in medial preoptic area neurons abolishes maternal care in female mice. Proc Natl Acad Sci U S A 2012; 109:16324-9. [PMID: 22988120 DOI: 10.1073/pnas.1214094109] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The medial preoptic area has been shown to be intricately involved in many behaviors, including locomotion, sexual behavior, maternal care, and aggression. The gene encoding estrogen receptor-α (ERα) protein is expressed in preoptic area neurons, and a very dense immunoreactive field of ERα is found in the preoptic region. ERα knockout animals show deficits in maternal care and sexual behavior and fail to exhibit increases in these behaviors in response to systemic estradiol treatment. In the present study, we used viral-vector mediated RNA interference to silence ERα expression specifically in the preoptic area of female mice and measured a variety of behaviors, including social and sexual aggression, maternal care, and arousal activity. Suppression of ERα in the preoptic area almost completely abolished maternal care, significantly increasing the latency to pup retrieval and significantly reducing the time the moms spent nursing and licking the pups. Strikingly, maternal aggression toward a male intruder was not different between control and preoptic ERα-silenced mice, demonstrating the remarkably specific role of ERα in these neurons. Reduction of ERα expression in preoptic neurons significantly decreased sexual behavior in female mice and increased aggression toward both sexual partners and male intruders in a seminatural environment. Estrogen-dependent increases in arousal, measured by home cage activity, were not mediated by ERα expression in the preoptic neurons we targeted, as ERα-suppressed mice had increases similar to control mice. Thus, we have established that a specific gene in a specific group of neurons is required for a crucially important natural behavior.
Collapse
|
32
|
Hahn JD, Swanson LW. Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol 2012; 520:1831-90. [PMID: 22488503 DOI: 10.1002/cne.23064] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The connections of the lateral hypothalamic area juxtadorsomedial region (LHAjd) were investigated in a series of pathway-tracing experiments involving iontophoretic co-injection of the tracers Phaseolus vulgaris-leucoagglutinin (PHA-L; for outputs) and cholera toxin B subunit (CTB; for inputs). Results revealed that the LHAjd has connections with some 318 distinct gray matter regions encompassing all four subsystems-motor, sensory, cognitive, and behavioral state-included in a basic structure-function network model of the nervous system. Integration of these subsystems is necessary for the coordination and control of emotion and behavior, and in that regard the connections of the LHAjd indicate that it may have a prominent role. Furthermore, the LHAjd connections, together with the connections of other LHA differentiations studied similarly to date, indicate a distinct topographic organization that suggests each LHA differentiation has specifically differing degrees of involvement in the control of multiple behaviors. For the LHAjd, its involvement to a high degree in the control of defensive behavior, and to a lesser degree in the control of other behaviors, including ingestive and reproductive, is suggested. Moreover, the connections of the LHAjd suggest that its possible role in the control of these behaviors may be very broad in scope because they involve the somatic, neuroendocrine, and autonomic divisions of the nervous system. In addition, we suggest that connections between LHA differentiations may provide, at the level of the hypothalamus, a neuronal substrate for the coordinated control of multiple themes in the behavioral repertoire.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.
| | | |
Collapse
|
33
|
Geissler DB, Sabine Schmidt H, Ehret G. Limbic brain activation for maternal acoustic perception and responding is different in mothers and virgin female mice. ACTA ACUST UNITED AC 2012; 107:62-71. [PMID: 22728471 DOI: 10.1016/j.jphysparis.2012.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022]
Abstract
Mothers are primed to become maternal through hormonal changes during pregnancy and delivery of young, virgin females need experience with young for performing maternally. The activation of brain areas controlling maternal behavior can be studied by stimulus-induced expression of the immediate-early gene Fos and immunocytochemical labeling of the FOS protein in activated cells. With this technique we identified areas of the mouse limbic system stimulated by acoustically adequate or inadequate models of pup ultrasounds that, if perceived as adequate, direct the search for lost pups (phonotaxis). Behavioral observations and neural activation data suggest that adequate (50 kHz long tones) and inadequate ultrasound models (50 kHz short or 20 kHz long tones) are differently processed in limbic areas of mothers and virgin females with 1 or 5 days of pup-caring experience depending on the news value and the recognition of the stimuli: High numbers of FOS-positive cells in the medial preoptic area, lateral septum, and bed nucleus of the stria terminalis (mothers and virgins) relate to the salience (news value) of the perceived sounds; contextual stress may be reflected by high activation in parts of the amygdala and the ventromedial hypothalamus (virgins); high activation in the piriform cortex suggests associative learning of adequate sounds and in the entorhinal cortex remembering associations of adequate sounds with pups (virgins). Thus brain areas were differently activated in animals with maternal emotions, however different responses to pup cues depending on how they got primed to behave maternally and on how they evaluated the stimulation context.
Collapse
Affiliation(s)
- Diana B Geissler
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - H Sabine Schmidt
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| |
Collapse
|
34
|
de Paula D, Torricelli A, Lopreato M, Nascimento J, Viana M. 5-HT2A receptor activation in the dorsolateral septum facilitates inhibitory avoidance in the elevated T-maze. Behav Brain Res 2012; 226:50-5. [DOI: 10.1016/j.bbr.2011.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/22/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
|
35
|
Dobolyi A. Novel potential regulators of maternal adaptations during lactation: tuberoinfundibular peptide 39 and amylin. J Neuroendocrinol 2011; 23:1002-8. [PMID: 21418340 DOI: 10.1111/j.1365-2826.2011.02127.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maternal adaptations during lactation include milk synthesis and ejection, the appearance of maternal behaviours, reduced stress response, suppression of the ovarian cycle, and increased food and fluid intake. Several recently identified neuropeptides may participate in these adaptations, and we focus on two of them in the present study: tuberoinfundibular peptide of 39 residues (TIP39) and amylin. TIP39 is the ligand of the parathyroid hormone 2 receptor (PTH2 receptor) is induced in the posterior intralaminar complex of the thalamus (PIL) during lactation. TIP39 neurones in the PIL are activated in mother rats in response to pup exposure and project to preoptic, periventricular, paraventricular, arcuate and dorsomedial regions of the hypothalamus. Furthermore, an antagonist of the PTH2 receptor reduced suckling induced prolactin release. On the basis of their projections, TIP39 neurones might interact with additional neurones involved in maternal adaptations, including kisspeptin neurones participating in the control of gonadotrophin-releasing hormone function. TIP39 fibres might also interact with amylin, a peptide that we recently identified to appear in the preoptic area of rat dams. On the basis of its distribution, preoptic amylin could play a role in the control of maternal behaviours. We hypothesise that TIP39 neurones mediate the effects of suckling on different hypothalamic systems to affect maternal adaptations.
Collapse
Affiliation(s)
- A Dobolyi
- Department of Anatomy, Histology and Embryology, Neuromorphological and Neuroendocrine Research Laboratory, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
36
|
Clinton SM, Kerman IA, Orr HR, Bedrosian TA, Abraham AD, Simpson DN, Watson SJ, Akil H. Pattern of forebrain activation in high novelty-seeking rats following aggressive encounter. Brain Res 2011; 1422:20-31. [PMID: 21974861 DOI: 10.1016/j.brainres.2011.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/11/2011] [Accepted: 08/14/2011] [Indexed: 12/12/2022]
Abstract
We have previously demonstrated that selectively-bred High (bHR) and Low (bLR) novelty-seeking rats exhibit agonistic differences, with bHRs acting in a highly aggressive manner when facing homecage intrusion. In order to discover the specific neuronal pathways responsible for bHRs' high levels of aggression, the present study compared c-fos mRNA expression in several forebrain regions of bHR/bLR males following this experience. bHR/bLR males were housed with female rats for 2 weeks, and then the females were replaced with a male intruder for 10 min. bHR/bLR residents were subsequently sacrificed by rapid decapitation, and their brains were removed and processed for c-fos in situ hybridization. Intrusion elicited robust c-fos mRNA expression in both phenotypes throughout the forebrain, including the septum, amygdala, hippocampus, cingulate cortex, and the hypothalamus. However, bHRs and bLRs exhibited distinct activation patterns in select areas. Compared to bHR rats, bLRs expressed greater c-fos in the lateral septum and within multiple hypothalamic nuclei, while bHRs showed greater activation in the arcuate hypothalamic nucleus and in the hippocampus. No bHR/bLR differences in c-fos expression were detected in the amygdala, cortical regions, and striatum. We also found divergent 5-HT1A receptor mRNA expression within some of these same areas, with bLRs having greater 5-HT1A, but not 5-HT1B, receptor mRNA levels in the septum, hippocampus and cingulate cortex. These findings, together with our earlier work, suggest that bHRs exhibit altered serotonergic functioning within select circuits during an aggressive encounter.
Collapse
Affiliation(s)
- Sarah M Clinton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Maras PM, Petrulis A. The anterior medial amygdala transmits sexual odor information to the posterior medial amygdala and related forebrain nuclei. Eur J Neurosci 2010; 32:469-82. [PMID: 20704594 DOI: 10.1111/j.1460-9568.2010.07289.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Syrian hamsters, reproductive behavior relies on the perception of chemical signals released from conspecifics. The medial amygdala (MEA) processes sexual odors through functionally distinct, but interconnected, sub-regions; the anterior MEA (MEAa) appears to function as a chemosensory filter to distinguish between opposite-sex and same-sex odors, whereas the posterodorsal MEA (MEApd) is critical for generating attraction specifically to opposite-sex odors. To identify how these sub-regions interact during odor processing, we measured odor-induced Fos expression, an indirect marker of neuronal activation, in the absence of either MEAa or MEApd processing. In Experiment 1, electrolytic lesions of the MEAa decreased Fos expression throughout the posterior MEA in male hamsters exposed to either female or male odors, whereas MEApd lesions had no effect on Fos expression within the MEAa. These results indicate that the MEAa normally enhances processing of sexual odors within the MEApd and that this interaction is primarily unidirectional. Furthermore, lesions of the MEAa, but not the MEApd, decreased Fos expression within several connected forebrain nuclei, suggesting that the MEAa provides the primary excitatory output of the MEA during sexual odor processing. In Experiment 2, we observed a similar pattern of decreased Fos expression, using fiber-sparing, NMDA lesions of the MEAa, suggesting that the decreases in Fos expression were not attributable exclusively to damage to passing fibers. Taken together, these results provide the first direct test of how the different sub-regions within the MEA interact during odor processing, and highlight the role of the MEAa in transmitting sexual odor information to the posterior MEA, as well as to related forebrain nuclei.
Collapse
Affiliation(s)
- Pamela M Maras
- Georgia State University, Neuroscience Institute, Atlanta, GA 30302-5030, USA.
| | | |
Collapse
|
38
|
Smith KS, Morrell JI. Behavioral differences between late preweanling and adult female Sprague-Dawley rat exploration of animate and inanimate stimuli and food. Behav Brain Res 2010; 217:326-36. [PMID: 21056059 DOI: 10.1016/j.bbr.2010.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/27/2010] [Indexed: 01/10/2023]
Abstract
The late preweanling rat has potential as a preclinical model for disorders initially manifested in early childhood that are characterized by dysfunctional interactions with specific stimuli (e.g., obsessive-compulsive disorder and autism). No reports, however, of specific-stimulus exploration in the late preweanling rat are found in the literature. We examined the behavioral responses of normal late preweanling (PND 18-19) and adult rats when presented with exemplars of categorically-varied stimuli, including inanimate objects systematically varied in size and interactive properties, biological stimuli, and food. Preweanlings were faster to initiate specific stimulus exploration and were more interactive with most specific stimuli than adults; the magnitude of these preweanling-adult quantitative differences ranged from fairly small to very large depending upon the stimulus. In contrast, preweanlings were adult-like in their interaction with food and prey. Preweanling response to some stimuli, for example to live pups, was qualitatively different from that of adults; the preweanling behavioral repertoire was characterized by pup-seeking while the adult response was characterized by pup-avoidance. The specific stimulus interactions of preweanlings were less impacted than those of adults by the time of day of testing and placement of a stimulus in an anxiety-provoking location. The impact of novelty was stimulus dependent. The differences in interactions of preweanlings versus adults with specific stimuli suggests that CNS systems underlying these behavior patterns are at different stages of immaturity at PND 18 such that there may be an array of developmental trajectories for various categories of specific stimuli. These data provide a basis for the use of the preweanling as a preclinical model for understanding and medicating human disorders during development that are characterized by dysfunctional interactions with specific stimuli.
Collapse
Affiliation(s)
- Kiersten S Smith
- Department of Psychiatry, Harvard Medical School, Belmont, MA 02478, USA.
| | | |
Collapse
|
39
|
de Jong T, Measor K, Chauke M, Harris B, Saltzman W. Brief pup exposure induces Fos expression in the lateral habenula and serotonergic caudal dorsal raphe nucleus of paternally experienced male California mice (Peromyscus californicus). Neuroscience 2010; 169:1094-104. [DOI: 10.1016/j.neuroscience.2010.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/28/2010] [Accepted: 06/07/2010] [Indexed: 12/31/2022]
|
40
|
Anatomical connections between the anterior and posterodorsal sub-regions of the medial amygdala: integration of odor and hormone signals. Neuroscience 2010; 170:610-22. [PMID: 20620195 DOI: 10.1016/j.neuroscience.2010.06.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 12/25/2022]
Abstract
In many rodent species, such as Syrian hamsters, reproductive behavior requires neural integration of chemosensory information and steroid hormone cues. The medial amygdala processes both of these signals through anatomically distinct sub-regions; the anterior region (MeA) receives substantial chemosensory input, but contains few steroid receptor-labeled neurons, whereas the posterodorsal region (MePD) receives less chemosensory input, but contains dense populations of androgen and estrogen receptors. Importantly, these sub-regions have considerable reciprocal connections, and previous studies in our laboratory have shown that functional interactions between MeA and MePD are required for the preference to investigate opposite-sex odors in male hamsters. We therefore hypothesized that chemosensory and hormone signals are conveyed directly between MeA and MePD. To test this hypothesis, we injected the retrograde tracer, cholera toxin B (CTB), into either MeA or MePD of male subjects and identified whether retrogradely labeled cells within MePD or MeA, respectively, expressed (1) Fos protein following exposure to female or male odors or (2) androgen receptors (AR). Approximately 36% of CTB-labeled cells within MeA (that project to MePD) also expressed Fos following exposure to either social odor, compared to the only 13% of CTB-labeled cells within MePD (that project to MeA) that also expressed odor-induced Fos. In contrast, 57% of CTB-labeled cells within MePD also contained AR, compared to the 28% of CTB-labeled cells within MeA that were double-labeled for AR/CTB. These results provide the first anatomical evidence that chemosensory and hormone cues are conveyed directly between MeA and MePD. Furthermore, these data suggest that chemosensory information is conveyed primarily from MeA to MePD, whereas hormone information is conveyed primarily from MePD to MeA. More broadly, the interactions between MeA and MePD may represent a basic mechanism by which the brain integrates information about social cues in the environment with hormonal indices of reproductive state.
Collapse
|
41
|
Strathearn L, Mayes LC. Cocaine addiction in mothers: potential effects on maternal care and infant development. Ann N Y Acad Sci 2010; 1187:172-83. [PMID: 20201853 DOI: 10.1111/j.1749-6632.2009.05142.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Maternal cocaine addiction is a significant public health issue particularly affecting children, with high rates of reported abuse, neglect, and foster care placement. This review examines both preclinical and clinical evidence for how cocaine abuse may affect maternal care and infant development, exploring brain, behavioral, and neuroendocrine mechanisms. There is evidence that cocaine affects infant development both directly, via in utero exposure, and indirectly via alterations in maternal care. Two neural systems known to play an important role in both maternal care and cocaine addiction are the oxytocin and dopamine systems, mediating social and reward-related behaviors and stress reactivity. These same neural mechanisms may also be involved in the infant's development of vulnerability to addiction. Understanding the neuroendocrine pathways involved in maternal behavior and addiction may help facilitate earlier, more effective interventions to help substance-abusing mothers provide adequate care for their infant and perhaps prevent the intergenerational transmission of risk.
Collapse
Affiliation(s)
- Lane Strathearn
- The Meyer Center for Developmental Pediatrics, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas 77030-2399, USA.
| | | |
Collapse
|
42
|
Febo M, Felix-Ortiz AC, Johnson TR. Inactivation or inhibition of neuronal activity in the medial prefrontal cortex largely reduces pup retrieval and grouping in maternal rats. Brain Res 2010; 1325:77-88. [PMID: 20156425 DOI: 10.1016/j.brainres.2010.02.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/02/2010] [Accepted: 02/06/2010] [Indexed: 12/19/2022]
Abstract
Previous research suggests that the maternal medial prefrontal cortex (mPFC) may play a role in maternal care and that cocaine sensitization before pregnancy can affect neuronal activity within this region. The present work was carried out to test whether the mPFC does actually play a role in the expression of maternal behaviors in the rats and to understand what specific behaviors this cortical area may modulate. In the first experiment, tetrodotoxin (TTX) was used to chemically inactivate the mPFC during tests for maternal behavior latencies. Lactating rats were tested on postpartum days 7-9. The results of this first experiment indicate that there is a large effect of TTX-induced inactivation on retrieval behavior latencies. TTX nearly abolished the expression of maternal retrieval of pups without significantly impairing locomotor activity. In the second experiment, GABA-mediated inhibition was used to test maternal behavior latencies and durations of maternal and other behaviors in postpartum dams. In agreement with experiment 1, it was observed that dams capable of retrieving are rendered incapable by inhibition in the mPFC. GABA-mediated inhibition in the mPFC largely reduced retrieval without altering other indices of maternal care and non-specific behavior such as ambulation time, self-grooming, and inactivity. Moreover, in both experiments, dams were able to establish contact with pups within seconds. The overall results indicate that the mPFC may play an active role in modulating maternal care, particularly retrieval behavior. External factors that affect the function of the frontal cortical site may result in significant impairments in maternal goal-directed behavior as reported in our earlier work.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
43
|
|
44
|
Goodson JL, Kabelik D. Dynamic limbic networks and social diversity in vertebrates: from neural context to neuromodulatory patterning. Front Neuroendocrinol 2009; 30:429-441. [PMID: 19520105 PMCID: PMC2763925 DOI: 10.1016/j.yfrne.2009.05.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 05/11/2009] [Accepted: 05/22/2009] [Indexed: 11/19/2022]
Abstract
Vertebrate animals exhibit a spectacular diversity of social behaviors, yet a variety of basic social behavior processes are essential to all species. These include social signaling; discrimination of conspecifics and sexual partners; appetitive and consummatory sexual behaviors; aggression and dominance behaviors; and parental behaviors (the latter with rare exceptions). These behaviors are of fundamental importance and are regulated by an evolutionarily conserved, core social behavior network (SBN) of the limbic forebrain and midbrain. The SBN encodes social information in a highly dynamic, distributed manner, such that behavior is most strongly linked to the pattern of neural activity across the SBN, not the activity of single loci. Thus, shifts in the relative weighting of activity across SBN nodes can conceivably produce almost limitless variation in behavior, including diversity across species (as weighting is modified through evolution), across behavioral contexts (as weights change temporally) and across behavioral phenotypes (as weighting is specified through heritable and developmental processes). Individual neural loci may also express diverse relationships to behavior, depending upon temporal variations in their functional connectivity to other brain regions ("neural context"). We here review the basic properties of the SBN and show how behavioral variation relates to functional connectivity of the network, and discuss ways in which neuroendocrine factors adjust network activity to produce behavioral diversity. In addition to the actions of steroid hormones on SBN state, we examine the temporally plastic and evolutionarily labile properties of the nonapeptides (the vasopressin- and oxytocin-like neuropeptides), and show how variations in nonapeptide signaling within the SBN serve to promote behavioral diversity across social contexts, seasons, phenotypes and species. Although this diversity is daunting in its complexity, the search for common "organizing principles" has become increasingly fruitful. We focus on multiple aspects of behavior, including sexual behavior, aggression and affiliation, and in each of these areas, we show how broadly relevant insights have been obtained through the examination of behavioral diversity in a wide range of vertebrate taxa.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - David Kabelik
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
45
|
Buntin L, Berghman LR, Buntin JD. Patterns of fos-like immunoreactivity in the brains of parent ring doves (Streptopelia risoria) given tactile and nontactile exposure to their young. Behav Neurosci 2009; 120:651-64. [PMID: 16768617 DOI: 10.1037/0735-7044.120.3.651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal activation was examined by fos immunohistochemistry in ring doves (Streptopelia risoria) reunited with their young after overnight separation. In an initial study, squab-exposed parents showed more fos immunoreactivity (ir) in the preoptic area (POA) and lateral hypothalamus (LH) than squab-deprived parents. In a 2nd study, parents allowed free access to young and those separated from young by a wire mesh partition showed more fos-ir in the POA, LH, and lateral septum than box-exposed controls. Contact with young also increased fos-ir in the medial preoptic nucleus and bed nucleus of the stria terminalis, but noncontact exposure did not. Conversely, nontactile squab exposure stimulated more fos-ir in the POA than did free access to young, which suggests POA involvement in appetitive aspects of parenting.
Collapse
Affiliation(s)
- Linda Buntin
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | | |
Collapse
|
46
|
Furuta M, Bridges RS. Effects of maternal behavior induction and pup exposure on neurogenesis in adult, virgin female rats. Brain Res Bull 2009; 80:408-13. [PMID: 19712726 DOI: 10.1016/j.brainresbull.2009.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
Abstract
The states of pregnancy and lactation bring about a range of physiological and behavioral changes in the adult mammal that prepare the mother to care for her young. Cell proliferation increases in the subventricular zone (SVZ) of the female rodent brain during both pregnancy and lactation when compared to that in cycling, diestrous females. In the present study, the effects of maternal behavior induction and pup exposure on neurogenesis in nulliparous rats were examined in order to determine whether maternal behavior itself, independent of pregnancy and lactation, might affect neurogenesis. Adult, nulliparous, Sprague-Dawley, female rats were exposed daily to foster young in order to induce maternal behavior. Following the induction of maternal behavior each maternal subject plus females that were exposed to pups for a comparable number of test days, but did not display maternal behavior, and subjects that had received no pup exposure were injected with bromodeoxyuridine (BrdU, 90 mg/kg, i.v.). Brain sections were double-labeled for BrdU and the neural marker, NeuN, to examine the proliferating cell population. Increases in the number of double-labeled cells were found in the maternal virgin brain when compared with the number of double-labeled cells present in non-maternal, pup-exposed nulliparous rats and in females not exposed to young. No changes were evident in the dentate gyrus of the hippocampus as a function of maternal behavior. These data indicate that in nulliparous female rats maternal behavior itself is associated with the stimulation of neurogenesis in the SVZ.
Collapse
Affiliation(s)
- Miyako Furuta
- Department of Biomedical Sciences, Tufts University - Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, United States
| | | |
Collapse
|
47
|
de Jong TR, Chauke M, Harris BN, Saltzman W. From here to paternity: neural correlates of the onset of paternal behavior in California mice (Peromyscus californicus). Horm Behav 2009; 56:220-31. [PMID: 19433091 DOI: 10.1016/j.yhbeh.2009.05.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/25/2009] [Accepted: 05/02/2009] [Indexed: 01/03/2023]
Abstract
In a minority of mammalian species, including humans, fathers play a significant role in infant care. Compared to maternal behavior, the neural and hormonal bases of paternal care are poorly understood. We analyzed behavioral, neuronal and neuropeptide responses towards unfamiliar pups in biparental California mice, comparing males housed with another male ("virgin males") or with a female before ("paired males") or after ("new fathers") the birth of their first litter. New fathers approached pups more rapidly and spent more time engaging in paternal behavior than virgin males. In each cage housing two virgin males, one was spontaneously paternal and one was not. New fathers and paired males spent more time sniffing and touching a wire mesh ball containing a newborn pup than virgin males. Only new fathers showed significantly increased Fos-like immunoreactivity in the medial preoptic nucleus (MPO) following exposure to a pup-containing ball, as compared to an empty ball. Moreover, Fos-LIR in the bed nucleus of the stria terminalis (STMV and STMPM) and caudal dorsal raphe nucleus (DRC) was increased in new fathers, independent of test condition. No differences were found among the groups in Fos-LIR in oxytocinergic or vasopressinergic neurons. These results suggest that sexual and paternal experiences facilitate paternal behavior, but other cues play a role as well. Paternal experience increases Fos-LIR induced by distal pup cues in the MPO, but not in oxytocin and vasopressin neurons. Fatherhood also appears to alter neurotransmission in the BNST and DRC, regions implicated in emotionality and stress-responsiveness.
Collapse
Affiliation(s)
- Trynke R de Jong
- Department of Biology, 3386 Spieth Hall, University of California, Riverside, Riverside, CA 92527, USA.
| | | | | | | |
Collapse
|
48
|
Maney DL, Goode CT, Lange HS, Sanford SE, Solomon BL. Estradiol modulates neural responses to song in a seasonal songbird. J Comp Neurol 2008; 511:173-86. [PMID: 18770869 DOI: 10.1002/cne.21830] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Social behaviors such as courtship, parenting, and aggression depend primarily on two factors: a social signal to trigger the behavior, and a hormonal milieu that facilitates or permits it. Gonadal steroids may alter the valence or perceived context of the signal so that the same pheromone, vocalization, or visual display may elicit very different responses depending on the receiver's plasma hormone level. The neural processes underlying this phenomenon, however, are not well understood. Here, we describe how hormones modulate neural responses to social signals in female white-throated sparrows listening to recordings of male song. While manipulating levels of the ovarian steroid estradiol, we mapped and quantified sound-induced expression of the immediate early gene egr-1 in nine brain regions that constitute a social behavior network in vertebrates. In most regions of interest, hearing male song induced more expression than hearing tones or silence, and this selectivity for song was seen only in birds with estradiol levels typical of the breeding season. In females with regressed ovaries and no exogenous estradiol, neural responses were selective for song over tones only in the lateral portion of the ventromedial hypothalamus, not in the rest of the network. Because the effects of hormone treatment on neural responses are not identical in each region, the overall pattern of activation across the network changes with estradiol level and thus with season and breeding context. Our results demonstrate a possible mechanism by which gonadal steroids may alter the processing of social signals and affect social decision-making.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
49
|
Quagliotto E, Neckel H, Riveiro DF, Casali KR, Mostarda C, Irigoyen MC, Dall'ago P, Rasia-Filho AA. Histamine in the posterodorsal medial amygdala modulates cardiovascular reflex responses in awake rats. Neuroscience 2008; 157:709-19. [PMID: 18955117 DOI: 10.1016/j.neuroscience.2008.09.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/03/2008] [Accepted: 09/29/2008] [Indexed: 11/18/2022]
Abstract
Centrally injected histamine (HA) affects heart rate (HR), arterial blood pressure (BP), and sympathetic activity in rats. The posterodorsal medial amygdala (MePD) has high levels of histidine decarboxylase, connections with brain areas involved with the modulation of cardiovascular responses, and is relevant for the pathogenesis of hypertension. However, there is no report demonstrating the role of the MePD histaminergic activity on the cardiovascular function in awake rats. The aims of the present work were: 1) to study the effects of two doses (10-100 nM) of HA microinjected in the MePD on basal cardiovascular recordings and on baroreflex- and chemoreflex-mediated responses; 2) to reveal whether cardiovascular reflex responses could be affected by MePD microinjections of (R)-alpha-methylhistamine (AH3), an agonist of the inhibitory autoreceptor H3; and, 3) to carry out a power spectral analysis to evaluate the contribution of the sympathetic and parasympathetic components in the variability of the HR and BP recordings. When compared with the control group (microinjected with saline, 0.3 microl), HA (10 nM) promoted an increase in the MAP50, i.e. the mean value of BP at half of the HR range evoked by the baroreflex response. Histamine (100 nM) did not affect the baroreflex activity, but significantly decreased the parasympathetic component of the HR variability, increased the sympathetic/parasympathetic balance at basal conditions (these two latter evaluated by the power spectral analysis), and promoted an impairment in the chemoreflex bradycardic response. Microinjection of AH3 (10 microM) led to mixed results, which resembled the effects of both doses of HA employed here. Present data suggest that cardiovascular changes induced by baroreceptors and chemoreceptors involve the histaminergic activity in the MePD. This neural regulation of reflex cardiovascular responses can have important implications for homeostatic and allostatic conditions and possibly for the behavioral displays modulated by the rat MePD.
Collapse
Affiliation(s)
- E Quagliotto
- Department of Physiological Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, R. Sarmento Leite 245, Porto Alegre 90170-050 RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Newman JD. Neural circuits underlying crying and cry responding in mammals. Behav Brain Res 2007; 182:155-65. [PMID: 17363076 PMCID: PMC1995563 DOI: 10.1016/j.bbr.2007.02.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 02/07/2007] [Accepted: 02/10/2007] [Indexed: 12/26/2022]
Abstract
Crying is a universal vocalization in human infants, as well as in the infants of other mammals. Little is known about the neural structures underlying cry production, or the circuitry that mediates a caregiver's response to cry sounds. In this review, the specific structures known or suspected to be involved in this circuit are identified, along with neurochemical systems and hormones for which evidence suggests a role in responding to infants and infant cries. In addition, evidence that crying elicits parental responses in different mammals is presented. An argument is made for including 'crying' as a functional category in the vocal repertoire of all mammalian infants (and the adults of some species). The prevailing neural model for crying production considers forebrain structures to be dispensable. However, evidence for the anterior cingulate gyrus in cry production, and this structure along with the amygdala and some other forebrain areas in responding to cries is presented.
Collapse
Affiliation(s)
- John D Newman
- Laboratory of Comparative Ethology, National Institute of Child Health and Human Development, NIH, DHHS, Box 529, Poolesville, MD 20837, USA.
| |
Collapse
|