1
|
Huang J, Liang Q, Ye Y, Lan Z, Chen A, Yan J, Lu L. GDF11 Alleviates Vascular Calcification in VitD 3-Overloaded Mice Through Inhibition of Inflammatory NF-κB Signal. FASEB J 2025; 39:e70677. [PMID: 40432427 DOI: 10.1096/fj.202500029r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Vascular calcification, an age-associated disorder, is a highly regulated biological process similar to bone formation. Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor beta (TGF-β) superfamily, has been shown to act as an anti-aging factor in the brain, heart, skin, and skeletal muscle. Nevertheless, whether GDF11 affects vascular calcification and the underlying mechanisms remain unclear. In the present study, beta-glycerophosphate and calcium chloride-induced calcification of vascular smooth muscle cells (VSMCs) and a VitD3-overloaded mouse model were used to investigate the role of GDF11 in vascular calcification. Our results revealed that the knockdown of GDF11 by siRNA promoted the calcification of rat VSMCs, whereas GDF11 treatment significantly reduced the calcification of human and rat VSMCs in vitro, as detected by alizarin red staining and calcium content assay. Similarly, GDF11 treatment reduced the expression of bone-related molecules including Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein-2 (BMP2). Furthermore, ex vivo and in vivo studies confirmed the inhibitory effect of GDF11 on vascular calcification. Mechanistically, GDF11 treatment reduced the levels of NF-κB signaling molecules including NLRP3, phosphorylated p65, IL-6, and IL-1β in VSMCs. Additionally, GDF11 siRNA-induced VSMC calcification was repressed by NF-κB inhibitor PDTC treatment. Taken together, these findings suggest that GDF11 alleviates vascular calcification through inhibiting the NF-κB signal. Modulation of GDF11 may represent a therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Jiali Huang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, People's Republic of China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, People's Republic of China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, People's Republic of China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, People's Republic of China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Marohl T, Atkins KA, Wang L, Janes KA. PCSK5 M452I is a recessive hypomorph exclusive to MCF10DCIS.com cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641323. [PMID: 40093128 PMCID: PMC11908202 DOI: 10.1101/2025.03.03.641323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The most widely used cell line for studying ductal carcinoma in situ (DCIS) premalignancy is the transformed breast epithelial cell line, MCF10DCIS.com. During its original clonal isolation and selection, MCF10DCIS.com acquired a heterozygous M452I mutation in the proprotein convertase PCSK5, which has never been reported in any human cancer. The mutation is noteworthy because PCSK5 matures GDF11, a TGFβ-superfamily ligand that suppresses progression of triple-negative breast cancer. We asked here whether PCSK5M452I and its activity toward GDF11 might contribute to the unique properties of MCF10DCIS.com. Using an optimized in-cell GDF11 maturation assay, we found that overexpressed PCSK5M452I was measurably active but at a fraction of the wildtype enzyme. In a PCSK5 -/- clone of MCF10DCIS.com reconstituted with different PCSK5 alleles, PCSK5M452I was mildly defective in anterograde transport. However, the multicellular organization of PCSK5M452I addback cells in 3D matrigel cultures was significantly less compact than wildtype and indistinguishable from a PCSK5T288P null allele. Growth of intraductal MCF10DCIS.com xenografts was similarly impaired along with the frequency of comedo necrosis and stromal activation. In no setting did PCSK5M452I exhibit gain-of-function activity, leading us to conclude that it is hypomorphic and thus compensated by the remaining wildtype allele in MCF10DCIS.com. Implications This work reassures that an exotic PCSK5 mutation is not responsible for the salient characteristics of the MCF10DCIS.com cell line.
Collapse
Affiliation(s)
- Taylor Marohl
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Kristen A. Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Kevin A. Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
3
|
Lozovska A, Casaca A, Novoa A, Kuo YY, Jurberg AD, Martins GG, Hadjantonakis AK, Mallo M. Tgfbr1 regulates lateral plate mesoderm and endoderm reorganization during the trunk to tail transition. eLife 2025; 13:RP94290. [PMID: 39874182 PMCID: PMC11774515 DOI: 10.7554/elife.94290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.
Collapse
Affiliation(s)
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta GrandeOeirasPortugal
- Gulbenkian Institute for Molecular Medicine, Avenida Prof. Egas MonizLisboaPortugal
| | - Ana Novoa
- Instituto Gulbenkian de Ciência, Rua da Quinta GrandeOeirasPortugal
- Gulbenkian Institute for Molecular Medicine, Avenida Prof. Egas MonizLisboaPortugal
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Arnon D Jurberg
- Instituto Gulbenkian de Ciência, Rua da Quinta GrandeOeirasPortugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta GrandeOeirasPortugal
- Gulbenkian Institute for Molecular Medicine, Avenida Prof. Egas MonizLisboaPortugal
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta GrandeOeirasPortugal
- Gulbenkian Institute for Molecular Medicine, Avenida Prof. Egas MonizLisboaPortugal
| |
Collapse
|
4
|
Hojo H, Tani S, Ohba S. Modeling of skeletal development and diseases using human pluripotent stem cells. J Bone Miner Res 2024; 40:5-19. [PMID: 39498496 DOI: 10.1093/jbmr/zjae178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2024] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
Human skeletal elements are formed from distinct origins at distinct positions of the embryo. For example, the neural crest produces the facial bones, the paraxial mesoderm produces the axial skeleton, and the lateral plate mesoderm produces the appendicular skeleton. During skeletal development, different combinations of signaling pathways are coordinated from distinct origins during the sequential developmental stages. Models for human skeletal development have been established using human pluripotent stem cells (hPSCs) and by exploiting our understanding of skeletal development. Stepwise protocols for generating skeletal cells from different origins have been designed to mimic developmental trails. Recently, organoid methods have allowed the multicellular organization of skeletal cell types to recapitulate complicated skeletal development and metabolism. Similarly, several genetic diseases of the skeleton have been modeled using patient-derived induced pluripotent stem cells and genome-editing technologies. Model-based drug screening is a powerful tool for identifying drug candidates. This review briefly summarizes our current understanding of the embryonic development of skeletal tissues and introduces the current state-of-the-art hPSC methods for recapitulating skeletal development, metabolism, and diseases. We also discuss the current limitations and future perspectives for applications of the hPSC-based modeling system in precision medicine in this research field.
Collapse
Affiliation(s)
- Hironori Hojo
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shoichiro Tani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Hung YS, Lin WM, Wang YC, Kuo WC, Chen YY, Fann MJ, Yu JY, Wong YH. Protogenin facilitates trunk-to-tail HOX code transition via modulating GDF11/SMAD2 signaling in mammalian embryos. Commun Biol 2024; 7:1669. [PMID: 39702818 DOI: 10.1038/s42003-024-07342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
During embryogenesis, vertebral axial patterning is intricately regulated by multiple signaling networks. This study elucidates the role of protogenin (Prtg), an immunoglobulin superfamily member, in vertebral patterning control. Prtg knockout (Prtg-/-) mice manifest anterior homeotic transformations in their vertebral columns and significant alterations in homeobox (Hox) gene expression. Transcriptomic profiling of Prtg-/- mouse embryos highlights Prtg-regulated genes involved in axial development, particularly within the transforming growth factor beta (TGFβ) signaling pathway. Reduced TGFβ signaling in Prtg-/- mouse embryos is evidenced by decreased phosphorylated Smad2 (pSmad2) levels and its downstream target genes in the developing tail. We further show that Prtg interacts with growth differentiation factor 11 (GDF11) to enhance GDF11/pSmad2 signaling activity. Using human-induced pluripotent stem cell-derived presomitic mesoderm-like (hiPSC-PSM) cells, we demonstrate delayed posterior HOX gene expression upon PRTG knockout, which is rescued by GDF11 supplementation. These findings provide compelling evidence that PRTG regulates HOX genes through the GDF11/SMAD2 signaling pathway.
Collapse
Affiliation(s)
- Yu-Sheng Hung
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Wei-Mi Lin
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
- Interdisciplinary Master Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Yu-Chiuan Wang
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Wei-Chih Kuo
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Yu-Yang Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Jenn-Yah Yu
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Interdisciplinary Master Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Interdisciplinary Master Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
| |
Collapse
|
6
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
7
|
Lozovska A, Casaca A, Nóvoa A, Kuo YY, Jurberg AD, Martins GG, Hadjantonakis AK, Mallo M. Tgfbr1 regulates lateral plate mesoderm and endoderm reorganization during the trunk to tail transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554351. [PMID: 37662386 PMCID: PMC10473653 DOI: 10.1101/2023.08.22.554351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak to the tailbud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuro mesodermal-competent cells from the epiblast to the chordo-neural hinge to generate the tail bud. We now show that Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1 the two LPM layers do not converge at the end of the trunk, extending instead as separate layers enclosing the celomic cavity until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. However, this extended LPM, does not exhibit the molecular signatures characteristic of this tissue in the trunk. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior primitive streak fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.
Collapse
|
8
|
Wang C, Liu X, Hu X, Wu T, Duan R. Therapeutic targeting of GDF11 in muscle atrophy: Insights and strategies. Int J Biol Macromol 2024; 279:135321. [PMID: 39236952 DOI: 10.1016/j.ijbiomac.2024.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The exploration of novel therapeutic avenues for skeletal muscle atrophy is imperative due to its significant health impact. Recent studies have spotlighted growth differentiation factor 11 (GDF11), a TGFβ superfamily member, for its rejuvenating role in reversing age-related tissue dysfunction. This review synthesizes current findings on GDF11, elucidating its distinct biological functions and the ongoing debates regarding its efficacy in muscle homeostasis. By addressing discrepancies in current research outcomes and its ambiguous role due to its homological identity to myostatin, a negative regulator of muscle mass, this review aims to clarify the role of GDF11 in muscle homeostasis and its potential as a therapeutic target for muscle atrophy. Through a thorough examination of GDF11's mechanisms and effects, this review provides insights that could pave the way for innovative treatments for muscle atrophy, emphasizing the need and strategies to boost endogenous GDF11 levels for therapeutic potential.
Collapse
Affiliation(s)
- Chuanzhi Wang
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xiaocao Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xilong Hu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Tao Wu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
9
|
Strosahl J, Ye K, Pazdro R. Novel insights into the pleiotropic health effects of growth differentiation factor 11 gained from genome-wide association studies in population biobanks. BMC Genomics 2024; 25:837. [PMID: 39237910 PMCID: PMC11378601 DOI: 10.1186/s12864-024-10710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β (TGF-β) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.
Collapse
Affiliation(s)
- Jessica Strosahl
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Zhang P, Zhai H, Zhang S, Ma X, Gong A, Xu Z, Zhao W, Song H, Li S, Zheng T, Ying Z, Cheng L, Zhao Y, Zhang L. GDF11 protects against mitochondrial-dysfunction-dependent NLRP3 inflammasome activation to attenuate osteoarthritis. J Adv Res 2024:S2090-1232(24)00323-0. [PMID: 39103049 DOI: 10.1016/j.jare.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a highly prevalent degenerative disease worldwide, and tumor necrosis factor (TNF-α) is closely associated with its development. Growth differentiation factor 11 (GDF11) has demonstrated anti-injury and anti-aging abilities in certain tissues; however, its regulatory role in OA remains unclear and requires further investigation. OBJECTIVES To identify whether GDF11 can attenuate osteoarthritis. To exploring the the potential mechanism of GDF11 in alleviating osteoarthritis. METHODS In this study, we cultured and stimulated mouse primary chondrocytes with or without TNF-α, analyzing the resulting damage phenotype through microarray analysis. Additionally, we employed GDF11 conditional knockout mice OA model to examine the relationship between GDF11 and OA. To investigate the target of GDF11's function, we utilized NLRP3 knockout mice and its inhibitor to verify the potential involvement of the NLRP3 inflammasome. RESULTS Our in vitro experiments demonstrated that endogenous overexpression of GDF11 significantly inhibited TNF-α-induced cartilage matrix degradation and inflammatory expression in chondrocytes. Furthermore, loss of GDF11 led to NLRP3 inflammasome activation, inflammation, and metabolic dysfunction. In an in vivo surgically induced mouse model, intraarticular administration of recombinant human GDF11 alleviated OA pathogenesis, whereas GDF11 conditional knockout reversed this effect. Additionally, findings from the NLRP3-knockout DMM mouse model revealed that GDF11 exerted its protective effect by inhibiting NLRP3. CONCLUSION These findings demonstrate the ability of GDF11 to suppress TNF-α-induced inflammation and cartilage degeneration by preventing mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation, suggesting its potential as a promising therapeutic drug for osteoarthritis.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Haoxin Zhai
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaojie Ma
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Department of Rheumatology and Immunology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Ao Gong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Zhaoning Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, Jinan, Shandong 250012, PR China; School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, Jinan, Shandong 250012, PR China; School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shufeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250012, PR China
| | - Tengfei Zheng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China
| | - Zhendong Ying
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Lei Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250012, PR China; Tissue Engineering Laboratory, Department of Radiology, Shandong First Medical University, PR China.
| |
Collapse
|
11
|
Wu Z, Zhang Q, Wang H, Zhou S, Fu B, Fang L, Cheng JC, Sun YP. Growth differentiation factor-11 upregulates matrix metalloproteinase 2 expression by inducing Snail in human extravillous trophoblast cells. Mol Cell Endocrinol 2024; 585:112190. [PMID: 38369181 DOI: 10.1016/j.mce.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The human extravillous trophoblast (EVT) cell invasion is an important process during placentation. Although the placenta is normal tissue, the EVT cells exhibit some features common to cancer cells, including high migratory and invasive properties. Snail and Slug are transcription factors that mediate the epithelial-mesenchymal transition (EMT), a crucial event for cancer cell migration and invasion. It has been shown that GDF-11-induced matrix metalloproteinase 2 (MMP2) expression is required for EVT cell invasion. Whether GDF-11 can regulate Snail and Slug expression in human EVT cells remains unknown. If it does, the involvement of Snail and Slug in GDF-11-induced MMP2 expression and EVT cell invasion must also be defined. In the present study, using the immortalized human EVT cell line, HTR-8/SVneo, and primary cultures of human EVT cells as experimental models, our results show that GDF-11 upregulates Snail and Slug expression. ALK4 and ALK5 mediate the stimulatory effects of GDF-11 on Snail and Slug expression. In addition, we demonstrate that SMAD2 and SMAD3 are required for the GDF-11-upregulated Snail expression, while only SMAD3 is involved in GDF-11-induced Slug expression. Moreover, our results reveal that Snail mediates GDF-11-induced MMP2 expression and cell invasion but not Slug. This study increases our understanding of the biological function of GDF-11 in human EVT cells and provides a novel mechanism for regulating MMP2 and EVT cell invasion.
Collapse
Affiliation(s)
- Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shenghui Zhou
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bingxin Fu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Habibi P, Falamarzi K, Ebrahimi ND, Zarei M, Malekpour M, Azarpira N. GDF11: An emerging therapeutic target for liver diseases and fibrosis. J Cell Mol Med 2024; 28:e18140. [PMID: 38494851 PMCID: PMC10945076 DOI: 10.1111/jcmm.18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 03/19/2024] Open
Abstract
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.
Collapse
Affiliation(s)
- Pardis Habibi
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Kimia Falamarzi
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | | | - Mohammad Zarei
- Renal Division, Brigham & Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- John B. Little Center for Radiation SciencesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Mahdi Malekpour
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
13
|
Suzuki T. Current research on mechanisms of limb bud development, and challenges for the next decade. Genes Genet Syst 2024; 99:n/a. [PMID: 38382923 DOI: 10.1266/ggs.23-00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
The developmental mechanisms of limb buds have been studied in developmental biology as an excellent model of pattern formation. Chick embryos have contributed to the discovery of new principles in developmental biology, as it is easy to observe live embryos and manipulate embryonic tissues. Herein, I outline recent findings and future issues over the next decade regarding three themes, based on my research: limb positioning, proximal-distal limb elongation and digit identity determination. First, how hindlimb position is determined at the molecular level is described, with a focus on the transforming growth factor-β signaling molecule GDF11. Second, I explain how the cell population in the limb bud deforms with developmental progress, shaping the limb bud with elongation along the proximal-distal axis. Finally, I describe the developmental mechanisms that determine digit identity through the interdigits.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Division of Biology, Graduate School of Science, Osaka Metropolitan University
| |
Collapse
|
14
|
Lozovska A, Korovesi AG, Dias A, Lopes A, Fowler DA, Martins GG, Nóvoa A, Mallo M. Tgfbr1 controls developmental plasticity between the hindlimb and external genitalia by remodeling their regulatory landscape. Nat Commun 2024; 15:2509. [PMID: 38509075 PMCID: PMC10954616 DOI: 10.1038/s41467-024-46870-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
The hindlimb and external genitalia of present-day tetrapods are thought to derive from an ancestral common primordium that evolved to generate a wide diversity of structures adapted for efficient locomotion and mating in the ecological niche occupied by the species. We show that despite long evolutionary distance from the ancestral condition, the early primordium of the mouse external genitalia preserved the capacity to take hindlimb fates. In the absence of Tgfbr1, the pericloacal mesoderm generates an extra pair of hindlimbs at the expense of the external genitalia. It has been shown that the hindlimb and the genital primordia share many of their key regulatory factors. Tgfbr1 controls the response to those factors by modulating the accessibility status of regulatory elements that control the gene regulatory networks leading to the formation of genital or hindlimb structures. Our work uncovers a remarkable tissue plasticity with potential implications in the evolution of the hindlimb/genital area of tetrapods, and identifies an additional mechanism for Tgfbr1 activity that might also contribute to the control of other physiological or pathological processes.
Collapse
Affiliation(s)
- Anastasiia Lozovska
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Artemis G Korovesi
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alexandre Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Donald A Fowler
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
15
|
Saito S, Kanazawa U, Tatsumi A, Iida A, Takemoto T, Suzuki T. Functional analysis of a first hindlimb positioning enhancer via Gdf11 expression. Front Cell Dev Biol 2024; 12:1302141. [PMID: 38559809 PMCID: PMC10978735 DOI: 10.3389/fcell.2024.1302141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
During the early development of tetrapods, including humans, the embryonic body elongates caudally once the anterior-posterior axis is established. During this process, region-specific vertebral morphogenesis occurs, with the determination of limb positioning along the anterior-posterior axis. We previously reported that Gdf11 functions as an anatomical integration system that determines the positioning of hindlimbs and sacral vertebrae where Gdf11 is expressed. However, the molecular mechanisms underlying induction of Gdf11 expression remain unclear. In this study, we searched for non-coding regions near the Gdf11 locus that were conserved across species to elucidate the regulatory mechanisms of Gdf11 expression. We identified an enhancer of the Gdf11 gene in intron 1 and named it highly conserved region (HCR). In HCR knockout mice, the expression level of endogenous Gdf11 was decreased, and the position of the sacral-hindlimb unit was shifted posteriorly. We also searched for factors upstream of Gdf11 based on the predicted transcription factor binding sites within the HCR. We found that inhibition of FGF signaling increased endogenous Gdf11 expression, suggesting that FGF signaling negatively regulates Gdf11 expression. However, FGF signaling does not regulate HCR activity. Our results suggest that there are species-specific Gdf11 enhancers other than HCR and that FGF signaling regulates Gdf11 expression independent of HCR.
Collapse
Affiliation(s)
- Seiji Saito
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Utsugi Kanazawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ayana Tatsumi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Atsuo Iida
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Tatsuya Takemoto
- Institute for Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takayuki Suzuki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
16
|
Li J, Mascarinas P, McGlinn E. The expanding roles of Nr6a1 in development and evolution. Front Cell Dev Biol 2024; 12:1357968. [PMID: 38440075 PMCID: PMC10909835 DOI: 10.3389/fcell.2024.1357968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
The Nuclear Receptor (NR) family of transcriptional regulators possess the ability to sense signalling molecules and directly couple that to a transcriptional response. While this large class of proteins are united by sequence and structural homology, individual NR functional output varies greatly depending on their expression, ligand selectivity and DNA binding sequence specificity. Many NRs have remained somewhat enigmatic, with the absence of a defined ligand categorising them as orphan nuclear receptors. One example is Nuclear Receptor subfamily 6 group A member 1 (Nr6a1), an orphan nuclear receptor that has no close evolutionary homologs and thus is alone in subfamily 6. Nonetheless, Nr6a1 has emerged as an important player in the regulation of key pluripotency and developmental genes, as functionally critical for mid-gestational developmental progression and as a possible molecular target for driving evolutionary change in animal body plan. Here, we review the current knowledge on this enigmatic nuclear receptor and how it impacts development and evolution.
Collapse
|
17
|
Kraler S, Balbi C, Vdovenko D, Lapikova-Bryhinska T, Camici GG, Liberale L, Bonetti N, Canestro CD, Burger F, Roth A, Carbone F, Vassalli G, Mach F, Bhasin S, Wenzl FA, Muller O, Räber L, Matter CM, Montecucco F, Lüscher TF, Akhmedov A. Circulating GDF11 exacerbates myocardial injury in mice and associates with increased infarct size in humans. Cardiovasc Res 2023; 119:2729-2742. [PMID: 37742057 PMCID: PMC10757585 DOI: 10.1093/cvr/cvad153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023] Open
Abstract
AIMS The heart rejuvenating effects of circulating growth differentiation factor 11 (GDF11), a transforming growth factor-β superfamily member that shares 90% homology with myostatin (MSTN), remains controversial. Here, we aimed to probe the role of GDF11 in acute myocardial infarction (MI), a frequent cause of heart failure and premature death during ageing. METHODS AND RESULTS In contrast to endogenous Mstn, myocardial Gdf11 declined during the course of ageing and was particularly reduced following ischaemia/reperfusion (I/R) injury, suggesting a therapeutic potential of GDF11 signalling in MI. Unexpectedly, boosting systemic Gdf11 by recombinant GDF11 delivery (0.1 mg/kg body weight over 30 days) prior to myocardial I/R augmented myocardial infarct size in C57BL/6 mice irrespective of their age, predominantly by accelerating pro-apoptotic signalling. While intrinsic cardioprotective signalling pathways remained unaffected by high circulating GDF11, targeted transcriptomics and immunomapping studies focusing on GDF11-associated downstream targets revealed attenuated Nkx2-5 expression confined to CD105-expressing cells, with pro-apoptotic activity, as assessed by caspase-3 levels, being particularly pronounced in adjacent cells, suggesting an indirect effect. By harnessing a highly specific and validated liquid chromatography-tandem mass spectrometry-based assay, we show that in prospectively recruited patients with MI circulating GDF11 but not MSTN levels incline with age. Moreover, GDF11 levels were particularly elevated in those at high risk for adverse outcomes following the acute event, with circulating GDF11 emerging as an independent predictor of myocardial infarct size, as estimated by standardized peak creatine kinase-MB levels. CONCLUSION Our data challenge the initially reported heart rejuvenating effects of circulating GDF11 and suggest that high levels of systemic GDF11 exacerbate myocardial injury in mice and humans alike. Persistently high GDF11 levels during ageing may contribute to the age-dependent loss of cardioprotective mechanisms and thus poor outcomes of elderly patients following acute MI.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Carolina Balbi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, EOC, Lugano, Switzerland
- Laboratories for Translational Research, EOC, Bellinzona, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | | | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Nicole Bonetti
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Candela Diaz Canestro
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Vassalli
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, EOC, Lugano, Switzerland
- Laboratories for Translational Research, EOC, Bellinzona, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Olivier Muller
- Department of Cardiology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Bern, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College and Kings College, London, UK
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| |
Collapse
|
18
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
19
|
Wang DX, Dong ZJ, Deng SX, Tian YM, Xiao YJ, Li X, Ma XR, Li L, Li P, Chang HZ, Liu L, Wang F, Wu Y, Gao X, Zheng SS, Gu HM, Zhang YN, Wu JB, Wu F, Peng Y, Zhang XW, Zhan RY, Gao LX, Sun Q, Guo X, Zhao XD, Luo JH, Zhou R, Han L, Shu Y, Zhao JW. GDF11 slows excitatory neuronal senescence and brain ageing by repressing p21. Nat Commun 2023; 14:7476. [PMID: 37978295 PMCID: PMC10656444 DOI: 10.1038/s41467-023-43292-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.
Collapse
Affiliation(s)
- Di-Xian Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zhao-Jun Dong
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Sui-Xin Deng
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | | | - Yu-Jie Xiao
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | - Xinran Li
- The Global Scientific and Technological Innovation Center and the MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Liang Li
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China
| | - Pengxiao Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | | | | | - Fan Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xiang Gao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Shuang Zheng
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Hui-Min Gu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ya-Nan Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian-Bin Wu
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Fan Wu
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, 310003, Hangzhou, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiao-Wen Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ren-Ya Zhan
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, 310003, Hangzhou, China
| | - Li-Xia Gao
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiao-Dong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai; Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jian-Hong Luo
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lei Han
- BGI Research, 310030, Hangzhou, China.
| | - Yousheng Shu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, 201508, Shanghai, China.
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China.
- Center of Cryo-Electron Microscopy, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Cawthon PM, Patel S, Newman AB, Bhasin S, Peng L, Tracy RP, Kizer JR, Lee SJ, Ferrucci L, Ganz P, LeBrasseur NK, Cummings SR. Evaluation of Associations of Growth Differentiation Factor-11, Growth Differentiation Factor-8, and Their Binding Proteins, Follistatin and Follistatin-Like Protein-3, With Measures of Skeletal Muscle Mass, Muscle Strength, and Physical Function in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:2051-2059. [PMID: 36752218 PMCID: PMC10613016 DOI: 10.1093/gerona/glad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Based on studies from animal models, growth differentiation factor-11 (GDF-11) may have rejuvenating effects in humans. GDF-11 has high sequence homology with GDF-8 (also known as myostatin); follistatin and follistatin-like protein-3 (FSTL-3) are inhibitory proteins of both GDF-8 and GDF-11. METHODS Using highly specific liquid chromatography with tandem mass spectrometry assays for GDF-11 and GDF-8 and immunoassays for follistatin and FSTL-3, we quantified the association of these factors with muscle size, strength, and physical performance in 2 prospective cohort studies of community-dwelling older adults (Health, Aging, and Body Composition study [Health ABC] and Cardiovascular Health Study [CHS]). RESULTS GDF-8 levels were positively associated with thigh muscle cross-sectional area and density in Health ABC (data not available in CHS). GDF-8 levels were positively associated with lean mass (a surrogate of muscle mass) in Health ABC but not CHS, and grip strength in CHS but not Health ABC. FSTL-3 (and perhaps follistatin) was negatively associated with lean mass and had variable associations with other variables. In contrast, GDF-11 was not significantly associated with strength or performance. CONCLUSIONS GDF-8 and its binding proteins, follistatin and FSTL-3, may constitute a counterregulatory system (chalones) to restrain age-related loss of muscle mass and strength.
Collapse
Affiliation(s)
- Peggy M Cawthon
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Sheena Patel
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania,USA
| | - Shalender Bhasin
- Research Program in Men’s Health: Aging and Metabolism; Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liming Peng
- Research Program in Men’s Health: Aging and Metabolism; Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont,USA
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, and Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California,USA
| | - Se-Jin Lee
- The Jackson Laboratory and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Luigi Ferrucci
- Office of the Scientific Director, National Institute on Aging, Bethesda, Maryland,USA
| | - Peter Ganz
- Cardiology Division, Zuckerberg San Francisco General Hospital and Department of Medicine, University of California San Francisco, San Francisco, California,USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven R Cummings
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
22
|
Król W, Machelak W, Zielińska M. GDF11 as a friend or an enemy in the cancer biology? Biochim Biophys Acta Rev Cancer 2023; 1878:188944. [PMID: 37356738 DOI: 10.1016/j.bbcan.2023.188944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The Growth and Differential Factor 11 (GDF11) is a recently discovered representative of Transforming Growth Factor β superfamily. The highest expression of GDF11 is detected in the nervous system, bladder, seminal vesicles and muscles whereas the lowest in the testis, liver or breast. GDF11 role in physiology is still not clear. GDF11 is a crucial factor in embryogenesis, cell cycle control and apoptosis, inasmuch it mainly targets cell retain stemness features, managing to the cell differentiation and the maturation. GDF11 is entangled in lipid metabolism, inflammatory processes and aging. GDF11 is strongly related to carcinogenesis and its expression in tumors is intruded. GDF11 can promote cancer growth in the colon or inhibit the cell proliferation in breast cancer. The aberrated expression is probably allied with the impaired maturation. In this article we summarized an impact of GDF11 on the tumor cells and review the all attitudes connecting GDF11 with carcinogenesis.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
23
|
Pratiwi HM, Hirasawa M, Kato K, Munakata K, Ueda S, Moriyama Y, Yu R, Kawanishi T, Tanaka M. Heterochronic development of pelvic fins in zebrafish: possible involvement of temporal regulation of pitx1 expression. Front Cell Dev Biol 2023; 11:1170691. [PMID: 37691823 PMCID: PMC10483283 DOI: 10.3389/fcell.2023.1170691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Anterior and posterior paired appendages of vertebrates are notable examples of heterochrony in the relative timing of their development. In teleosts, posterior paired appendages (pelvic fin buds) emerge much later than their anterior paired appendages (pectoral fin buds). Pelvic fin buds of zebrafish (Danio rerio) appear at 3 weeks post-fertilization (wpf) during the larva-to-juvenile transition (metamorphosis), whereas pectoral fin buds arise from the lateral plate mesoderm on the yolk surface at the embryonic stage. Here we explored the mechanism by which presumptive pelvic fin cells maintain their fate, which is determined at the embryonic stage, until the onset of metamorphosis. Expression analysis revealed that transcripts of pitx1, one of the key factors for the development of posterior paired appendages, became briefly detectable in the posterior lateral plate mesoderm at early embryonic stages. Further analysis indicated that the pelvic fin-specific pitx1 enhancer was in the poised state at the larval stage and is activated at the juvenile stage. We discuss the implications of these findings for the heterochronic development of pelvic fin buds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
24
|
Zheng XQ, Lin JL, Huang J, Wu T, Song CL. Targeting aging with the healthy skeletal system: The endocrine role of bone. Rev Endocr Metab Disord 2023; 24:695-711. [PMID: 37402956 DOI: 10.1007/s11154-023-09812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/06/2023]
Abstract
Aging is an inevitable biological process, and longevity may be related to bone health. Maintaining strong bone health can extend one's lifespan, but the exact mechanism is unclear. Bone and extraosseous organs, including the heart and brain, have complex and precise communication mechanisms. In addition to its load bearing capacity, the skeletal system secretes cytokines, which play a role in bone regulation of extraosseous organs. FGF23, OCN, and LCN2 are three representative bone-derived cytokines involved in energy metabolism, endocrine homeostasis and systemic chronic inflammation levels. Today, advanced research methods provide new understandings of bone as a crucial endocrine organ. For example, gene editing technology enables bone-specific conditional gene knockout models, which allows the study of bone-derived cytokines to be more precise. We systematically evaluated the various effects of bone-derived cytokines on extraosseous organs and their possible antiaging mechanism. Targeting aging with the current knowledge of the healthy skeletal system is a potential therapeutic strategy. Therefore, we present a comprehensive review that summarizes the current knowledge and provides insights for futures studies.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Tong Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
25
|
Shao Y, Wang Y, Xu J, Yuan Y, Xing D. Growth differentiation factor 11: A new hope for the treatment of cardiovascular diseases. Cytokine Growth Factor Rev 2023; 71-72:82-93. [PMID: 37414617 DOI: 10.1016/j.cytogfr.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11's structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yang Yuan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Machelak W, Szczepaniak A, Jacenik D, Zielińska M. The role of GDF11 during inflammation – An overview. Life Sci 2023; 322:121650. [PMID: 37011872 DOI: 10.1016/j.lfs.2023.121650] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
GDF11 (Growth differentiation factor 11) is a newly discovered member of family of transforming growth factors-beta. Its crucial role was confirmed in physiology, i.e. embryogenesis due to its involvement in bone formation, skeletogenesis and it is essential to stating skeletal pattern. GDF11 is described as a rejuvenating and anti-aging molecule, that could even restore functions. Beside embryogenesis, GDF11 participates in the process of inflammation and carcinogenesis. In this review, we describe its involvement in regulation of acute and chronic inflammatory disorders. An anti-inflammatory effect of GDF11 was found in experimental colitis, psoriasis and arthritis. Current data regarding liver fibrosis and renal injury indicate that GDF11 may act as pro-inflammatory agent.
Collapse
|
28
|
Fan Y, Hackland J, Baggiolini A, Hung LY, Zhao H, Zumbo P, Oberst P, Minotti AP, Hergenreder E, Najjar S, Huang Z, Cruz NM, Zhong A, Sidharta M, Zhou T, de Stanchina E, Betel D, White RM, Gershon M, Margolis KG, Studer L. hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung's disease. Cell Stem Cell 2023; 30:264-282.e9. [PMID: 36868194 PMCID: PMC10034921 DOI: 10.1016/j.stem.2023.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
The enteric nervous system (ENS) is derived from both the vagal and sacral component of the neural crest (NC). Here, we present the derivation of sacral ENS precursors from human PSCs via timed exposure to FGF, WNT, and GDF11, which enables posterior patterning and transition from posterior trunk to sacral NC identity, respectively. Using a SOX2::H2B-tdTomato/T::H2B-GFP dual reporter hPSC line, we demonstrate that both trunk and sacral NC emerge from a double-positive neuro-mesodermal progenitor (NMP). Vagal and sacral NC precursors yield distinct neuronal subtypes and migratory behaviors in vitro and in vivo. Remarkably, xenografting of both vagal and sacral NC lineages is required to rescue a mouse model of total aganglionosis, suggesting opportunities in the treatment of severe forms of Hirschsprung's disease.
Collapse
Affiliation(s)
- Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - James Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Y Hung
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Polina Oberst
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah Najjar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Zixing Huang
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nelly M Cruz
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Zhong
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mega Sidharta
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10010, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
29
|
Blood-to-brain communication in aging and rejuvenation. Nat Neurosci 2023; 26:379-393. [PMID: 36646876 DOI: 10.1038/s41593-022-01238-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
Aging induces molecular, cellular and functional changes in the adult brain that drive cognitive decline and increase vulnerability to dementia-related neurodegenerative diseases. Leveraging systemic and lifestyle interventions, such as heterochronic parabiosis, administration of 'young blood', exercise and caloric restriction, has challenged prevalent views of brain aging as a rigid process and has demonstrated that aging-associated cognitive and cellular impairments can be restored to more youthful levels. Technological advances in proteomic and transcriptomic analyses have further facilitated investigations into the functional impact of intertissue communication on brain aging and have led to the identification of a growing number of pro-aging and pro-youthful factors in blood. In this review, we discuss blood-to-brain communication from a systems physiology perspective with an emphasis on blood-derived signals as potent drivers of both age-related brain dysfunction and brain rejuvenation.
Collapse
|
30
|
Lian J, Walker RG, D'Amico A, Vujic A, Mills MJ, Messemer KA, Mendello KR, Goldstein JM, Leacock KA, Epp S, Stimpfl EV, Thompson TB, Wagers AJ, Lee RT. Functional substitutions of amino acids that differ between GDF11 and GDF8 impact skeletal development and skeletal muscle. Life Sci Alliance 2023; 6:e202201662. [PMID: 36631218 PMCID: PMC9834663 DOI: 10.26508/lsa.202201662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) and GDF8 (MSTN) are closely related TGF-β family proteins that interact with nearly identical signaling receptors and antagonists. However, GDF11 appears to activate SMAD2/3 more potently than GDF8 in vitro and in vivo. The ligands possess divergent structural properties, whereby substituting unique GDF11 amino acids into GDF8 enhanced the activity of the resulting chimeric GDF8. We investigated potentially distinct endogenous activities of GDF11 and GDF8 in vivo by genetically modifying their mature signaling domains. Full recoding of GDF8 to that of GDF11 yielded mice lacking GDF8, with GDF11 levels ∼50-fold higher than normal, and exhibiting modestly decreased muscle mass, with no apparent negative impacts on health or survival. Substitution of two specific amino acids in the fingertip region of GDF11 with the corresponding GDF8 residues resulted in prenatal axial skeletal transformations, consistent with Gdf11-deficient mice, without apparent perturbation of skeletal or cardiac muscle development or homeostasis. These experiments uncover distinctive features between the GDF11 and GDF8 mature domains in vivo and identify a specific requirement for GDF11 in early-stage skeletal development.
Collapse
Affiliation(s)
- John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ryan G Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrea D'Amico
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Melanie J Mills
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kourtney R Mendello
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Krystynne A Leacock
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Soraya Epp
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emma V Stimpfl
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
31
|
Bajikar SS, Anderson AG, Zhou J, Durham MA, Trostle AJ, Wan YW, Liu Z, Zoghbi HY. MeCP2 regulates Gdf11, a dosage-sensitive gene critical for neurological function. eLife 2023; 12:e83806. [PMID: 36848184 PMCID: PMC9977283 DOI: 10.7554/elife.83806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Loss- and gain-of-function of MeCP2 causes Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), respectively. MeCP2 binds methyl-cytosines to finely tune gene expression in the brain, but identifying genes robustly regulated by MeCP2 has been difficult. By integrating multiple transcriptomics datasets, we revealed that MeCP2 finely regulates growth differentiation factor 11 (Gdf11). Gdf11 is down-regulated in RTT mouse models and, conversely, up-regulated in MDS mouse models. Strikingly, genetically normalizing Gdf11 dosage levels improved several behavioral deficits in a mouse model of MDS. Next, we discovered that losing one copy of Gdf11 alone was sufficient to cause multiple neurobehavioral deficits in mice, most notably hyperactivity and decreased learning and memory. This decrease in learning and memory was not due to changes in proliferation or numbers of progenitor cells in the hippocampus. Lastly, loss of one copy of Gdf11 decreased survival in mice, corroborating its putative role in aging. Our data demonstrate that Gdf11 dosage is important for brain function.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Ashley G Anderson
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Jian Zhou
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
32
|
Abstract
Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA;
| |
Collapse
|
33
|
Deficiency of GDF-11 Accelerates TAC-Induced Heart Failure by Impairing Cardiac Angiogenesis. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
34
|
Moigneu C, Abdellaoui S, Ramos-Brossier M, Pfaffenseller B, Wollenhaupt-Aguiar B, de Azevedo Cardoso T, Camus C, Chiche A, Kuperwasser N, Azevedo da Silva R, Pedrotti Moreira F, Li H, Oury F, Kapczinski F, Lledo PM, Katsimpardi L. Systemic GDF11 attenuates depression-like phenotype in aged mice via stimulation of neuronal autophagy. NATURE AGING 2023; 3:213-228. [PMID: 37118117 PMCID: PMC10154197 DOI: 10.1038/s43587-022-00352-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/19/2022] [Indexed: 04/30/2023]
Abstract
Cognitive decline and mood disorders increase in frequency with age. Many efforts are focused on the identification of molecules and pathways to treat these conditions. Here, we demonstrate that systemic administration of growth differentiation factor 11 (GDF11) in aged mice improves memory and alleviates senescence and depression-like symptoms in a neurogenesis-independent manner. Mechanistically, GDF11 acts directly on hippocampal neurons to enhance neuronal activity via stimulation of autophagy. Transcriptomic and biochemical analyses of these neurons reveal that GDF11 reduces the activity of mammalian target of rapamycin (mTOR), a master regulator of autophagy. Using a murine model of corticosterone-induced depression-like phenotype, we also show that GDF11 attenuates the depressive-like behavior of young mice. Analysis of sera from young adults with major depressive disorder (MDD) reveals reduced GDF11 levels. These findings identify mechanistic pathways related to GDF11 action in the brain and uncover an unknown role for GDF11 as an antidepressant candidate and biomarker.
Collapse
Affiliation(s)
- Carine Moigneu
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Soumia Abdellaoui
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | - Bianca Pfaffenseller
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | | - Claire Camus
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France
| | - Aurélie Chiche
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Nicolas Kuperwasser
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | | | | | - Han Li
- Cellular Plasticity in Age-Related Pathologies Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Paris, France
| | - Franck Oury
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France
| | - Flávio Kapczinski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Brazil
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pierre-Marie Lledo
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
| | - Lida Katsimpardi
- Perception and Memory Lab, Institut Pasteur, Université Paris Cité, CNRS UMR3571, Paris, France.
- Institut Necker Enfants Malades, INSERM UMR-S1151, Université Paris Cité, Paris, France.
| |
Collapse
|
35
|
Abstract
Aging is known to be associated with a decline in memory and mood, but the molecular mechanisms that underlie these changes remain unclear. Moigneu, Abdellaoui and colleagues show that growth differentiation factor 11 reverses deficits in these functions in aged mice, pointing the way towards a novel pro-mnemonic and antidepressant therapeutic target.
Collapse
Affiliation(s)
- Patrick T Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
36
|
FU JIAWEI, WU CHUNSHUAI, XU GUANHUA, ZHANG JINLONG, LI YIQIU, JI CHUNYAN, CUI ZHIMING. Role of necroptosis in spinal cord injury and its therapeutic implications. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
37
|
Gerardo-Ramírez M, German-Ramirez N, Escobedo-Calvario A, Chávez-Rodríguez L, Bucio-Ortiz L, Souza-Arroyo V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE. The hepatic effects of GDF11 on health and disease. Biochimie 2022; 208:129-140. [PMID: 36584866 DOI: 10.1016/j.biochi.2022.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The growth differentiation factor 11 (GDF11), a member of the superfamily of the transforming growth factor β, has gained relevance in the last few years due to its remarkable effects in cellular biology, particularly in the nervous system, skeletal muscle, the heart, and many epithelial tissues. Some controversies have been raised about this growth factor. Many of them have been related to technical factors but also the nature of the cellular target. In liver biology and pathobiology, the GDF11 has shown to be related in many molecular aspects, with a significant impact on the physiology and the initiation and progression of the natural history of liver diseases. GDF11 has been involved as a critical regulator in lipid homeostasis, which, as it is well known, is the first step in the progression of liver disease. However, also it has been reported that the GDF11 is involved in fibrosis, senescence, and cancer. Although there are some controversies, much of the literature indicates that GDF11 displays effects tending to solve or mitigate pathological states of the liver, with reasonable evidence of correlation with other organs or systems. To a large extent, the controversy, as mentioned, is due to technical problems, such as the specificity of GDF11 antibodies, confusion with its closer family member, myostatin, and the state of differentiation in the tissues. In the present work, we reviewed the specific effects of GDF11 in the biology and pathobiology of the liver as a potential and promising factor for therapeutic intervention shortly.
Collapse
Affiliation(s)
- Monserrat Gerardo-Ramírez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Natanael German-Ramirez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Lisette Chávez-Rodríguez
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica Souza-Arroyo
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Laboratorio de Medicina Experimental y Carcinogénesis, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico; Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
38
|
Chang YC, Manent J, Schroeder J, Wong SFL, Hauswirth GM, Shylo NA, Moore EL, Achilleos A, Garside V, Polo JM, Trainor P, McGlinn E. Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development. Nat Commun 2022; 13:7766. [PMID: 36522318 PMCID: PMC9755267 DOI: 10.1038/s41467-022-35303-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The vertebrate main-body axis is laid down during embryonic stages in an anterior-to-posterior (head-to-tail) direction, driven and supplied by posteriorly located progenitors. Whilst posterior expansion and segmentation appears broadly uniform along the axis, there is developmental and evolutionary support for at least two discrete modules controlling processes within different axial regions: a trunk and a tail module. Here, we identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of trunk development in the mouse. Specifically, Nr6a1 was found to control vertebral number and segmentation of the trunk region, autonomously from other axial regions. Moreover, Nr6a1 was essential for the timely progression of Hox signatures, and neural versus mesodermal cell fate choice, within axial progenitors. Collectively, Nr6a1 has an axially-restricted role in all major cellular and tissue-level events required for vertebral column formation, supporting the view that changes in Nr6a1 levels may underlie evolutionary changes in axial formulae.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Manent
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Schroeder
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Siew Fen Lisa Wong
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Gabriel M. Hauswirth
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Natalia A. Shylo
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Emma L. Moore
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Annita Achilleos
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.413056.50000 0004 0383 4764University of Nicosia, Nicosia, Cyprus
| | - Victoria Garside
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Paul Trainor
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.412016.00000 0001 2177 6375Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas USA
| | - Edwina McGlinn
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
39
|
Shaping Hox gene activity to generate morphological diversity across vertebrate phylogeny. Essays Biochem 2022; 66:717-726. [PMID: 35924372 DOI: 10.1042/ebc20220050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
The importance of Hox genes for the development and evolution of the vertebrate axial skeleton and paired appendages has been recognized for already several decades. The steady growth of genomic sequence data from an increasing number of vertebrate species, together with the improvement of methods to analyze genomic structure and interactions, as well as to control gene activity in various species has refined our understanding of Hox gene activity in development and evolution. Here, I will review recent data addressing the influence of Hox regulatory processes in the evolution of the fins and the emergence of the tetrapod limb. In addition, I will discuss the involvement of posterior Hox genes in the control of vertebrate axial extension, focusing on an apparently divergent activity that Hox13 paralog group genes have on the regulation of tail bud development in mouse and zebrafish embryos.
Collapse
|
40
|
Simonson L, Oldham E, Chang H. Overactive Wnt5a signaling disrupts hair follicle polarity during mouse skin development. Development 2022; 149:dev200816. [PMID: 36305473 PMCID: PMC9845745 DOI: 10.1242/dev.200816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
The polarity of mouse hair follicles is controlled by the Frizzled (Fzd) receptors and other membrane planar cell polarity (PCP) proteins. Whether Wnt proteins can act as PCP ligands in the skin remains unknown. Here, we show that overexpression of Wnt5a in the posterior part of mouse embryos causes a local disruption of hair follicle orientation. The misoriented hair follicle phenotype in Wnt5a overexpressing mice can be rescued by a heterozygous loss of Fzd6, suggesting Wnt5a is likely to signal through Fzd6. Although the membrane distribution of PCP proteins seems unaffected by Wnt5a overexpression, transcriptional profiling analyses identify a set of genes as potential targets of the skin polarization program controlled by Wnt5a/Fzd6 signaling. Surprisingly, deletion of Wnt5a globally or in the posterior part of the mouse embryos does not affect hair follicle orientation. We show that many other Wnts are highly expressed in the developing skin. They can activate the Fzd6 signaling pathway in vitro and may act together with Wnt5a to regulate the Fzd6-mediated skin polarization. Our experiments demonstrate for the first time that Wnt5a can function as an orienting cue for mouse skin PCP.
Collapse
Affiliation(s)
- Laura Simonson
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ethan Oldham
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53705, USA
- William S. Middleton VA Medical Center, Madison, WI 53705, USA
| |
Collapse
|
41
|
Wang Z, Jiang P, Liu F, Du X, Ma L, Ye S, Cao H, Sun P, Su N, Lin F, Zhang R, Li C. GDF11 Regulates PC12 Neural Stem Cells via ALK5-Dependent PI3K-Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012279. [PMID: 36293138 PMCID: PMC9602726 DOI: 10.3390/ijms232012279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), belonging to the transforming factor-β superfamily, regulates anterior-posterior patterning and inhibits neurogenesis during embryonic development. However, recent studies recognized GDF11 as a rejuvenating (or anti-ageing) factor to reverse age-related cardiac hypertrophy, repair injured skeletal muscle, promote cognitive function, etc. The effects of GDF11 are contradictory and the mechanism of action is still not well clarified. The objective of the present study was to investigate effects of GDF11 on PC12 neural stem cells in vitro and to reveal the underlying mechanism. We systematically assessed the effects of GDF11 on the life activities of PC12 cells. GDF11 significantly suppressed cell proliferation and migration, promoted differentiation and apoptosis, and arrested cell cycle at G2/M phase. Both TMT-based proteomic analysis and phospho-antibody microarray revealed PI3K-Akt pathway was enriched when treated with GDF11. Inhibition of ALK5 or PI3K obviously attenuated the effects of GDF11 on PC12 neural stem cells, which exerted that GDF11 regulated neural stem cells through ALK5-dependent PI3K-Akt signaling pathway. In summary, these results demonstrated GDF11 could be a negative regulator for neurogenesis via ALK5 activating PI3K-Akt pathway when it directly acted on neural stem cells.
Collapse
Affiliation(s)
- Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| |
Collapse
|
42
|
Ma Y, Xiao Y, Xiao Z, Wu Y, Zhao H, Gao G, Wu L, Wang T, Zhao N, Li J. Genome-wide identification, characterization and expression analysis of the BMP family associated with beak-like teeth in Oplegnathus. Front Genet 2022; 13:938473. [PMID: 35923711 PMCID: PMC9342863 DOI: 10.3389/fgene.2022.938473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta (TGF-β) family, are critical for the control of developmental processes such as dorsal-ventral axis formation, somite and tooth formation, skeletal development, and limb formation. Despite Oplegnathus having typical healing beak-like teeth and tooth development showing a trend from discrete to healing, the potential role of BMPs in the development of the beak-like teeth is incompletely understood. In the present study, 19 and 16 BMP genes were found in O. fasciatus and O. punctatus, respectively, and divided into the BMP2/4/16, BMP5/6/7/8, BMP9/10, BMP12/13/14, BMP3/15 and BMP11 subfamilies. Similar TGFb and TGF_β gene domains and conserved protein motifs were found in the same subfamily; furthermore, two common tandem repeat genes (BMP9 and BMP3a-1) were identified in both Oplegnathus fasciatus and Oplegnathus punctatus. Selection pressure analysis revealed 13 amino acid sites in the transmembrane region of BMP3, BMP7, and BMP9 proteins of O. fasciatus and O. punctatus, which may be related to the diversity and functional differentiation of genes within the BMP family. The qPCR-based developmental/temporal expression patterns of BMPs showed a trend of high expression at 30 days past hatching (dph), which exactly corresponds to the ossification period of the bones and beak-like teeth in Oplegnathus. Tissue-specific expression was found for the BMP4 gene, which was upregulated in the epithelial and mesenchymal tissues of the beak-like teeth, suggesting that it also plays a regulatory role in the development of the beak-like teeth in O. punctatus. Our investigation not only provides a scientific basis for comprehensively understanding the BMP gene family but also helps screen the key genes responsible for beak-like tooth healing in O. punctatus and sheds light on the developmental regulatory mechanism.
Collapse
Affiliation(s)
- Yuting Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Weihai Haohuigan Marine Biotechnology Co., Weihai, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guang Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lele Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| |
Collapse
|
43
|
Wu Z, Fang L, Yang S, Gao Y, Wang Z, Meng Q, Dang X, Sun YP, Cheng JC. GDF-11 promotes human trophoblast cell invasion by increasing ID2-mediated MMP2 expression. Cell Commun Signal 2022; 20:89. [PMID: 35705978 PMCID: PMC9202197 DOI: 10.1186/s12964-022-00899-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth differentiation factor-11 (GDF-11), also known as bone morphogenetic protein-11, belongs to the transforming growth factor-beta superfamily. GDF-11 was first identified as an important regulator during embryonic development. Increasing evidence has demonstrated that GDF-11 regulates the development of various organs and its aberrant expressions are associated with the risk of cardiovascular diseases and cancers. Extravillous trophoblast (EVT) cells invasion is a critical event for placenta development and needs to be finely regulated. However, to date, the biological function of GDF-11 in the human EVT cells remains unknown. METHODS HTR-8/SVneo, a human EVT cell line, and primary cultures of human EVT cells were used to examine the effect of GDF-11 on matrix metalloproteinase 2 (MMP2) expression. Matrigel-coated transwell invasion assay was used to examine cell invasiveness. A series of in vitro experiments were applied to explore the underlying mechanisms that mediate the effect of GDF-11 on MMP2 expression and cell invasion. RESULTS Treatment with GDF-11 stimulates MMP2 expression, in the HTR-8/SVneo and primary human EVT cells. Using a pharmacological inhibitor and siRNA-mediated knockdown approaches, our results demonstrated that the stimulatory effect of GDF-11 on MMP2 expression was mediated by the ALK4/5-SMAD2/3 signaling pathways. In addition, the expression of inhibitor of DNA-binding protein 2 (ID2) was upregulated by GDF-11 and that was required for the GDF-11-stimulated MMP2 expression and EVT cell invasion. CONCLUSIONS These findings discover a new biological function and underlying molecular mechanisms of GDF-11 in the regulation of human EVT cell invasion. Video Abstract.
Collapse
Affiliation(s)
- Ze Wu
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Lanlan Fang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Sizhu Yang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Yibo Gao
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Zhen Wang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Qingxue Meng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Xuan Dang
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Henan Key Laboratory of Reproduction and Genetics, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
44
|
Song L, Wu F, Li C, Zhang S. Dietary intake of GDF11 delays the onset of several biomarkers of aging in male mice through anti-oxidant system via Smad2/3 pathway. Biogerontology 2022; 23:341-362. [PMID: 35604508 PMCID: PMC9125541 DOI: 10.1007/s10522-022-09967-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/08/2022]
Abstract
Current studies have generated controversy over the age-related change in concentration of growth differentiation factor 11 (GDF11) and its role in the genesis of rejuvenation conditions. In this study, we displayed rGDF11 on the surface of Yarrowic Lipolytica (Y. lipolytica), and proved the bioavailability of the yeast-displayed rGDF11 by oral delivery in aged male mice. On the basis of these findings, we started to explore the anti-aging activity and underlying mechanisms of displayed rGDF11. It was found that dietary intake of displayed rGDF11 had little influence on the body weight and biochemical parameters of aged male mice, but delayed the occurrence and development of age-related biomarkers such as lipofuscin (LF) and senescence-associated-β-galactosidase, and to some extent, prolonged the lifespan of aged male mice. Moreover, we demonstrated once again that dietary intake of displayed rGDF11 enhanced the activity of anti-oxidant enzymes, including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX), reduced the reactive oxygen species (ROS) level, and slowed down the protein oxidation and lipid peroxidation. Importantly, we showed for the first time that rGDF11 enhanced the activity of CAT, SOD and GPX through activation of the Smad2/3 signaling pathway. Our study also provided a simple and safe route for delivery of recombinant GDF11, facilitating its therapeutic application in the future.
Collapse
Affiliation(s)
- Lili Song
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Fei Wu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Congjun Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
45
|
Li Y, Li Y, Li L, Wang H, Wang B, Feng L, Lin S, Li G. The emerging translational potential of GDF11 in chronic wound healing. J Orthop Translat 2022; 34:113-120. [PMID: 35891714 PMCID: PMC9283991 DOI: 10.1016/j.jot.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic skin wounds impose immense suffers and economic burdens. Current research mainly focuses on acute wound management which exhibits less effective in chronic wound healing. Growth differentiation factor 11 (GDF11) has profound effects on several important physiological processes related to chronic wound healing, such as inflammation, cell proliferation, migration, angiogenesis, and neurogenesis. This review summarizes recent advances in biology of chronic wounds and the potential role of GDF11 on wound healing with its regenerative effects, as well as the potential delivery methods of GDF11. The challenges and future perspectives of GDF11-based therapy for chronic wound care are also discussed. The Translational Potential of this Article: This review summarized the significance of GDF11 in the modulation of inflammation, vascularization, cell proliferation, and remodeling, which are important physiological processes of chronic wound healing. The potential delivery methods of GDF11 in the management of chronic wound healing is also summarized. This review may provide potential therapeutic approaches based on GDF11 for chronic wound healing.
Collapse
Affiliation(s)
- Yuan Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Linlong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Bin Wang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China
| |
Collapse
|
46
|
Follistatin dysregulation impaired trophoblast biological functions by GDF11-Smad2/3 axis in preeclampsia placentas. Placenta 2022; 121:145-154. [PMID: 35339026 DOI: 10.1016/j.placenta.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the main causes of maternal, fetal, and neonatal mortality. So far, the underlying mechanism of this pregnancy-specific syndrome remains unelucidated. The expression of Follistatin (FST) decreased in maternal serum (especially early onset severe PE) and placental trophoblasts of PE patients. However, whether FST-deficiency in preeclamptic placentas alters trophoblast function remains to be determined. METHODS Trophoblast cell lines were cultured in vitro and LV3 short hairpin RNA (shRNA) was used to silence FST. Growth and differentiation factor 11 (GDF11) expression level in placentas and serum were detected by immunohistochemistry and enzyme-linked immune-sorbent assay, respectively. To verify the effect of reduced FST expression on trophoblasts, microRNA-24-3p, which was predicted to target the 3'-untranslated region (3'-UTR) of FST, was screened out, and miR-24-3p mimic, inhibitor was used to regulate FST expression in trophoblasts. RESULTS Downregulation of FST significantly enhanced the apoptosis and impaired migration and invasion of trophoblast. Reduced FST caused the upregulation of GDF11 in trophoblasts. Interestingly, GDF11 reduced in preeclamptic placental microvascular endothelial cells. Dysregulation of FST-GDF11-Smad2/3 signaling pathway, leading to increased apoptosis of trophoblast. Expression levels of miR-24-3p, was significantly elevated in preeclamptic placentas. Trophoblast cells transfected with miR-24-3p mimics displayed impaired migration and invasion and increased apoptosis. Treated by miR-24-3p inhibitor, trophoblast cells exhibited rescued function. DISCUSSION FST-deficiency impaired trophoblast function by upregulating GDF11 levels in trophoblasts. The regulation of FST-GDF11-Smad2/3 axis by microRNAs mimic or inhibitor may be critical to trophoblast function regulation and helps to deepen our understanding of the molecular mechanism of PE.
Collapse
|
47
|
Lee SJ, Lehar A, Rydzik R, Youngstrom DW, Bhasin S, Liu Y, Germain-Lee EL. Functional replacement of myostatin with GDF-11 in the germline of mice. Skelet Muscle 2022; 12:7. [PMID: 35287700 PMCID: PMC8922734 DOI: 10.1186/s13395-022-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Adam Lehar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Renata Rydzik
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.,Division of Endocrinology & Diabetes and Center for Rare Bone Disorders, Connecticut Children's, Farmington, CT, USA
| |
Collapse
|
48
|
de Lemos L, Dias A, Nóvoa A, Mallo M. Epha1 is a cell-surface marker for the neuromesodermal competent population. Development 2022; 149:274735. [DOI: 10.1242/dev.198812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The vertebrate body is built during embryonic development by the sequential addition of new tissue as the embryo grows at its caudal end. During this process, progenitor cells within the neuromesodermal competent (NMC) region generate the postcranial neural tube and paraxial mesoderm. Here, we have applied a genetic strategy to recover the NMC cell population from mouse embryonic tissues and have searched their transcriptome for cell-surface markers that would give access to these cells without previous genetic modifications. We found that Epha1 expression is restricted to the axial progenitor-containing areas of the mouse embryo. Epha1-positive cells isolated from the mouse tailbud generate neural and mesodermal derivatives when cultured in vitro. This observation, together with their enrichment in the Sox2+/Tbxt+ molecular phenotype, indicates a direct association between Epha1 and the NMC population. Additional analyses suggest that tailbud cells expressing low Epha1 levels might also contain notochord progenitors, and that high Epha1 expression might be associated with progenitors entering paraxial mesoderm differentiation. Epha1 could thus be a valuable cell-surface marker for labeling and recovering physiologically active axial progenitors from embryonic tissues.
Collapse
Affiliation(s)
- Luisa de Lemos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
49
|
Jia Q, Liu B, Dang X, Guo Y, Han X, Song T, Cheng JC, Fang L. Growth differentiation factor-11 downregulates steroidogenic acute regulatory protein expression through ALK5-mediated SMAD3 signaling pathway in human granulosa-lutein cells. Reprod Biol Endocrinol 2022; 20:34. [PMID: 35183204 PMCID: PMC8857810 DOI: 10.1186/s12958-022-00912-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Growth differentiation factor-11 (GDF-11) belongs to the transforming growth factor-β (TGF-β) superfamily. To date, the expression of GDF-11 in the ovary and its role in regulating ovarian function are completely unknown. Ovarian granulosa cell-mediated steroidogenesis plays a pivotal role in maintaining normal female reproductive function. GDF-11 and GDF-8 share high sequence similarity and exhibit many similar features and functions. Steroidogenic acute regulatory protein (StAR) regulates the rate-limiting step in steroidogenesis and its expression can be downregulated by GDF-8. Polycystic ovary syndrome (PCOS) is the most common cause of female infertility. The expression levels of GDF-8 are upregulated in the human follicular fluid and granulosa-lutein (hGL) cells of PCOS patients. However, whether similar results can be observed for the GDF-11 needs to be determined. METHODS The effect of GDF-11 on StAR expression and the underlying molecular mechanisms were explored by a series of in vitro experiments in a primary culture of hGL cells obtained from patients undergoing in vitro fertilization (IVF) treatment. Human follicular fluid samples were obtained from 36 non-PCOS patients and 36 PCOS patients. GDF-11 levels in follicular fluid were measured by ELISA. RESULTS GDF-11 downregulates StAR expression, whereas the expression levels of the P450 side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) are not affected by GDF-11 in hGL cells. Using pharmacological inhibitors and a siRNA-mediated approach, we reveal that ALK5 but not ALK4 mediates the suppressive effect of GDF-11 on StAR expression. Although GDF-11 activates both SMAD2 and SMAD3 signaling pathways, only SMAD3 is involved in the GDF-11-induced downregulation of StAR expression. In addition, we show that SMAD1/5/8, ERK1/2, and PI3K/AKT signaling pathways are not activated by GDF-11 in hGL cells. RT-qPCR and ELISA detect GDF-11 mRNA expression in hGL cells and GDF-11 protein expression in human follicular fluid, respectively. Interestingly, unlike GDF-8, the expression levels of GDF-11 are not varied in hGL cells and follicular fluid between non-PCOS and PCOS patients. CONCLUSIONS This study increases the understanding of the biological function of GDF-11 and provides important insights into the regulation of ovarian steroidogenesis.
Collapse
Affiliation(s)
- Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Xuan Dang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Yanjie Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Tinglin Song
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, 450052, China.
| |
Collapse
|
50
|
Li C, Liu K, Dai J, Li X, Liu X, Ni W, Li H, Wang D, Qiao J, Wang Y, Cui Y, Xia X, Hu S. Whole-genome resequencing to investigate the determinants of the multi-lumbar vertebrae trait in sheep. Gene 2022; 809:146020. [PMID: 34656743 DOI: 10.1016/j.gene.2021.146020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Multi-lumbar vertebrae trait is a beneficial mutation that can significantly improve livestock meat production. However, the genetic basis of the multi-lumbar vertebrae in sheep is still unclear. Here, we analysed the number of lumbar vertebrae of Duolang sheep and found three different traits of lumbar vertebrae number. Compared with the normal sheep, the length and weight of animal carcass from the multi-lumbar vertebrae sheep increased by 2.21 cm and 0.78 kg, respectively. We performed high-throughput genome resequencing on multi-lumbar vertebrae (n = 18) and normal (n = 11) Duolang sheep and obtained a total of more than 528.87 GB data. We found that the most significantly selective region were located in the 49.68-49.74 MB of chromosome 4 by selective-sweep analysis. We annotated this region and found that it contains SFRP4 which is known to regulate bone development. We further used the PCR-SSCP technology to detect the single nucleotide polymorphism (SNP) of the putative candidate SFRP4 and found that the two SNPs (rs600370085:C > T and rs415133338: A > G) of this gene were significantly associated with the multi-lumbar vertebrae of Duolang sheep. Our study indicates that the SFRP4 may be a potential major gene that affects the number of lumbar vertebrae in Duolang sheep, and has the potential to be utilized for sheep breeding in the future.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jihong Dai
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xia Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hui Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yue Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yuying Cui
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|