1
|
Hung CJ, Tsai CT, Rahaman SM, Yamanaka A, Seo W, Yokoyama T, Sakamoto M, Ono D. Neuropeptidergic Input from the Lateral Hypothalamus to the Suprachiasmatic Nucleus Alters the Circadian Period in Mice. J Neurosci 2025; 45:e0351242024. [PMID: 39622648 PMCID: PMC11756623 DOI: 10.1523/jneurosci.0351-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/09/2024] [Accepted: 11/19/2024] [Indexed: 01/24/2025] Open
Abstract
In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which transmits circadian information to other brain regions and regulates the timing of sleep and wakefulness. Neurons in the lateral hypothalamus (LH), particularly those producing melanin-concentrating hormone (MCH) and orexin, are key regulators of sleep and wakefulness. Although the SCN receives nonphotic input from other brain regions, the mechanisms of functional input from the LH to the SCN remain poorly understood. Here, we show that orexin and MCH peptides influence the circadian period within the SCN of both sexes. When these neurons are ablated, the circadian behavioral rhythms are lengthened under constant darkness. Using anterograde and retrograde tracing, we found that orexin and MCH neurons project to the SCN. Furthermore, the application of these peptides to cultured SCN slices shortened circadian rhythms and reduced intracellular cAMP levels. Additionally, pharmacological reduction of intracellular cAMP levels similarly shortened the circadian period in SCN slices. These findings suggest that orexin and MCH peptides from the LH contribute to the modulation of the circadian period in the SCN.
Collapse
Affiliation(s)
- Chi Jung Hung
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Chang-Ting Tsai
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Sheikh Mizanur Rahaman
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Chinese Institute for Brain Research (CIBR), Beijing 102206, China
| | - Wooseok Seo
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tatsushi Yokoyama
- Department of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Masayuki Sakamoto
- Department of Brain Development and Regeneration, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
Li M. Is melanin-concentrating hormone in the medial preoptic area a signal for the decline of maternal care in late postpartum? Front Neuroendocrinol 2024; 75:101155. [PMID: 39222798 DOI: 10.1016/j.yfrne.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
This manuscript proposes that melanin-concentrating hormone (MCH) in the medial preoptic area (MPOA) is an neurochemical signal evolved to trigger the declining process of maternal care. MCH in the MPOA appears only after parturition and is progressively increased with the progression of lactation, while maternal behavior declines progressively. Intra-MPOA injection of MCH decreases active maternal responses. MCH is also highly responsive to infant characteristics and maternal condition. Behavioral changes induced by MCH in late postpartum period are conducive to the decline of infant-directed maternal behavior. The MPOA MCH system may mediate the maternal behavior decline by suppressing the maternal approach motivation and/or increasing maternal withdrawal via its inhibitory action onto the mesolimbic dopamine D1/D2 receptors and its stimulating action on serotonin 5-HT2C receptors in the ventral tegmental area. Research into the MCH maternal effects will enhance our understanding of the neurochemical mechanisms underlying the maternal behavior decline.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Hou L, Wang L, Deng C, Jin P, Wen C, Zhang W, Liang W. Sensitive Detection and Cell Imaging of Ca 2+ Based on a "Turn-On" Schiff Base Fluorescent Probe. LUMINESCENCE 2024; 39:e4914. [PMID: 39350644 DOI: 10.1002/bio.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Ca2+ ion as a second messenger in signaling pathway plays many vital roles in many biological phenomena. Thus, it is of significance for developing effective probes to detect Ca2+ ion specifically. Herein, a new Schiff base fluorescent probe FPH, fluorescein monoaldehyde (2-aminomethylpyridine) hydrazone, was designed and synthesized to identify Ca2+ in DMSO aqueous solution. The probe FPH revealed significant responses to Ca2+ with a fluorescence enhancement at 540 nm, exhibiting an evident fluorescence change from ultraweak luminescence to bright green. Otherwise, the FPH displayed a good linear range of 0.67 × 10-6 to 3.33 × 10-6 mol/L with a lower detection limit at 7.02 × 10-8 mol/L. The probe FPH were further successfully utilized to detect Ca2+ in living cells by an increased bright green fluorescence.
Collapse
Affiliation(s)
- Lingjie Hou
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, China
- Institute of Environmental Science, Shanxi University, Taiyuan, China
- Humic Acid Engineering and Technology Research Center of Shanxi Province, Jinzhong, China
| | - Linlin Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chenhua Deng
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, China
| | - Pengyue Jin
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chaochao Wen
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Wenjia Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Wenting Liang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Chaki S. Melanin-concentrating hormone receptor: A therapeutic target for novel anxiolytics. Pharmacol Biochem Behav 2024; 242:173818. [PMID: 38971471 DOI: 10.1016/j.pbb.2024.173818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Anxiety disorders are chronic, disabling psychiatric disorders, and there is a growing medical need for the development of novel pharmacotherapeutic agents showing improved efficacy and an improved side effect profile as compared with the currently prescribed anxiolytic drugs. In the course of the search for next-generation anxiolytics, neuropeptide receptors have garnered interest as potential therapeutic targets, underscored by pivotal roles in modulating stress responses and findings from animal studies using pharmacological tools. Among these neuropeptide receptors, the type 1 receptor for melanin-concentrating hormone (MCH1), which has been demonstrated to be involved in an array of physiological processes, including the regulation of stress responses and affective states, has gained attraction as a therapeutic target for drugs used in the treatment of psychiatric disorders, including anxiety disorders. To date, a plethora of MCH1 antagonists have been synthesized, and studies using MCH1 antagonists and genetically manipulated mice lacking MCH1 have revealed that the blockade of MCH1 produces anxiolytic-like effects across diverse rodent paradigms. In addition, MCH1 antagonists have been demonstrated to show a rapid onset of antidepressant-like effects; therefore, they may be effective for conditions commonly encountered in patients with anxiety disorders, which is an advantage for anxiolytic drugs. Notably, MCH1 antagonists have not manifested the undesirable side effects observed with the currently prescribed anxiolytics. All these preclinical findings testify to the potential of MCH1 antagonists as novel anxiolytics. Although there are still issues that need to be resolved prior to the initiation of clinical trials, such as elucidating the precise neuronal mechanisms underlying their anxiolytic effects and exploring pertinent biomarkers that can be used in clinical trials, MCH1 blockade appears to be an attractive way to tackle anxiety disorders.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Saitama 331-9530, Japan; Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan.
| |
Collapse
|
5
|
Spencer CD, Miller PA, Williams-Ikhenoba JG, Nikolova RG, Chee MJ. Regulation of the Mouse Ventral Tegmental Area by Melanin-Concentrating Hormone. J Neurosci 2024; 44:e0790232024. [PMID: 38806249 PMCID: PMC11223476 DOI: 10.1523/jneurosci.0790-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Melanin-concentrating hormone (MCH) acts via its sole receptor MCHR1 in rodents and is an important regulator of homeostatic behaviors like feeding, sleep, and mood to impact overall energy balance. The loss of MCH signaling by MCH or MCHR1 deletion produces hyperactive mice with increased energy expenditure, and these effects are consistently associated with a hyperdopaminergic state. We recently showed that MCH suppresses dopamine release in the nucleus accumbens, which principally receives dopaminergic projections from the ventral tegmental area (VTA), but the mechanisms underlying MCH-regulated dopamine release are not clearly defined. MCHR1 expression is widespread and includes dopaminergic VTA cells. However, as the VTA is a neurochemically diverse structure, we assessed Mchr1 gene expression at glutamatergic, GABAergic, and dopaminergic VTA cells and determined if MCH inhibited the activity of VTA cells and/or their local microcircuit. Mchr1 expression was robust in major VTA cell types, including most dopaminergic (78%) or glutamatergic cells (52%) and some GABAergic cells (38%). Interestingly, MCH directly inhibited dopaminergic and GABAergic cells but did not regulate the activity of glutamatergic cells. Rather, MCH produced a delayed increase in excitatory input to dopamine cells and a corresponding decrease in GABAergic input to glutamatergic VTA cells. Our findings suggested that MCH may acutely suppress dopamine release while disinhibiting local glutamatergic signaling to restore dopamine levels. This indicated that the VTA is a target of MCH action, which may provide bidirectional regulation of energy balance.
Collapse
Affiliation(s)
- Carl Duncan Spencer
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Persephone A Miller
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | | | - Ralitsa G Nikolova
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
6
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
7
|
Subramanian KS, Lauer LT, Hayes AMR, Décarie-Spain L, McBurnett K, Nourbash AC, Donohue KN, Kao AE, Bashaw AG, Burdakov D, Noble EE, Schier LA, Kanoski SE. Hypothalamic melanin-concentrating hormone neurons integrate food-motivated appetitive and consummatory processes in rats. Nat Commun 2023; 14:1755. [PMID: 36990984 PMCID: PMC10060386 DOI: 10.1038/s41467-023-37344-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
The lateral hypothalamic area (LHA) integrates homeostatic processes and reward-motivated behaviors. Here we show that LHA neurons that produce melanin-concentrating hormone (MCH) are dynamically responsive to both food-directed appetitive and consummatory processes in male rats. Specifically, results reveal that MCH neuron Ca2+ activity increases in response to both discrete and contextual food-predictive cues and is correlated with food-motivated responses. MCH neuron activity also increases during eating, and this response is highly predictive of caloric consumption and declines throughout a meal, thus supporting a role for MCH neurons in the positive feedback consummatory process known as appetition. These physiological MCH neural responses are functionally relevant as chemogenetic MCH neuron activation promotes appetitive behavioral responses to food-predictive cues and increases meal size. Finally, MCH neuron activation enhances preference for a noncaloric flavor paired with intragastric glucose. Collectively, these data identify a hypothalamic neural population that orchestrates both food-motivated appetitive and intake-promoting consummatory processes.
Collapse
Affiliation(s)
- Keshav S Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Kara McBurnett
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Anna C Nourbash
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Kristen N Donohue
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Alicia E Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Alexander G Bashaw
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Emily E Noble
- Department of Nutritional Sciences, University of Georgia, Athens, USA
| | - Lindsey A Schier
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
8
|
Helal MA, Chittiboyina AG, Avery MA. Structure-based design of novel melanin-concentrating hormone receptor-1 ligands based on saturated nitrogen-containing heterocycles. Bioorg Med Chem Lett 2023; 84:129194. [PMID: 36813053 DOI: 10.1016/j.bmcl.2023.129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Melanin Concentrating Hormone (MCH) receptor is a G protein-coupled receptor (GPCR) with two subtypes R1 and R2. MCH-R1 is involved in the control of energy homeostasis, feeding behavior and body weight. Many studies have proved that administration of MCH-R1 antagonists significantly reduces food intake and causes weight loss in animal models. Herein, we report the optimization of our previously reported virtual screening hits into novel MCH-R1 ligands with chiral aliphatic nitrogen-containing scaffolds. The activity was improved from the micromolar range of the initial leads to 7 nM. We also disclose the first MCH-R1 ligands based on a diazaspiro[4.5]decane nucleus with sub-micromolar activity. A potent MCH-R1 antagonist with acceptable pharmacokinetic profile could represent a new hope for the management of obesity.
Collapse
Affiliation(s)
- Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Mitchell A Avery
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
9
|
Kobayashi Y, Saito Y. Evaluation of ciliary-GPCR dynamics using a validated organotypic brain slice culture method. Methods Cell Biol 2023; 175:69-83. [PMID: 36967146 DOI: 10.1016/bs.mcb.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The primary cilium is a structural organelle present in most mammalian cells. Primary cilia are enriched with a unique protein repertoire distinct from that of the cytosol and the plasma membrane. Such a highly organized microenvironment creates effective machinery for translating extracellular cues into intracellular signals. G protein-coupled receptors (GPCRs) are key receptors in sensing environmental stimuli transmitted via a second messenger into a cellular response. Recent data has demonstrated that a limited number of non-olfactory GPCRs, including melanin-concentrating hormone receptor 1 (MCHR1), are preferentially localized to ciliary membranes of several mammalian cell types, including neuronal cells. Evidence was accumulated to support the functional importance of ciliary-GPCR signaling accompanying ciliary structural changes using cilia-specific cell and molecular biology techniques. Thus, cilia are now considered to function as a unique sensory platform for the integration of GPCR signaling and various cytoplasmic domains. Dissociated neurons expressing ciliary-GPCRs can be a useful tool for examining ciliary dynamics. However, losing preexisting neuronal connectivity may alter neuronal ciliary morphology, such as abnormal elongation. Brain slices prepared under ex vitro conditions are a powerful approach that maintains the cytoarchitecture, enabling researchers to have accurate control over experimental conditions and to study individual cells from subregions of the brain. Here, we present a detailed description of our novel modified method for organotypic culture of rat brain slice and a validated immunostaining protocol to characterize ciliary-GPCR dynamics in coupling with neuropeptides or aminergic activation.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
10
|
González-Flores O, Pfaus JG, Luna-Hernández A, Montes-Narváez O, Domínguez-Ordóñez R, Tecamachaltzi-Silvarán MB, García-Juárez M. Estradiol and progesterone-induced lordosis behavior is modulated by both the Kisspeptin receptor and melanin-concentrating hormone in estradiol benzoate-primed rats. Horm Behav 2022; 146:105257. [PMID: 36115135 DOI: 10.1016/j.yhbeh.2022.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Intracerebroventricular (ICV) administration of estradiol benzoate (E2B) and progesterone (P) induces intense lordosis behavior in ovariectomized rats primed peripherally with E2B. The present study tested the hypothesis that the Kisspeptin (Kiss) and melanin-concentrating hormone (MCH) pathways regulate female sexual behavior induced by these steroid hormones. In Experiment 1, we tested the relevance of the Kiss pathway by ICV infusion of its inhibitor, kiss-234, before administration of E2B or P in estrogen-primed rats. Lordosis induced by E2B alone or with the addition of P was reduced significantly at 30, 120, and 240 min. In Experiment 2, ICV infusion of MCH 30 min before E2B or P significantly reduced lordosis in rats primed with E2B alone. These data support the hypothesis that the Kiss and MCH pathways, which can release or modulate gonadotropin-releasing hormone (GnRH), are involved in E2B- and P-induced lordosis.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, Czech Republic; Czech National Institute of Mental Health, Klecany, Czech Republic
| | - Ailyn Luna-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Raymundo Domínguez-Ordóñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, CRC, Benemérita Universidad Autónoma de Puebla, México
| | | | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
11
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
12
|
Crosstalk between Melanin Concentrating Hormone and Endocrine Factors: Implications for Obesity. Int J Mol Sci 2022; 23:ijms23052436. [PMID: 35269579 PMCID: PMC8910548 DOI: 10.3390/ijms23052436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 01/03/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.
Collapse
|
13
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Kobayashi Y, Tomoshige S, Imakado K, Sekino Y, Koganezawa N, Shirao T, Diniz GB, Miyamoto T, Saito Y. Ciliary GPCR-based transcriptome as a key regulator of cilia length control. FASEB Bioadv 2021; 3:744-767. [PMID: 34485842 PMCID: PMC8409570 DOI: 10.1096/fba.2021-00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
The primary cilium is a plasma membrane-protruding sensory organelle that efficiently conveys signaling cascades in a highly ordered microenvironment. Its signaling is mediated, in part, by a limited set of GPCRs preferentially enriched in the cilium membrane. This includes melanin-concentrating hormone (MCH) receptor 1 (MCHR1), which plays a role in feeding and mood. In addition to its receptor composition, the length of the cilium is a characteristic parameter that is implicated in its function. We previously found that MCH can dynamically shorten cilia length via the Gi/o and Akt pathways in both MCHR1-expressing hTERT-RPE1 cells (hRPE1 cells) and rat hippocampal neurons. However, the detailed mechanisms by which MCH regulates cilia length through ciliary MCHR1 remains unclear. In this study, we aimed to determine the transcriptome changes in MCHR1-expressing hRPE1 cells in response to MCH to identify the target molecules involved in cilia length regulation via MCHR1 activation. RNA sequencing analysis of ciliated cells subjected to MCH treatment showed upregulation of 424 genes and downregulation of 112 genes compared with static control cells. Validation by quantitative real-time PCR, knocking down, and CRISPR/Cas9-mediated knockout technology identified a molecule, PDZ and LIM domain-containing protein 5 (PDLIM5). Thus, it was considered as the most significant key factor for MCHR1-mediated shortening of cilia length. Additional analyses revealed that the actin-binding protein alpha-actinin 1/4 is a crucial downstream target of the PDLIM5 signaling pathway that exerts an effect on MCHR1-induced cilia shortening. In the endogenous MCHR1-expressing hippocampus, transcriptional upregulation of PDLIM5 and actinin 1/4, following the application of MCH, was detected when the MCHR1-positive cilia were shortened. Together, our transcriptome study based on ciliary MCHR1 function uncovered a novel and important regulatory step underlying cilia length control. These results will potentially serve as a basis for understanding the mechanism underlying the development of obesity and mood disorders.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Sakura Tomoshige
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Kosuke Imakado
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell‐Based Drug DiscoveryGraduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
| | - Noriko Koganezawa
- Department of Neurobiology and BehaviorGraduate School of MedicineGunma UniversityMaebashiJapan
| | - Tomoaki Shirao
- Department of Neurobiology and BehaviorGraduate School of MedicineGunma UniversityMaebashiJapan
- AlzMed, Inc.TokyoJapan
| | - Giovanne B. Diniz
- California National Primate Research CenterUniversity of CaliforniaDavisCAUSA
| | - Tatsuo Miyamoto
- Department of Genetics and Cell BiologyResearch Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| |
Collapse
|
15
|
Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021; 44:6031626. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/04/2020] [Indexed: 11/12/2022] Open
Abstract
Animal models have advanced not only our understanding of the etiology and phenotype of the sleep disorder narcolepsy but have also informed sleep/wake regulation more generally. The identification of an inheritable narcolepsy phenotype in dogs in the 1970s allowed the establishment of a breeding colony at Stanford University, resulting in studies that provided the first insights into the genetics and neurotransmitter systems that underlie cataplexy and rapid-eye movement sleep atonia. Although the discovery of the hypocretin/orexin neuropeptides in 1998 initially seemed unrelated to sleep/wake control, the description of the phenotype of the prepro-orexin knockout (KO) mouse as strongly resembling cataplexy, the pathognomonic symptom of narcolepsy, along with identification of a mutation in hypocretin receptor-2 gene as the source of canine narcolepsy, unequivocally established the relationship between this system and narcolepsy. The subsequent discovery of hypocretin neuron degeneration in human narcolepsy demystified a disorder whose etiology had been unknown since its initial description 120 years earlier. These breakthroughs prompted the development of numerous other animal models that have allowed manipulation of the hypocretin/orexin system, thereby advancing our understanding of sleep/wake circuitry. While animal models have greatly informed understanding of this fascinating disorder and the role of the hypocretin/orexin system in sleep/wake control, the question of why these neurons degenerate in human narcolepsy is only beginning to be understood. The development of new immune-mediated narcolepsy models are likely to further inform the etiology of this sleep disorder and animal models will undoubtedly play a critical role in the development of novel narcolepsy therapeutics.
Collapse
Affiliation(s)
- Ryan K Tisdale
- Center for Neuroscience, Biosciences Division, SRI International
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International
| |
Collapse
|
16
|
The Transition Zone Protein AHI1 Regulates Neuronal Ciliary Trafficking of MCHR1 and Its Downstream Signaling Pathway. J Neurosci 2021; 41:3932-3943. [PMID: 33741721 DOI: 10.1523/jneurosci.2993-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022] Open
Abstract
The Abelson-helper integration site 1 (AHI1) gene encodes for a ciliary transition zone localizing protein that when mutated causes the human ciliopathy, Joubert syndrome. We prepared and examined neuronal cultures derived from male and female embryonic Ahi1 +/+ and Ahi1 -/- mice (littermates) and found that the distribution of ciliary melanin-concentrating hormone receptor-1 (MchR1) was significantly reduced in Ahi1 -/- neurons; however, the total and surface expression of MchR1 on Ahi1 -/- neurons was similar to controls (Ahi1 +/+). This indicates that a pathway for MchR1 trafficking to the surface plasma membrane is intact, but the process of targeting MchR1 into cilia is impaired in Ahi1-deficient mouse neurons, indicating a role for Ahi1 in localizing MchR1 to the cilium. Mouse Ahi1 -/- neurons that fail to accumulate MchR1 in the ciliary membrane have significant decreases in two downstream MchR1 signaling pathways [cAMP and extracellular signal-regulated kinase (Erk)] on MCH stimulation. These results suggest that the ciliary localization of MchR1 is necessary and critical for MchR1 signaling, with Ahi1 participating in regulating MchR1 localization to cilia, and further supporting cilia as critical signaling centers in neurons.SIGNIFICANCE STATEMENT Our work here demonstrates that neuronal primary cilia are powerful and focused signaling centers for the G-protein-coupled receptor (GPCR), melanin-concentrating hormone receptor-1 (MCHR1), with a role for the ciliary transition zone protein, Abelson-helper integration site 1 (AHI1), in mediating ciliary trafficking of MCHR1. Moreover, our manuscript further expands the repertoire of cilia functions on neurons, a cell type that has not received significant attention in the cilia field. Lastly, our work demonstrates the significant influence of ciliary GPCR signaling in the overall signaling of neurons.
Collapse
|
17
|
Lord MN, Subramanian K, Kanoski SE, Noble EE. Melanin-concentrating hormone and food intake control: Sites of action, peptide interactions, and appetition. Peptides 2021; 137:170476. [PMID: 33370567 PMCID: PMC8025943 DOI: 10.1016/j.peptides.2020.170476] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Given the increased prevalence of obesity and its associated comorbidities, understanding the mechanisms through which the brain regulates energy balance is of critical importance. The neuropeptide melanin-concentrating hormone (MCH) is produced in the lateral hypothalamic area and the adjacent incerto-hypothalamic area and promotes both food intake and energy conservation, overall contributing to body weight gain. Decades of research into this system has provided insight into the neural pathways and mechanisms (behavioral and neurobiological) through which MCH stimulates food intake. Recent technological advancements that allow for selective manipulation of MCH neuron activity have elucidated novel mechanisms of action for the hyperphagic effects of MCH, implicating neural "volume" transmission in the cerebrospinal fluid and sex-specific effects of MCH on food intake control as understudied areas for future investigation. Highlighted here are historical and recent findings that illuminate the neurobiological mechanisms through which MCH promotes food intake, including the identification of various specific neural signaling pathways and interactions with other peptide systems. We conclude with a framework that the hyperphagic effects of MCH signaling are predominantly mediated through enhancement of an "appetition" process in which early postoral prandial signals promote further caloric consumption.
Collapse
Affiliation(s)
- Magen N Lord
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30606, USA
| | - Keshav Subramanian
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30606, USA.
| |
Collapse
|
18
|
Philippe C, Klebermass EM, Balber T, Kulterer OC, Zeilinger M, Egger G, Dumanic M, Herz CT, Kiefer FW, Scheuba C, Scherer T, Fürnsinn C, Vraka C, Pallitsch K, Spreitzer H, Wadsak W, Viernstein H, Hacker M, Mitterhauser M. Discovery of melanin-concentrating hormone receptor 1 in brown adipose tissue. Ann N Y Acad Sci 2021; 1494:70-86. [PMID: 33502798 PMCID: PMC8248337 DOI: 10.1111/nyas.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/26/2022]
Abstract
Although extensive research on brown adipose tissue (BAT) has stimulated optimism in the battle against obesity and diabetes, BAT physiology and organ crosstalk are not fully understood. Besides BAT, melanin‐concentrating hormone (MCH) and its receptor (MCHR1) play an important role in energy homeostasis. Because of the link between hypothalamic MCH neurons and sympathetic BAT activation via β‐adrenoceptors, we investigated the expression and physiological role of the MCHR1 in BAT. MCHR1 was detected in rodent and human BAT with RT‐qPCR and western blot analyses. In vivo imaging in rats used the glucose analog [18F]FDG and the MCHR1‐tracer [11C]SNAP‐7941. We found that the β3‐adrenoceptor (ADRB3) agonist CL316,243 increased [11C]SNAP‐7941 uptake in BAT. Additionally, a pharmacological concentration of SNAP‐7941—a low‐affinity ADRB3 ligand—stimulated [18F]FDG uptake, reflecting BAT activation. In cultured human adipocytes, CL316,243 induced MCHR1 expression, further supporting a direct interaction between MCHR1 and ADRB3. These findings characterized MCHR1 expression in rodent and human BAT for the first time, including in vitro and in vivo data demonstrating a link between MCHR1 and the β3‐adrenergic system. The presence of MCHR1 in BAT emphasizes the role of BAT in energy homeostasis and may help uncover treatment approaches for obesity.
Collapse
Affiliation(s)
- Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Theresa Balber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Oana C Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Monika Dumanic
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Carsten T Herz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Scheuba
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine - CBmed GmbH, Graz, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| |
Collapse
|
19
|
Mishra S, Shah MI, Udhaya Kumar S, Thirumal Kumar D, Gopalakrishnan C, Al-Subaie AM, Magesh R, George Priya Doss C, Kamaraj B. Network analysis of transcriptomics data for the prediction and prioritization of membrane-associated biomarkers for idiopathic pulmonary fibrosis (IPF) by bioinformatics approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:241-273. [PMID: 33485486 DOI: 10.1016/bs.apcsb.2020.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare yet crucial persistent lung disorder that actuates scarring of lung tissues, which makes breathing difficult. Smoking, environmental pollution, and certain viral infections could initiate lung scarring. However, the molecular mechanism involved in IPF remains elusive. To develop an efficient therapeutic arsenal against IPF, it is vital to understand the pathology and deviations in biochemical pathways that lead to disorder. In this study, we availed network analysis and other computational pipelines to delineate the prominent membrane proteins as diagnostic biomarkers and therapeutic targets for IPF. This study yielded a significant role of glycosaminoglycan binding, endothelin, and GABA-B receptor signaling pathway in IPF pathogenesis. Furthermore, ADCY8, CRH, FGB, GPR17, MCHR1, NMUR1, and SAA1 genes were found to be immensely involved with IPF, and the enrichment pathway analysis suggests that most of the pathways were corresponding to membrane transport and signal transduction functionalities. This analysis could help in better understanding the molecular mechanism behind IPF to develop an efficient therapeutic target or biomarkers for IPF.
Collapse
Affiliation(s)
- Smriti Mishra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India; Navipoint Health India Pvt Ltd, Moula-Ali, Hyderabad, Telangana, India
| | - Mohammad Imran Shah
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India; Navipoint Health India Pvt Ltd, Moula-Ali, Hyderabad, Telangana, India
| | - S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Abeer Mohammed Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - R Magesh
- Faculty of Biomedical Sciences, Technology & Research, Department of Biotechnology, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| |
Collapse
|
20
|
Terrill SJ, Subramanian KS, Lan R, Liu CM, Cortella AM, Noble EE, Kanoski SE. Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-specific manner. Neuropharmacology 2020; 178:108270. [PMID: 32795460 PMCID: PMC7544677 DOI: 10.1016/j.neuropharm.2020.108270] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 01/13/2023]
Abstract
Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide produced in the lateral hypothalamus and zona incerta that increases food intake. The neuronal pathways and behavioral mechanisms mediating the orexigenic effects of MCH are poorly understood, as is the extent to which MCH-mediated feeding outcomes are sex-dependent. Here we investigate the hypothesis that MCH-producing neurons act in the nucleus accumbens shell (ACBsh) to promote feeding behavior and motivation for palatable food in a sex-dependent manner. We utilized ACBsh MCH receptor (MCH1R)-directed pharmacology as well as a dual virus chemogenetic approach to selectively activate MCH neurons that project to the ACBsh. Results reveal that both ACBsh MCH1R activation and activating ACBsh-projecting MCH neurons increase consumption of standard chow and palatable sucrose in male rats without affecting motivated operant responding for sucrose, general activity levels, or anxiety-like behavior. In contrast, food intake was not affected in female rats by either ACBsh MCH1R activation or ACBsh-projecting MCH neuron activation. To determine a mechanism for this sexual dimorphism, we investigated whether the orexigenic effect of ACBsh MCH1R activation is reduced by endogenous estradiol signaling. In ovariectomized female rats on a cyclic regimen of either estradiol (EB) or oil vehicle, ACBsh MCH1R activation increased feeding only in oil-treated rats, suggesting that EB attenuates the ability of ACBsh MCH signaling to promote food intake. Collective results show that MCH ACBsh signaling promotes feeding in an estrogen- and sex-dependent manner, thus identifying novel neurobiological mechanisms through which MCH and female sex hormones interact to influence food intake.
Collapse
Affiliation(s)
- Sarah J Terrill
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States
| | - Keshav S Subramanian
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, United States
| | - Rae Lan
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States
| | - Clarissa M Liu
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, United States
| | - Alyssa M Cortella
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, 129 Barrow Hall, Athens, GA, 30602, United States.
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089, United States; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
21
|
Kobayashi Y, Hamamoto A, Saito Y. Analysis of ciliary status via G-protein-coupled receptors localized on primary cilia. Microscopy (Oxf) 2020; 69:277-285. [PMID: 32627821 DOI: 10.1093/jmicro/dfaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 11/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest and most diverse cell surface receptor family, with more than 800 known GPCRs identified in the human genome. Binding of an extracellular cue to a GPCR results in intracellular G protein activation, after which a sequence of events, can be amplified and optimized by selective binding partners and downstream effectors in spatially discrete cellular environments. Because GPCRs are widely expressed in the body, they help to regulate an incredible range of physiological processes from sensation to growth to hormone responses. Indeed, it is estimated that ∼ 30% of all clinically approved drugs act by binding to GPCRs. The primary cilium is a sensory organelle composed of a microtubule axoneme that extends from the basal body. The ciliary membrane is highly enriched in specific signaling components, allowing the primary cilium to efficiently convey signaling cascades in a highly ordered microenvironment. Recent data demonstrated that a limited number of non-olfactory GPCRs, including somatostatin receptor 3 and melanin-concentrating hormone receptor 1 (MCHR1), are selectively localized to cilia on several mammalian cell types including neuronal cells. Utilizing cilia-specific cell biological and molecular biological approaches, evidence has accumulated to support the biological importance of ciliary GPCR signaling followed by cilia structural changes. Thus, cilia are now considered a unique sensory platform for integration of GPCR signaling toward juxtaposed cytoplasmic structures. Herein, we review ciliary GPCRs and focus on a novel role of MCHR1 in ciliary length control that will impact ciliary signaling capacity and neuronal function.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu 502-0857, Japan
| | - Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
22
|
Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2020; 229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The lateral hypothalamic area (LHA) is a heterogeneous brain structure extensively studied for its potent role in regulating energy balance. The anatomical and molecular diversity of the LHA permits the orchestration of responses to energy sensing cues from the brain and periphery. Two of the primary cell populations within the LHA associated with integration of this information are Orexin (ORX) and Melanin Concentrating Hormone (MCH). While both of these non-overlapping populations exhibit orexigenic properties, the activities of these two systems support feeding behavior through contrasting mechanisms. We describe the anatomical and functional properties as well as interaction with other neuropeptides and brain reward and hedonic systems. Specific outputs relating to arousal, food seeking, feeding, and metabolism are coordinated through these mechanisms. We then discuss how both the ORX and MCH systems harmonize in a divergent yet overall cooperative manner to orchestrate feeding behavior through transitions between various appetitive states, and thus offer novel insights into LHA allostatic control of appetite.
Collapse
Affiliation(s)
| | | | - Alexander W Johnson
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing.
| |
Collapse
|
23
|
Lopreside A, Calabretta MM, Montali L, Zangheri M, Guardigli M, Mirasoli M, Michelini E. Bioluminescence goes portable: recent advances in whole-cell and cell-free bioluminescence biosensors. LUMINESCENCE 2020; 36:278-293. [PMID: 32945075 DOI: 10.1002/bio.3948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d'Oro, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
24
|
Battagello DS, Lorenzon AR, Diniz GB, Motta-Teixeira LC, Klein MO, Ferreira JGP, Arias CM, Adamantidis A, Sita LV, Cipolla-Neto J, Bevilacqua EMAF, Sawchenko PE, Bittencourt JC. The Rat Mammary Gland as a Novel Site of Expression of Melanin-Concentrating Hormone Receptor 1 mRNA and Its Protein Immunoreactivity. Front Endocrinol (Lausanne) 2020; 11:463. [PMID: 32849267 PMCID: PMC7411258 DOI: 10.3389/fendo.2020.00463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 11/24/2022] Open
Abstract
Lactation is a complex physiological process, depending on orchestrated central and peripheral events, including substantial brain plasticity. Among these events is a novel expression of pro-melanin-concentrating hormone (Pmch) mRNA in the rodent hypothalamus, such as the ventral part of the medial preoptic area (vmMPOA). This expression reaches its highest levels around postpartum day 19 (PPD19), when dams transition from lactation to the weaning period. The appearance of this lactation-related Pmch expression occurs simultaneously with the presence of one of the Pmch products, melanin-concentrating hormone (MCH), in the serum. Given the relevance of the MPOA to maternal physiology and the contemporaneity between Pmch expression in this structure and the weaning period, we hypothesized that MCH has a role in the termination of lactation, acting as a mediator between central and peripheral changes. To test this, we investigated the presence of the MCH receptor 1 (MCHR1) and its gene expression in the mammary gland of female rats in different stages of the reproductive cycle. To that end, in situ hybridization, RT-PCR, RT-qPCR, nucleotide sequencing, immunohistochemistry, and Western blotting were employed. Although Mchr1 expression was detected in the epidermis and dermis of both diestrus and lactating rats, parenchymal expression was exclusively found in the functional mammary gland of lactating rats. The expression of Mchr1 mRNA oscillated through the lactation period and reached its maximum in PPD19 dams. Presence of MCHR1 was confirmed with immunohistochemistry with preferential location of MCHR1 immunoreactive cells in the alveolar secretory cells. As was the case for gene expression, the MCHR1 protein levels were significantly higher in PPD19 than in other groups. Our data demonstrate the presence of an anatomical basis for the participation of MCH peptidergic system on the control of lactation through the mammary gland, suggesting that MCH could modulate a prolactation action in early postpartum days and the opposite role at the end of the lactation.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Instituto de Psicologia, Nucleo de Neurociencias e Comportamento, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Aline R. Lorenzon
- Departmento de Biologia Celular e Do Desenvolvimento, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanne B. Diniz
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Lívia C. Motta-Teixeira
- Departmento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marianne O. Klein
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Jozélia G. P. Ferreira
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos M. Arias
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Luciane V. Sita
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - José Cipolla-Neto
- Departmento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Estela M. A. F. Bevilacqua
- Departmento de Biologia Celular e Do Desenvolvimento, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Paul E. Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jackson C. Bittencourt
- Instituto de Psicologia, Nucleo de Neurociencias e Comportamento, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Kobayashi Y. New perspectives on GPCRs: GPCR heterodimer formation (melanocortin receptor) and GPCR on primary cilia (melanin concentrating hormone receptor). Gen Comp Endocrinol 2020; 293:113474. [PMID: 32240710 DOI: 10.1016/j.ygcen.2020.113474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 11/13/2022]
Abstract
GPCRs are the largest family of receptors accounting for about 30% of the current drug targets. However, it is difficult to fully elucidate the mechanisms regulating intracellular GPCR signal regulation. It is thus important to consider and investigate GPCRs with respect to endogenous situations. Our group has been investigating GPCRs involved in body color (teleost and amphibian) and eating (vertebrate). Here, I review two independent GPCR systems (heterodimer formation and primary ciliated GPCR) that can be breakthroughs in GPCR research. In teleosts, MCRs form heterodimers, which significantly reduce their affinity for acetylated ligands. In mammals, MCHR1 is localized in the ciliary membrane and shortens the length of the primary cilia through a unique signal from the ciliary membrane. Considering these two new GPCR concepts is expected to advance the overall view of the GPCR system.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan.
| |
Collapse
|
26
|
Diniz GB, Battagello DS, Klein MO, Bono BSM, Ferreira JGP, Motta‐Teixeira LC, Duarte JCG, Presse F, Nahon J, Adamantidis A, Chee MJ, Sita LV, Bittencourt JC. Ciliary melanin‐concentrating hormone receptor 1 (MCHR1) is widely distributed in the murine CNS in a sex‐independent manner. J Neurosci Res 2020; 98:2045-2071. [DOI: 10.1002/jnr.24651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/24/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Giovanne B. Diniz
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
- Department of Neurosurgery Yale School of Medicine New Haven CT USA
| | - Daniella S. Battagello
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Marianne O. Klein
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | | | - Jozélia G. P. Ferreira
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Livia C. Motta‐Teixeira
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Jessica C. G. Duarte
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Françoise Presse
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) Université Côte d’AzurCNRS Valbonne France
| | - Jean‐Louis Nahon
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) Université Côte d’AzurCNRS Valbonne France
| | | | - Melissa J. Chee
- Department of Neuroscience Carleton University Ottawa ON Canada
| | - Luciane V. Sita
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Jackson C. Bittencourt
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
- Center for Neuroscience and Behavior Institute of Psychology University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
27
|
Morganstern I, Gulati G, Leibowitz SF. Role of melanin-concentrating hormone in drug use disorders. Brain Res 2020; 1741:146872. [PMID: 32360868 DOI: 10.1016/j.brainres.2020.146872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide primarily transcribed in the lateral hypothalamus (LH), with vast projections to many areas throughout the central nervous system that play an important role in motivated behaviors and drug use. Anatomical, pharmacological and genetic studies implicate MCH in mediating the intake and reinforcement of commonly abused substances, acting by influencing several systems including the mesolimbic dopaminergic system, glutamatergic as well as GABAergic signaling and being modulated by inflammatory neuroimmune pathways. Further support for the role of MCH in controlling behavior related to drug use will be discussed as it relates to cerebral ventricular volume transmission and intracellular molecules including cocaine- and amphetamine-regulated transcript peptide, dopamine- and cAMP-regulated phosphoprotein 32 kDa. The primary goal of this review is to introduce and summarize current literature surrounding the role of MCH in mediating the intake and reinforcement of commonly abused drugs, such as alcohol, cocaine, amphetamine, nicotine and opiates.
Collapse
Affiliation(s)
| | - Gazal Gulati
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
28
|
Vawter MP, Schulmann A, Alhassen L, Alhassen W, Hamzeh AR, Sakr J, Pauluk L, Yoshimura R, Wang X, Dai Q, Sanathara N, Civelli O, Alachkar A. Melanin Concentrating Hormone Signaling Deficits in Schizophrenia: Association With Memory and Social Impairments and Abnormal Sensorimotor Gating. Int J Neuropsychopharmacol 2020; 23:53-65. [PMID: 31563948 PMCID: PMC7442395 DOI: 10.1093/ijnp/pyz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 09/24/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evidence from anatomical, pharmacological, and genetic studies supports a role for the neuropeptide melanin concentrating hormone system in modulating emotional and cognitive functions. Genome-wide association studies revealed a potential association between the melanin concentrating hormone receptor (MCHR1) gene locus and schizophrenia, and the largest genome-wide association study conducted to date shows a credible genome-wide association. METHODS We analyzed MCHR1 and pro-melanin concentrating hormone RNA-Seq expression in the prefrontal cortex in schizophrenia patients and healthy controls. Disruptions in the melanin concentrating hormone system were modeled in the mouse brain by germline deletion of MCHR1 and by conditional ablation of melanin concentrating hormone expressing neurons using a Cre-inducible diphtheria toxin system. RESULTS MCHR1 expression is decreased in the prefrontal cortex of schizophrenia samples (false discovery rate (FDR) P < .05, CommonMind and PsychEncode combined datasets, n = 901) while pro-melanin concentrating hormone is below the detection threshold. MCHR1 expression decreased with aging (P = 6.6E-57) in human dorsolateral prefrontal cortex. The deletion of MCHR1 was found to lead to behavioral abnormalities mimicking schizophrenia-like phenotypes: hyperactivity, increased stereotypic and repetitive behavior, social impairment, impaired sensorimotor gating, and disrupted cognitive functions. Conditional ablation of pro-melanin concentrating hormone neurons increased repetitive behavior and produced a deficit in sensorimotor gating. CONCLUSIONS Our study indicates that early disruption of the melanin concentrating hormone system interferes with neurodevelopmental processes, which may contribute to the pathogenesis of schizophrenia. Further neurobiological research on the developmental timing and circuits that are affected by melanin concentrating hormone may lead to a therapeutic target for early prevention of schizophrenia.
Collapse
Affiliation(s)
- Marquis P Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA
| | - Anton Schulmann
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Lamees Alhassen
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA
| | - Wedad Alhassen
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA
| | - Abdul Rezzak Hamzeh
- John Curtin School of Medical Research, Australian National University, Canberra
| | - Jasmine Sakr
- Department of Pharmaceutical Sciences, University of California, Irvine, CA
| | - Lucas Pauluk
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Ryan Yoshimura
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Xuejie Wang
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Qi Dai
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Nayna Sanathara
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
| | - Olivier Civelli
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA
- Department of Developmental and Cell Biology, School of Medicine, University of California, Irvine, CA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, CA
| |
Collapse
|
29
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone (MCH) System: A Tale of Two Peptides. Front Neurosci 2019; 13:1280. [PMID: 31849590 PMCID: PMC6901935 DOI: 10.3389/fnins.2019.01280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
The melanin-concentrating hormone (MCH) system is a robust integrator of exogenous and endogenous information, modulating arousal and energy balance in mammals. Its predominant function in teleosts, however, is to concentrate melanin in the scales, contributing to the adaptive color change observed in several teleost species. These contrasting functions resulted from a gene duplication that occurred after the teleost divergence, which resulted in the generation of two MCH-coding genes in this clade, which acquired distinctive sequences, distribution, and functions, examined in detail here. We also describe the distribution of MCH immunoreactivity and gene expression in a large number of species, in an attempt to identify its core elements. While initially originated as a periventricular peptide, with an intimate relationship with the third ventricle, multiple events of lateral migration occurred during evolution, making the ventrolateral and dorsolateral hypothalamus the predominant sites of MCH in teleosts and mammals, respectively. Substantial differences between species can be identified, likely reflecting differences in habitat and behavior. This observation aligns well with the idea that MCH is a major integrator of internal and external information, ensuring an appropriate response to ensure the organism’s homeostasis. New studies on the MCH system in species that have not yet been investigated will help us understand more precisely how these habitat changes are connected to the hypothalamic neurochemical circuits, paving the way to new intervention strategies that may be used with pharmacological purposes.
Collapse
Affiliation(s)
- Giovanne B Diniz
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Nucleo de Neurociencias e Comportamento, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Noble EE, Wang Z, Liu CM, Davis EA, Suarez AN, Stein LM, Tsan L, Terrill SJ, Hsu TM, Jung AH, Raycraft LM, Hahn JD, Darvas M, Cortella AM, Schier LA, Johnson AW, Hayes MR, Holschneider DP, Kanoski SE. Hypothalamus-hippocampus circuitry regulates impulsivity via melanin-concentrating hormone. Nat Commun 2019; 10:4923. [PMID: 31664021 PMCID: PMC6820566 DOI: 10.1038/s41467-019-12895-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023] Open
Abstract
Behavioral impulsivity is common in various psychiatric and metabolic disorders. Here we identify a hypothalamus to telencephalon neural pathway for regulating impulsivity involving communication from melanin-concentrating hormone (MCH)-expressing lateral hypothalamic neurons to the ventral hippocampus subregion (vHP). Results show that both site-specific upregulation (pharmacological or chemogenetic) and chronic downregulation (RNA interference) of MCH communication to the vHP increases impulsive responding in rats, indicating that perturbing this system in either direction elevates impulsivity. Furthermore, these effects are not secondary to either impaired timing accuracy, altered activity, or increased food motivation, consistent with a specific role for vHP MCH signaling in the regulation of impulse control. Results from additional functional connectivity and neural pathway tracing analyses implicate the nucleus accumbens as a putative downstream target of vHP MCH1 receptor-expressing neurons. Collectively, these data reveal a specific neural circuit that regulates impulsivity and provide evidence of a novel function for MCH on behavior.
Collapse
Affiliation(s)
- Emily E Noble
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Foods and Nutrition, University of Georgia, Athens, GA, 30606, USA
| | - Zhuo Wang
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Clarissa M Liu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Elizabeth A Davis
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sarah J Terrill
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ted M Hsu
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - A-Hyun Jung
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lauren M Raycraft
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Joel D Hahn
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alyssa M Cortella
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lindsey A Schier
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel P Holschneider
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
31
|
Urbanavicius J, Fabius S, Roncalho A, Joca S, Torterolo P, Scorza C. Melanin-concentrating hormone in the Locus Coeruleus aggravates helpless behavior in stressed rats. Behav Brain Res 2019; 374:112120. [PMID: 31376444 DOI: 10.1016/j.bbr.2019.112120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Animal studies have shown that antagonists of receptor 1 of Melanin-Concentrating Hormone (MCH-R1) elicit antidepressive-like behavior, suggesting that MCH-R1 might be a novel target for the treatment of depression and supports the hypothesis that MCHergic signaling regulates depressive-like behaviors. Consistent with the evidence that MCHergic neurons send projections to dorsal and median raphe nuclei, we have previously demonstrated that MCH microinjections in both nuclei induced a depressive-like behavior. Even though MCH neurons also project to Locus Coeruleus (LC), only a few studies have reported the behavioral and neurochemical effect of MCH into the LC. We studied the effects of MCH (100 and 200 ng) into the LC on coping-stress related behaviors associated with depression, using two different behavioral tests: the forced swimming test (FST) and the learned helplessness (LH). To characterize the functional interaction between MCH and the noradrenergic LC system, we also evaluated the neurochemical effects of MCH (100 ng) on the extracellular levels of noradrenaline (NA) in the medial prefrontal cortex (mPFC), an important LC terminal region involved in emotional processing. MCH administration into the LC elicited a depressive-like behavior evidenced in both paradigms. Interestingly, in the LH, MCH (100) elicited a significant increase in escape failures only in stressed animals. A significant decrease in prefrontal levels of NA was observed after MCH microinjection into the LC. Our results demonstrate that increased MCH signaling into the LC triggers depressive-like behaviors, especially in stressed animals. These data further corroborate the important role of MCH in the neurobiology of depression.
Collapse
Affiliation(s)
- Jessika Urbanavicius
- Departament of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Sara Fabius
- Departament of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Aline Roncalho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Samia Joca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Scorza
- Departament of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay.
| |
Collapse
|
32
|
Miki D, Kobayashi Y, Okada T, Miyamoto T, Takei N, Sekino Y, Koganezawa N, Shirao T, Saito Y. Characterization of Functional Primary Cilia in Human Induced Pluripotent Stem Cell-Derived Neurons. Neurochem Res 2019; 44:1736-1744. [PMID: 31037609 DOI: 10.1007/s11064-019-02806-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Neurons differentiated from hiPSCs may be promising tools to develop novel treatment methods for various neurological diseases. However, the detailed process underlying functional maturation of hiPSC-derived neurons remains poorly understood. Here, we analyze the developmental architecture of hiPSC-derived cortical neurons, iCell GlutaNeurons, focusing on the primary cilium, a single sensory organelle that protrudes from the surface of most growth-arrested vertebrate cells. To characterize the neuronal cilia, cells were cultured for various periods and evaluated immunohistochemically by co-staining with antibodies against ciliary markers Arl13b and MAP2. Primary cilia were detected in neurons within days, and their prevalence and length increased with increasing days in culture. Treatment with the mood stabilizer lithium led to primary cilia length elongation, while treatment with the orexigenic neuropeptide melanin-concentrating hormone caused cilia length shortening in iCell GlutaNeurons. The present findings suggest that iCell GlutaNeurons develop neuronal primary cilia together with the signaling machinery for regulation of cilia length. Our approach to the primary cilium as a cellular antenna can be useful for both assessment of neuronal maturation and validation of pharmaceutical agents in hiPSC-derived neurons.
Collapse
Affiliation(s)
- Daisuke Miki
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Tomoya Okada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Tatuso Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yuko Sekino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, 371-8511, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
| |
Collapse
|
33
|
Philippe C, Zeilinger M, Dumanic M, Pichler F, Fetty L, Vraka C, Balber T, Wadsak W, Pallitsch K, Spreitzer H, Lanzenberger R, Hacker M, Mitterhauser M. SNAPshots of the MCHR1: a Comparison Between the PET-Tracers [ 18F]FE@SNAP and [ 11C]SNAP-7941. Mol Imaging Biol 2019; 21:257-268. [PMID: 29948643 PMCID: PMC6449294 DOI: 10.1007/s11307-018-1212-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The melanin-concentrating hormone receptor 1 (MCHR1) has become an important pharmacological target, since it may be involved in various diseases, such as diabetes, insulin resistance, and obesity. Hence, a suitable positron emission tomography radiotracer for the in vivo assessment of the MCHR1 pharmacology is imperative. The current paper contrasts the extensive in vitro, in vivo, and ex vivo assessments of the radiotracers [18F]FE@SNAP and [11C]SNAP-7941 and provides comprehensive information about their biological and physicochemical properties. Furthermore, it examines their suitability for first-in-man imaging studies. PROCEDURES Kinetic real-time cell-binding studies with [18F]FE@SNAP and [11C]SNAP-7941 were conducted on adherent Chines hamster ovary (CHO-K1) cells stably expressing the human MCHR1 and MCHR2. Small animal imaging studies on mice and rats were performed under displacement and baseline conditions, as well as after pretreatment with the P-glycoprotein/breast cancer resistant protein inhibitor tariquidar. After the imaging studies, detailed analyses of the ex vivo biodistribution were performed. Ex vivo metabolism was determined in rat blood and brain and analyzed at various time points using a quantitative radio-HPLC assay. RESULTS [11C]SNAP-7941 demonstrates high uptake on CHO-K1-hMCHR1 cells, whereas no uptake was detected for the CHO-K1-hMCHR2 cells. In contrast, [18F]FE@SNAP evinced binding to CHO-K1-hMCHR1 and CHO-K1-hMCHR2 cells. Imaging studies with [18F]FE@SNAP and [11C]SNAP-7941 showed an increased brain uptake after tariquidar pretreatment in mice, as well as in rats, and exhibited a significant difference between the time-activity curves of the baseline and blocking groups. Biodistribution of both tracers demonstrated a decreased uptake after displacement. [11C]SNAP-7941 revealed a high metabolic stability in rats, whereas [18F]FE@SNAP was rapidly metabolized. CONCLUSIONS Both radiotracers demonstrate appropriate imaging properties for the MCHR1. However, the pronounced metabolic stability as well as superior selectivity and affinity of [11C]SNAP-7941 underlines the decisive superiority over [18F]FE@SNAP.
Collapse
Affiliation(s)
- Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Markus Zeilinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Neustadt, Austria
| | - Monika Dumanic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Florian Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Faculty of Engineering, University of Applied Sciences Wiener Neustadt, Neustadt, Austria
| | - Lukas Fetty
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Radiotherapy, Division of Medical Physics, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Inorganic Chemistry, University of Vienna, Vienna, Austria
- CBmed, Graz, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
| |
Collapse
|
34
|
Saito Y, Hamamoto A, Kobayashi Y. [Selective signaling pathway via feeding-related ciliary GPCR, melanin-concentrating hormone receptor 1]. Nihon Yakurigaku Zasshi 2019; 154:179-185. [PMID: 31597896 DOI: 10.1254/fpj.154.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
G-protein-coupled receptors (GPCRs), which constitute a highly diverse family of seven transmembrane receptors, respond to external signals and regulate a variety of cellular and physiological processes. GPCRs are encoded by about 800 different genes in human and they represent the largest family of drug targets in clinical trials, which accounts for about 30% of approved drugs acting on 108 unique GPCRs. Signaling through GPCRs can be optimized by enriching receptors, selective binding partners, and downstream effectors in discrete cellular environment. The primary cilium is a ubiquitous organelle that functions as a sensory antenna for surrounding physical and chemical stimuli. Primary cilium's compartment is as little as 1/10,000th of the total cell volume. Therefore, the ciliary membrane is highly enriched for specific signaling molecules, allowing the primary cilium to organize signaling in a highly ordered microenvironment. Recently, a set of non-olfactory GPCRs such as somatostatin receptor 3 and melanin-concentrating hormone receptor 1 (MCHR1) have been found to be selectively targeted to cilia on several mammalian cell types including neuronal cells both in vitro and in vivo approaches. Moreover, investigations into the pathophysiology have implicated GPCR ciliary signaling in a number of developmental and cellular pathways. Thus, cilia are now considered as an increasingly important connection for GPCR signaling. This review summarizes our current understanding of the signaling pathways though ciliary GPCR, especially feeding- and mood-related GPCR MCHR1, along with specific biological phenomenon as cilia length shortening.
Collapse
Affiliation(s)
- Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
| | - Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
35
|
Sanglard LP, Nascimento M, Moriel P, Sommer J, Ashwell M, Poore MH, Duarte MDS, Serão NVL. Impact of energy restriction during late gestation on the muscle and blood transcriptome of beef calves after preconditioning. BMC Genomics 2018; 19:702. [PMID: 30253751 PMCID: PMC6156876 DOI: 10.1186/s12864-018-5089-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023] Open
Abstract
Background Maternal nutrition has been highlighted as one of the main factors affecting intra-uterine environment. The increase in nutritional requirements by beef cows during late gestation can cause nutritional deficiency in the fetus and impact the fetal regulation of genes associated with myogenesis and immune response. Methods Forty days before the expected calving date, cows were assigned to one of two diets: 100% (control) or 70% (restricted group) of the daily energy requirement. Muscle samples were collected from 12 heifers and 12 steers, and blood samples were collected from 12 steers. The objective of this work was to identify and to assess the biological relevance of differentially expressed genes (DEG) in the skeletal muscle and blood of beef calves born from cows that experienced [or not] a 30% energy restriction during the last 40 days of gestation. Results A total of 160, 164, and 346 DEG (q-value< 0.05) were identified in the skeletal muscle for the effects of diet, sex, and diet-by-sex interaction, respectively. For blood, 452, 1392, and 155 DEG were identified for the effects of diet, time, and diet-by-time interaction, respectively. For skeletal muscle, results based on diet identified genes involved in muscle metabolism. In muscle, from the 10 most DEG down-regulated in the energy-restricted group (REST), we identified 5 genes associated with muscle metabolism and development: SLCO3A1, ATP6V0D1, SLC2A1, GPC4, and RASD2. In blood, among the 10 most DEG, we found genes related to response to stress up-regulated in the REST after weaning, such as SOD3 and INO80D, and to immune response down-regulated in the REST after vaccination, such as OASL, KLRF1, and LOC104968634. Conclusion In conclusion, maternal energy restriction during late gestation may limit the expression of genes in the muscle and increase expression in the blood of calves. In addition, enrichment analysis showed that a short-term maternal energy restriction during pregnancy affects the expression of genes related to energy metabolism and muscle contraction, and immunity and stress response in the blood. Therefore, alterations in the intra-uterine environment can modify prenatal development with lasting consequences to adult life. Electronic supplementary material The online version of this article (10.1186/s12864-018-5089-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leticia P Sanglard
- Department of Animal Science, Iowa State University, Ames, 50011, USA.,Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Moysés Nascimento
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA.,Department of Statistics, Universidade Federal de Viçosa, Viçosa, 36570-000, Brazil
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, Florida, 33865, USA
| | - Jeffrey Sommer
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Melissa Ashwell
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Márcio de S Duarte
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-000, Brazil.,Instituto Nacional de Ciência e Tecnologia - Ciência Animal, Viçosa, 36570-000, Brazil
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, 50011, USA. .,Department of Animal Science, North Carolina State University, Raleigh, 27695, USA.
| |
Collapse
|
36
|
Wang Z, Cui S, Qiu S, Pu S. A highly selective fluorescence "turn-on" sensor for Ca 2+ based on diarylethene with a triazozoyl hydrazine unit. RSC Adv 2018; 8:29295-29300. [PMID: 35548020 PMCID: PMC9084557 DOI: 10.1039/c8ra06039h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022] Open
Abstract
A new photochromic diarylethene derivative with a triazozoyl hydrazine unit has been designed and synthesized. Its photochromism and photoswitchable fluorescence behaviors were studied systematically by the stimuli of lights and chemical substances in acetonitrile solution. With the addition of Ca2+, the emission intensity enhanced 6.7 fold, accompanied by an obvious fluorescent color change from dark to light blue. The complexation between the derivative and Ca2+ is reversible with the 1 : 1 stoichiometry, which was verified by Job's plot and MS. The limit of detection (LOD) for Ca2+ was determined to be 2.49 × 10-8 mol L-1. Based on this unimolecular platform, a logic circuit was designed with fluorescence intensity at 482 nm as the output and the combined stimuli of UV/vis and Ca2+/EDTA as four inputs.
Collapse
Affiliation(s)
- Zhen Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 PR China +86-791-83831996 +86-791-83831996
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 PR China +86-791-83831996 +86-791-83831996
| | - Shouyu Qiu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 PR China +86-791-83831996 +86-791-83831996
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang 330013 PR China +86-791-83831996 +86-791-83831996
| |
Collapse
|
37
|
Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-Concentrating Hormone. Cell Metab 2018; 28:55-68.e7. [PMID: 29861386 PMCID: PMC6400641 DOI: 10.1016/j.cmet.2018.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
Classical mechanisms through which brain-derived molecules influence behavior include neuronal synaptic communication and neuroendocrine signaling. Here we provide evidence for an alternative neural communication mechanism that is relevant for food intake control involving cerebroventricular volume transmission of the neuropeptide melanin-concentrating hormone (MCH). Results reveal that the cerebral ventricles receive input from approximately one-third of MCH-producing neurons. Moreover, MCH cerebrospinal fluid (CSF) levels increase prior to nocturnal feeding and following chemogenetic activation of MCH-producing neurons. Utilizing a dual viral vector approach, additional results reveal that selective activation of putative CSF-projecting MCH neurons increases food intake. In contrast, food intake was reduced following immunosequestration of MCH endogenously present in CSF, indicating that neuropeptide transmission through the cerebral ventricles is a physiologically relevant signaling pathway for energy balance control. Collectively these results suggest that neural-CSF volume transmission signaling may be a common neurobiological mechanism for the control of fundamental behaviors.
Collapse
|
38
|
Depression-resistant Phenotype in Mice Overexpressing Regulator of G Protein Signaling 8 (RGS8). Neuroscience 2018; 383:160-169. [DOI: 10.1016/j.neuroscience.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
|
39
|
Tomoshige S, Kobayashi Y, Hosoba K, Hamamoto A, Miyamoto T, Saito Y. Cytoskeleton-related regulation of primary cilia shortening mediated by melanin-concentrating hormone receptor 1. Gen Comp Endocrinol 2017; 253:44-52. [PMID: 28842217 DOI: 10.1016/j.ygcen.2017.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
Primary cilia are specialized microtubule-based organelles. Their importance is highlighted by the gamut of ciliary diseases associated with various syndromes including diabetes and obesity. Primary cilia serve as signaling hubs through selective interactions with ion channels and conventional G-protein-coupled receptors (GPCRs). Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a key regulator of feeding, is selectively expressed in neuronal primary cilia in distinct regions of the mouse brain. We previously found that MCH acts on ciliary MCHR1 and induces cilia shortening through a Gi/o-dependent Akt pathway with no cell cycle progression. Many factors can participate in cilia length control. However, the mechanisms for how these molecules are relocated and coordinated to activate cilia shortening are poorly understood. In the present study, we investigated the role of cytoskeletal dynamics in regulating MCH-induced cilia shortening using clonal MCHR1-expressing hTERT-RPE1 cells. Pharmacological and biochemical approaches showed that cilia shortening mediated by MCH was associated with increased soluble cytosolic tubulin without changing the total tubulin amount. Enhanced F-actin fiber intensity was also observed in MCH-treated cells. The actions of various pharmacological agents revealed that coordinated actin machinery, especially actin polymerization, was required for MCHR1-mediated cilia shortening. A recent report indicated the existence of actin-regulated machinery for cilia shortening through GPCR agonist-dependent ectosome release. However, our live-cell imaging experiments showed that MCH progressively elicited cilia shortening without exclusion of fluorescence-positive material from the tip. Short cilia phenotypes have been associated with various metabolic disorders. Thus, the present findings may contribute toward better understanding of how the cytoskeleton is involved in the GPCR ligand-triggered cilia shortening with cell mechanical properties that underlies clinical manifestations such as obesity.
Collapse
Affiliation(s)
- Sakura Tomoshige
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Yuki Kobayashi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan
| | - Kosuke Hosoba
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Akie Hamamoto
- Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yumiko Saito
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan.
| |
Collapse
|
40
|
Zeilinger M, Dumanic M, Pichler F, Budinsky L, Wadsak W, Pallitsch K, Spreitzer H, Lanzenberger R, Hacker M, Mitterhauser M, Philippe C. In vivo evaluation of radiotracers targeting the melanin-concentrating hormone receptor 1: [ 11C]SNAP-7941 and [ 18F]FE@SNAP reveal specific uptake in the ventricular system. Sci Rep 2017; 7:8054. [PMID: 28808288 PMCID: PMC5556108 DOI: 10.1038/s41598-017-08684-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 11/14/2022] Open
Abstract
The MCHR1 is involved in the regulation of energy homeostasis and changes of the expression are linked to a variety of associated diseases, such as diabetes and adiposity. The study aimed at the in vitro and in vivo evaluation of [11C]SNAP-7941 and [18F]FE@SNAP as potential PET-tracers for the MCHR1. Competitive binding studies with non-radioactive derivatives and small-animal PET/CT and MRI brain studies were performed under baseline conditions and tracer displacement with the unlabelled MCHR1 antagonist (±)-SNAP-7941. Binding studies evinced high binding affinity of the non-radioactive derivatives. Small-animal imaging of [11C]SNAP-7941 and [18F]FE@SNAP evinced high tracer uptake in MCHR1-rich regions of the ventricular system. Quantitative analysis depicted a significant tracer reduction after displacement with (±)-SNAP-7941. Due to the high binding affinity of the non-labelled derivatives and the high specific tracer uptake of [11C]SNAP-7941 and [18F]FE@SNAP, there is strong evidence that both radiotracers may serve as highly suitable agents for specific MCHR1 imaging.
Collapse
Affiliation(s)
- Markus Zeilinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Department of Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Monika Dumanic
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Department of Engineering, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Lubos Budinsky
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Department of Inorganic Chemistry, University of Vienna, Vienna, Austria
- CBmed GmbH, Center for Biomarker Research in Medicine, Graz, Austria
| | | | - Helmut Spreitzer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Applied Diagnostics, Vienna, Austria.
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Pan S, Tang H, Song Z, Li J, Guo Y. A Novel Dual Channel Fluorescent Probe for Ca2+
and Zn2+
Based on a Coumarin Schiff Base. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shengnan Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710127 China
| | - Haoyang Tang
- School of Automation; Xi'an University of Posts and Telecommunications; Xi'an Shaanxi 710121 China
| | - Zhanke Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710127 China
| | - Jin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710127 China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science, Northwest University; Xi'an Shaanxi 710127 China
| |
Collapse
|
42
|
Zhang H, Yin C, Liu T, Zhang Y, Huo F. "Turn-on" fluorescent probe detection of Ca 2+ ions and applications to bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 180:211-216. [PMID: 28301823 DOI: 10.1016/j.saa.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/24/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Ca2+ is intracellular divalent cation with the largest concentration variations and involved in many biological phenomena and often acted as a second messenger in signaling pathway. Therefore, the development of probes for specific Ca2+ detection is of great importance. Herein, a novel turn-on fluorescent probe for the detection of Ca2+ in MeCN-aqueous medium was designed and synthesized. The probe displayed responses to Ca2+ with a fluorescence enhancement at 525nm, accompanying with a distinct fluorescence change from nearly colorless to bright yellow-green. Besides, the probe exhibited a rapid signal response time (within 25s), a good linearity range and a lower detection limit (2.70×10-7M). In addition, the ability of the probe to detect Ca2+ in living cells (HeLa cells) via an enhancement of the fluorescence has also been demonstrated.
Collapse
Affiliation(s)
- Huifang Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Tao Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
43
|
Cui L, Lv C, Zhang J, Mo C, Lin D, Li J, Wang Y. Characterization of melanin-concentrating hormone (MCH) and its receptor in chickens: Tissue expression, functional analysis, and fasting-induced up-regulation of hypothalamic MCH expression. Gene 2017; 615:57-67. [DOI: 10.1016/j.gene.2017.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
|
44
|
Ferreira JGP, Bittencourt JC, Adamantidis A. Melanin-concentrating hormone and sleep. Curr Opin Neurobiol 2017; 44:152-158. [DOI: 10.1016/j.conb.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 01/11/2023]
|
45
|
Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res 2017; 118:74-81. [PMID: 28526553 DOI: 10.1016/j.neures.2017.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022]
Abstract
Sleep is one of the most important physiological functions in mammals. It is regulated by not only homeostatic regulation but also circadian clock. Several neuropeptide-producing neurons located in the hypothalamus are implicated in the regulation of sleep/wakefulness. Among them, orexin/hypocretin-producing neurons (orexin neurons) are a crucial component for maintenance of wakefulness, because lack of orexin function results in narcolepsy, which is a sleep disorder. Recent findings have identified substances that excite or inhibit neural activity of orexin neurons. Furthermore neural projections of the neurons which release these substances have been revealed. In addition to orexin, melanin concentrating hormone (MCH)-producing neurons in the lateral hypothalamic area (LHA) are also implicated in the regulation of sleep/wakefulness. MCH neurons are active during sleep but become silent during wakefulness. Recently developed innovative methods including optogenetics and pharmacogenetics have provided substantial insights into the regulation of sleep/wakefulness. In vivo optical recordings and retrograde and anterograde tracing methods will allow us to understand additional details regarding important interactions between these two types of neurons in the LHA and other neurons in the brain. Finally we discuss the circadian clock and sleep/wake cycle. Understanding of the neural networks and its circadian modulation of sleep/wake cycles remain to be investigated.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
46
|
Kawata Y, Okuda S, Hotta N, Igawa H, Takahashi M, Ikoma M, Kasai S, Ando A, Satomi Y, Nishida M, Nakayama M, Yamamoto S, Nagisa Y, Takekawa S. A novel and selective melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic steatosis in diet-induced obese rodent models. Eur J Pharmacol 2016; 796:45-53. [PMID: 27986627 DOI: 10.1016/j.ejphar.2016.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023]
Abstract
Melanin-concentrating hormone (MCH), a cyclic neuropeptide expressed predominantly in the lateral hypothalamus, plays an important role in the control of feeding behavior and energy homeostasis. Mice lacking MCH or MCH1 receptor are resistant to diet-induced obesity (DIO) and MCH1 receptor antagonists show potent anti-obesity effects in preclinical studies, indicating that MCH1 receptor is a promising target for anti-obesity drugs. Moreover, recent studies have suggested the potential of MCH1 receptor antagonists for treatment of non-alcoholic fatty liver disease (NAFLD). In the present study, we show the anti-obesity and anti-hepatosteatosis effect of our novel MCH1 receptor antagonist, Compound A. Repeated oral administration of Compound A resulted in dose-dependent body weight reduction and had an anorectic effect in DIO mice. The body weight lowering effect of Compound A was more potent than that of pair-feeding. Compound A also reduced lipid content and the expression level of lipogenesis-, inflammation-, and fibrosis-related genes in the liver of DIO mice. Conversely, intracerebroventricular infusion of MCH caused induction of hepatic steatosis as well as increase in body weight in high-fat diet-fed wild type mice, but not MCH1 receptor knockout mice. The pair-feeding study revealed the MCH-MCH1 receptor system affects hepatic steatosis through a mechanism that is independent of body weight change. Metabolome analysis demonstrated that Compound A upregulated lipid metabolism-related molecules, such as acylcarnitines and cardiolipins, in the liver. These findings suggest that our novel MCH1 receptor antagonist, Compound A, exerts its beneficial therapeutic effect on NAFLD and obesity through a central MCH-MCH1 receptor pathway.
Collapse
Affiliation(s)
- Yayoi Kawata
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Shoki Okuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Natsu Hotta
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Igawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Ikoma
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shizuo Kasai
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ayumi Ando
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshinori Satomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mayumi Nishida
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Syunsuke Yamamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasutaka Nagisa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shiro Takekawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
47
|
Lelesz B, Szilvássy Z, Tóth GK, Tóth A, Enyedi A, Felszeghy E, Varga A, Juhász B, Németh J. Radioanalytical methods for the measurement of melanin concentrating hormone (MCH) and detection its receptor in rat tissues. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4952-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Alachkar A, Alhassen L, Wang Z, Wang L, Onouye K, Sanathara N, Civelli O. Inactivation of the melanin concentrating hormone system impairs maternal behavior. Eur Neuropsychopharmacol 2016; 26:1826-1835. [PMID: 27617778 PMCID: PMC5929110 DOI: 10.1016/j.euroneuro.2016.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 01/22/2023]
Abstract
In order to prepare the mother for the demands of pregnancy and lactation, the maternal brain is subjected to a number of adaptations. Maternal behaviors are regulated by complex neuronal interactions. Here, we show that the melanin concentrating hormone (MCH) system is an important regulator of maternal behaviors. First, we report that melanin concentrating hormone receptor 1 knockout (MCHR1 KO) mice display a disruption of maternal behavior. Early postpartum MCHR1 KO females exhibit poor nesting, deficits in pup retrieval and maternal aggression. In addition, ablation of MCH receptors results in decreased milk production and prolactin mRNA levels. Then we show that these results are in line with those obtained in wild type mice (WT) treated with the specific MCHR1 antagonist GW803430. Furthermore, following pups retrieval, MCHR1 KO mice display a lower level of Fos expression than WT mice in the ventral tegmental area, and nucleus accumbens. With the progression of the lactation period, however, the MCHR1 KO mice improve maternal care towards their pups. This is manifested by an increase in the pups׳ survival rate and the decrease in pups׳ retrieval time beyond the second day after parturition. In conclusion, we show that the MCH system plays a significant role in the initiation of maternal behavior. In this context, MCH may play a role in integrating information from multiple sources, and connecting brain reward, homeostatic and regulatory systems.
Collapse
Affiliation(s)
- Amal Alachkar
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States.
| | - Lamees Alhassen
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Zhiwei Wang
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Lien Wang
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Kara Onouye
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Nayna Sanathara
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| | - Olivier Civelli
- Departments of Pharmacology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States; Pharmaceutical Sciences, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States; Developmental and Cell Biology, School of Medicine, University of California, 369 Med Surge II, Irvine, CA 92697-4625, United States
| |
Collapse
|
49
|
Ploj K, Benthem L, Kakol-Palm D, Gennemark P, Andersson L, Bjursell M, Börjesson J, Kärrberg L, Månsson M, Antonsson M, Johansson A, Iverson S, Carlsson B, Turnbull A, Lindén D. Effects of a novel potent melanin-concentrating hormone receptor 1 antagonist, AZD1979, on body weight homeostasis in mice and dogs. Br J Pharmacol 2016; 173:2739-51. [PMID: 27400775 DOI: 10.1111/bph.13548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/13/2016] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Melanin-concentrating hormone (MCH) is an orexigen, and while rodents express one MCH receptor (MCH1 receptor), humans, non-human primates and dogs express two MCH receptors (MCH1 and MCH2 ). MCH1 receptor antagonists have been developed for the treatment of obesity and lower body weight in rodents. However, the mechanisms for the body weight loss and whether MCH1 receptor antagonism can lower body weight in species expressing both MCH receptors are not fully understood. EXPERIMENTAL APPROACH A novel recently identified potent MCH1 receptor antagonist, AZD1979, was studied in wild type and Mchr1 knockout (KO) mice and by using pair-feeding and indirect calorimetry in diet-induced obese (DIO) mice. The effect of AZD1979 on body weight was also studied in beagle dogs. KEY RESULTS AZD1979 bound to MCH1 receptors in the CNS and dose-dependently reduced body weight in DIO mice leading to improved homeostasis model assessment-index of insulin sensitivity. AZD1979 did not affect food intake or body weight in Mchr1 KO mice demonstrating specificity for the MCH1 receptor mechanism. In DIO mice, initial AZD1979-mediated body weight loss was driven by decreased food intake, but an additional component of preserved energy expenditure was apparent in pair-feeding and indirect calorimetry studies. AZD1979 also dose-dependently reduced body weight in dogs. CONCLUSION AND IMPLICATIONS AZD1979 is a novel potent MCH1 receptor antagonist that affects both food intake and energy expenditure. That AZD1979 also lowers body weight in a species expressing both MCH receptors holds promise for the use of MCH1 receptor antagonists for the treatment of human obesity.
Collapse
Affiliation(s)
- Karolina Ploj
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | - Lambertus Benthem
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Dorota Kakol-Palm
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Peter Gennemark
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Liselotte Andersson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | - Mikael Bjursell
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Jenny Börjesson
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Lillevi Kärrberg
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden.,Drug Safety & Metabolism, AstraZeneca Mölndal, Sweden
| | | | - Madeleine Antonsson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Anders Johansson
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | | | - Björn Carlsson
- Early Clinical Development, AstraZeneca, Mölndal, Sweden
| | - Andrew Turnbull
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| | - Daniel Lindén
- Cardiovascular & Metabolic Diseases innovative Medicines (CVMD iMed), AstraZeneca Mölndal, Sweden
| |
Collapse
|
50
|
Hirabayashi K, Hanaoka K, Egawa T, Kobayashi C, Takahashi S, Komatsu T, Ueno T, Terai T, Ikegaya Y, Nagano T, Urano Y. Development of practical red fluorescent probe for cytoplasmic calcium ions with greatly improved cell-membrane permeability. Cell Calcium 2016; 60:256-65. [PMID: 27349490 DOI: 10.1016/j.ceca.2016.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023]
Abstract
Fluorescence imaging of calcium ions (Ca(2+)) has become an essential technique for investigation of signaling pathways involving Ca(2+) as a second messenger. But, Ca(2+) signaling is involved in many biological phenomena, and therefore simultaneous visualization of Ca(2+) and other biomolecules (multicolor imaging) would be particularly informative. For this purpose, we set out to develop a fluorescent probe for Ca(2+) that would operate in a different color region (red) from that of probes for other molecules, many of which show green fluorescence, as exemplified by green fluorescent protein (GFP). We previously developed a red fluorescent probe for monitoring cytoplasmic Ca(2+) concentration, based on our established red fluorophore, TokyoMagenta (TM), but there remained room for improvement, especially as regards efficiency of introduction into cells. We considered that this issue was probably mainly due to limited water solubility of the probe. So, we designed and synthesized a red-fluorescent probe with improved water solubility. We confirmed that this Ca(2+) red-fluorescent probe showed high cell-membrane permeability with bright fluorescence. It was successfully applied to fluorescence imaging of not only live cells, but also brain slices, and should be practically useful for multicolor imaging studies of biological mechanisms.
Collapse
Affiliation(s)
- Kazuhisa Hirabayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takahiro Egawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chiaki Kobayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shodai Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Terai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, AMED, Saitama 332-0012, Japan.
| |
Collapse
|