1
|
Blumenstiel JP. From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements. Semin Cell Dev Biol 2025; 164:1-12. [PMID: 38823219 DOI: 10.1016/j.semcdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
2
|
Pramono D, Muto Y, Shimazu Y, Deshapriya RMC, Makundi I, Arnal M, de Luco DF, Ngo MH, Miyake A, Nishigaki K. Endogenous retrovirus ERV-DC8 highly integrated in domestic cat populations is a replication-competent provirus. Biochem Biophys Res Commun 2024; 738:150521. [PMID: 39153451 DOI: 10.1016/j.bbrc.2024.150521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections in vertebrate genomes and are inherited by offspring. ERVs can produce pathogenic viruses through gene mutations or recombination. ERVs in domestic cats (ERV-DCs) generate feline leukemia virus subgroup D (FeLV-D) through viral recombination. Herein, we characterized the locus ERV-DC8, on chromosome B1, as an infectious replication-competent provirus. ERV-DC8 infected several cell lines, including human cells. Transmission electron microscopy of ERV-DC8 identified the viral release as a Gammaretrovirus. ERV-DC8 was identified as the FeLV-D viral interference group, with feline copper transporter 1 as its viral receptor. Insertional polymorphism analysis showed high ERV-DC8 integration in domestic cats. This study highlights the role, pathogenicity, and evolutionary relationships between ERVs and their hosts.
Collapse
Affiliation(s)
- Didik Pramono
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Yutaro Muto
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Yo Shimazu
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - R M C Deshapriya
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Isaac Makundi
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, 67125, Tanzania
| | - MaríaCruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet, 177 50013, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet, 177 50013, Zaragoza, Spain
| | - Minh Ha Ngo
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
3
|
Dias YJM, Dezordi FZ, Wallau GDL. EEfinder, a general purpose tool for identification of bacterial and viral endogenized elements in eukaryotic genomes. Comput Struct Biotechnol J 2024; 23:3662-3668. [PMID: 39498151 PMCID: PMC11532726 DOI: 10.1016/j.csbj.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Horizontal gene transfer is a phenomenon of genetic material transmission between species with no parental relationship. It has been characterized among several major branches of life, including among prokaryotes, viruses and eukaryotes. The characterization of endogenous elements derived from viruses or bacteria provides a snapshot of past host-pathogen interactions and coevolution as well as reference information to remove false positive results from metagenomic studies. Currently there is a lack of general purpose standardized tools for endogenous elements screening which limits reproducibility and hinder comparative analysis between studies. Here we describe EEfinder, a new general purpose tool for identification and classification of endogenous elements derived from viruses or bacteria found in eukaryotic genomes. The tool was developed to include six common steps performed in this type of analysis: data cleaning, similarity search through sequence alignment, filtering candidate elements, taxonomy assignment, merging of truncated elements and flanks extraction. We evaluated the sensitivity of EEfinder to identify endogenous elements through comparative analysis using data from the literature and showed that EEfinder automatically detected 97 % of the EVEs compared to published results obtained by manual curation and detected an almost exact full integration of a Wolbachia genome described using wet-lab experiments. Therefore, EEfinder can effectively and systematically identify endogenous elements with bacterial/viral origin integrated in eukaryotic genomes. EEfinder is publicly available on https://github.com/WallauBioinfo/EEfinder.
Collapse
Affiliation(s)
- Yago José Mariz Dias
- Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Curso de Graduação em Biomedicina, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Filipe Zimmer Dezordi
- Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
| | - Gabriel da Luz Wallau
- Núcleo de Bioinformática, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil
- Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
- Programa de Pós Graduação em Biodiversidade Animal and Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal Santa Maria (UFSM), Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. Evidence of endogenous Non-retroviral RNA Virus Sequences into the genome and transcriptome of the malaria vector Anopheles darlingi. Acta Trop 2024:107469. [PMID: 39549981 DOI: 10.1016/j.actatropica.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
The characterization of non-retroviral integrated RNA virus sequences (NIRVS) in mosquitoes has emerged as a significant area of research that could yield insight into virus-host interactions. This study aimed to characterize NIRVS in the Anopheles darlingi reference genome and identify putative transcribed NIRVS in field-collected mosquitoes from Colombia. The An. darlingi reference genome was analyzed to identify and characterize NIRVS by conducting a BLAST query with all the virus sequences previously identified in arthropods available in the NCBI-virus repository. In addition, An. darlingi field-collected mosquitoes were examined for NIRVS using a metatranscriptomic approach. As a result, 44 NIRVS were identified in the An. darlingi genome, constituting integrations of negative single-stranded RNA viruses (ssRNA-) from the families Rhabdoviridae, Chuviridae and Phasmaviridae, and integrations of double-stranded RNA viruses (dsRNA) from the families Partitiviridae and Sedoreoviridae. These NIRVS were not randomly distributed but clustered in specific regions of the genome enriched with BEL/Pao and Ty3/Gypsy long terminal repeat elements. Furthermore, putative NIRVS-like sequences were present in the transcriptomic data from all the Colombian An. darlingi natural populations. This study is significant as it represents the first identification of NIRVS in the most important malaria vector of the Neotropics. The findings help in understanding the intricate relationship between the mosquito and its virome, and the regulation of viruses' mechanisms in the Anopheles genus.
Collapse
Affiliation(s)
- Juan C Hernandez-Valencia
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Paola Muñoz-Laiton
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Giovan F Gómez
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M Correa
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia.
| |
Collapse
|
5
|
Mao J, Zhang Q, Zhuang Y, Zhang Y, Li L, Pan J, Xu L, Ding Y, Wang M, Cong YS. Reactivation of senescence-associated endogenous retroviruses by ATF3 drives interferon signaling in aging. NATURE AGING 2024:10.1038/s43587-024-00745-6. [PMID: 39543280 DOI: 10.1038/s43587-024-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
Reactivation of endogenous retroviruses (ERVs) has been proposed to be involved in aging. However, the mechanism of reactivation and contribution to aging and age-associated diseases is largely unexplored. In this study, we identified a subclass of ERVs reactivated in senescent cells (termed senescence-associated ERVs (SA-ERVs)). These SA-ERVs can be bidirectional transcriptionally activated by activating transcription factor 3 (ATF3) to generate double-stranded RNAs (dsRNAs), which activate the RIG-I/MDA5-MAVS signaling pathway and trigger a type I interferon (IFN-I) response in senescent fibroblasts. Consistently, we found a concerted increased expression of ATF3 and SA-ERVs and enhanced IFN-I response in several tissues of healthy aged individuals and patients with Hutchinson-Gilford progeria syndrome. Moreover, we observed an accumulation of dsRNAs derived from SA-ERVs and higher levels of IFNβ in blood of aged individuals. Together, these results reveal a previously unknown mechanism for reactivation of SA-ERVs by ATF3 and illustrate SA-ERVs as an important component and hallmark of aging.
Collapse
Affiliation(s)
- Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yang Zhuang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yinyu Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Linmeng Li
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Juan Pan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Yuxuan Ding
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China.
| |
Collapse
|
6
|
Tu Z, Bassal MA, Bell GW, Zhang Y, Hu Y, Quintana LM, Gokul D, Tenen DG, Karnoub AE. Tumor-suppressive activities for pogo transposable element derived with KRAB domain via ribosome biogenesis restriction. Mol Cell 2024; 84:4209-4223.e6. [PMID: 39481384 DOI: 10.1016/j.molcel.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
Transposable elements (TEs) are indispensable for human development, with critical functions in pluripotency and embryogenesis. TE sequences also contribute to human pathologies, especially cancer, with documented activities as cis/trans transcriptional regulators, as sources of non-coding RNAs, and as mutagens that disrupt tumor suppressors. Despite this knowledge, little is known regarding the involvement of TE-derived genes (TEGs) in tumor pathogenesis. Here, systematic analyses of TEG expression across human cancer reveal a prominent role for pogo TE derived with KRAB domain (POGK). We show that POGK acts as a tumor suppressor in triple-negative breast cancer (TNBC) cells and that it couples with the co-repressor TRIM28 to directly block the transcription of ribosomal genes RPS16 and RPS29, in turn causing widespread inhibition of ribosomal biogenesis. We report that POGK undergoes deactivation by isoform switching in clinical TNBC, altogether revealing its exapted activities in tumor growth control.
Collapse
Affiliation(s)
- Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yanzhou Zhang
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Yi Hu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Liza M Quintana
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Deeptha Gokul
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Boston Veterans Affairs Healthcare System, Boston, MA 02132, USA.
| |
Collapse
|
7
|
Pereira AB, Marano M, Bathala R, Zaragoza RA, Neira A, Samano A, Owoyemi A, Casola C. Orphan genes are not a distinct biological entity. Bioessays 2024:e2400146. [PMID: 39491810 DOI: 10.1002/bies.202400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
The genome sequencing revolution has revealed that all species possess a large number of unique genes critical for trait variation, adaptation, and evolutionary innovation. One widely used approach to identify such genes consists of detecting protein-coding sequences with no homology in other genomes, termed orphan genes. These genes have been extensively studied, under the assumption that they represent valid proxies for species-specific genes. Here, we critically evaluate taxonomic, phylogenetic, and sequence evolution evidence showing that orphan genes belong to a range of evolutionary ages and thus cannot be assigned to a single lineage. Furthermore, we show that the processes generating orphan genes are substantially more diverse than generally thought and include horizontal gene transfer, transposable element domestication, and overprinting. Thus, orphan genes represent a heterogeneous collection of genes rather than a single biological entity, making them unsuitable as a subject for meaningful investigation of gene evolution and phenotypic innovation.
Collapse
Affiliation(s)
- Andres Barboza Pereira
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Doctoral Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
| | - Matthew Marano
- Interdisciplinary Doctoral Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
| | - Ramya Bathala
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | - Andres Neira
- School of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Alex Samano
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Adekola Owoyemi
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Claudio Casola
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Doctoral Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Cesana M, Tufano G, Panariello F, Zampelli N, Soldati C, Mutarelli M, Montefusco S, Grieco G, Sepe LV, Rossi B, Nusco E, Rossignoli G, Panebianco G, Merciai F, Salviati E, Sommella EM, Campiglia P, Martello G, Cacchiarelli D, Medina DL, Ballabio A. TFEB controls syncytiotrophoblast formation and hormone production in placenta. Cell Death Differ 2024; 31:1439-1451. [PMID: 38965447 PMCID: PMC11519894 DOI: 10.1038/s41418-024-01337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17β-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.
Collapse
Affiliation(s)
- Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy.
- Department of Advanced Biomedical Sciences, Federico II University, 80131, Naples, Italy.
| | - Gennaro Tufano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Nicolina Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Margherita Mutarelli
- National Research Council of Italy (CNR), Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Giuseppina Grieco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Lucia Vittoria Sepe
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Barbara Rossi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | | | | | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | | | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy.
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
10
|
Štafl K, Trávníček M, Janovská A, Kučerová D, Pecnová Ľ, Yang Z, Stepanec V, Jech L, Salker MS, Hejnar J, Trejbalová K. Receptor usage of Syncytin-1: ASCT2, but not ASCT1, is a functional receptor and effector of cell fusion in the human placenta. Proc Natl Acad Sci U S A 2024; 121:e2407519121. [PMID: 39432789 PMCID: PMC11536146 DOI: 10.1073/pnas.2407519121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Syncytin-1, a human fusogenic protein of retroviral origin, is crucial for placental syncytiotrophoblast formation. To mediate cell-to-cell fusion, Syncytin-1 requires specific interaction with its cognate receptor. Two trimeric transmembrane proteins, Alanine, Serine, Cysteine Transporters 1 and 2 (ASCT1 and ASCT2), were suggested and widely accepted as Syncytin-1 cellular receptors. To quantitatively assess the individual contributions of human ASCT1 and ASCT2 to the fusogenic activity of Syncytin-1, we developed a model system where the ASCT1 and ASCT2 double knockout was rescued by ectopic expression of either ASCT1 or ASCT2. We demonstrated that ASCT2 was required for Syncytin-1 binding, cellular entry, and cell-to-cell fusion, while ASCT1 was not involved in this receptor interaction. We experimentally validated the ASCT1-ASCT2 heterotrimers as a possible explanation for the previous misidentification of ASCT1 as a receptor for Syncytin-1. This redefinition of receptor specificity is important for proper understanding of Syncytin-1 function in normal and pathological pregnancy.
Collapse
Affiliation(s)
- Kryštof Štafl
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Martin Trávníček
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Anna Janovská
- CZ-OpenScreen National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Dana Kučerová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Ľubomíra Pecnová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Zhiqi Yang
- Department of Women's Health, University of Tübingen, Tübingen72076, Germany
| | - Vladimír Stepanec
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Lukáš Jech
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Madhuri S. Salker
- Department of Women's Health, University of Tübingen, Tübingen72076, Germany
| | - Jiří Hejnar
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| | - Kateřina Trejbalová
- Laboratory of Viral and Cellular Genetics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská14220, Czech Republic
| |
Collapse
|
11
|
Huang YS, Chang AA, Yang ZJ, Chen JA, Lin CK, Lan HC. Long-term subculture induces syncytialization and influent the response to bisphenol A (BPA) of placental JEG-3 cells. Reprod Toxicol 2024; 130:108738. [PMID: 39477191 DOI: 10.1016/j.reprotox.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
The placenta is a temporary organ that exists only during pregnancy, responsible for connecting the mother and the fetus. During placental development, the cytotrophoblast cells differentiate into multinucleated, syncytialized cells that envelop the chorionic villi, a process known as syncytialization. These syncytiotrophoblast cells serve as a barrier between maternal circulation and the fetus and secrete important hormones such as human chorionic gonadotropin (hCG), estrogen, and progesterone. Proper regulation of trophoblast differentiation and hormone secretion is crucial throughout pregnancy, as disruption of these processes can lead to pregnancy failure. Previous studies showed that Bisphenol A (BPA), an endocrine-disrupting chemical (EDC), negatively impacts pregnancy. It affects placental development, tissue morphology, hormone secretion, and probably increase the risk of pregnancy complications. Furthermore, some compounds like hCG and forskolin induce the cell differentiation and affecting hormone secretion in trophoblast. In this study, we found that long-term subculture of JEG-3 cells indicates an increase in cell differentiation, alterations in physiological properties, and changes in hormone secretion profiles. Our results also demonstrate distinct responses in JEG-3 cells to BPA stimulation in later passages, suggesting that long-term subculture alters cell characteristics and elicits varied responses to stimuli. This implies potential harm from BPA exposure at different stages of pregnancy, albeit through different mechanisms.
Collapse
Affiliation(s)
- Yu-Shiuan Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ai-An Chang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Yang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Jung-An Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Kang Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chieh Lan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
12
|
Mousseau G, Préault N, Souquere S, Bireau C, Cassonnet P, Bacquin A, Beck L, Pierron G, Jacob Y, Dupressoir A, Heidmann T. Sodium-dependent phosphate transporter PiT1/SLC20A1 as the receptor for the endogenous retroviral envelope syncytin-B involved in mouse placenta formation. J Virol 2024; 98:e0091524. [PMID: 39287391 PMCID: PMC11495048 DOI: 10.1128/jvi.00915-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
Syncytins are envelope genes of retroviral origin that play a critical role in the formation of a syncytial structure at the fetomaternal interface via their fusogenic activity. The mouse placenta is unique among placental mammals since the fetomaternal interface comprises two syncytiotrophoblast layers (ST-I and ST-II) instead of one observed in all other hemochorial placentae. Each layer specifically expresses a distinct mouse syncytin, namely syncytin-A (SynA) for ST-I and syncytin-B (SynB) for ST-II, which have been shown to be essential to placentogenesis and embryonic development. The cellular receptor for SynA has been identified as the membrane protein LY6E and is not the receptor for SynB. Here, by combining a cell-cell fusion assay with the screening of a human ORFeome-derived expression library, we identified the transmembrane multipass sodium-dependent phosphate transporter 1 PiT1/SLC20A1 as the receptor for SynB. Transfection of cells with the cloned receptor, but not the closely related PiT2/SLC20A2, leads to their fusion with cells expressing SynB, with no cross-reactive fusion activity with SynA. The interaction between the two partners was further demonstrated by immunoprecipitation. PiT1/PiT2 chimera and truncation experiments identified the PiT1 N-terminus as the major determinant for SynB-mediated fusion. RT-qPCR analysis of PiT1 expression on a panel of mouse adult and fetal tissues revealed a concomitant increase of PiT1 and SynB specifically in the developing placenta. Finally, electron microscopy analysis of the placenta of PiT1 null embryo before they die (E11.5) disclosed default of ST-II formation with lack of syncytialization, as previously observed in cognate SynB null placenta, and consistent with the present identification of PiT1 as the SynB partner.IMPORTANCESyncytins are envelope genes of endogenous retroviruses, coopted for a physiological function in placentation. They are fusogenic proteins that mediate cell-cell fusion by interacting with receptors present on the partner cells. Here, by devising an in vitro fusion assay that enables the screening of an ORFeome-derived expression library, we identified the long-sought receptor for syncytin-B (SynB), a mouse syncytin responsible for syncytiotrophoblast formation at the fetomaternal interface of the mouse placenta. This protein - PiT1/SLC20A1 - is a multipass transmembrane protein, also known as the receptor for a series of infectious retroviruses. Its profile of expression is consistent with a role in both ancestral endogenization of a SynB founder retrovirus and present-day mouse placenta formation, with evidence-in PiT1 knockout mice-of unfused cells at the level of the cognate placental syncytiotrophoblast layer.
Collapse
Affiliation(s)
| | - Noémie Préault
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Sylvie Souquere
- AMMICA UMS-3655, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Caroline Bireau
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France
- UMR3569, Centre National de la Recherche Scientifique, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Laurent Beck
- Nantes Université, CNRS, Inserm, l'Institut du Thorax, Nantes, France
| | - Gérard Pierron
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN, Département Virologie, Institut Pasteur, Paris, France
- UMR3569, Centre National de la Recherche Scientifique, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), Boston, Massachusetts, USA
| | - Anne Dupressoir
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thierry Heidmann
- Viroxis, Institut Gustave Roussy, Villejuif, France
- Unité Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, CNRS UMR 9196, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
13
|
Wong GP, Hartmann S, Simmons DG, Ellis S, Nonn O, Cannon P, Nguyen TV, Nguyen A, Bartho LA, Tong S, Hannan NJ, Kaitu'u-Lino TJ. Trophoblast Side-Population Markers are Dysregulated in Preeclampsia and Fetal Growth Restriction. Stem Cell Rev Rep 2024; 20:1954-1970. [PMID: 39028417 PMCID: PMC11445292 DOI: 10.1007/s12015-024-10764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Dysregulated progenitor cell populations may contribute to poor placental development and placental insufficiency pathogenesis. Side-population cells possess progenitor properties. Recent human trophoblast side-population isolation identified enrichment of 8 specific genes (CXCL8, ELL2, GATA6, HK2, HLA-DPB1, INTS6, SERPINE3 and UPP1) (Gamage et al. 2020, Stem Cell Rev Rep). We characterised these trophoblast side-population markers in human placenta and in placental insufficiency disorders: preeclampsia and fetal growth restriction (FGR). Trophoblast side-population markers localised to mononuclear trophoblasts lining the placental villous basement membrane in preterm control, preeclamptic and FGR placental sections (n = 3, panel of 3 markers/serial section). Analysis of single-cell transcriptomics of an organoid human trophoblast stem cell (hTSC) to extravillous trophoblast (EVT) differentiation model (Shannon et al. 2022, Development) identified that all side-population genes were enriched in mononuclear trophoblast and trophoblasts committed to differentiation under hTSC culture conditions. In vitro validation via 96 h time course hTSC differentiation to EVTs or syncytiotrophoblasts (n = 5) demonstrated ELL2 and HK2 increased with differentiation (p < 0.0024, p < 0.0039 respectively). CXCL8 and HLA-DPB1 were downregulated (p < 0.030, p < 0.011 respectively). GATA6 and INTS6 increased with EVT differentiation only, and UPP1 reduced with syncytialisation. SERPINE3 was undetectable. Trophoblast side-population marker mRNA was measured in human placentas (< 34-weeks' gestation; n = 78 preeclampsia, n = 30 FGR, and n = 18 gestation-matched controls). ELL2, HK2 and CXCL8 were elevated in preeclamptic (p = 0.0006, p < 0.0001, p = 0.0335 respectively) and FGR placentas (p = 0.0065, p < 0.0001, p = 0.0001 respectively) versus controls. Placental GATA6 was reduced in pregnancies with preeclampsia and FGR (p = 0.0014, p = 0.0146 respectively). Placental INTS6 was reduced with FGR only (p < 0.0001). This study identified the localisation of a unique trophoblast subset enriched for side-population markers. Aberrant expression of some side-population markers may indicate disruptions to unique trophoblast subtypes in placental insufficiency.
Collapse
Affiliation(s)
- Georgia P Wong
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | - Sunhild Hartmann
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - David G Simmons
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Sarah Ellis
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Olivia Nonn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ping Cannon
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Anna Nguyen
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Lucy A Bartho
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natalie J Hannan
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics, Gynaecology and Newborn Health, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
14
|
Pizzioli E, Minutolo A, Balestrieri E, Matteucci C, Magiorkinis G, Horvat B. Crosstalk between human endogenous retroviruses and exogenous viruses. Microbes Infect 2024:105427. [PMID: 39349096 DOI: 10.1016/j.micinf.2024.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections of human germ-line cells, which are mostly silenced during evolution, but could be de-repressed and play a pathological role. Infection with some exogenous viruses, including herpesviruses, HIV-1 and SARS-CoV-2, was demonstrated to induce the expression of HERV RNAs and proteins.
Collapse
Affiliation(s)
- Edoardo Pizzioli
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
15
|
Renaud SJ. An old dog with new tricks: TFEB promotes syncytin expression and cell fusion in the human placenta. Genes Dev 2024; 38:695-697. [PMID: 39174324 PMCID: PMC11444176 DOI: 10.1101/gad.352198.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
In the human placenta, cell fusion is crucial for forming the syncytiotrophoblast, a multinucleated giant cell essential for maintaining pregnancy and ensuring fetal health. The formation of the syncytiotrophoblast is catalyzed by the evolutionarily modern fusogens syncytin-1 and syncytin-2. In this issue of Genes & Development, Esbin and colleagues (doi:10.1101/gad.351633.124) reveal a critical role for the transcription factor TFEB in the regulation of syncytin expression and the promotion of trophoblast fusion. Notably, TFEB's pro-fusion role operates independently of its well-known functions in lysosome biogenesis and autophagy, suggesting that TFEB has acquired additional functions to promote cell fusion in the human placenta.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario N6A 5C1, Canada
| |
Collapse
|
16
|
Zhang R, Wu M, Xiang D, Zhu J, Zhang Q, Zhong H, Peng Y, Wang Z, Ma G, Li G, Liu F, Ye W, Shi R, Zhou X, Babarinde IA, Su H, Chen J, Zhang X, Qin D, Hutchins AP, Pei D, Li D. A primate-specific endogenous retroviral envelope protein sequesters SFRP2 to regulate human cardiomyocyte development. Cell Stem Cell 2024; 31:1298-1314.e8. [PMID: 39146934 DOI: 10.1016/j.stem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Endogenous retroviruses (ERVs) occupy a significant part of the human genome, with some encoding proteins that influence the immune system or regulate cell-cell fusion in early extra-embryonic development. However, whether ERV-derived proteins regulate somatic development is unknown. Here, we report a somatic developmental function for the primate-specific ERVH48-1 (SUPYN/Suppressyn). ERVH48-1 encodes a fragment of a viral envelope that is expressed during early embryonic development. Loss of ERVH48-1 led to impaired mesoderm and cardiomyocyte commitment and diverted cells to an ectoderm-like fate. Mechanistically, ERVH48-1 is localized to sub-cellular membrane compartments through a functional N-terminal signal peptide and binds to the WNT antagonist SFRP2 to promote its polyubiquitination and degradation, thus limiting SFRP2 secretion and blocking repression of WNT/β-catenin signaling. Knockdown of SFRP2 or expression of a chimeric SFRP2 with the ERVH48-1 signal peptide rescued cardiomyocyte differentiation. This study demonstrates how ERVH48-1 modulates WNT/β-catenin signaling and cell type commitment in somatic development.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Menghua Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Dan Xiang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Hui Zhong
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Fengping Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Weipeng Ye
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemeng Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Xiaofei Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| |
Collapse
|
17
|
Khare S, Villalba MI, Canul-Tec JC, Cajiao AB, Kumar A, Backovic M, Rey FA, Pardon E, Steyaert J, Perez C, Reyes N. Receptor-recognition and antiviral mechanisms of retrovirus-derived human proteins. Nat Struct Mol Biol 2024; 31:1368-1376. [PMID: 38671230 DOI: 10.1038/s41594-024-01295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Human syncytin-1 and suppressyn are cellular proteins of retroviral origin involved in cell-cell fusion events to establish the maternal-fetal interface in the placenta. In cell culture, they restrict infections from members of the largest interference group of vertebrate retroviruses, and are regarded as host immunity factors expressed during development. At the core of the syncytin-1 and suppressyn functions are poorly understood mechanisms to recognize a common cellular receptor, the membrane transporter ASCT2. Here, we present cryo-electron microscopy structures of human ASCT2 in complexes with the receptor-binding domains of syncytin-1 and suppressyn. Despite their evolutionary divergence, the two placental proteins occupy similar positions in ASCT2, and are stabilized by the formation of a hybrid β-sheet or 'clamp' with the receptor. Structural predictions of the receptor-binding domains of extant retroviruses indicate overlapping binding interfaces and clamping sites with ASCT2, revealing a competition mechanism between the placental proteins and the retroviruses. Our work uncovers a common ASCT2 recognition mechanism by a large group of endogenous and disease-causing retroviruses, and provides high-resolution views on how placental human proteins exert morphological and immunological functions.
Collapse
Affiliation(s)
- Shashank Khare
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Miryam I Villalba
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Juan C Canul-Tec
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | | | - Anand Kumar
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Felix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland.
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Nicolas Reyes
- Fundamental Microbiology and Pathogenicity Unit, CNRS, Université de Bordeaux, IECB, Bordeaux, France.
| |
Collapse
|
18
|
Shi X, Lu M, Li X, Li J, Bao S, Jia C, Chen H, Zhou M. The transcriptional landscape and clinico-biological characterization of human endogenous retroviruses in esophageal squamous cell carcinoma. Int J Cancer 2024. [PMID: 39190008 DOI: 10.1002/ijc.35147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Human endogenous retroviruses (HERVs) are emerging as critical elements in host genomic regulation. Aberrant HERV transcription has been implicated in developmental and tissue-specific aging and pathological processes. In this study, we presented a comprehensive locus-specific characterization of the HERV expression landscape in esophageal squamous cell carcinoma (ESCC). We demonstrated the transcriptional diversity among patients and identified 12 clinically relevant HERVs in the SCH cohort, which were experimentally validated by Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) in the CAMS cohort. ESCC patients were stratified into three HERV-based subtypes (HERVhigh, HERVmedian and HERVlow) with distinct clinical and biological characteristics. The HERVhigh subtype was associated with worse survival, increased CD4+ T cells infiltration and decreased metabolic activity, whereas the HERVlow subtype was characterized by abundant CD8+ T cells, increased metabolic activity, and better survival. The HERV-based tumor subtyping was further robustly validated by RNA sequencing and RT-qPCR in two additional external cohorts. Our findings demonstrate the clinical significance of HERVs for tumor subtyping and prognosis, provide insights into the functional role of HERVs and a valuable resource for developing novel biomarkers and therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Xinrui Shi
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Minyi Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xukun Li
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jiaqi Li
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siqi Bao
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Caifeng Jia
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhou
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Rosenfeld CS. Placenta Extracellular Vesicles: Messengers Connecting Maternal and Fetal Systems. Biomolecules 2024; 14:995. [PMID: 39199382 PMCID: PMC11352387 DOI: 10.3390/biom14080995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The placenta operates during gestation as the primary communication organ between the mother and fetus. It is essential for gas, nutrient exchange, and fetal waste transfer. The placenta also produces a wide range of hormones and other factors that influence maternal physiology, including survival and activity of the corpus luteum of the ovary, but the means whereby the placenta shapes fetal development remain less clear, although the fetal brain is thought to be dependent upon the placenta for factors that play roles in its early differentiation and growth, giving rise to the term "placenta-brain axis". Placental hormones transit via the maternal and fetal vasculature, but smaller placental molecules require protection from fetal and maternal metabolism. Such biomolecules include small RNA, mRNA, peptides, lipids, and catecholamines that include serotonin and dopamine. These compounds presumably shuttle to maternal and fetal systems via protective extracellular vesicles (EVs). Placental EVs (pEVs) and their components, in particular miRNA (miRs), are known to play important roles in regulating maternal systems, such as immune, cardiovascular, and reproductive functions. A scant amount is known about how pEVs affect fetal cells and tissues. The composition of pEVs can be influenced by gestational diseases. This review will provide critical insight into the roles of pEVs as the intermediary link between maternal and fetal systems, the impact of maternal pathologies on pEV cargo contents, and how an understanding of biomolecular changes within pEVs in health and disease might be utilized to design early diagnostic and mitigation strategies to prevent gestational diseases and later offspring disorders.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
20
|
López-Guzmán C, García AM, Vásquez AM. Alteration of Trophoblast Syncytialization by Plasmodium falciparum-Infected Erythrocytes. Microorganisms 2024; 12:1640. [PMID: 39203482 PMCID: PMC11356531 DOI: 10.3390/microorganisms12081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Malaria during pregnancy has been associated with significant risks to both the mother and the fetus, leading to complications such as anemia, low birth weight, and increased infant mortality. The trophoblast cells, a key component of the placenta, are crucial for nutrient and oxygen exchange between mother and fetus. The differentiation of cytotrophoblasts (CTBs) into syncytiotrophoblasts (STBs) is critical for proper pregnancy development. These cells form the bi-stratified epithelium surrounding the placental villi. While previous studies have described an inflammatory activation of STB cells exposed to Plasmodium falciparum-infected erythrocytes (P. falciparum-IE) or components such as hemozoin (HZ), little is known about the direct effect this parasite may have on the epithelial turnover and function of trophoblast cells. This study aims to contribute to understanding mechanisms leading to placental damage during placental malaria using a BeWo cell line as a differentiation model. It was found that P. falciparum-IE interferes with the fusion of BeWo cells, affecting the differentiation process of trophoblast. A reduction in syncytialization could be associated with the adverse effects of infection in fetal health, altering the remodeling of the trophoblast epithelial barrier and reducing their capacity to exchange substances. However, further studies are necessary to assess alterations in the functionality of this epithelium.
Collapse
Affiliation(s)
- Carolina López-Guzmán
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
| | - Ana María García
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
| | - Ana María Vásquez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Calle 62 #52-59, Torre 1, Laboratorio 610, Medellin 050001, Colombia
- Escuela de Microbiología, Universidad de Antioquia, Calle 67 #53-108, Bloque 5, Oficina 5-135, Medellin 050001, Colombia
| |
Collapse
|
21
|
Wells AC, Lima-Junior DS, Link VM, Smelkinson M, Krishnamurthy SR, Chi L, Segrist E, Rivera CA, Teijeiro A, Bouladoux N, Belkaid Y. Adaptive immunity to retroelements promotes barrier integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.606346. [PMID: 39149266 PMCID: PMC11326312 DOI: 10.1101/2024.08.09.606346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Maintenance of tissue integrity is a requirement of host survival. This mandate is of prime importance at barrier sites that are constitutively exposed to the environment. Here, we show that exposure of the skin to non-inflammatory xenobiotics promotes tissue repair; more specifically, mild detergent exposure promotes the reactivation of defined retroelements leading to the induction of retroelement-specific CD8+ T cells. These T cell responses are Langerhans cell dependent and establish tissue residency within the skin. Upon injury, retroelement-specific CD8+ T cells significantly accelerate wound repair via IL-17A. Collectively, this work demonstrates that tonic environmental exposures and associated adaptive responses to retroelements can be coopted to preemptively set the tissue for maximal resilience to injury.
Collapse
Affiliation(s)
- Alexandria C. Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Djalma Souza Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddharth R. Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisha Segrist
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia A. Rivera
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Teijeiro
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Censi ST, Mariani-Costantini R, Granzotto A, Tomassini V, Sensi SL. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res Rev 2024; 99:102392. [PMID: 38925481 DOI: 10.1016/j.arr.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The present perspective article proposes an etiopathological model for multiple sclerosis pathogenesis and progression associated with the activation of human endogenous retroviruses. We reviewed preclinical, clinical, epidemiological, and evolutionary evidence indicating how the complex, multi-level interplay of genetic traits and environmental factors contributes to multiple sclerosis. We propose that endogenous retroviruses transactivation acts as a critical node in disease development. We also discuss the rationale for combined anti-retroviral therapy in multiple sclerosis as a disease-modifying therapeutic strategy. Finally, we propose that the immuno-pathogenic process triggered by endogenous retrovirus activation can be extended to aging and aging-related neurodegeneration. In this regard, endogenous retroviruses can be envisioned to act as epigenetic noise, favoring the proliferation of disorganized cellular subpopulations and accelerating system-specific "aging". Since inflammation and aging are two sides of the same coin (plastic dis-adaptation to external stimuli with system-specific degree of freedom), the two conditions may be epiphenomenal products of increased epigenomic entropy. Inflammation accelerates organ-specific aging, disrupting communication throughout critical systems of the body and producing symptoms. Overlapping neurological symptoms and syndromes may emerge from the activity of shared molecular networks that respond to endogenous retroviruses' reactivation.
Collapse
Affiliation(s)
- Stefano T Censi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti-Pescara, Italy; Multiple Sclerosis Centre, Institute of Neurology, SS Annunziata Hospital, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
23
|
Betancourt AJ, Wei KHC, Huang Y, Lee YCG. Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective. Annu Rev Genomics Hum Genet 2024; 25:1-25. [PMID: 38603565 DOI: 10.1146/annurev-genom-120822-105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
Collapse
Affiliation(s)
- Andrea J Betancourt
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kevin H-C Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Yuh Chwen G Lee
- Center for Complex Biological Systems, University of California, Irvine, California, USA;
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
24
|
Galli J, Almiñana C, Wiesendanger M, Schuler G, Kowalewski MP, Klisch K. Bovine placental extracellular vesicles carry the fusogenic syncytin BERV-K1. Theriogenology 2024; 223:59-69. [PMID: 38678697 DOI: 10.1016/j.theriogenology.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Syncytins are endogenous retroviral envelope proteins which induce the fusion of membranes. A human representative of this group, endogenous retrovirus group W member 1 envelope (ERVW-1) or syncytin-1 is present in trophoblast-derived extracellular vesicles and supports the incorporation of these extracellular vesicles into recipient cells. During pregnancy, placenta-derived extracellular vesicles participate in feto-maternal communication. Bovine fetal binucleate trophoblast cells express the syncytin, bovine endogenous retroviral envelope protein K1 (BERV-K1). These cells release extracellular vesicles into the maternal stroma, but it is unclear whether BERV-K1 is included in these extracellular vesicles. Here, extracellular vesicles were isolated from bovine placental tissue using collagenase digestion, ultracentrifugation, and size exclusion chromatography. They were characterized with transmission electron microscopy, nanoparticle tracking analysis, immunoblotting and mass spectrometry. Immunohistochemistry and immunoelectron microscopy were used to localize BERV-K1 within the bovine placental tissue. The isolated extracellular vesicles range between 50 and 300 nm, carrying multiple extracellular vesicle biomarkers. Proteomic analysis and immunoelectron microscopy confirmed BERV-K1 presence on the isolated extracellular vesicles. Further, BERV-K1 was localized on intraluminal vesicles in secretory granules of binucleate trophoblast cells. The presence of BERV-K1 on bovine placental extracellular vesicles suggests their role in feto-maternal communication and potential involvement of BERV-K1 in uptake of extracellular vesicles by target cells.
Collapse
Affiliation(s)
- Jasmin Galli
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland; Department of Reproductive Endocrinology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Mahesa Wiesendanger
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland; Institute of Virology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | - Gerhard Schuler
- Veterinary Clinic for Reproductive Medicine and Neonatology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 106, 35392, Giessen, Germany
| | - Mariusz Pawel Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland; Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Karl Klisch
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland; Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggass-Strasse 120, 3350, Bern, Switzerland.
| |
Collapse
|
25
|
Kushida Y, Oguma Y, Abe K, Deguchi T, Barbera FG, Nishimura N, Fujioka K, Iwatani S, Dezawa M. Human post-implantation blastocyst-like characteristics of Muse cells isolated from human umbilical cord. Cell Mol Life Sci 2024; 81:297. [PMID: 38992309 PMCID: PMC11335221 DOI: 10.1007/s00018-024-05339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.
Collapse
Affiliation(s)
- Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Kana Abe
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Taichi Deguchi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Federico Girolamo Barbera
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sota Iwatani
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
26
|
Zheng W, Zhang Y, Xu P, Wang Z, Shao X, Chen C, Cai H, Wang Y, Sun MA, Deng W, Liu F, Lu J, Zhang X, Cheng D, Mysorekar IU, Wang H, Wang YL, Hu X, Cao B. TFEB safeguards trophoblast syncytialization in humans and mice. Proc Natl Acad Sci U S A 2024; 121:e2404062121. [PMID: 38968109 PMCID: PMC11253012 DOI: 10.1073/pnas.2404062121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 07/07/2024] Open
Abstract
Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.
Collapse
Affiliation(s)
- Wanshan Zheng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yue Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Peiqun Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Zexin Wang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen361102, Fujian, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing100101, China
| | - Chunyan Chen
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou225009, Jiangsu, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fan Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Xueqin Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Dunjin Cheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou510140, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou510140, Guangdong, China
| | - Indira U. Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston77030, TX
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston77030, TX
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing100101, China
| | - Xiaoqian Hu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen361102, Fujian, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
27
|
Pramono D, Sugimoto K, Kimura T, Miyake A, Nishigaki K. Characterization of the endogenous retrovirus-derived placenta-specific soluble protein EnvV-Fca from domestic cats. FEBS Lett 2024; 598:1792-1806. [PMID: 38604984 DOI: 10.1002/1873-3468.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Endogenous retroviruses (ERVs) are remnants of ancestral viruses in the host genome. The present study identified the expression of a defective retroviral env gene belonging to the ERV group V member Env (EnvV) in Felis catus (EnvV-Fca). EnV-Fca was specifically detected in the placental trophoblast syncytiotrophobic layer and expressed as a secreted protein in cultured cells. Genetic analyses indicated that EnvV2 genes are widely present in vertebrates and are under purifying selection among carnivores, suggesting a potential benefit for the host. This study suggests that birds, bats, and rodents carrying EnvV2 may play significant roles as intermediate vectors in spreading or cross-transmitting viruses among species. Our findings provide valuable insights into the evolution of ERV in vertebrate hosts.
Collapse
Affiliation(s)
- Didik Pramono
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| | - Kenji Sugimoto
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
| | - Tohru Kimura
- The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Japan
| |
Collapse
|
28
|
Hogg CJ, Edwards RJ, Farquharson KA, Silver LW, Brandies P, Peel E, Escalona M, Jaya FR, Thavornkanlapachai R, Batley K, Bradford TM, Chang JK, Chen Z, Deshpande N, Dziminski M, Ewart KM, Griffith OW, Marin Gual L, Moon KL, Travouillon KJ, Waters P, Whittington CM, Wilkins MR, Helgen KM, Lo N, Ho SYW, Ruiz Herrera A, Paltridge R, Marshall Graves JA, Renfree M, Shapiro B, Ottewell K, Belov K. Extant and extinct bilby genomes combined with Indigenous knowledge improve conservation of a unique Australian marsupial. Nat Ecol Evol 2024; 8:1311-1326. [PMID: 38945974 PMCID: PMC11239497 DOI: 10.1038/s41559-024-02436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura). We developed and tested a scat single-nucleotide polymorphism panel to inform current and future conservation actions, undertake ecological assessments and improve our understanding of Ninu genetic diversity in managed and wild populations. We also assessed the beneficial impact of translocations in the metapopulation (N = 363 Ninu). Resequenced genomes (temperate Ninu, 6; semi-arid Ninu, 6; and Yallara, 4) revealed two major population crashes during global cooling events for both species and differences in Ninu genes involved in anatomical and metabolic pathways. Despite their 45-year captive history, Ninu have fewer long runs of homozygosity than other larger mammals, which may be attributable to their boom-bust life history. Here we investigated the unique Ninu biology using 12 tissue transcriptomes revealing expression of all 115 conserved eutherian chorioallantoic placentation genes in the uterus, an XY1Y2 sex chromosome system and olfactory receptor gene expansions. Together, we demonstrate the holistic value of genomics in improving key conservation actions, understanding unique biological traits and developing tools for Indigenous rangers to monitor remote wild populations.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| | - Richard J Edwards
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Merly Escalona
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Frederick R Jaya
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Rujiporn Thavornkanlapachai
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kimberley Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tessa M Bradford
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - J King Chang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Martin Dziminski
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kyle M Ewart
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Oliver W Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Laia Marin Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Katherine L Moon
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kenny J Travouillon
- Collections and Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Paul Waters
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Aurora Ruiz Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Rachel Paltridge
- Indigenous Desert Alliance, Alice Springs, Northern Territory, Australia
| | | | - Marilyn Renfree
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Perron H. A tale of a hidden family of genetic immigrants. Microbes Infect 2024:105387. [PMID: 38944111 DOI: 10.1016/j.micinf.2024.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Though not usual for the editors of a scientific journal to ask that a story be told to its readers, this special issue is offering an opportunity to pay tribute to all those who have made it possible for a long scientific journey to open up many research avenues, to access the discoveries of what was not known and to the understanding of what was unveiled in the field of human endogenous retroviruses. In particular, and beyond a simple fortuitous association, to show their pathogenic involvement in certain diseases whose causality has been the subject of numerous and variable hypotheses.
Collapse
Affiliation(s)
- Hervé Perron
- GeNeuro, 3 chemin du Pré-Fleuri, 1228 Plan-les-ouates, Geneva, Switzerland; Geneuro-Innovation, 60A, Avenue Rockefeller, 69008 Lyon, France.
| |
Collapse
|
30
|
Saunders N, Monel B, Cayet N, Archetti L, Moreno H, Jeanne A, Marguier A, Buchrieser J, Wai T, Schwartz O, Fréchin M. Dynamic label-free analysis of SARS-CoV-2 infection reveals virus-induced subcellular remodeling. Nat Commun 2024; 15:4996. [PMID: 38862527 PMCID: PMC11166935 DOI: 10.1038/s41467-024-49260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Assessing the impact of SARS-CoV-2 on organelle dynamics allows a better understanding of the mechanisms of viral replication. We combine label-free holotomographic microscopy with Artificial Intelligence to visualize and quantify the subcellular changes triggered by SARS-CoV-2 infection. We study the dynamics of shape, position and dry mass of nucleoli, nuclei, lipid droplets and mitochondria within hundreds of single cells from early infection to syncytia formation and death. SARS-CoV-2 infection enlarges nucleoli, perturbs lipid droplets, changes mitochondrial shape and dry mass, and separates lipid droplets from mitochondria. We then used Bayesian network modeling on organelle dry mass states to define organelle cross-regulation networks and report modifications of organelle cross-regulation that are triggered by infection and syncytia formation. Our work highlights the subcellular remodeling induced by SARS-CoV-2 infection and provides an Artificial Intelligence-enhanced, label-free methodology to study in real-time the dynamics of cell populations and their content.
Collapse
Affiliation(s)
- Nell Saunders
- Virus & Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 3569, Paris, France
| | - Blandine Monel
- Virus & Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 3569, Paris, France
| | - Nadège Cayet
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Unit, 75015, Paris, France
| | - Lorenzo Archetti
- Deep Quantitative Biology Department, Nanolive SA, Tolochenaz, Switzerland
| | - Hugo Moreno
- Deep Quantitative Biology Department, Nanolive SA, Tolochenaz, Switzerland
| | - Alexandre Jeanne
- Deep Quantitative Biology Department, Nanolive SA, Tolochenaz, Switzerland
| | - Agathe Marguier
- Deep Quantitative Biology Department, Nanolive SA, Tolochenaz, Switzerland
| | - Julian Buchrieser
- Virus & Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 3569, Paris, France
| | - Timothy Wai
- Mitochondrial Biology Group, Institut Pasteur, Université Paris Cité, CNRS, UMR 3691, Paris, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 3569, Paris, France.
- Vaccine Research Institute, Creteil, France.
| | - Mathieu Fréchin
- Deep Quantitative Biology Department, Nanolive SA, Tolochenaz, Switzerland.
| |
Collapse
|
31
|
Bao H, Sun Y, Deng N, Zhang L, Jia Y, Li G, Gao Y, Li X, Tang Y, Cai H, Lu J, Wang H, Deng W, Kong S. PR-SET7 epigenetically restrains uterine interferon response and cell death governing proper postnatal stromal development. Nat Commun 2024; 15:4920. [PMID: 38858353 PMCID: PMC11164956 DOI: 10.1038/s41467-024-49342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
The differentiation of the stroma is a hallmark event during postnatal uterine development. However, the spatiotemporal changes that occur during this process and the underlying regulatory mechanisms remain elusive. Here, we comprehensively delineated the dynamic development of the neonatal uterus at single-cell resolution and characterized two distinct stromal subpopulations, inner and outer stroma. Furthermore, single-cell RNA sequencing revealed that uterine ablation of Pr-set7, the sole methyltransferase catalyzing H4K20me1, led to a reduced proportion of the inner stroma due to massive cell death, thus impeding uterine development. By combining RNA sequencing and epigenetic profiling of H4K20me1, we demonstrated that PR-SET7-H4K20me1 either directly repressed the transcription of interferon stimulated genes or indirectly restricted the interferon response via silencing endogenous retroviruses. Declined H4K20me1 level caused viral mimicry responses and ZBP1-mediated apoptosis and necroptosis in stromal cells. Collectively, our study provides insight into the epigenetic machinery governing postnatal uterine stromal development mediated by PR-SET7.
Collapse
Affiliation(s)
- Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yang Sun
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Na Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Leilei Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuanyuan Jia
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yun Gao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinyi Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yedong Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
32
|
Engl T. Reproductive manipulation: Wolbachia induce host parthenogenesis using a stolen transformer. Curr Biol 2024; 34:R547-R549. [PMID: 38834030 DOI: 10.1016/j.cub.2024.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The Wolbachia strain that infects the parasitoid wasp Encarsia formosa induces female-producing parthenogenesis. A new study shows that a Wolbachia-encoded gene has replaced the use of the ancestral wasp homologue that normally controls sexual reproduction, resulting in parthenogenesis.
Collapse
Affiliation(s)
- Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.
| |
Collapse
|
33
|
Sieler M, Dörnen J, Dittmar T. How Much Do You Fuse? A Comparison of Cell Fusion Assays in a Breast Cancer Model. Int J Mol Sci 2024; 25:5668. [PMID: 38891857 PMCID: PMC11172233 DOI: 10.3390/ijms25115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cell fusion is a biological process that is crucial for the development and homeostasis of different tissues, but it is also pathophysiologically associated with tumor progression and malignancy. The investigation of cell fusion processes is difficult because there is no standardized marker. Many studies therefore use different systems to observe and quantify cell fusion in vitro and in vivo. The comparability of the results must be critically questioned, because both the experimental procedure and the assays differ between studies. The comparability of the fluorescence-based fluorescence double reporter (FDR) and dual split protein (DSP) assay was investigated as part of this study, in which general conditions were kept largely constant. In order to be able to induce both a high and a low cell fusion rate, M13SV1 breast epithelial cells were modified with regard to the expression level of the fusogenic protein Syncytin-1 and its receptor ASCT2 and were co-cultivated for 72 h with different breast cancer cell lines. A high number of fused cells was found in co-cultures with Syncytin-1-overexpressing M13SV1 cells, but differences between the assays were also observed. This shows that the quantification of cell fusion events in particular is highly dependent on the assay selected, but the influence of fusogenic proteins can be visualized very well.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| | - Jessica Dörnen
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
- Faculty of Medicine, Ruhr University Bochum, 44789 Bochum, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| |
Collapse
|
34
|
Morais LV, dos Santos SN, Gomes TH, Malta Romano C, Colombo-Souza P, Amaral JB, Shio MT, Neves LM, Bachi ALL, França CN, Nali LHDS. Acute strength exercise training impacts differently the HERV-W expression and inflammatory biomarkers in resistance exercise training individuals. PLoS One 2024; 19:e0303798. [PMID: 38753716 PMCID: PMC11098355 DOI: 10.1371/journal.pone.0303798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Human Endogenous Retroviruses (HERVs) are fossil viruses that composes 8% of the human genome and plays several important roles in human physiology, including muscle repair/myogenesis. It is believed that inflammation may also regulate HERV expression, and therefore may contribute in the muscle repair, especially after training exercise. Hence, this study aimed to assess the level of HERVs expression and inflammation profile in practitioners' resistance exercises after an acute strength training session. METHODS Healthy volunteers were separated in regular practitioners of resistance exercise training group (REG, n = 27) and non-trained individuals (Control Group, n = 20). All individuals performed a strength exercise section. Blood samples were collected before the exercise (T0) and 45 minutes after the training session (T1). HERV-K (HML1-10) and W were relatively quantified, cytokine concentration and circulating microparticles were assessed. RESULTS REG presented higher level of HERV-W expression (~2.5 fold change) than CG at T1 (p<0.01). No difference was observed in the levels of HERV-K expression between the groups as well as the time points. Higher serum TNF-α and IL-10 levels were verified post-training session in REG and CG (p<0.01), and in REG was found a positive correlation between the levels of TNF-α at T1 and IL-10 at T0 (p = 0.01). Finally, a lower endothelial microparticle percentage was observed in REG at T1 than in T0 (p = 0.04). CONCLUSION REG individuals exhibited a significant upregulation of HERV-W and modulation of inflammatory markers when compared to CG. This combined effect could potentially support the process of skeletal muscle repair in the exercised individuals.
Collapse
Affiliation(s)
- Lucas Vinicius Morais
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | | | - Tabatah Hellen Gomes
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | - Camila Malta Romano
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) LIM-52, São Paulo, Brazil
| | | | - Jonatas Bussador Amaral
- ENT Research Lab, Department of Otorhinolaryngology-Head and Neck Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Marina Tiemi Shio
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | - Lucas Melo Neves
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo, Brazil
| | | |
Collapse
|
35
|
Gong X, He W, Jin W, Ma H, Wang G, Li J, Xiao Y, Zhao Y, Chen Q, Guo H, Yang J, Qi Y, Dong W, Fu M, Li X, Liu J, Liu X, Yin A, Zhang Y, Wei Y. Disruption of maternal vascular remodeling by a fetal endoretrovirus-derived gene in preeclampsia. Genome Biol 2024; 25:117. [PMID: 38715110 PMCID: PMC11075363 DOI: 10.1186/s13059-024-03265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wan Jin
- Euler Technology, Beijing, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongwei Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | | | - Jiexia Yang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yiming Qi
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wei Dong
- Maternity Ward, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Meng Fu
- Department of Obstetrics and Gynecology, Haidian Maternal and Child Health Hospital, Beijing, China
| | - Xiaojuan Li
- Euler Technology, Beijing, China
- Present Address: International Max Planck Research School for Genome Science, and University of Göttingen, Göttingen Center for Molecular Biosciences, Göttingen, Germany
| | | | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China.
- Department Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Yi Zhang
- Euler Technology, Beijing, China.
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
36
|
Rangel SC, da Silva MD, Natrielli Filho DG, Santos SN, do Amaral JB, Victor JR, Silva KCN, Tuleta ID, França CN, Shio MT, Neves LM, Bachi ALL, da Silva Nali LH. HERV-W upregulation expression in bipolar disorder and schizophrenia: unraveling potential links to systemic immune/inflammation status. Retrovirology 2024; 21:7. [PMID: 38644495 PMCID: PMC11034070 DOI: 10.1186/s12977-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) and schizophrenia (SZ) are the two main mental disorders with unknown etiology that significantly impact individuals' quality of life. The potential pro-inflammatory role in their pathogenesis is postulated and Human Endogenous Retrovirus W (HERV-W) is an emerging candidate to modulate this pathogenic finding. HERVs, ancient retroviruses in the human genome, may play roles in inflammation and disease pathogenesis. Despite HERVs' involvement in autoimmune diseases, their influence on mental disorders remains underexplored. Therefore, the aim of this study was to assess the level of HERV-W-env expression and the systemic inflammatory profile through the concentration of IL-2, IL-4, IL-6, IL-10, TNF-α and INF-γ cytokines in BD and SZ patients. RESULTS All participants showed HERV-W-env expression, but its expression was higher in mental disorder patients (p < 0.01) than in control. When separated, SZ individuals exhibited higher HERV-W expression than the control group (p < 0.01). Higher serum levels of TNF-α and IL-10 were found in BD (p = 0.0001 and p = 0.001, respectively) and SZ (p = 0.01) and p = 0.01, respectively) than in the control group, while SZ showed decreased levels IFN-γ and IL-2 as compared to controls (p = 0.05) and BD patients (p = 0.05), respectively. Higher TNF-α/IL-4 and TNF-α/IL-10 ratios, and lower IFN-γ/IL-10 were observed in BD and SZ patients than controls. Significant negative correlation between HERV-W-env expression and IL-10 (r=-0.47 p < 0.05), as well as positive correlations between HERV-W-env expression and TNF-α/IL-10 or IFN-γ/IL-10 ratios (r = 0.48 p < 0.05 and r = 0.46 p < 0.05, respectively) were found in BD patients. CONCLUSION These findings suggest not only a potential link between HERV-W-env expression both in BD and SZ, but also a possible involvement of systemic inflammatory status in BD patients.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Michelly Damasceno da Silva
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Décio Gilberto Natrielli Filho
- Hospital Escola Wladimir Arruda- Departamento de Psiquiatria- Santo Amaro University, Rua Prof. Enéas de Siqueira Neto, 340, São Paulo, Brazil
| | - Samuel Nascimento Santos
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Jonatas Bussador do Amaral
- Ent Research Lab, Department of Otorhinolaryngology-Head and Neck Surgery, Federal University of Sao Paulo, São Paulo, Brazil
| | - Jefferson Russo Victor
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, New York, EUA, USA
| | - Carolina Nunes França
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Marina Tiemi Shio
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Lucas Melo Neves
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil
| | - Luiz Henrique da Silva Nali
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmitt, 540, São Paulo, Brazil.
| |
Collapse
|
37
|
Jin SW, Seong Y, Yoon D, Kwon YS, Song H. Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res 2024; 52:3310-3326. [PMID: 38165001 PMCID: PMC11014241 DOI: 10.1093/nar/gkad1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
L1TD1 is a cytoplasmic RNA-binding protein specifically expressed in pluripotent stem cells and, unlike its mouse ortholog, is essential for the maintenance of stemness in human cells. Although L1TD1 is the only known protein-coding gene domesticated from a LINE-1 (L1) retroelement, the functional legacy of its ancestral protein, ORF1p of L1, and how it is manifested in L1TD1 are still unknown. Here, we determined RNAs associated with L1TD1 and found that, like ORF1p, L1TD1 binds L1 RNAs and localizes to high-density ribonucleoprotein (RNP) condensates. Unexpectedly, L1TD1 enhanced the translation of a subset of mRNAs enriched in the condensates. L1TD1 depletion promoted the formation of stress granules in embryonic stem cells. In HeLa cells, ectopically expressed L1TD1 facilitated the dissolution of stress granules and granules formed by pathological mutations of TDP-43 and FUS. The glutamate-rich domain and the ORF1-homology domain of L1TD1 facilitated dispersal of the RNPs and induced autophagy, respectively. These results provide insights into how L1TD1 regulates gene expression in pluripotent stem cells. We propose that the ability of L1TD1 to dissolve stress granules may provide novel opportunities for treatment of neurodegenerative diseases caused by disturbed stress granule dynamics.
Collapse
Affiliation(s)
- Sang Woo Jin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Youngmo Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dayoung Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Hoseok Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
38
|
Honda S, Hatamura M, Kunimoto Y, Ikeda S, Minami N. Chimeric PRMT6 protein produced by an endogenous retrovirus promoter regulates cell fate decision in mouse preimplantation embryos†. Biol Reprod 2024; 110:698-710. [PMID: 38196172 DOI: 10.1093/biolre/ioae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/11/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2024] Open
Abstract
Murine endogenous retrovirus with leucine tRNA primer, also known as MERVL, is expressed during zygotic genome activation in mammalian embryos. Here we show that protein arginine N-methyltransferase 6 (Prmt6) forms a chimeric transcript with MT2B2, one of the long terminal repeat sequences of murine endogenous retrovirus with leucine tRNA primer, and is translated into an elongated chimeric protein (PRMT6MT2B2) whose function differs from that of the canonical PRMT6 protein (PRMT6CAN) in mouse preimplantation embryos. Overexpression of PRMT6CAN in fibroblast cells increased asymmetric dimethylation of the third arginine residue of both histone H2A (H2AR3me2a) and histone H4 (H4R3me2a), while overexpression of PRMT6MT2B2 increased only H2AR3me2a. In addition, overexpression of PRMT6MT2B2 in one blastomere of mouse two-cell embryos promoted cell proliferation and differentiation of the blastomere into epiblast cells at the blastocyst stage, while overexpression of PRMT6CAN repressed cell proliferation. This is the first report of the translation of a chimeric protein (PRMT6MT2B2) in mouse preimplantation embryos. Our results suggest that analyzing chimeric transcripts with murine endogenous retrovirus with leucine tRNA primer will provide insight into the relationship between zygotic genome activation and subsequent intra- and extra-cellular lineage determination.
Collapse
Affiliation(s)
- Shinnosuke Honda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Maho Hatamura
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuri Kunimoto
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
40
|
Zheng W, Gojobori J, Suh A, Satta Y. Different Host-Endogenous Retrovirus Relationships between Mammals and Birds Reflected in Genome-Wide Evolutionary Interaction Patterns. Genome Biol Evol 2024; 16:evae065. [PMID: 38527852 PMCID: PMC11005779 DOI: 10.1093/gbe/evae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Mammals and birds differ largely in their average endogenous retrovirus loads, namely the proportion of endogenous retrovirus in the genome. The host-endogenous retrovirus relationships, including conflict and co-option, have been hypothesized among the causes of this difference. However, there has not been studies about the genomic evolutionary signal of constant host-endogenous retrovirus interactions in a long-term scale and how such interactions could lead to the endogenous retrovirus load difference. Through a phylogeny-controlled correlation analysis on ∼5,000 genes between the dN/dS ratio of each gene and the load of endogenous retrovirus in 12 mammals and 21 birds, separately, we detected genes that may have evolved in association with endogenous retrovirus loads. Birds have a higher proportion of genes with strong correlation between dN/dS and the endogenous retrovirus load than mammals. Strong evidence of association is found between the dN/dS of the coding gene for leucine-rich repeat-containing protein 23 and endogenous retrovirus load in birds. Gene set enrichment analysis shows that gene silencing rather than immunity and DNA recombination may have a larger contribution to the association between dN/dS and the endogenous retrovirus load for both mammals and birds. The above results together showing different evolutionary patterns between bird and mammal genes can partially explain the apparently lower endogenous retrovirus loads of birds, while gene silencing may be a universal mechanism that plays a remarkable role in the evolutionary interaction between the host and endogenous retrovirus. In summary, our study presents signals that the host genes might have driven or responded to endogenous retrovirus load changes in long-term evolution.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Gojobori
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| | - Alexander Suh
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala 75236, Sweden
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| |
Collapse
|
41
|
Benham PM, Cicero C, Escalona M, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Sahasrabudhe R, King BL, Thomas WK, Kovach AI, Nachman MW, Bowie RCK. Remarkably High Repeat Content in the Genomes of Sparrows: The Importance of Genome Assembly Completeness for Transposable Element Discovery. Genome Biol Evol 2024; 16:evae067. [PMID: 38566597 PMCID: PMC11088854 DOI: 10.1093/gbe/evae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
42
|
Oomen ME, Torres-Padilla ME. Jump-starting life: balancing transposable element co-option and genome integrity in the developing mammalian embryo. EMBO Rep 2024; 25:1721-1733. [PMID: 38528171 PMCID: PMC11015026 DOI: 10.1038/s44319-024-00118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Remnants of transposable elements (TEs) are widely expressed throughout mammalian embryo development. Originally infesting our genomes as selfish elements and acting as a source of genome instability, several of these elements have been co-opted as part of a complex system of genome regulation. Many TEs have lost transposition ability and their transcriptional potential has been tampered as a result of interactions with the host throughout evolutionary time. It has been proposed that TEs have been ultimately repurposed to function as gene regulatory hubs scattered throughout our genomes. In the early embryo in particular, TEs find a perfect environment of naïve chromatin to escape transcriptional repression by the host. As a consequence, it is thought that hosts found ways to co-opt TE sequences to regulate large-scale changes in chromatin and transcription state of their genomes. In this review, we discuss several examples of TEs expressed during embryo development, their potential for co-option in genome regulation and the evolutionary pressures on TEs and on our genomes.
Collapse
Affiliation(s)
- Marlies E Oomen
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany.
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
43
|
Wang J, Lu X, Zhang W, Liu GH. Endogenous retroviruses in development and health. Trends Microbiol 2024; 32:342-354. [PMID: 37802660 DOI: 10.1016/j.tim.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Endogenous retroviruses (ERVs) are evolutionary remnants of retroviral infections in which the viral genome became embedded as a dormant regulatory element within the host germline. When ERVs become activated, they comprehensively rewire genomic regulatory networks of the host and facilitate critical developmental events, such as preimplantation development and placentation, in a manner specific to species, developmental stage, and tissues. However, accumulating evidence suggests that aberrant ERV transcription compromises genome stability and has been implicated in cellular senescence and various pathogenic processes, underscoring the significance of host genomic surveillance mechanisms. Here, we revisit the prominent functions of ERVs in early development and highlight their emerging roles in mammalian post-implantation development and organogenesis. We also discuss their implications for aging and pathological processes such as microbial infection, immune response. Furthermore, we discuss recent advances in stem-cell-based models, single-cell omics, and genome editing technologies, which serve as beacons illuminating the versatile nature of ERVs in mammalian development and health.
Collapse
Affiliation(s)
- Jichang Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
44
|
Chen M, Huang X, Wang C, Wang S, Jia L, Li L. Endogenous retroviral solo-LTRs in human genome. Front Genet 2024; 15:1358078. [PMID: 38606358 PMCID: PMC11007075 DOI: 10.3389/fgene.2024.1358078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are derived from the infection and integration of exogenetic retroviruses. HERVs account for 8% of human genome, and the majority of HERVs are solitary LTRs (solo-LTRs) due to homologous recombination. Multiple findings have showed that solo-LTRs could provide an enormous reservoir of transcriptional regulatory sequences involved in diverse biological processes, especially carcinogenesis and cancer development. The link between solo-LTRs and human diseases still remains poorly understood. This review focuses on the regulatory modules of solo-LTRs, which contribute greatly to the diversification and evolution of human genes. More importantly, although inactivating mutations, insertions and deletions have been identified in solo-LTRs, the inherited regulatory elements of solo-LTRs initiate the expression of chimeric lncRNA transcripts, which have been reported to play crucial roles in human health and disease. These findings provide valuable insights into the evolutionary and functional mechanisms underlying the presence of HERVs in human genome. Taken together, in this review, we will present evidences showing the regulatory and encoding capacity of solo-LTRs as well as the significant impact on various aspects of human biology.
Collapse
Affiliation(s)
- Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Xiaolong Huang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Chunlei Wang
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Shibo Wang
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
45
|
Kong X, Li R, Chen M, Zheng R, Wang J, Sun C, Qu Y. Endogenous retrovirus HERVH-derived lncRNA UCA1 controls human trophoblast development. Proc Natl Acad Sci U S A 2024; 121:e2318176121. [PMID: 38483994 PMCID: PMC10962953 DOI: 10.1073/pnas.2318176121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Endogenous retroviruses (ERVs) are frequently reactivated in mammalian placenta. It has been proposed that ERVs contribute to shaping the gene regulatory network of mammalian trophoblasts, dominantly acting as species- and placental-specific enhancers. However, whether and how ERVs control human trophoblast development through alternative pathways remains poorly understood. Besides the well-recognized function of human endogenous retrovirus-H (HERVH) in maintaining pluripotency of early human epiblast, here we present a unique role of HERVH on trophoblast lineage development. We found that the LTR7C/HERVH subfamily exhibits an accessible chromatin state in the human trophoblast lineage. Particularly, the LTR7C/HERVH-derived Urothelial Cancer Associated 1 (UCA1), a primate-specific long non-coding RNA (lncRNA), is transcribed in human trophoblasts and promotes the proliferation of human trophoblast stem cells (hTSCs), whereas its ectopic expression compromises human trophoblast syncytialization coinciding with increased interferon signaling pathway. Importantly, UCA1 upregulation is detectable in placental samples from early-onset preeclampsia (EO-PE) patients and the transcriptome of EO-PE placenta exhibits considerable similarities to that of the syncytiotrophoblasts differentiated from UCA1-overexpressing hTSCs, supporting up-regulated UCA1 as a potential biomarker of this disease. Altogether, our data shed light on the versatile regulatory role of HERVH in early human development and provide a unique mechanism whereby ERVs exert a function in human placentation and placental syndromes.
Collapse
Affiliation(s)
- Xuhui Kong
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou510080, China
| | - Ruiqi Li
- Reproductive and Genetic Hospital of Kapok, Hainan571400, China
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, China
- The First People’s Hospital of Kashgar, Kashgar844000, China
| | - Manqi Chen
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou510080, China
| | - Rongyan Zheng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou510080, China
| | - Jichang Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou510080, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou510623, China
| | - Yuliang Qu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080, China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou510080, China
| |
Collapse
|
46
|
Dopkins N, Nixon DF. Activation of human endogenous retroviruses and its physiological consequences. Nat Rev Mol Cell Biol 2024; 25:212-222. [PMID: 37872387 DOI: 10.1038/s41580-023-00674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
47
|
Kang BK, Jung YT. A Replication-Competent Retroviral Vector Expressing the HERV-W Envelope Glycoprotein is a Potential Tool for Cancer Gene Therapy. J Microbiol Biotechnol 2024; 34:280-288. [PMID: 38247210 PMCID: PMC10940750 DOI: 10.4014/jmb.2309.09022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024]
Abstract
The fusogenic membrane glycoprotein (FMG) derived from the human endogenous retrovirus-W (HERV-W) exhibits fusogenic properties, making it a promising candidate for cancer gene therapy. When cells are transfected with HERV-W FMG, they can fuse with neighboring cells expressing the receptor, resulting in the formation of syncytia. These syncytia eventually undergo cell death within a few days. In addition, it has been observed that an HERV-W env mutant, which is truncated after amino acid 483, displays increased fusogenicity compared to the wild-type HERV-W env. In this study, we observed syncytium formation upon transfection of HeLa and TE671 human cancer cells with plasmids containing the HERV-W 483 gene. To explore the potential of a semi-replication-competent retroviral (s-RCR) vector encoding HERV-W 483 for FMG-mediated cancer gene therapy, we developed two replication-defective retroviral vectors: a gag-pol vector encoding HERV-W 483 (MoMLV-HERV-W 483) and an env vector encoding VSV-G (pCLXSN-VSV-G-EGFP). When MoMLV-HERV-W 483 and pCLXSN-VSV-G-EGFP were co-transfected into HEK293T cells to produce the s-RCR vector, gradual syncytium formation was observed. However, the titers of the s-RCR virus remained consistently low. To enhance gene transfer efficiency, we constructed an RCR vector encoding HERV-W 483 (MoMLV-10A1-HERV-W 483), which demonstrated replication ability in HEK293T cells. Infection of A549 and HT1080 human cancer cell lines with this RCR vector induced syncytium formation and subsequent cell death. Consequently, both the s-RCR vector and RCR encoding HERV-W 483 hold promise as valuable tools for cancer gene therapy.
Collapse
Affiliation(s)
- Byoung Kwon Kang
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea
| | - Yong-Tae Jung
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
48
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
49
|
Takahashi Ueda M. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet Syst 2024; 98:305-319. [PMID: 38199240 DOI: 10.1266/ggs.23-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Retrotransposons, which account for approximately 42% of the human genome, have been increasingly recognized as "non-self" pathogen-associated molecular patterns (PAMPs) due to their virus-like sequences. In abnormal conditions such as cancer and viral infections, retrotransposons that are aberrantly expressed due to impaired epigenetic suppression display PAMPs, leading to their recognition by pattern recognition receptors (PRRs) of the innate immune system and triggering inflammation. This viral mimicry mechanism has been observed in various human diseases, including aging and autoimmune disorders. However, recent evidence suggests that retrotransposons possess highly regulated immune reactivity and play important roles in the development and function of the immune system. In this review, I discuss a wide range of retrotransposon-derived transcripts, their role as targets in immune recognition, and the diseases associated with retrotransposon activity. Furthermore, I explore the implications of chimeric transcripts formed between retrotransposons and known gene mRNAs, which have been previously underestimated, for the increase of immune-related gene isoforms and their influence on immune function. Retrotransposon-derived transcripts have profound and multifaceted effects on immune system function. The aim of this comprehensive review is to provide a better understanding of the complex relationship between retrotransposon transcripts and immune defense.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
50
|
Kitazawa M. Evolution of the nervous system by acquisition of retrovirus-derived genes in mammals. Genes Genet Syst 2024; 98:321-336. [PMID: 38220159 DOI: 10.1266/ggs.23-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
In the course of evolution, the most highly developed organ is likely the brain, which has become more complex over time and acquired diverse forms and functions in different species. In particular, mammals have developed complex and high-functioning brains, and it has been reported that several genes derived from retroviruses were involved in mammalian brain evolution, that is, generating the complexity of the nervous system. Especially, the sushi-ichi-related retrotransposon homolog (SIRH)/retrotransposon gag-like (RTL) genes have been suggested to play a role in the evolutionary processes shaping brain morphology and function in mammals. Genetic mutation and altered expression of genes are linked to neurological disorders, highlighting how the acquisition of virus-derived genes in mammals has both driven brain evolution and imposed a susceptibility to diseases. This review provides an overview of the functions, diversity, evolution and diseases associated with SIRH/RTL genes in the nervous system. The contribution of retroviruses to brain evolution is an important research topic in evolutionary biology and neuroscience, and further insights are expected to be gained through future studies.
Collapse
Affiliation(s)
- Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne
| |
Collapse
|