1
|
Payne JM, Haebich KM, Mitchell R, Bozaoglu K, Giliberto E, Lockhart PJ, Maier A, Velasco S, Ball G, North KN, Hocking DR. Brain volumes in genetic syndromes associated with mTOR dysregulation: a systematic review and meta-analysis. Mol Psychiatry 2024:10.1038/s41380-024-02863-4. [PMID: 39633008 DOI: 10.1038/s41380-024-02863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND/OBJECTIVES Dysregulation of molecular pathways associated with mechanistic target of rapamycin (mTOR) and elevated rates of neurodevelopmental disorders are implicated in the genetic syndromes neurofibromatosis type 1 (NF1), tuberous sclerosis complex (TSC), fragile X syndrome (FXS), and Noonan syndrome (NS). Given shared molecular and clinical features, understanding convergent and divergent implications of these syndromes on brain development may offer unique insights into disease mechanisms. While an increasing number of studies have examined brain volumes in these syndromes, the effects of each syndrome on global and subcortical brain volumes are unclear. Therefore, the aim of the current study was to conduct a systematic review and meta-analysis to synthesize existing literature on volumetric brain changes across TSC, FXS, NF1, and NS. Study outcomes were the effect sizes of the genetic syndromes on whole brain, gray and white matter, and subcortical volumes compared to typically developing controls. SUBJECTS/METHODS We performed a series of meta-analyses synthesizing data from 23 studies in NF1, TSC, FXS, and NS (pooled N = 1556) reporting whole brain volume, gray and white matter volumes, and volumes of subcortical structures compared to controls. RESULTS Meta-analyses revealed significantly larger whole brain volume, gray and white matter volumes, and subcortical volumes in NF1 compared to controls. FXS was associated with increased whole brain, and gray and white matter volumes relative to controls, but effect sizes were smaller than those seen in NF1. In contrast, studies in NS indicated smaller whole brain and gray matter volumes, and reduced subcortical volumes compared to controls. For individuals with TSC, there were no significant differences in whole brain, gray matter, and white volumes compared to controls. Volumetric effect sizes were not moderated by age, sex, or full-scale IQ. CONCLUSIONS This meta-analysis revealed that dysregulation of mTOR signaling across pre- and post-natal periods of development can result in convergent and divergent consequences for brain volume among genetic syndromes. Further research employing advanced disease modeling techniques with human pluripotent stem cell-derived in vitro models is needed to further refine our understanding of between and within syndrome variability on early brain development and identify shared molecular mechanisms for the development of pharmaceutical interventions.
Collapse
Affiliation(s)
- Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Kristina M Haebich
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Mitchell
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kiymet Bozaoglu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Emma Giliberto
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Alice Maier
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Silvia Velasco
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW Melbourne, Melbourne, VIC, Australia
| | - Gareth Ball
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
3
|
Suarez GO, Kumar DS, Brunner H, Emel J, Teel J, Knauss A, Botero V, Broyles CN, Stahl A, Bidaye SS, Tomchik SM. Neurofibromin deficiency alters the patterning and prioritization of motor behaviors in a state-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607070. [PMID: 39149363 PMCID: PMC11326213 DOI: 10.1101/2024.08.08.607070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Genetic disorders such as neurofibromatosis type 1 increase vulnerability to cognitive and behavioral disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Neurofibromatosis type 1 results from loss-of-function mutations in the neurofibromin gene and subsequent reduction in the neurofibromin protein (Nf1). While the mechanisms have yet to be fully elucidated, loss of Nf1 may alter neuronal circuit activity leading to changes in behavior and susceptibility to cognitive and behavioral comorbidities. Here we show that mutations decreasing Nf1 expression alter motor behaviors, impacting the patterning, prioritization, and behavioral state dependence in a Drosophila model of neurofibromatosis type 1. Loss of Nf1 increases spontaneous grooming in a nonlinear spatial and temporal pattern, differentially increasing grooming of certain body parts, including the abdomen, head, and wings. This increase in grooming could be overridden by hunger in food-deprived foraging animals, demonstrating that the Nf1 effect is plastic and internal state-dependent. Stimulus-evoked grooming patterns were altered as well, with nf1 mutants exhibiting reductions in wing grooming when coated with dust, suggesting that hierarchical recruitment of grooming command circuits was altered. Yet loss of Nf1 in sensory neurons and/or grooming command neurons did not alter grooming frequency, suggesting that Nf1 affects grooming via higher-order circuit alterations. Changes in grooming coincided with alterations in walking. Flies lacking Nf1 walked with increased forward velocity on a spherical treadmill, yet there was no detectable change in leg kinematics or gait. Thus, loss of Nf1 alters motor function without affecting overall motor coordination, in contrast to other genetic disorders that impair coordination. Overall, these results demonstrate that loss of Nf1 alters the patterning and prioritization of repetitive behaviors, in a state-dependent manner, without affecting motor coordination.
Collapse
Affiliation(s)
- Genesis Omana Suarez
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Divya S. Kumar
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hannah Brunner
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jalen Emel
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jensen Teel
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Anneke Knauss
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Valentina Botero
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Connor N. Broyles
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Salil S. Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Seth M. Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
4
|
Valencia ML, Sofela FA, Jongens TA, Sehgal A. Do metabolic deficits contribute to sleep disruption in monogenic intellectual disability syndromes? Trends Neurosci 2024; 47:583-592. [PMID: 39054162 DOI: 10.1016/j.tins.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Intellectual disability is defined as limitations in cognitive and adaptive behavior that often arise during development. Disordered sleep is common in intellectual disability and, given the importance of sleep for cognitive function, it may contribute to other behavioral phenotypes. Animal models of intellectual disability, in particular of monogenic intellectual disability syndromes (MIDS), recapitulate many disease phenotypes and have been invaluable for linking some of these phenotypes to specific molecular pathways. An emerging feature of MIDS, in both animal models and humans, is the prevalence of metabolic abnormalities, which could be relevant for behavior. Focusing on specific MIDS that have been molecularly characterized, we review sleep, circadian, and metabolic phenotypes in animal models and humans and propose that altered metabolic state contributes to the abnormal sleep/circadian phenotypes in MIDS.
Collapse
Affiliation(s)
- Mariela Lopez Valencia
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, PA, USA
| | - Folasade A Sofela
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas A Jongens
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Autism Spectrum Program of Excellence, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, PA, USA; Howard Hughes Medical Institute, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
6
|
Atsoniou K, Giannopoulou E, Georganta EM, Skoulakis EMC. Drosophila Contributions towards Understanding Neurofibromatosis 1. Cells 2024; 13:721. [PMID: 38667335 PMCID: PMC11048932 DOI: 10.3390/cells13080721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Neurofibromatosis 1 (NF1) is a multisymptomatic disorder with highly variable presentations, which include short stature, susceptibility to formation of the characteristic benign tumors known as neurofibromas, intense freckling and skin discoloration, and cognitive deficits, which characterize most children with the condition. Attention deficits and Autism Spectrum manifestations augment the compromised learning presented by most patients, leading to behavioral problems and school failure, while fragmented sleep contributes to chronic fatigue and poor quality of life. Neurofibromin (Nf1) is present ubiquitously during human development and postnatally in most neuronal, oligodendrocyte, and Schwann cells. Evidence largely from animal models including Drosophila suggests that the symptomatic variability may reflect distinct cell-type-specific functions of the protein, which emerge upon its loss, or mutations affecting the different functional domains of the protein. This review summarizes the contributions of Drosophila in modeling multiple NF1 manifestations, addressing hypotheses regarding the cell-type-specific functions of the protein and exploring the molecular pathways affected upon loss of the highly conserved fly homolog dNf1. Collectively, work in this model not only has efficiently and expediently modelled multiple aspects of the condition and increased understanding of its behavioral manifestations, but also has led to pharmaceutical strategies towards their amelioration.
Collapse
Affiliation(s)
- Kalliopi Atsoniou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Giannopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| |
Collapse
|
7
|
Rodríguez-Martín M, Báez-Flores J, Ribes V, Isidoro-García M, Lacal J, Prieto-Matos P. Non-Mammalian Models for Understanding Neurological Defects in RASopathies. Biomedicines 2024; 12:841. [PMID: 38672195 PMCID: PMC11048513 DOI: 10.3390/biomedicines12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
RASopathies, a group of neurodevelopmental congenital disorders stemming from mutations in the RAS/MAPK pathway, present a unique opportunity to delve into the intricacies of complex neurological disorders. Afflicting approximately one in a thousand newborns, RASopathies manifest as abnormalities across multiple organ systems, with a pronounced impact on the central and peripheral nervous system. In the pursuit of understanding RASopathies' neurobiology and establishing phenotype-genotype relationships, in vivo non-mammalian models have emerged as indispensable tools. Species such as Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Xenopus species and Gallus gallus embryos have proven to be invaluable in shedding light on the intricate pathways implicated in RASopathies. Despite some inherent weaknesses, these genetic models offer distinct advantages over traditional rodent models, providing a holistic perspective on complex genetics, multi-organ involvement, and the interplay among various pathway components, offering insights into the pathophysiological aspects of mutations-driven symptoms. This review underscores the value of investigating the genetic basis of RASopathies for unraveling the underlying mechanisms contributing to broader neurological complexities. It also emphasizes the pivotal role of non-mammalian models in serving as a crucial preliminary step for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Vanessa Ribes
- Institut Jacques Monod, Université Paris Cité, CNRS, F-75013 Paris, France;
| | - María Isidoro-García
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Biochemistry Department, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain; (M.R.-M.); (J.B.-F.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
| | - Pablo Prieto-Matos
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.I.-G.); (P.P.-M.)
- Clinical Rare Diseases Reference Unit DiERCyL, 37007 Castilla y León, Spain
- Department of Pediatrics, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Department of Biomedical and Diagnostics Science, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
de Blank P, Nishiyama A, López-Juárez A. A new era for myelin research in Neurofibromatosis type 1. Glia 2023; 71:2701-2719. [PMID: 37382486 PMCID: PMC10592420 DOI: 10.1002/glia.24432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Evidence for myelin regulating higher-order brain function and disease is rapidly accumulating; however, defining cellular/molecular mechanisms remains challenging partially due to the dynamic brain physiology involving deep changes during development, aging, and in response to learning and disease. Furthermore, as the etiology of most neurological conditions remains obscure, most research models focus on mimicking symptoms, which limits understanding of their molecular onset and progression. Studying diseases caused by single gene mutations represents an opportunity to understand brain dys/function, including those regulated by myelin. Here, we discuss known and potential repercussions of abnormal central myelin on the neuropathophysiology of Neurofibromatosis Type 1 (NF1). Most patients with this monogenic disease present with neurological symptoms diverse in kind, severity, and onset/decline, including learning disabilities, autism spectrum disorders, attention deficit and hyperactivity disorder, motor coordination issues, and increased risk for depression and dementia. Coincidentally, most NF1 patients show diverse white matter/myelin abnormalities. Although myelin-behavior links were proposed decades ago, no solid data can prove or refute this idea yet. A recent upsurge in myelin biology understanding and research/therapeutic tools provides opportunities to address this debate. As precision medicine moves forward, an integrative understanding of all cell types disrupted in neurological conditions becomes a priority. Hence, this review aims to serve as a bridge between fundamental cellular/molecular myelin biology and clinical research in NF1.
Collapse
Affiliation(s)
- Peter de Blank
- Department of Pediatrics, The Cure Starts Now Brain Tumor Center, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
9
|
Staedtke V, Topilko P, Le LQ, Grimes K, Largaespada DA, Cagan RL, Steensma MR, Stemmer-Rachamimov A, Blakeley JO, Rhodes SD, Ly I, Romo CG, Lee SY, Serra E. Existing and Developing Preclinical Models for Neurofibromatosis Type 1-Related Cutaneous Neurofibromas. J Invest Dermatol 2023; 143:1378-1387. [PMID: 37330719 PMCID: PMC11246562 DOI: 10.1016/j.jid.2023.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Neurofibromatosis type 1 (NF1) is caused by a nonfunctional copy of the NF1 tumor suppressor gene that predisposes patients to the development of cutaneous neurofibromas (cNFs), the skin tumor that is the hallmark of this condition. Innumerable benign cNFs, each appearing by an independent somatic inactivation of the remaining functional NF1 allele, form in nearly all patients with NF1. One of the limitations in developing a treatment for cNFs is an incomplete understanding of the underlying pathophysiology and limitations in experimental modeling. Recent advances in preclinical in vitro and in vivo modeling have substantially enhanced our understanding of cNF biology and created unprecedented opportunities for therapeutic discovery. We discuss the current state of cNF preclinical in vitro and in vivo model systems, including two- and three-dimensional cell cultures, organoids, genetically engineered mice, patient-derived xenografts, and porcine models. We highlight the models' relationship to human cNFs and how they can be used to gain insight into cNF development and therapeutic discovery.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Piotr Topilko
- Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Lu Q Le
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin Grimes
- SPARK Program in Translational Research, Stanford University School of Medicine, Stanford, California, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA; Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, Michigan, USA; Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven D Rhodes
- Division of Hematology-Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sang Y Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eduard Serra
- Hereditary Cancer Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
10
|
Hilal N, Chen Z, Chen MH, Choudhury S. RASopathies and cardiac manifestations. Front Cardiovasc Med 2023; 10:1176828. [PMID: 37529712 PMCID: PMC10387527 DOI: 10.3389/fcvm.2023.1176828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 08/03/2023] Open
Abstract
As binary switches, RAS proteins switch to an ON/OFF state during signaling and are on a leash under normal conditions. However, in RAS-related diseases such as cancer and RASopathies, mutations in the genes that regulate RAS signaling or the RAS itself permanently activate the RAS protein. The structural basis of this switch is well understood; however, the exact mechanisms by which RAS proteins are regulated are less clear. RAS/MAPK syndromes are multisystem developmental disorders caused by germline mutations in genes associated with the RAS/mitogen-activated protein kinase pathway, impacting 1 in 1,000-2,500 children. These include a variety of disorders such as Noonan syndrome (NS) and NS-related disorders (NSRD), such as cardio facio cutaneous (CFC) syndrome, Costello syndrome (CS), and NS with multiple lentigines (NSML, also known as LEOPARD syndrome). A frequent manifestation of cardiomyopathy (CM) and hypertrophic cardiomyopathy associated with RASopathies suggest that RASopathies could be a potential causative factor for CM. However, the current supporting evidence is sporadic and unclear. RASopathy-patients also display a broad spectrum of congenital heart disease (CHD). More than 15 genes encode components of the RAS/MAPK signaling pathway that are essential for the cell cycle and play regulatory roles in proliferation, differentiation, growth, and metabolism. These genes are linked to the molecular genetic pathogenesis of these syndromes. However, genetic heterogeneity for a given syndrome on the one hand and alleles for multiple syndromes on the other make classification difficult in diagnosing RAS/MAPK-related diseases. Although there is some genetic homogeneity in most RASopathies, several RASopathies are allelic diseases. This allelism points to the role of critical signaling nodes and sheds light on the overlap between these related syndromes. Even though considerable progress has been made in understanding the pathophysiology of RASopathy with the identification of causal mutations and the functional analysis of their pathophysiological consequences, there are still unidentified causal genes for many patients diagnosed with RASopathies.
Collapse
Affiliation(s)
- Nazia Hilal
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Zi Chen
- Harvard Medical School, Boston, MA, United States
- Department of Surgery, Brigham, and Women’s Hospital, Boston, MA, United States
| | - Ming Hui Chen
- Harvard Medical School, Boston, MA, United States
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, United States
| | - Sangita Choudhury
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
11
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
12
|
Alnefaie N, Almutairi OT, Alturki AY, Bafaquh M. Bibliometric analysis of the top 100 most-cited articles in neurofibromatosis. Surg Neurol Int 2022; 13:282. [PMID: 35855179 PMCID: PMC9282785 DOI: 10.25259/sni_114_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
Background:
Neurofibromatosis (NF) is an umbrella term that refers to three distinct disease entities: NF Type 1, Type 2, and schwannomatosis. Here, we reviewed the scientific performance and the most influential publications on NF.
Methods:
A keyword-based search was performed using the Scopus database. The top 100 articles were grouped based on NF types and the studied entities. The differences between the articles, authors, and journals were quantified based on certain parameters. Other parameters were collected for the complete citational analysis.
Results:
The top 100 articles were published between 1961 and 2020. The most trending period of research was in the 1990s and articles studying the clinical aspect and the underlying genetic correlation made up 84% of all articles from the list. The United States of America (USA) had the highest number of contributions (69 articles, 69%). The top institute of contribution to the list was the Howard Hughes Medical Institute, USA (14 articles, 14%). Author-based analysis reveals that the neurologist D. H. Gutmann from St. Louis Children’s Hospital, USA, was the most active and authored 11 articles (11%) on the list.
Conclusion:
The publication trends show that articles studying medical and surgical management were of little interest. The top 100 articles did not include any randomized control trials, and the highest level of evidence was obtained from reviews of pooled knowledge as well as population-based and longitudinal studies.
Collapse
|
13
|
Crow AJD, Janssen JM, Marshall C, Moffit A, Brennan L, Kohler CG, Roalf DR, Moberg PJ. A systematic review and meta-analysis of intellectual, neuropsychological, and psychoeducational functioning in neurofibromatosis type 1. Am J Med Genet A 2022; 188:2277-2292. [PMID: 35546306 PMCID: PMC9302478 DOI: 10.1002/ajmg.a.62773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/27/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder frequently associated with cognitive deficits. Despite cognitive deficits being a key feature of NF1, the profile of such impairments in NF1 has been shown to be heterogeneous. Thus, we sought to quantitatively synthesize the extant literature on cognitive functioning in NF1. A random-effects meta-analysis of cross-sectional studies was carried out comparing cognitive functioning of patients with NF1 to typically developing or unaffected sibling comparison subjects of all ages. Analyses included 50 articles (Total NNF1 = 1,522; MAge = 15.70 years, range = 0.52-69.60), yielding 460 effect sizes. Overall moderate deficits were observed [g = -0.64, 95% CI = (-0.69, -0.60)] wherein impairments differed at the level of cognitive domain. Deficits ranged from large [general intelligence: g = -0.95, 95% CI = (-1.12, -0.79)] to small [emotion: g = -0.37, 95% CI = (-0.63, -0.11)]. Moderation analyses revealed nonsignificant contributions of age, sex, educational attainment, and parental level of education to outcomes. These results illustrate that cognitive impairments are diffuse and salient across the lifespan in NF1. Taken together, these results further demonstrate efforts should be made to evaluate and address cognitive morbidity in patients with NF1 in conjunction with existing best practices.
Collapse
Affiliation(s)
- Andrew J D Crow
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jennica M Janssen
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Carolina Marshall
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Psychology, Hope College, Holland, Michigan, USA
| | - Anne Moffit
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Christian G Kohler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul J Moberg
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
15
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
16
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
17
|
Machado Almeida P, Lago Solis B, Stickley L, Feidler A, Nagoshi E. Neurofibromin 1 in mushroom body neurons mediates circadian wake drive through activating cAMP-PKA signaling. Nat Commun 2021; 12:5758. [PMID: 34599173 PMCID: PMC8486785 DOI: 10.1038/s41467-021-26031-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
Various behavioral and cognitive states exhibit circadian variations in animals across phyla including Drosophila melanogaster, in which only ~0.1% of the brain's neurons contain circadian clocks. Clock neurons transmit the timing information to a plethora of non-clock neurons via poorly understood mechanisms. Here, we address the molecular underpinning of this phenomenon by profiling circadian gene expression in non-clock neurons that constitute the mushroom body, the center of associative learning and sleep regulation. We show that circadian clocks drive rhythmic expression of hundreds of genes in mushroom body neurons, including the Neurofibromin 1 (Nf1) tumor suppressor gene and Pka-C1. Circadian clocks also drive calcium rhythms in mushroom body neurons via NF1-cAMP/PKA-C1 signaling, eliciting higher mushroom body activity during the day than at night, thereby promoting daytime wakefulness. These findings reveal the pervasive, non-cell-autonomous circadian regulation of gene expression in the brain and its role in sleep.
Collapse
Affiliation(s)
- Pedro Machado Almeida
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Blanca Lago Solis
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Luca Stickley
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| | - Alexis Feidler
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland ,grid.412750.50000 0004 1936 9166Present Address: University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Emi Nagoshi
- grid.8591.50000 0001 2322 4988Department of Genetics and Evolution, Sciences III, University of Geneva, 30 Quai Ernest-Ansermet, Geneva, 4, CH-1211 Switzerland
| |
Collapse
|
18
|
Botero V, Stanhope BA, Brown EB, Grenci EC, Boto T, Park SJ, King LB, Murphy KR, Colodner KJ, Walker JA, Keene AC, Ja WW, Tomchik SM. Neurofibromin regulates metabolic rate via neuronal mechanisms in Drosophila. Nat Commun 2021; 12:4285. [PMID: 34257279 PMCID: PMC8277851 DOI: 10.1038/s41467-021-24505-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Neurofibromatosis type 1 is a chronic multisystemic genetic disorder that results from loss of function in the neurofibromin protein. Neurofibromin may regulate metabolism, though the underlying mechanisms remain largely unknown. Here we show that neurofibromin regulates metabolic homeostasis in Drosophila via a discrete neuronal circuit. Loss of neurofibromin increases metabolic rate via a Ras GAP-related domain-dependent mechanism, increases feeding homeostatically, and alters lipid stores and turnover kinetics. The increase in metabolic rate is independent of locomotor activity, and maps to a sparse subset of neurons. Stimulating these neurons increases metabolic rate, linking their dynamic activity state to metabolism over short time scales. Our results indicate that neurofibromin regulates metabolic rate via neuronal mechanisms, suggest that cellular and systemic metabolic alterations may represent a pathophysiological mechanism in neurofibromatosis type 1, and provide a platform for investigating the cellular role of neurofibromin in metabolic homeostasis. Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutations in neurofibromin and associated with disruptions in physiology and behavior. Here the authors show that neurofibromin regulates metabolic homeostasis via a discrete brain circuit in a Drosophila model of NF1.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Bethany A Stanhope
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Elizabeth B Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - Eliza C Grenci
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.,Department of Physiology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Scarlet J Park
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Lanikea B King
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Keith R Murphy
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Kenneth J Colodner
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA
| | - William W Ja
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Seth M Tomchik
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
19
|
Georganta EM, Moressis A, Skoulakis EMC. Associative Learning Requires Neurofibromin to Modulate GABAergic Inputs to Drosophila Mushroom Bodies. J Neurosci 2021; 41:5274-5286. [PMID: 33972401 PMCID: PMC8211548 DOI: 10.1523/jneurosci.1605-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Cognitive dysfunction is among the hallmark symptoms of Neurofibromatosis 1, and accordingly, loss of the Drosophila melanogaster ortholog of Neurofibromin 1 (dNf1) precipitates associative learning deficits. However, the affected circuitry in the adult CNS remained unclear and the compromised mechanisms debatable. Although the main evolutionarily conserved function attributed to Nf1 is to inactivate Ras, decreased cAMP signaling on its loss has been thought to underlie impaired learning. Using mixed sex populations, we determine that dNf1 loss results in excess GABAergic signaling to the central for associative learning mushroom body (MB) neurons, apparently suppressing learning. dNf1 is necessary and sufficient for learning within these non-MB neurons, as a dAlk and Ras1-dependent, but PKA-independent modulator of GABAergic neurotransmission. Surprisingly, we also uncovered and discuss a postsynaptic Ras1-dependent, but dNf1-independnet signaling within the MBs that apparently responds to presynaptic GABA levels and contributes to the learning deficit of the mutants.
Collapse
Affiliation(s)
- Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming" Vari, 16672, Greece
| | - Anastasios Moressis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming" Vari, 16672, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming" Vari, 16672, Greece
| |
Collapse
|
20
|
Implications of mosaicism in variant interpretation: A case of a de novo homozygous NF1 variant. Eur J Med Genet 2021; 64:104236. [PMID: 33965620 DOI: 10.1016/j.ejmg.2021.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/21/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Neurofibromatosis type 1 is a common multisystem autosomal dominant syndrome caused by pathogenic heterozygous variants in the neurofibromin gene (NF1). It is associated with a substantially increased cancer risk. Mosaicism for NF1 has been clinically well-established for "second hit" variants in skin lesions and tumor tissues. Here, we report on a 3-month-old boy with multiple café au lait macules (CAMs) and juvenile myelomonocytic leukemia (JMML) who was found to carry a previously established pathogenic NF1 variant (c.586+5G>A), as revealed by whole-exome sequencing. Surprisingly, however, this variant was detected in the homozygous state in the patient and was absent in the parents and siblings. Deep sequencing of this variant using blood, buccal swabs and skin samples was performed. As expected for an NF1 gene mutation promoting JMML, the variant was detected in 90.6% of the blood DNA reads, in sharp contrast to the mere 5% and 0.74% of reads in the saliva- and skin fibroblast-derived DNA, respectively. Our analysis, therefore, confirmed postzygotic origin of the variant followed by a mitotic event resulting in its homozygosity, although we could not differentiate between the possibilities of a gene conversion and mitotic crossover. Apparently de novo homozygous variants should trigger a careful investigation into mosaicism to achieve accurate interpretation.
Collapse
|
21
|
Kobar K, Collett K, Prykhozhij SV, Berman JN. Zebrafish Cancer Predisposition Models. Front Cell Dev Biol 2021; 9:660069. [PMID: 33987182 PMCID: PMC8112447 DOI: 10.3389/fcell.2021.660069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer predisposition syndromes are rare, typically monogenic disorders that result from germline mutations that increase the likelihood of developing cancer. Although these disorders are individually rare, resulting cancers collectively represent 5-10% of all malignancies. In addition to a greater incidence of cancer, affected individuals have an earlier tumor onset and are frequently subjected to long-term multi-modal cancer screening protocols for earlier detection and initiation of treatment. In vivo models are needed to better understand tumor-driving mechanisms, tailor patient screening approaches and develop targeted therapies to improve patient care and disease prognosis. The zebrafish (Danio rerio) has emerged as a robust model for cancer research due to its high fecundity, time- and cost-efficient genetic manipulation and real-time high-resolution imaging. Tumors developing in zebrafish cancer models are histologically and molecularly similar to their human counterparts, confirming the validity of these models. The zebrafish platform supports both large-scale random mutagenesis screens to identify potential candidate/modifier genes and recently optimized genome editing strategies. These techniques have greatly increased our ability to investigate the impact of certain mutations and how these lesions impact tumorigenesis and disease phenotype. These unique characteristics position the zebrafish as a powerful in vivo tool to model cancer predisposition syndromes and as such, several have already been created, including those recapitulating Li-Fraumeni syndrome, familial adenomatous polyposis, RASopathies, inherited bone marrow failure syndromes, and several other pathogenic mutations in cancer predisposition genes. In addition, the zebrafish platform supports medium- to high-throughput preclinical drug screening to identify compounds that may represent novel treatment paradigms or even prevent cancer evolution. This review will highlight and synthesize the findings from zebrafish cancer predisposition models created to date. We will discuss emerging trends in how these zebrafish cancer models can improve our understanding of the genetic mechanisms driving cancer predisposition and their potential to discover therapeutic and/or preventative compounds that change the natural history of disease for these vulnerable children, youth and adults.
Collapse
Affiliation(s)
- Kim Kobar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keon Collett
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Using antisense oligonucleotides for the physiological modulation of the alternative splicing of NF1 exon 23a during PC12 neuronal differentiation. Sci Rep 2021; 11:3661. [PMID: 33574490 PMCID: PMC7878752 DOI: 10.1038/s41598-021-83152-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/29/2021] [Indexed: 01/11/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a genetic condition affecting approximately 1:3500 persons worldwide. The NF1 gene codes for neurofibromin protein, a GTPase activating protein (GAP) and a negative regulator of RAS. The NF1 gene undergoes alternative splicing of exon 23a (E23a) that codes for 21 amino acids placed at the center of the GAP related domain (GRD). E23a-containing type II neurofibromin exhibits a weaker Ras-GAP activity compared to E23a-less type I isoform. Exon E23a has been related with the cognitive impairment present in NF1 individuals. We designed antisense Phosphorodiamidate Morpholino Oligomers (PMOs) to modulate E23a alternative splicing at physiological conditions of gene expression and tested their impact during PC12 cell line neuronal differentiation. Results show that any dynamic modification of the natural ratio between type I and type II isoforms disturbed neuronal differentiation, altering the proper formation of neurites and deregulating both the MAPK/ERK and cAMP/PKA signaling pathways. Our results suggest an opposite regulation of these pathways by neurofibromin and the possible existence of a feedback loop sensing neurofibromin-related signaling. The present work illustrates the utility of PMOs to study alternative splicing that could be applied to other alternatively spliced genes in vitro and in vivo.
Collapse
|
23
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
24
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
25
|
Moscato EH, Dubowy C, Walker JA, Kayser MS. Social Behavioral Deficits with Loss of Neurofibromin Emerge from Peripheral Chemosensory Neuron Dysfunction. Cell Rep 2020; 32:107856. [PMID: 32640222 PMCID: PMC7416787 DOI: 10.1016/j.celrep.2020.107856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder associated with social and communicative disabilities. The cellular and circuit mechanisms by which loss of neurofibromin 1 (Nf1) results in social deficits are unknown. Here, we identify social behavioral dysregulation with Nf1 loss in Drosophila. These deficits map to primary dysfunction of a group of peripheral sensory neurons. Nf1 regulation of Ras signaling in adult ppk23+ chemosensory cells is required for normal social behaviors in flies. Loss of Nf1 attenuates ppk23+ neuronal activity in response to pheromones, and circuit-specific manipulation of Nf1 expression or neuronal activity in ppk23+ neurons rescues social deficits. This disrupted sensory processing gives rise to persistent changes in behavior beyond the social interaction, indicating a sustained effect of an acute sensory misperception. Together our data identify a specific circuit mechanism through which Nf1 regulates social behaviors and suggest social deficits in NF1 arise from propagation of sensory misinformation.
Collapse
Affiliation(s)
- Emilia H Moscato
- Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine Dubowy
- Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology and Sleep Institute, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
King LB, Boto T, Botero V, Aviles AM, Jomsky BM, Joseph C, Walker JA, Tomchik SM. Developmental loss of neurofibromin across distributed neuronal circuits drives excessive grooming in Drosophila. PLoS Genet 2020; 16:e1008920. [PMID: 32697780 PMCID: PMC7398555 DOI: 10.1371/journal.pgen.1008920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/03/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 1 is a monogenetic disorder that predisposes individuals to tumor formation and cognitive and behavioral symptoms. The neuronal circuitry and developmental events underlying these neurological symptoms are unknown. To better understand how mutations of the underlying gene (NF1) drive behavioral alterations, we have examined grooming in the Drosophila neurofibromatosis 1 model. Mutations of the fly NF1 ortholog drive excessive grooming, and increased grooming was observed in adults when Nf1 was knocked down during development. Furthermore, intact Nf1 Ras GAP-related domain signaling was required to maintain normal grooming. The requirement for Nf1 was distributed across neuronal circuits, which were additive when targeted in parallel, rather than mapping to discrete microcircuits. Overall, these data suggest that broadly-distributed alterations in neuronal function during development, requiring intact Ras signaling, drive key Nf1-mediated behavioral alterations. Thus, global developmental alterations in brain circuits/systems function may contribute to behavioral phenotypes in neurofibromatosis type 1.
Collapse
Affiliation(s)
- Lanikea B. King
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ari M. Aviles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Breanna M. Jomsky
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Chevara Joseph
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Seth M. Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
27
|
Cattaneo V, San Martin A, Lew SE, Gelb BD, Pagani MR. Repeating or spacing learning sessions are strategies for memory improvement with shared molecular and neuronal components. Neurobiol Learn Mem 2020; 172:107233. [PMID: 32360730 PMCID: PMC7451235 DOI: 10.1016/j.nlm.2020.107233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 03/05/2020] [Accepted: 04/25/2020] [Indexed: 11/21/2022]
Abstract
Intellectual disability is a common feature in genetic disorders with enhanced RAS-ERK1/2 signaling, including neurofibromatosis type 1 (NF1) and Noonan syndrome (NS). Additional training trials and additional spacing between trials, respectively, restores memory deficits in animal models of NF1 and NS. However, the relationship between the underlying mechanisms in these strategies remain obscure. Here, we developed an approach to examine the effect of adding training trials or spacing to a weak training protocol and used genetic and behavioral manipulations in Drosophila to explore such question. We found that repetition and spacing effects are highly related, being equally effective to improve memory in control flies and sharing mechanistic bases, including the requirement of RAS activity in mushroom body neurons and protein synthesis dependence. After spacing or repeating learning trials, memory improvement depends on the formation of long-term memory (LTM). Moreover, a disease-related gain-of-function RasV152G allele impaired LTM. Using minimal training protocols, we established that both learning strategies were also equally effective for memory rescue in the RasV152G mutant and showed non-additive interaction of the spacing and repetition effects. Memory improvement was never detected after Ras inhibition. We conclude that memory improvement by spacing or repeating training trials are two ways of using the same molecular resources, including RAS-ERK1/2-dependent signaling. This evidence supports the concept that learning problems in RAS-related disorders depend on the impaired ability to exploit the repetition and the spacing effect required for long-term memory induction.
Collapse
Affiliation(s)
- Verónica Cattaneo
- IFIBIO-Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires, Argentina
| | - Alvaro San Martin
- IFIBIO-Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires, Argentina
| | - Sergio E Lew
- Instituto de Ingeniería Biomédica, Facultad de Ingeniería, Universidad de Buenos Aires, Argentina
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario R Pagani
- IFIBIO-Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, 2155 Paraguay Street, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Ras acts as a molecular switch between two forms of consolidated memory in Drosophila. Proc Natl Acad Sci U S A 2020; 117:2133-2139. [PMID: 31932418 DOI: 10.1073/pnas.1819925117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long-lasting, consolidated memories require not only positive biological processes that facilitate long-term memories (LTM) but also the suppression of inhibitory processes that prevent them. The mushroom body neurons (MBn) in Drosophila melanogaster store protein synthesis-dependent LTM (PSD-LTM) as well as protein synthesis-independent, anesthesia-resistant memory (ARM). The formation of ARM inhibits PSD-LTM but the underlying molecular processes that mediate this interaction remain unknown. Here, we demonstrate that the Ras→Raf→rho kinase (ROCK) pathway in MBn suppresses ARM consolidation, allowing the formation of PSD-LTM. Our initial results revealed that the effects of Ras on memory are due to postacquisition processes. Ras knockdown enhanced memory expression but had no effect on acquisition. Additionally, increasing Ras activity optogenetically after, but not before, acquisition impaired memory performance. The elevated memory produced by Ras knockdown is a result of increased ARM. While Ras knockdown enhanced the consolidation of ARM, it eliminated PSD-LTM. We found that these effects are mediated by the downstream kinase Raf. Similar to Ras, knockdown of Raf enhanced ARM consolidation and impaired PSD-LTM. Surprisingly, knockdown of the canonical downstream extracellular signal-regulated kinase did not reproduce the phenotypes observed with Ras and Raf knockdown. Rather, Ras/Raf inhibition of ROCK was found to be responsible for suppressing ARM. Constitutively active ROCK enhanced ARM and impaired PSD-LTM, while decreasing ROCK activity rescued the enhanced ARM produced by Ras knockdown. We conclude that MBn Ras/Raf inhibition of ROCK suppresses the consolidation of ARM, which permits the formation of PSD-LTM.
Collapse
|
29
|
Siegenthaler D, Escribano B, Bräuler V, Pielage J. Selective suppression and recall of long-term memories in Drosophila. PLoS Biol 2019; 17:e3000400. [PMID: 31454345 PMCID: PMC6711512 DOI: 10.1371/journal.pbio.3000400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
Adaptive decision-making depends on the formation of novel memories. In Drosophila, the mushroom body (MB) is the site of associative olfactory long-term memory (LTM) storage. However, due to the sparse and stochastic representation of olfactory information in Kenyon cells (KCs), genetic access to individual LTMs remains elusive. Here, we develop a cAMP response element (CRE)-activity–dependent memory engram label (CAMEL) tool that genetically tags KCs responding to the conditioned stimulus (CS). CAMEL activity depends on protein-synthesis–dependent aversive LTM conditioning and reflects the time course of CRE binding protein 2 (CREB2) activity during natural memory formation. We demonstrate that inhibition of LTM-induced CAMEL neurons reduces memory expression and that artificial optogenetic reactivation is sufficient to evoke aversive behavior phenocopying memory recall. Together, our data are consistent with CAMEL neurons marking a subset of engram KCs encoding individual memories. This study provides new insights into memory circuitry organization and an entry point towards cellular and molecular understanding of LTM storage. A novel genetic approach enables the visualization and manipulation of memory engram cells in Drosophila, providing a key methodological opportunity to characterize associative memory at the cellular and circuit level.
Collapse
Affiliation(s)
- Dominique Siegenthaler
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Benjamin Escribano
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Vanessa Bräuler
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jan Pielage
- Division of Neurobiology and Zoology, University of Kaiserslautern, Kaiserslautern, Germany
- * E-mail:
| |
Collapse
|
30
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
31
|
Korfhage J, Lombard DB. Malignant Peripheral Nerve Sheath Tumors: From Epigenome to Bedside. Mol Cancer Res 2019; 17:1417-1428. [PMID: 31023785 DOI: 10.1158/1541-7786.mcr-19-0147] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas typically developing in the context of neurofibromatosis type 1 (NF-1). With the exception of surgical resection, these tumors are resistant to all current therapies, and unresectable, recurrent, or metastatic tumors are considered incurable. Preclinical studies have identified several novel candidate molecular targets for therapeutic intervention, but, to date, targeted therapies have proven ineffective. Recent studies have identified recurrent mutations in polycomb repressive complex 2 (PRC2) core components, embryonic ectoderm development protein (EED) and suppressor of zeste 12 homolog (SUZ12), in MPNST. These mutations result in global loss of the histone H3 lysine 27 trimethylation epigenetic mark, normally deposited by PRC2, and subsequent gain in acetylation at this residue. This altered chromatin state has been shown to promote MPNST malignancy; however, acetylation at this residue sensitizes MPNSTs to BRD4 and bromodomain and extra-terminal domain inhibition. Interestingly, the catalytic component of PRC2, enhancer of zeste homolog 2 (EZH2), is not mutated in MPNST, hinting that a noncanonical, PRC2-independent function of EZH2 may play a role in this cancer. This review examines the pathobiology of MPNST, the contribution of PRC2 subunits to this process, and the prospects for PRC2-related therapies for this cancer. IMPLICATIONS: Identification of mutations in the PRC2 components EED and SUZ12 in the majority of MPNSTs may imply noncanonical oncogenic activities of the intact component, EZH2, and provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Justin Korfhage
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
32
|
Papanikolopoulou K, Mudher A, Skoulakis E. An assessment of the translational relevance of Drosophila in drug discovery. Expert Opin Drug Discov 2019; 14:303-313. [PMID: 30664368 DOI: 10.1080/17460441.2019.1569624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Drosophila melanogaster offers a powerful expedient and economical system with facile genetics. Because of the high sequence and functional conservation with human disease-associated genes, it has been cardinal in deciphering disease mechanisms at the genetic and molecular level. Drosophila are amenable to and respond well to pharmaceutical treatment which coupled to their genetic tractability has led to discovery, repositioning, and validation of a number of compounds. Areas covered: This review summarizes the generation of fly models of human diseases, their advantages and use in elucidation of human disease mechanisms. Representative studies provide examples of the utility of this system in modeling diseases and the discovery, repositioning and testing on pharmaceuticals to ameliorate them. Expert opinion: Drosophila offers a facile and economical whole animal system with many homologous organs to humans, high functional conservation and established methods of generating and validating human disease models. Nevertheless, it remains relatively underused as a drug discovery tool probably because its relevance to mammalian systems remains under question. However, recent exciting success stories using Drosophila disease models for drug screening, repositioning and validation strongly suggest that fly models should figure prominently in the drug discovery pipeline from bench to bedside.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| | - Amrit Mudher
- b Centre for Biological Sciences , University of Southampton , Southampton , UK
| | - Efthimios Skoulakis
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| |
Collapse
|
33
|
Coover RA, Healy TE, Guo L, Chaney KE, Hennigan RF, Thomson CS, Aschbacher-Smith LE, Jankowski MP, Ratner N. Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathol Commun 2018; 6:127. [PMID: 30470263 PMCID: PMC6251093 DOI: 10.1186/s40478-018-0635-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Normal Schwann cells (SCs) are quiescent in adult nerves, when ATP is released from the nerve in an activity dependent manner. We find that suppressing nerve activity in adult nerves causes SC to enter the cell cycle. In vitro, ATP activates the SC G-protein coupled receptor (GPCR) P2Y2. Downstream of P2Y2, β-arrestin-mediated signaling results in PP2-mediated de-phosphorylation of AKT, and PP2 activity is required for SC growth suppression. NF1 deficient SC show reduced growth suppression by ATP, and are resistant to the effects of β-arrestin-mediated signaling, including PP2-mediated de-phosphorylation of AKT. In patients with the disorder Neurofibromatosis type 1, NF1 mutant SCs proliferate and form SC tumors called neurofibromas. Elevating ATP levels in vivo reduced neurofibroma cell proliferation. Thus, the low proliferation characteristic of differentiated adult peripheral nerve may require ongoing, nerve activity-dependent, ATP. Additionally, we identify a mechanism through which NF1 SCs may evade growth suppression in nerve tumors.
Collapse
|
34
|
Molosh AI, Shekhar A. Neurofibromatosis type 1 as a model system to study molecular mechanisms of autism spectrum disorder symptoms. PROGRESS IN BRAIN RESEARCH 2018; 241:37-62. [PMID: 30447756 DOI: 10.1016/bs.pbr.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis type 1 (NF1) is monogenic neurodevelopmental disorder caused by mutation of NF1 gene, which leads to increased susceptibility to various tumors formations. Additionally, majority of patients with NF1 are experience high incidence of cognitive deficits. Particularly, we review the growing number of reports demonstrated a higher incidence of autism spectrum disorder (ASD) in individuals with NF1. In this review we also discuss face validity of preclinical Nf1 mouse models. Then we describe discoveries from these animal models that have uncovered the deficiencies in the regulation of Ras and other intracellular pathways as critical mechanisms underlying the Nf1 cognitive problems. We also summarize and interpret recent preclinical and clinical studies that point toward potential pharmacological therapies for NF1 patients.
Collapse
Affiliation(s)
- Andrei I Molosh
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States.
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, IU School of Medicine, Indianapolis, IN, United States; Stark Neurosciences Research Institute, IU School of Medicine, Indianapolis, IN, United States; Department of Pharmacology & Toxicology, IU School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translational Institute, IU School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
35
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
36
|
Tumkaya T, Ott S, Claridge-Chang A. A systematic review of Drosophila short-term-memory genetics: Meta-analysis reveals robust reproducibility. Neurosci Biobehav Rev 2018; 95:361-382. [PMID: 30077573 DOI: 10.1016/j.neubiorev.2018.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/07/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
Abstract
Geneticists use olfactory conditioning in Drosophila to identify learning genes; however, little is known about how these genes are integrated into short-term memory (STM) pathways. Here, we investigated the hypothesis that the STM evidence base is weak. We performed systematic review and meta-analysis of the field. Using metrics to quantify variation between discovery articles and follow-up studies, we found that seven genes were both highly replicated, and highly reproducible. However, ∼80% of STM genes have never been replicated. While only a few studies investigated interactions, the reviewed genes could account for >1000% memory. This large summed effect size could indicate irreproducibility, many shared pathways, or that current assay protocols lack the specificity needed to identify core plasticity genes. Mechanistic theories of memory will require the convergence of evidence from system, circuit, cellular, molecular, and genetic experiments; systematic data synthesis is an essential tool for integrated neuroscience.
Collapse
Affiliation(s)
- Tayfun Tumkaya
- Institute for Molecular and Cell Biology, A(⁎)STAR, Singapore; Department of Physiology, National University of Singapore, Singapore
| | - Stanislav Ott
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Adam Claridge-Chang
- Institute for Molecular and Cell Biology, A(⁎)STAR, Singapore; Department of Physiology, National University of Singapore, Singapore; Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore.
| |
Collapse
|
37
|
Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:845-867. [PMID: 29750912 DOI: 10.1016/j.bbabio.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - N Bellance
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076 Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
38
|
Stafstrom CE, Staedtke V, Comi AM. Epilepsy Mechanisms in Neurocutaneous Disorders: Tuberous Sclerosis Complex, Neurofibromatosis Type 1, and Sturge-Weber Syndrome. Front Neurol 2017; 8:87. [PMID: 28367137 PMCID: PMC5355446 DOI: 10.3389/fneur.2017.00087] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/24/2017] [Indexed: 01/27/2023] Open
Abstract
Neurocutaneous disorders are multisystem diseases affecting skin, brain, and other organs. Epilepsy is very common in the neurocutaneous disorders, affecting up to 90% of patients with tuberous sclerosis complex (TSC) and Sturge–Weber syndrome (SWS), for example. The mechanisms underlying the increased predisposition to brain hyperexcitability differ between disorders, yet some molecular pathways overlap. For instance, the mechanistic target of rapamycin (mTOR) signaling cascade plays a central role in seizures and epileptogenesis in numerous acquired and genetic disorders, including several neurocutaneous disorders. Potential routes for target-specific treatments are emerging as the genetic and molecular pathways involved in neurocutaneous disorders become increasingly understood. This review explores the clinical features and mechanisms of epilepsy in three common neurocutaneous disorders—TSC, neurofibromatosis type 1, and SWS.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Verena Staedtke
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Anne M Comi
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
39
|
Physical interaction between neurofibromin and serotonin 5-HT6 receptor promotes receptor constitutive activity. Proc Natl Acad Sci U S A 2016; 113:12310-12315. [PMID: 27791021 DOI: 10.1073/pnas.1600914113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Active G protein-coupled receptor (GPCR) conformations not only are promoted by agonists but also occur in their absence, leading to constitutive activity. Association of GPCRs with intracellular protein partners might be one of the mechanisms underlying GPCR constitutive activity. Here, we show that serotonin 5 hydroxytryptamine 6 (5-HT6) receptor constitutively activates the Gs/adenylyl cyclase pathway in various cell types, including neurons. Constitutive activity is strongly reduced by silencing expression of the Ras-GTPase activating protein (Ras-GAP) neurofibromin, a 5-HT6 receptor partner. Neurofibromin is a multidomain protein encoded by the NF1 gene, the mutation of which causes Neurofibromatosis type 1 (NF1), a genetic disorder characterized by multiple benign and malignant nervous system tumors and cognitive deficits. Disrupting association of 5-HT6 receptor with neurofibromin Pleckstrin Homology (PH) domain also inhibits receptor constitutive activity, and PH domain expression rescues 5-HT6 receptor-operated cAMP signaling in neurofibromin-deficient cells. Furthermore, PH domains carrying mutations identified in NF1 patients that prevent interaction with the 5-HT6 receptor fail to rescue receptor constitutive activity in neurofibromin-depleted cells. Further supporting a role of neurofibromin in agonist-independent Gs signaling elicited by native receptors, the phosphorylation of cAMP-responsive element-binding protein (CREB) is strongly decreased in prefrontal cortex of Nf1+/- mice compared with WT mice. Moreover, systemic administration of a 5-HT6 receptor inverse agonist reduces CREB phosphorylation in prefrontal cortex of WT mice but not Nf1+/- mice. Collectively, these findings suggest that disrupting 5-HT6 receptor-neurofibromin interaction prevents agonist-independent 5-HT6 receptor-operated cAMP signaling in prefrontal cortex, an effect that might underlie neuronal abnormalities in NF1 patients.
Collapse
|
40
|
Helfferich J, Nijmeijer R, Brouwer OF, Boon M, Fock A, Hoving EW, Meijer L, den Dunnen WFA, de Bont ESJM. Neurofibromatosis type 1 associated low grade gliomas: A comparison with sporadic low grade gliomas. Crit Rev Oncol Hematol 2016; 104:30-41. [PMID: 27263935 DOI: 10.1016/j.critrevonc.2016.05.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 11/29/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder, associated with a variable clinical phenotype including café-au-lait spots, intertriginous freckling, Lisch nodules, neurofibromas, optic pathway gliomas and distinctive bony lesions. NF1 is caused by a mutation in the NF1 gene, which codes for neurofibromin, a large protein involved in the MAPK- and the mTOR-pathway through RAS-RAF signalling. NF1 is a known tumour predisposition syndrome, associated with different tumours of the nervous system including low grade gliomas (LGGs) in the paediatric population. The focus of this review is on grade I pilocytic astrocytomas (PAs), the most commonly observed histologic subtype of low grade gliomas in NF1. Clinically, these PAs have a better prognosis and show different localisation patterns than their sporadic counterparts, which are most commonly associated with a KIAA1549:BRAF fusion. In this review, possible mechanisms of tumourigenesis in LGGs with and without NF1 will be discussed, including the contribution of different signalling pathways and tumour microenvironment. Furthermore we will discuss how increased understanding of tumourigenesis may lead to new potential targets for treatment.
Collapse
Affiliation(s)
- Jelte Helfferich
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Ronald Nijmeijer
- Department of Pathology and Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Oebele F Brouwer
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Maartje Boon
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Annemarie Fock
- Department of Neurology, Paediatric Neurology Division, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Eelco W Hoving
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lisethe Meijer
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Pathology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eveline S J M de Bont
- Department of Paediatrics, Beatrix Children's Hospital, Paediatric Oncology/Hematology Division, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
41
|
Jindal GA, Goyal Y, Burdine RD, Rauen KA, Shvartsman SY. RASopathies: unraveling mechanisms with animal models. Dis Model Mech 2016. [PMID: 26203125 PMCID: PMC4527292 DOI: 10.1242/dmm.020339] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. Summary: Developmental disorders caused by germline mutations in the Ras-MAPK pathway are called RASopathies. Studies with animal models, including mice, zebrafish and Drosophila, continue to enhance our understanding of these diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katherine A Rauen
- Department of Pediatrics, MIND Institute, Division of Genomic Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
42
|
Abstract
Neurofibromatosis I is a common genetic disorder that results in tumor formation, and predisposes individuals to a range of cognitive/behavioral symptoms, including deficits in attention, visuospatial skills, learning, language development, and sleep, and autism spectrum disorder-like traits. The nf1-encoded neurofibromin protein (Nf1) exhibits high conservation, from the common fruit fly, Drosophila melanogaster, to humans. Drosophila provides a powerful platform to investigate the signaling cascades upstream and downstream of Nf1, and the fly model exhibits similar behavioral phenotypes to mammalian models. In order to understand how loss of Nf1 affects motor behavior in flies, we combined traditional activity monitoring with video analysis of grooming behavior. In nf1 mutants, spontaneous grooming was increased up to 7x. This increase in activity was distinct from previously described dopamine-dependent hyperactivity, as dopamine transporter mutants exhibited slightly decreased grooming. Finally, we found that relative grooming frequencies can be compared in standard activity monitors that measure infrared beam breaks, enabling the use of activity monitors as an automated method to screen for grooming phenotypes. Overall, these data suggest that loss of nf1 produces excessive activity that is manifested as increased grooming, providing a platform to dissect the molecular genetics of neurofibromin signaling across neuronal circuits.
Collapse
|
43
|
Hu HT, Shih PY, Shih YT, Hsueh YP. The Involvement of Neuron-Specific Factors in Dendritic Spinogenesis: Molecular Regulation and Association with Neurological Disorders. Neural Plast 2015; 2016:5136286. [PMID: 26819769 PMCID: PMC4706964 DOI: 10.1155/2016/5136286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/26/2015] [Indexed: 12/26/2022] Open
Abstract
Dendritic spines are the location of excitatory synapses in the mammalian nervous system and are neuron-specific subcellular structures essential for neural circuitry and function. Dendritic spine morphology is determined by the F-actin cytoskeleton. F-actin remodeling must coordinate with different stages of dendritic spinogenesis, starting from dendritic filopodia formation to the filopodia-spines transition and dendritic spine maturation and maintenance. Hundreds of genes, including F-actin cytoskeleton regulators, membrane proteins, adaptor proteins, and signaling molecules, are known to be involved in regulating synapse formation. Many of these genes are not neuron-specific, but how they specifically control dendritic spine formation in neurons is an intriguing question. Here, we summarize how ubiquitously expressed genes, including syndecan-2, NF1 (encoding neurofibromin protein), VCP, and CASK, and the neuron-specific gene CTTNBP2 coordinate with neurotransmission, transsynaptic signaling, and cytoskeleton rearrangement to control dendritic filopodia formation, filopodia-spines transition, and dendritic spine maturation and maintenance. The aforementioned genes have been associated with neurological disorders, such as autism spectrum disorders (ASDs), mental retardation, learning difficulty, and frontotemporal dementia. We also summarize the corresponding disorders in this report.
Collapse
Affiliation(s)
- Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pu-Yun Shih
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Tzu Shih
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
44
|
Bai L, Sehgal A. Anaplastic Lymphoma Kinase Acts in the Drosophila Mushroom Body to Negatively Regulate Sleep. PLoS Genet 2015; 11:e1005611. [PMID: 26536237 PMCID: PMC4633181 DOI: 10.1371/journal.pgen.1005611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
Though evidence is mounting that a major function of sleep is to maintain brain plasticity and consolidate memory, little is known about the molecular pathways by which learning and sleep processes intercept. Anaplastic lymphoma kinase (Alk), the gene encoding a tyrosine receptor kinase whose inadvertent activation is the cause of many cancers, is implicated in synapse formation and cognitive functions. In particular, Alk genetically interacts with Neurofibromatosis 1 (Nf1) to regulate growth and associative learning in flies. We show that Alk mutants have increased sleep. Using a targeted RNAi screen we localized the negative effects of Alk on sleep to the mushroom body, a structure important for both sleep and memory. We also report that mutations in Nf1 produce a sexually dimorphic short sleep phenotype, and suppress the long sleep phenotype of Alk. Thus Alk and Nf1 interact in both learning and sleep regulation, highlighting a common pathway in these two processes.
Collapse
Affiliation(s)
- Lei Bai
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
45
|
Gyurkó MD, Csermely P, Sőti C, Steták A. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory. Sci Rep 2015; 5:15084. [PMID: 26469632 PMCID: PMC4606830 DOI: 10.1038/srep15084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022] Open
Abstract
The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans.
Collapse
Affiliation(s)
- M Dávid Gyurkó
- Semmelweis University, Department of Medical Chemistry, Budapest, Üllői út 26 1085, Hungary
| | - Péter Csermely
- Semmelweis University, Department of Medical Chemistry, Budapest, Üllői út 26 1085, Hungary
| | - Csaba Sőti
- Semmelweis University, Department of Medical Chemistry, Budapest, Üllői út 26 1085, Hungary
| | - Attila Steták
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Birmannsgasse 8, 4055 Basel, Switzerland.,University of Basel, University Psychiatric Clinics, Wilhelm Klein-Strasse 27, 4055 Basel, Switzerland
| |
Collapse
|
46
|
Androschuk A, Al-Jabri B, Bolduc FV. From Learning to Memory: What Flies Can Tell Us about Intellectual Disability Treatment. Front Psychiatry 2015; 6:85. [PMID: 26089803 PMCID: PMC4453272 DOI: 10.3389/fpsyt.2015.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023] Open
Abstract
Intellectual disability (ID), previously known as mental retardation, affects 3% of the population and remains without pharmacological treatment. ID is characterized by impaired general mental abilities associated with defects in adaptive function in which onset occurs before 18 years of age. Genetic factors are increasing and being recognized as the causes of severe ID due to increased use of genome-wide screening tools. Unfortunately drug discovery for treatment of ID has not followed the same pace as gene discovery, leaving clinicians, patients, and families without the ability to ameliorate symptoms. Despite this, several model organisms have proven valuable in developing and screening candidate drugs. One such model organism is the fruit fly Drosophila. First, we review the current understanding of memory in human and its model in Drosophila. Second, we describe key signaling pathways involved in ID and memory such as the cyclic adenosine 3',5'-monophosphate (cAMP)-cAMP response element binding protein (CREB) pathway, the regulation of protein synthesis, the role of receptors and anchoring proteins, the role of neuronal proliferation, and finally the role of neurotransmitters. Third, we characterize the types of memory defects found in patients with ID. Finally, we discuss how important insights gained from Drosophila learning and memory could be translated in clinical research to lead to better treatment development.
Collapse
Affiliation(s)
- Alaura Androschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Basma Al-Jabri
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Francois V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Vizcaíno MA, Shah S, Eberhart CG, Rodriguez FJ. Clinicopathologic implications of NF1 gene alterations in diffuse gliomas. Hum Pathol 2015; 46:1323-30. [PMID: 26190195 DOI: 10.1016/j.humpath.2015.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
Abstract
Recent studies have identified somatic alterations in the gene encoding for neurofibromin (NF1) in a subset of glioblastoma (GBM), usually associated with the mesenchymal molecular subtype. To understand the significance of NF1 genetic alterations in diffuse gliomas in general, we evaluated public databases and tested for NF1 copy number alterations in a cohort using fluorescence in situ hybridization. NF1 genetic loss (homozygous NF1 deletions or mutations with predicted functional consequences) was present in 30 (of 281) (11%) GBM and 21 (of 286) (7%) lower-grade gliomas in The Cancer Genome Atlas data. Furthermore, NF1 loss was associated with worse overall and disease-specific survival in the lower-grade glioma, but not GBM, Group in The Cancer Genome Atlas cohort. IDH1 or 2 mutations co-existed in lower-grade gliomas with NF1 loss (36%) but not in GBM. In our cohort studied by fluorescence in situ hybridization, NF1/17q (n = 2) or whole Ch17 (n = 3) losses were only identified in the GBM group (5/86 [6%]). Tumors with NF1/Ch17 loss were predominantly adult GBM (4/5); lacked EGFR amplification (0/4), strong p53 immunolabeling (1/5), or IDH1 (R132H) protein expression (0/5); but expressed the mesenchymal marker podoplanin in 4/5. NF1 genetic loss occurs in a subset of diffuse gliomas, and its significance deserves further exploration.
Collapse
Affiliation(s)
- M Adelita Vizcaíno
- Department of Cellular and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico 06010; Division of Neuropathology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21231
| | - Smit Shah
- Division of Neuropathology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21231; Rutgers Robert Wood Johnson Medical School in New Jersey, 125 Paterson Street, New Brunswick, NJ 08901
| | - Charles G Eberhart
- Division of Neuropathology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21231; Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21231
| | - Fausto J Rodriguez
- Division of Neuropathology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21231; Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21231.
| |
Collapse
|
48
|
Androschuk A, Bolduc FV. Modeling Intellectual Disability in Drosophila. ANIMAL MODELS OF NEURODEVELOPMENTAL DISORDERS 2015. [DOI: 10.1007/978-1-4939-2709-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Wolman MA, de Groh ED, McBride SM, Jongens TA, Granato M, Epstein JA. Modulation of cAMP and ras signaling pathways improves distinct behavioral deficits in a zebrafish model of neurofibromatosis type 1. Cell Rep 2014; 8:1265-70. [PMID: 25176649 PMCID: PMC5850931 DOI: 10.1016/j.celrep.2014.07.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/20/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder associated with attention deficits and learning disabilities. The primary known function of neurofibromin, encoded by the NF1 gene, is to downregulate Ras activity. We show that nf1-deficient zebrafish exhibit learning and memory deficits and that acute pharmacological inhibition of downstream targets of Ras (MAPK and PI3K) restores memory consolidation and recall but not learning. Conversely, acute pharmacological enhancement of cAMP signaling restores learning but not memory. Our data provide compelling evidence that neurofibromin regulates learning and memory by distinct molecular pathways in vertebrates and that deficits produced by genetic loss of function are reversible. These findings support the investigation of cAMP signaling enhancers as a companion therapy to Ras inhibition in the treatment of cognitive dysfunction in NF1.
Collapse
Affiliation(s)
- Marc A Wolman
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric D de Groh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean M McBride
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas A Jongens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Garcia C, Gutmann DH. Using the neurofibromatosis tumor predisposition syndromes to understand normal nervous system development. SCIENTIFICA 2014; 2014:915725. [PMID: 25243094 PMCID: PMC4163293 DOI: 10.1155/2014/915725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Development is a tightly regulated process that involves stem cell self-renewal, differentiation, cell-to-cell communication, apoptosis, and blood vessel formation. These coordinated processes ensure that tissues maintain a size and architecture that is appropriate for normal tissue function. As such, tumors arise when cells acquire genetic mutations that allow them to escape the normal growth constraints. In this regard, the study of tumor predisposition syndromes affords a unique platform to better understand normal development and the process by which normal cells transform into cancers. Herein, we review the processes governing normal brain development, discuss how brain cancer represents a disruption of these normal processes, and highlight insights into both normal development and cancer made possible by the study of tumor predisposition syndromes.
Collapse
Affiliation(s)
- Cynthia Garcia
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|