1
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
2
|
Rughetti A, Bharti S, Savai R, Barmpoutsi S, Weigert A, Atre R, Siddiqi F, Sharma R, Khabiya R, Hirani N, Baig MS. Imperative role of adaptor proteins in macrophage toll-like receptor signaling pathways. Future Sci OA 2024; 10:2387961. [PMID: 39248050 PMCID: PMC11385170 DOI: 10.1080/20565623.2024.2387961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Macrophages are integral part of the body's defense against pathogens and serve as vital regulators of inflammation. Adaptor molecules, featuring diverse domains, intricately orchestrate the recruitment and transmission of inflammatory responses through signaling cascades. Key domains involved in macrophage polarization include Toll-like receptors (TLRs), Src Homology2 (SH2) and other small domains, alongside receptor tyrosine kinases, crucial for pathway activation. This review aims to elucidate the enigmatic role of macrophage adaptor molecules in modulating macrophage activation, emphasizing their diverse roles and potential therapeutic and investigative avenues for further exploration.
Collapse
Affiliation(s)
- Aurelia Rughetti
- Laboratory of Tumor Immunology & Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Shreya Bharti
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
| | - Spyridoula Barmpoutsi
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, D-35390, Germany
- Max Planck Institute for Heart & Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, D-61231, Germany
| | - Andreas Weigert
- Institute of Biochemistry, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, D-60590, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, D-60323, Germany
| | - Rajat Atre
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Faaiza Siddiqi
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Nik Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH164TJ, UK
| | - Mirza S Baig
- Department of Biosciences & Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| |
Collapse
|
3
|
Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother 2024; 20:2307187. [PMID: 38282471 PMCID: PMC10826636 DOI: 10.1080/21645515.2024.2307187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The research and development of messenger RNA (mRNA) cancer vaccines have gradually overcome numerous challenges through the application of personalized cancer antigens, structural optimization of mRNA, and the development of alternative RNA-based vectors and efficient targeted delivery vectors. Clinical trials are currently underway for various cancer vaccines that encode tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), or immunomodulators. In this paper, we summarize the optimization of mRNA and the emergence of RNA-based expression vectors in cancer vaccines. We begin by reviewing the advancement and utilization of state-of-the-art targeted lipid nanoparticles (LNPs), followed by presenting the primary classifications and clinical applications of mRNA cancer vaccines. Collectively, mRNA vaccines are emerging as a central focus in cancer immunotherapy, offering the potential to address multiple challenges in cancer treatment, either as standalone therapies or in combination with current cancer treatments.
Collapse
Affiliation(s)
- Ruhui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Zhang R, Cui NP, He Y, Wang T, Feng D, Wang Y, Bao T, Su C, Qin Y, Shi JH, Li JH. Pirarubicin combined with TLR3 or TLR4 agonists enhances anti-tumor efficiency. Int Immunopharmacol 2024; 142:113068. [PMID: 39241516 DOI: 10.1016/j.intimp.2024.113068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is prone to relapse due to the lack of effective therapeutic targets. Macrophages are the most abundant immune cells in the tumor microenvironment (TME) of breast cancer. Targeting the cross-talk between macrophages and cancer cells provides a more efficient strategy for anti-tumor therapy. Toll-like receptors (TLRs) are important players involved in macrophage activation, and TLR agonists are known to play roles in cancer therapy. However, the combination strategy of TLR agonists with chemotherapy drugs is still not well characterized. METHODS RT-PCR and Western blot were used to detect the expression of TLRs. The communication between breast cancer cells and macrophages were determined by co-culture in vitro. Tumor cells proliferation and migration were investigated by MTT assay and scratch wound assay. The effects of drug combinations and toxic side effects were assessed by immunohistochemistry and Hematoxylin & Eosin staining. RESULTS Expression of TLR3 and TLR4 were lower in breast tumor tissues compared with adjacent normal tissues. Patients with higher TLR3 or TLR4 expression levels had a better prognosis than those with lower expression levels. TLR3/4 expression was significantly inhibited when breast cancer cells MDA-MB-231 and E0771 were conditioned-cultured with macrophages in vitro and was also inhibited by pirarubicin (THP). However, the combination of TLR agonists and THP could reverse this response and inhibit the proliferation and migration of breast cancer cells. Additionally, this combination significantly reduced the tumor volume and weight in the murine model, increased the expression of TLR3/4 in mouse breast tumors. CONCLUSIONS Our results provide new ideas for the combination strategy of THP with TLR agonists which improves prognosis of breast cancer.
Collapse
Affiliation(s)
- Ruobing Zhang
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Nai-Peng Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, 071000 Hebei, China.
| | - Yanqiu He
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Tingting Wang
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Decheng Feng
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China; Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Yaqiong Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Affiliated Hospital of Chongqing Medical University, Changshou People's Hospital, Changshou, 401220 Chongqing, China
| | - Tong Bao
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Chenghan Su
- Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China
| | - Yan Qin
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China
| | - Jian-Hong Shi
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Clinical Medical College, Hebei University, Baoding, 071000 Hebei, China.
| | - Jing-Hua Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei, China; Hebei Key Laboratory of General Surgery for Digital Medicine, Baoding, 071000 Hebei, China.
| |
Collapse
|
5
|
Chen X, Zhang Z, Huang H, Deng Y, Xu Z, Chen S, Zhou R, Song J. The involvement of endogenous melatonin in LPS-induced M1-like macrophages and its underlying synthesis mechanism regulated by IRF3. Exp Cell Res 2024; 443:114314. [PMID: 39481795 DOI: 10.1016/j.yexcr.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Melatonin (MLT) has been shown to induce polarization of macrophages towards M2-like phenotype and inhibit polarization of macrophages towards M1-like phenotype through exogenous administration, which affects the development of many macrophage polarization-related diseases, such as infectious diseases, cardiovascular diseases, bone diseases, and tumors. However, whether endogenous melatonin has similar influences on macrophage polarization as exogenous melatonin is still under investigation. This study revealed that the process of lipopolysaccharide (LPS) inducing macrophages to polarize towards M1-like phenotype was accompanied by an increase in endogenous MLT secretion. To explore the role of increased endogenous MLT in the polarization process of macrophages, whether similar to the function of exogenous MLT in inhibiting polarization of macrophages towards M1-like phenotype, we established LPS-induced MLT deficiency models in vitro to investigate the effects of endogenous MLT on the secretion of cytokines, co-stimulatory molecules, ROS, and phagocytic function in LPS-induced M1-like macrophages. Additionally, we aimed to elucidate the mechanism by which LPS affects the secretion of endogenous MLT by macrophages. Our results confirm that LPS induces transcription of Aanat through the TLR4/TRIF pathway, consequently facilitating the secretion of MLT by macrophages. In this way, IRF3 is the main transcription factor that regulates Aanat transcription. Endogenous MLT plays a role in inhibiting the polarization of macrophages towards M1 phenotype and delaying cell apoptosis during LPS-induced polarization towards M1 phenotype. This phenomenon may be a form of self-protection that occurs when macrophages engulf pathogens while avoiding oxidative stress and apoptosis caused by LPS. This conclusion clarifies the role of endogenous MLT in the clearance of pathogens by macrophages, providing a theoretical basis for understanding its role in innate immunity.
Collapse
Affiliation(s)
- Xuzheng Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhiguang Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhenguo Xu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Siyan Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Ruixiang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Jun Song
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
6
|
Keshari S, Shavkunov AS, Miao Q, Saha A, Minowa T, Molgora M, Williams CD, Chaib M, Highsmith AM, Pineda JE, Alekseev S, Alspach E, Hu KH, Colonna M, Pauken KE, Chen K, Gubin MM. Comparing neoantigen cancer vaccines and immune checkpoint therapy unveils an effective vaccine and anti-TREM2 macrophage-targeting dual therapy. Cell Rep 2024; 43:114875. [PMID: 39446585 DOI: 10.1016/j.celrep.2024.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1- neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy.
Collapse
Affiliation(s)
- Sunita Keshari
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander S Shavkunov
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akata Saha
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Minowa
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Charmelle D Williams
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehdi Chaib
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna M Highsmith
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Josué E Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sayan Alekseev
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Program of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kenneth H Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew M Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Badu P, Baniulyte G, Sammons MA, Pager CT. Activation of ATF3 via the integrated stress response pathway regulates innate immune response to restrict Zika virus. J Virol 2024; 98:e0105524. [PMID: 39212382 PMCID: PMC11494902 DOI: 10.1128/jvi.01055-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that can have devastating health consequences. The developmental and neurological effects of a ZIKV infection arise in part from the virus triggering cellular stress pathways and perturbing transcriptional programs. To date, the underlying mechanisms of transcriptional control directing viral restriction and virus-host interaction are understudied. Activating Transcription Factor 3 (ATF3) is a stress-induced transcriptional effector that modulates the expression of genes involved in a myriad of cellular processes, including inflammation and antiviral responses, to restore cellular homeostasis. While ATF3 is known to be upregulated during ZIKV infection, the mode by which ATF3 is activated, and the specific role of ATF3 during ZIKV infection is unknown. In this study, we show via inhibitor and RNA interference approaches that ZIKV infection initiates the integrated stress response pathway to activate ATF4 which in turn induces ATF3 expression. Additionally, by using CRISPR-Cas9 system to delete ATF3, we found that ATF3 acts to limit ZIKV gene expression in A549 cells. We also determined that ATF3 enhances the expression of antiviral genes such as STAT1 and other components in the innate immunity pathway to induce an ATF3-dependent anti-ZIKV response. Our study reveals crosstalk between the integrated stress response and innate immune response pathways and highlights an important role for ATF3 in establishing an antiviral effect during ZIKV infection. IMPORTANCE Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that co-opts cellular mechanisms to support viral processes that can reprogram the host transcriptional profile. Such viral-directed transcriptional changes and the pro- or anti-viral outcomes remain understudied. We previously showed that ATF3, a stress-induced transcription factor, is significantly upregulated in ZIKV-infected mammalian cells, along with other cellular and immune response genes. We now define the intracellular pathway responsible for ATF3 activation and elucidate the impact of ATF3 expression on ZIKV infection. We show that during ZIKV infection, the integrated stress response pathway stimulates ATF3 which enhances the innate immune response to antagonize ZIKV infection. This study establishes a link between viral-induced stress response and transcriptional regulation of host defense pathways and thus expands our knowledge of virus-mediated transcriptional mechanisms and transcriptional control of interferon-stimulated genes during ZIKV infection.
Collapse
Affiliation(s)
- Pheonah Badu
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Gabriele Baniulyte
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Morgan A. Sammons
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| | - Cara T. Pager
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
- The RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, New York, USA
| |
Collapse
|
8
|
Behari J, Yadav K, Khare P, Kumar B, Kushwaha AK. Recent insights on pattern recognition receptors and the interplay of innate immune responses against West Nile Virus infection. Virology 2024; 600:110267. [PMID: 39437534 DOI: 10.1016/j.virol.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The recent outbreaks of neurotropic West Nile Virus (WNV) in humans are of grave public health concern, requiring a thorough understanding of the host immune response to develop effective therapeutic interventions. Innate immunity contributes to the primary immune response against WNV infection aimed at controlling and eliminating the virus from the body. As soon as WNV infects the body, pattern recognition receptors (PRRs) recognize viral pathogen-associated molecular patterns, particularly viral RNA, and initiate innate immune responses. This review explores the diverse PRRs in sensing WNV infection and orchestrating immune defenses. Specifically, this paper reviews the role of PRRs in WNV infection, encompassing both findings from mouse models and current clinical studies. Activation of PRRs triggers signaling pathways that induce the expression of antiviral proteins to inhibit viral replication. Understanding the intricacies of the immune response is crucial for developing effective vaccines and therapeutic interventions against WNV infection.
Collapse
Affiliation(s)
- Jatin Behari
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Kajal Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prashant Khare
- Xenesis Institute, Absolute, 5th Floor, Plot 68, Sector 44, Gurugram, Haryana, 122002, India
| | - Brijesh Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, UP, India
| | - Ambuj Kumar Kushwaha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
9
|
Lee H, Park SK, Lim J. Dual Roles of Host Zinc Finger Proteins in Viral RNA Regulation: Decay or Stabilization. Int J Mol Sci 2024; 25:11138. [PMID: 39456919 PMCID: PMC11508327 DOI: 10.3390/ijms252011138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Host defense mechanisms against viral infections have been extensively studied over the past few decades and continue to be a crucial area of research in understanding human diseases caused by acute and chronic viral infections. Among various host mechanisms, recent findings have revealed that several host RNA-binding proteins play pivotal roles in regulating viral RNA to suppress viral replication and eliminate infection. We have focused on identifying host proteins that function as regulators of viral RNA, specifically targeting viral components without adversely affecting host cells. Interestingly, these proteins exhibit dual roles in either restricting viral infections or promoting viral persistence by interacting with cofactors to either degrade viral genomes or stabilize them. In this review, we discuss RNA-binding zinc finger proteins as viral RNA regulators, classified into two major types: ZCCCH-type and ZCCHC-type. By highlighting the functional diversity of these zinc finger proteins, this review provides insights into their potential as therapeutic targets for the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Hyokyoung Lee
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sung-Kyun Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
10
|
Abbasi Dezfouli S, Michailides ME, Uludag H. Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases. Biochemistry 2024. [PMID: 39388611 DOI: 10.1021/acs.biochem.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hematological disorders result in significant health consequences, and traditional therapies frequently entail adverse reactions without addressing the root cause. A potential solution for hematological disorders characterized by gain-of-function mutations lies in the emergence of small interfering RNA (siRNA) molecules as a therapeutic option. siRNAs are a class of RNA molecules composed of double-stranded RNAs that can degrade specific mRNAs, thereby inhibiting the synthesis of underlying disease proteins. Therapeutic interventions utilizing siRNA can be tailored to selectively target genes implicated in diverse hematological disorders, including sickle cell anemia, β-thalassemia, and malignancies such as lymphoma, myeloma, and leukemia. The development of efficient siRNA silencers necessitates meticulous contemplation of variables such as the RNA backbone, stability, and specificity. Transportation of siRNA to specific cells poses a significant hurdle, prompting investigations of diverse delivery approaches, including chemically modified forms of siRNA and nanoparticle formulations with various biocompatible carriers. This review delves into the crucial role of siRNA technology in targeting and treating hematological malignancies and disorders. It sheds light on the latest research, development, and clinical trials, detailing how various pharmaceutical approaches leverage siRNA against blood disorders, mainly concentrating on cancers. It outlines the preferred molecular targets and physiological barriers to delivery while emphasizing the growing potential of various therapeutic delivery methods. The need for further research is articulated in the context of overcoming the shortcomings of siRNA in order to enrich discussions around siRNA's role in managing blood disorders and aiding the scientific community in advancing more targeted and effective treatments.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| | | | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| |
Collapse
|
11
|
Ryan EM, Norinskiy MA, Bracken AK, Lueders EE, Chen X, Fu Q, Anderson ET, Zhang S, Abbasov ME. Activity-Based Acylome Profiling with N-(Cyanomethyl)- N-(phenylsulfonyl)amides for Targeted Lysine Acylation and Post-Translational Control of Protein Function in Cells. J Am Chem Soc 2024; 146:27622-27643. [PMID: 39348182 DOI: 10.1021/jacs.4c09073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lysine acylations are ubiquitous and structurally diverse post-translational modifications that vastly expand the functional heterogeneity of the human proteome. Hence, the targeted acylation of lysine residues has emerged as a strategic approach to exert biomimetic control over the protein function. However, existing strategies for targeted lysine acylation in cells often rely on genetic intervention, recruitment of endogenous acylation machinery, or nonspecific acylating agents and lack methods to quantify the magnitude of specific acylations on a global level. In this study, we develop activity-based acylome profiling (ABAP), a chemoproteomic strategy that exploits elaborate N-(cyanomethyl)-N-(phenylsulfonyl)amides and lysine-centric probes for site-specific introduction and proteome-wide mapping of posttranslational lysine acylations in human cells. Harnessing this framework, we quantify various artificial acylations and rediscover numerous endogenous lysine acylations. We validate site-specific acetylation of target lysines and establish a structure-activity relationship for N-(cyanomethyl)-N-(phenylsulfonyl)amides in proteins from diverse structural and functional classes. We identify paralog-selective chemical probes that acetylate conserved lysines within interferon-stimulated antiviral RNA-binding proteins, generating de novo proteoforms with obstructed RNA interactions. We further demonstrate that targeted acetylation of a key enzyme in retinoid metabolism engenders a proteoform with a conformational change in the protein structure, leading to a gain-of-function phenotype and reduced drug potency. These findings underscore the versatility of our strategy in biomimetic control over protein function through targeted delivery and global profiling of endogenous and artificial lysine acylations, potentially advancing therapeutic modalities and our understanding of biological processes orchestrated by these post-translational modifications.
Collapse
Affiliation(s)
- Elizabeth M Ryan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael A Norinskiy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Amy K Bracken
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emma E Lueders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xueer Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Mikail E Abbasov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol 2024; 20:573-587. [PMID: 38769435 PMCID: PMC11392651 DOI: 10.1038/s41574-024-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Interferon regulatory factors (IRFs) comprise a family of nine transcription factors in mammals. IRFs exert broad effects on almost all aspects of immunity but are best known for their role in the antiviral response. Over the past two decades, IRFs have been implicated in metabolic physiology and pathophysiology, partly as a result of their known functions in immune cells, but also because of direct actions in adipocytes, hepatocytes, myocytes and neurons. This Review focuses predominantly on IRF3 and IRF4, which have been the subject of the most intense investigation in this area. IRF3 is located in the cytosol and undergoes activation and nuclear translocation in response to various signals, including stimulation of Toll-like receptors, RIG-I-like receptors and the cGAS-STING pathways. IRF3 promotes weight gain, primarily by inhibiting adipose thermogenesis, and also induces inflammation and insulin resistance using both weight-dependent and weight-independent mechanisms. IRF4, meanwhile, is generally pro-thermogenic and anti-inflammatory and has profound effects on lipogenesis and lipolysis. Finally, new data are emerging on the role of other IRF family members in metabolic homeostasis. Taken together, data indicate that IRFs serve as critical yet underappreciated integrators of metabolic and inflammatory stress.
Collapse
Affiliation(s)
- Zunair Ahmad
- School of Medicine, Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Bahrain
| | - Wahab Kahloan
- AdventHealth Orlando Family Medicine, Orlando, FL, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Niu J, Wang S, Qiao X, Yu S, Yu Z, Jin Y, Huang M, Wang L, Song L. CgIκB2 negatively regulates the expression of interferon-like protein by Rel/NF-κB signal in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109853. [PMID: 39173983 DOI: 10.1016/j.fsi.2024.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Inhibitors of NF-κB (IκBs) have been implicated as major components of the Rel/NF-κB signaling pathway, playing an important negative regulatory role in host antiviral immunity such as in the activation of interferon (IFN) in vertebrates. In the present study, the immunomodulatory effect of IκB (CgIκB2) on the expression of interferon-like protein (CgIFNLP) was evaluated in Pacific oyster (Crassostrea gigas). After poly (I:C) stimulation, the mRNA expression level of CgIκB2 in haemocytes was significantly down-regulated at 3-12 h while up-regulated at 48-72 h. The mRNA expression of CgIκB2 in haemocytes was significantly up-regulated at 3 h after rCgIFNLP stimulation. In the CgIκB2-RNAi oysters, the mRNA expression of CgIFNLP, interferon regulatory factor-8 (CgIRF8) and NF-κB subunit (CgRel), the abundance of CgIFNLP and CgIRF8 protein in haemocytes, as well as the abundance of CgRel protein in nucleus were significantly increased after poly (I:C) stimulation. Immunofluorescence assay showed that nuclear translocation of CgIRF8 and CgRel protein was promoted in CgIκB2-RNAi oysters compared with that in EGFP-RNAi group. In the CgRel-RNAi oysters, the mRNA and protein expression level of CgIFNLP significantly down-regulated after poly (I:C) stimulation. The collective results indicated that CgIκB2 plays an important role in regulating CgIFNLP expression through its effects on Rel/NF-κB and IRF signaling pathways.
Collapse
Affiliation(s)
- Jixiang Niu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhuo Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Mengyue Huang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
14
|
Shimizu T. RNA recognition in toll-like receptor signaling. Curr Opin Struct Biol 2024; 88:102913. [PMID: 39168045 DOI: 10.1016/j.sbi.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
RNA, either from invading pathogens or within the hosts, is one of the principal PAMPs (pathogen-associated molecular patterns). Toll-like receptors (TLRs) and other receptors of the innate immune system exist that detect immunostimulatory RNA including double and single stranded RNA, and then induce cytokine-mediated antiviral and proinflammatory responses. Recent years have seen remarkable progress in biochemical, immunological, and structural biological studies on TLRs, opening new avenues for TLR signaling. In this review, we highlight our current understanding of RNA- sensing TLRs and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.
Collapse
Affiliation(s)
- Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Cao Q, Fang H, Tian H. mRNA vaccines contribute to innate and adaptive immunity to enhance immune response in vivo. Biomaterials 2024; 310:122628. [PMID: 38820767 DOI: 10.1016/j.biomaterials.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Messenger RNA (mRNA) therapeutics have been widely employed as strategies for the treatment and prevention of diseases. Amid the global outbreak of COVID-19, mRNA vaccines have witnessed rapid development. Generally, in the case of mRNA vaccines, the initiation of the innate immune system serves as a prerequisite for triggering subsequent adaptive immune responses. Critical cells, cytokines, and chemokines within the innate immune system play crucial and beneficial roles in coordinating tailored immune reactions towards mRNA vaccines. Furthermore, immunostimulators and delivery systems play a significant role in augmenting the immune potency of mRNA vaccines. In this comprehensive review, we systematically delineate the latest advancements in mRNA vaccine research, present an in-depth exploration of strategies aimed at amplifying the immune effectiveness of mRNA vaccines, and offer some perspectives and recommendations regarding the future advancements in mRNA vaccine development.
Collapse
Affiliation(s)
- Qiannan Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China; Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
16
|
Doğan G, Sandıkçı M, Karagenç L. Stage-specific expression of Toll-like receptors in the seminiferous epithelium of mouse testis. Histochem Cell Biol 2024; 162:323-335. [PMID: 39085445 PMCID: PMC11364606 DOI: 10.1007/s00418-024-02310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Genes encoding Toll-like receptors (TLRs) are expressed by germ cells in the mouse testis. Nevertheless, the expression of TLRs by germ cells has only been demonstrated for TLR-3, TLR-9, and TLR-11. Furthermore, the expression of each TLR in relation to the stage of spermatogenesis remains uncertain. We aimed in the present study to examine the expression pattern of all TLRs in germ cells throughout the cycle of seminiferous epithelium in the adult mouse testis. Immunohistochemistry was used to evaluate the expression of TLRs. Results of the present study reveal the expression of TLRs by specific populations of germ cells. Expression of TLRs, except for TLR-7, at endosomal compartments, acrosomes, and/or residual bodies was another interesting and novel finding of the present study. We further demonstrate that the expression of TLR-1, -2, -3, -4, -5, -7, -11, -12, and -13 follows a distinct spatiotemporal pattern throughout the cycle of seminiferous epithelium. While TLR-1, -3, -5, -11, and -12 are expressed in all stages, TLR-4 is expressed only in early and middle stages of spermatogenic cycle. On the other hand, TLR-2, -7, and -13 are expressed only in early stage of spermatogenic cycle. Evidence demonstrating the expression of TLRs in a stage specific manner throughout spermatogenesis strengthen the hypothesis that the expression of various TLRs by germ cells is a developmentally regulated process. However, if TLRs play a role in the regulation of proliferation, growth, maturation, and differentiation of germ cells throughout the cycle of the seminiferous epithelium warrants further investigations.
Collapse
Affiliation(s)
- Göksel Doğan
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Aydın Adnan Menderes University, 09000, Aydın, Turkey
| | - Mustafa Sandıkçı
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Aydın Adnan Menderes University, 09000, Aydın, Turkey
| | - Levent Karagenç
- Faculty of Veterinary Medicine, Department of Histology-Embryology, Aydın Adnan Menderes University, 09000, Aydın, Turkey.
| |
Collapse
|
17
|
Kim KJ, Hwang J, Lee KW, Kim J, Han Y, Namgung U. Neuron-Microglia Interaction is Involved in Anti-inflammatory Response by Vagus Nerve Stimulation in the Prefrontal Cortex of Rats Injected with Polyinosinic:Polycytidylic Acid. Mol Neurobiol 2024; 61:7403-7418. [PMID: 38383920 DOI: 10.1007/s12035-024-04054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Injection of polyinosinic:polycytidylic acid (poly(I:C)) into experimental animals induces neuroimmunological responses and thus has been used for the study of neurological disorders such as anxiety, depression, and chronic fatigue. Here, we investigated the effects of vagus nerve stimulation (VNS) on poly(I:C)-induced neuroinflammation and associated behavioral consequences in rats. The microglia in the prefrontal cortex (PFC) displayed the activated form of morphology in poly(I:C)-injected rats and changed to a normal shape after acute VNS (aVNS). Production of phospho-NF-κB, phospho-IκB, IL-1β, and cleaved caspase 3 was elevated by poly(I:C) and downregulated by aVNS. In contrast, phospho-Akt levels were decreased by poly(I:C) and increased by aVNS. Neuronal production of fractalkine (CX3CL1) in the PFC was markedly reduced by poly(I:C), but recovered by aVNS. Fractalkine interaction with its receptor CX3CR1 was highly elevated by VNS. We further demonstrated that the pharmacological blockade of CX3CR1 activity counteracted the production of IL-1β, phospho-Akt, and cleaved form of caspase 3 that was modulated by VNS, suggesting the anti-inflammatory effects of fractalkine-CX3CR1 signaling as a mediator of neuron-microglia interaction. Behavioral assessments of pain and temperature sensations by von Frey and hot/cold plate tests showed significant improvement by chronic VNS (cVNS) and forced swimming and marble burying tests revealed that the depressive-like behaviors caused by poly(I:C) injection were rescued by cVNS. We also found that the recognition memory which was impaired by poly(I:C) administration was improved by cVNS. This study suggests that VNS may play a role in regulating neuroinflammation and somatosensory and cognitive functions in poly(I:C)-injected animals.
Collapse
Affiliation(s)
- Ki-Joong Kim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Jinyeon Hwang
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Kang-Woo Lee
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Jieun Kim
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Yunha Han
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea
| | - Uk Namgung
- Department of Korean Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak‑ro 62, Daejeon, 34520, South Korea.
| |
Collapse
|
18
|
Maddock RJ, Vlasova RM, Chen S, Iosif AM, Bennett J, Tanase C, Ryan AM, Murai T, Hogrefe CE, Schumann CD, Geschwind DH, Van de Water J, Amaral DG, Lesh TA, Styner MA, Kimberley McAllister A, Carter CS, Bauman MD. Altered brain metabolites in male nonhuman primate offspring exposed to maternal immune activation. Brain Behav Immun 2024; 121:280-290. [PMID: 39032543 DOI: 10.1016/j.bbi.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.
Collapse
Affiliation(s)
- Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Costin Tanase
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Takeshi Murai
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Cynthia D Schumann
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Judy Van de Water
- Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California Davis, Sacramento, CA, USA; MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - David G Amaral
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | | | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Melissa D Bauman
- California National Primate Research Center, University of California Davis, Davis, CA, USA; MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, USA; Physiology and Membrane Biology, School of Medicine, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
19
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
20
|
Li J, Yu J, Shen A, Lai S, Liu Z, He TS. The RNA-binding proteins regulate innate antiviral immune signaling by modulating pattern recognition receptors. Virol J 2024; 21:225. [PMID: 39304943 DOI: 10.1186/s12985-024-02503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Viral infections pose significant threats to human health, leading to a diverse spectrum of infectious diseases. The innate immune system serves as the primary barrier against viruses and bacteria in the early stages of infection. A rapid and forceful antiviral innate immune response is triggered by distinguishing between self-nucleic acids and viral nucleic acids. RNA-binding proteins (RBPs) are a diverse group of proteins which contain specific structural motifs or domains for binding RNA molecules. In the last decade, numerous of studies have outlined that RBPs influence viral replication via diverse mechanisms, directly recognizing viral nucleic acids and modulating the activity of pattern recognition receptors (PRRs). In this review, we summarize the functions of RBPs in regulation of host-virus interplay by controlling the activation of PRRs, such as RIG-I, MDA5, cGAS and TLR3. RBPs are instrumental in facilitating the identification of viral RNA or DNA, as well as viral structural proteins within the cellular cytoplasm and nucleus, functioning as co-receptor elements. On the other hand, RBPs are capable of orchestrating the activation of PRRs and facilitating the transmission of antiviral signals to downstream adaptor proteins by post-translational modifications or aggregation. Gaining a deeper comprehension of the interaction between the host and viruses is crucial for the development of novel therapeutics targeting viral infections.
Collapse
Affiliation(s)
- Jianguo Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jingge Yu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Department of Blood Transfusion, Jingmen Central Hospital, Jingmen, China
| | - Ao Shen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Graduate School, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Suwen Lai
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Tian-Sheng He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
21
|
Song KH, Xiang X, Lee SH, Woo JK, Enkhtaivan G, Giraldo CR, Lee YR, Jeong YJ, Pashangzadeh S, Sharifi N, Yang AD, Hoang HD, Cho NH, Lee YS, Park DG, Alain T. The reovirus variant RP116 is oncolytic in immunocompetent models and generates reduced neutralizing antibodies to Type 3 Dearing. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200846. [PMID: 39354956 PMCID: PMC11442186 DOI: 10.1016/j.omton.2024.200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 10/03/2024]
Abstract
The mammalian reovirus Type 3 Dearing (T3D) is a naturally occurring oncolytic virus. We previously identified a T3D variant isolated from persistently infected cancer cells that has a premature stop codon mutation in the S1 gene, generating a truncated σ1-attachment protein that lacks the globular head. We now report on the molecular characterization of this variant, named RP116, and assess its antitumor potential in human cancer cells and syngeneic mouse models. RP116 replicates efficiently in several cancer cell lines, shows reduced dependency for the JAM-A receptor, significantly decreases tumor growth in syngeneic models when injected either intratumorally or intravenously, and generates long-term cures and immune memory in combination with checkpoint inhibitors. Finally, we demonstrate that RP116 infection in mice leads to reduced production of neutralizing antibodies directed against reovirus T3D, preserving the efficacy of subsequent reovirus treatment. These results establish the value of developing RP116 as an additional oncolytic reovirus platform.
Collapse
Affiliation(s)
- Ki-Hoon Song
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Xiao Xiang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - So Hyun Lee
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Jong Kyu Woo
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Gansukh Enkhtaivan
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Carlos Rios Giraldo
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - You-Rim Lee
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Yeo Jin Jeong
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Salar Pashangzadeh
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Negar Sharifi
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - An-Dao Yang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do 13620, Republic of Korea
| | - Yeon-Sook Lee
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Dong Guk Park
- ViroCure, #502, Ace TwinTower 1, 285 Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
- Department of Surgery, Dankook University Hospital, Cheonan 31116, Republic of Korea
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Matsumoto T, Nagano T, Taguchi K, Kobayashi T, Tanaka-Totoribe N. Toll-like receptor 3 involvement in vascular function. Eur J Pharmacol 2024; 979:176842. [PMID: 39033837 DOI: 10.1016/j.ejphar.2024.176842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Maintaining endothelial cell (EC) and vascular smooth muscle cell (VSMC) integrity is an important component of human health and disease because both EC and VSMC regulate various functions, including vascular tone control, cellular adhesion, homeostasis and thrombosis regulation, proliferation, and vascular inflammation. Diverse stressors affect functions in both ECs and VSMCs and abnormalities of functions in these cells play a crucial role in cardiovascular disease initiation and progression. Toll-like receptors (TLRs) are important detectors of pathogen-associated molecular patterns derived from various microbes and viruses as well as damage-associated molecular patterns derived from damaged cells and perform innate immune responses. Among TLRs, several studies reveal that TLR3 plays a key role in initiation, development and/or protection of diseases, and an emerging body of evidence indicates that TLR3 presents components of the vasculature, including ECs and VSMCs, and plays a functional role. An agonist of TLR3, polyinosinic-polycytidylic acid [poly (I:C)], affects ECs, including cell death, inflammation, chemoattractant, adhesion, permeability, and hemostasis. Poly (I:C) also affects VSMCs including inflammation, proliferation, and modulation of vascular tone. Moreover, alterations of vascular function induced by certain molecules and/or interventions are exerted through TLR3 signaling. Hence, we present the association between TLR3 and vascular function according to the latest studies.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan.
| | - Takayuki Nagano
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Tanaka-Totoribe
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| |
Collapse
|
23
|
Shu X, Xie Y, Shu M, Ou X, Yang J, Wu Z, Zhang X, Zhang J, Zeng H, Shao L. Acute effects of TLR3 agonist Poly(I:C) on bone marrow hematopoietic progenitor cells in mice. Immunol Lett 2024; 270:106927. [PMID: 39265918 DOI: 10.1016/j.imlet.2024.106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Hematopoietic progenitor cells (HPCs) in bone marrow with limited abilities for self-renewal and differentiation continuously supply hematopoietic cells through life. When suffering infection or inflammation, HPCs will actively proliferate to provide differentiated hematopoietic cells to maintain hematopoietic homeostasis. Poly(I:C), an agonist of TLR3, can specifically activate Type I interferon (IFN-I) signaling which exerts anti-inflammatory effects and influence hematopoiesis after infection. However, the effects of Poly(I:C)-induced IFN-I on the bone marrow hematopoietic system still deserve attention. In this study, our results revealed the efficacy of the IFN-I model, with a remarkably decrease in HPCs and a sharp elevation in LSKs numbers after single dose of Poly(I:C) injection. Apoptotic ratios of HPCs and LSKs significantly increased 48 h after Poly(I:C) treatment. Application of Poly(I:C) prompted the transition of HPCs and LSKs from G0 to G1 phases, potentially leading to the accelerated exhaustion of HPCs. From the cobblestone area-forming cell (CAFC) assay, we speculate that Poly(I:C) impairs the differentiation capacity of HPCs as well as their colony-forming ability. RT-qPCR and immunohistochemistry revealed significant upregulation of IFN-I associated genes and proteins following Poly(I:C) treatment. In conclusion, a single dose of Poly(I:C) induced an acute detrimental effect on HPCs within 48 h potentially due to TLR3 engagement. This activation cascaded into a robust IFN-I response emanating from the bone marrow, underscoring the intricate immunological dynamics at play following Poly(I:C) intervention.
Collapse
Affiliation(s)
- Xin Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Yuxuan Xie
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Manling Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Xiangying Ou
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Juan Yang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Zhenyu Wu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Jinfu Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, China; Basic Medical Experiment Center, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, China; School of Public Health, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
24
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
25
|
Valdés N, Espinoza D, Pareja-Barrueto C, Olate N, Barraza-Rojas F, Benavides-Larenas A, Cortés M, Imarai M. Expression and regulation of the CXCL9-11 chemokines and CXCR3 receptor in Atlantic salmon (Salmo salar). Front Immunol 2024; 15:1455457. [PMID: 39301034 PMCID: PMC11410577 DOI: 10.3389/fimmu.2024.1455457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Chemokines are cytokines that mediate leukocyte traffic between the lymphoid organs, the bloodstream, and the site of tissue damage, which is essential for an efficient immune response. In particular, the gamma interferon (IFN- γ) inducible chemokines CXCL9, CXCL10, and CXCL11, and their receptor CXCR3, are involved in T cell and macrophage recruitment to the site of infection. The nature and function of these chemokines and their receptor are well-known in mammals, but further research is needed to achieve a similar level of understanding in fish immunity. Thus, in this study, we seek to identify the genes encoding the components of the Atlantic salmon (Salmo salar) CXCL9, CXCL10, CXCL11/CXCR3 axis (CXCL9-11/CXCR3), predict the protein structure from the amino acid sequence, and explore the regulation of gene expression as well as the response of these chemokines and their receptor to viral infections. The cxcl9, cxcl10, cxcl11, and cxcr3 gene sequences were retrieved from the databases, and the phylogenetic analysis was conducted to determine the evolutionary relationships. The study revealed an interesting pattern of clustering and conservation among fish and mammalian species. The salmon chemokine sequences clustered with orthologs from other fish species, while the mammalian sequences formed separate clades. This indicates a divergent evolution of chemokines between mammals and fish, possibly due to different evolutionary pressures. While the structural analysis of the chemokines and the CXCR3 receptor showed the conservation of critical motifs and domains, suggesting preserved functions and stability throughout evolution. Regarding the regulation of gene expression, some components of the CXCL9-11/CXCR3 axis are induced by recombinant gamma interferon (rIFN-γ) and by Infectious pancreatic necrosis virus (IPNV) infection in Atlantic salmon cells. Further studies are needed to explore the role of Atlantic salmon CXCL9-11 chemokines in regulating immune cell migration and endothelial activation, as seen in mammals. To the best of our knowledge, there have been no functional studies of chemokines to understand these effects in Atlantic salmon.
Collapse
Affiliation(s)
- Natalia Valdés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Espinoza
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Pareja-Barrueto
- Departamento de Hematología y Oncología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Olate
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Barraza-Rojas
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Almendra Benavides-Larenas
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcos Cortés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
26
|
Gorbatenko VO, Goriainov SV, Babenko VA, Plotnikov EY, Chistyakov DV, Sergeeva MG. TLR3-mediated Astrocyte Responses in High and Normal Glucose Adaptation Differently Regulated by Metformin. Cell Biochem Biophys 2024; 82:2701-2715. [PMID: 38918312 DOI: 10.1007/s12013-024-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Toll-like receptors 3 (TLR3) are innate immune receptors expressed on a wide range of cell types, including glial cells. Inflammatory responses altered by hyperglycemia highlight the need to explore the molecular underpinnings of these changes in cellular models. Therefore, here we estimated TLR3-mediated response of astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation with polyinosinic:polycytidylic acid Poly(I:C) (PIC) for 6 h. Seahorse Extracellular Flux Analyzer (Seahorse XFp) was used to estimate the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Although adaptation to HG affected ECAR and OCR, the stimulation of cells with PIC had no effect on ECAR. PIC reduced maximal OCR, but this effect disappeared upon adaptation to HG. PIC-stimulated release of cytokines IL-1β, IL-10 was reduced, and that of IL-6 and iNOS was increased in the HG model. Adaptation to HG reduced PIC-stimulated synthesis of COX-derived oxylipins measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Adaptation to HG did not alter PIC-stimulated p38 activity, ERK mitogen-activated protein kinase, STAT3 and ROS production. Metformin exhibited anti-inflammatory activity, reducing PIC-stimulated synthesis of cytokines and oxylipins. Cell adaptation to high glucose concentration altered the sensitivity of astrocytes to TLR3 receptor activation, and the hypoglycemic drug metformin may exert anti-inflammatory effects under these conditions.
Collapse
Affiliation(s)
- Vladislav O Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry V Chistyakov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
27
|
Ghorra N, Popotas A, Besse-Hammer T, Rogiers A, Corazza F, Nagant C. Cytokine Profile in Patients with Postacute Sequelae of COVID-19. Viral Immunol 2024; 37:346-354. [PMID: 39172652 DOI: 10.1089/vim.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The enduring impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease manifestation, COVID-19, on public health remains significant. Postacute sequelae of SARS-CoV-2 infection (PASC) affect a considerable number of patients, impairing their quality of life. While the role of the cytokine storm in acute COVID-19 is well established, its contribution to the pathophysiology of PASC is not fully understood. This study aimed to analyze the cytokine profile of patients with PASC following in vitro stimulation of Toll-like receptor (TLR) pathways, comparing them with a healthy control group. From October 2020 till March 2021, Brugmann University Hospital's clinical research unit included patients with PASC in the study. Whole blood samples were collected from 50 patients and 25 healthy volunteers. After in vitro stimulation under five different conditions, cytokine levels were measured using a multiplex method. Significantly decreased cytokine levels were observed in patients with PASC compared with healthy volunteers, particularly after TLR4 (interleukin [IL]-1α, IL-1β, IL-2, IL-10, interferon (IFN)α, IFNγ, IFNω, and tumor necrosis factor (TNF)α) and TLR7/8 (IL-1α, IL-1β, IFNα, IFNω, IFNγ, and TNFα) pathway stimulation. Principal component analysis identified two distinct clusters, suggesting a likely dysregulation of immunity involving TLR4 and TLR7/8 pathways in patients with PASC. Our study suggests that TLR4 and TLR7/8 pathways play a role in the pathophysiology of PASC. Continuous basal activation of immunity could explain the high basal concentrations of cytokines described in these patients and the decreased amplitude of response of these signaling pathways following specific stimulation.
Collapse
Affiliation(s)
- Nathalie Ghorra
- Department of Immunology, LHUB-ULB (Laboratoire Hospitalier Universitaire de Bruxelles), Brussels, Belgium
| | - Alexandros Popotas
- Translational Research Unit, Hôpital Universitaire Des Enfants Reine Fabiola, Bruxelles, Belgique
- Translational Research Unit, Université Libre de Bruxelles, CHU Brugmann, Brussels, Belgium
| | - Tatiana Besse-Hammer
- Department of Clinical Research, Brugmann University Hospital, Brussels, Belgium
- Department of Neurology, Brugmann University Hospital, Brussels, Belgium
| | - Anne Rogiers
- Department of Clinical Research, Brugmann University Hospital, Brussels, Belgium
- Department of Neurology, Brugmann University Hospital, Brussels, Belgium
| | - Francis Corazza
- Department of Immunology, LHUB-ULB (Laboratoire Hospitalier Universitaire de Bruxelles), Brussels, Belgium
- Translational Research Unit, Hôpital Universitaire Des Enfants Reine Fabiola, Bruxelles, Belgique
| | - Carole Nagant
- Department of Immunology, LHUB-ULB (Laboratoire Hospitalier Universitaire de Bruxelles), Brussels, Belgium
| |
Collapse
|
28
|
Clark NE, Schraut MR, Winters RA, Kearns K, Scanlon TC. An immuno-northern technique to measure the size of dsRNA byproducts in in vitro transcribed RNA. Electrophoresis 2024; 45:1546-1554. [PMID: 38785136 DOI: 10.1002/elps.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Double-stranded RNA is an immunogenic byproduct present in RNA synthesized with in vitro transcription. dsRNA byproducts engage virus-sensing innate immunity receptors and cause inflammation. Removing dsRNA from in vitro transcribed messenger RNA (mRNA) reduces immunogenicity and improves protein translation. Levels of dsRNA are typically 0.1%-0.5% of total transcribed RNA. Because they form such a minor fraction of the total RNA in transcription reactions, it is difficult to confidently identify discrete bands on agarose gels that correspond to the dsRNA byproducts. Thus, the sizes of dsRNA byproducts are largely unknown. Total levels of dsRNA are typically assayed with dsRNA-specific antibodies in ELISA and immuno dot-blot assays. Here we report a dsRNA-specific immuno-northern blot technique that provides a clear picture of the dsRNA size distributions in transcribed RNA. This technique could complement existing dsRNA analytical methods in studies of dsRNA byproduct synthesis, dsRNA removal, and characterization of therapeutic RNA drug substances.
Collapse
|
29
|
Shoja Doost J, Fazel F, Boodhoo N, Sharif S. mRNA Vaccination: An Outlook on Innate Sensing and Adaptive Immune Responses. Viruses 2024; 16:1404. [PMID: 39339880 PMCID: PMC11437395 DOI: 10.3390/v16091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Vaccination has led to significant dismantling of infectious diseases worldwide. Since the dawn of the SARS-CoV-2 pandemic, there has been increased popularity in the usage and study of the mRNA vaccine platform. Here, we highlight fundamental knowledge on mRNA vaccine pharmacology, followed by the immunity conferred by innate sensing and adaptive responses resulting from exposure to the mRNA vaccine construct and encapsulation materials. A better understanding of these immune mechanisms will shed light on further improvements in mRNA vaccine design, aiming to improve efficiency and optimize immune responses upon inoculation.
Collapse
Affiliation(s)
| | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.D.); (F.F.); (N.B.)
| |
Collapse
|
30
|
Padmanaban V, Keller I, Seltzer ES, Ostendorf BN, Kerner Z, Tavazoie SF. Neuronal substance P drives metastasis through an extracellular RNA-TLR7 axis. Nature 2024; 633:207-215. [PMID: 39112700 DOI: 10.1038/s41586-024-07767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
Tumour innervation is associated with worse patient outcomes in multiple cancers1,2, which suggests that it may regulate metastasis. Here we observed that highly metastatic mouse mammary tumours acquired more innervation than did less-metastatic tumours. This enhanced innervation was driven by expression of the axon-guidance molecule SLIT2 in tumour vasculature. Breast cancer cells induced spontaneous calcium activity in sensory neurons and elicited release of the neuropeptide substance P (SP). Using three-dimensional co-cultures and in vivo models, we found that neuronal SP promoted breast tumour growth, invasion and metastasis. Moreover, patient tumours with elevated SP exhibited enhanced lymph node metastatic spread. SP acted on tumoral tachykinin receptors (TACR1) to drive death of a small population of TACR1high cancer cells. Single-stranded RNAs (ssRNAs) released from dying cells acted on neighbouring tumoural Toll-like receptor 7 (TLR7) to non-canonically activate a prometastatic gene expression program. This SP- and ssRNA-induced Tlr7 gene expression signature was associated with reduced breast cancer survival outcomes. Therapeutic targeting of this neuro-cancer axis with the TACR1 antagonist aprepitant, an approved anti-nausea drug, suppressed breast cancer growth and metastasis in multiple models. Our findings reveal that tumour-induced hyperactivation of sensory neurons regulates multiple aspects of metastatic progression in breast cancer through a therapeutically targetable neuropeptide/extracellular ssRNA sensing axis.
Collapse
Affiliation(s)
- Veena Padmanaban
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Isabel Keller
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Ethan S Seltzer
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Benjamin N Ostendorf
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
- Department of Hematology, Oncology, and Tumor Immunology and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Zachary Kerner
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
31
|
Kunka Á, Lisztes E, Bohács J, Racskó M, Kelemen B, Kovalecz G, Tóth ED, Hegedűs C, Bágyi K, Marincsák R, Tóth BI. TRPA1 up-regulation mediates oxidative stress in a pulpitis model in vitro. Br J Pharmacol 2024; 181:3246-3262. [PMID: 38744683 DOI: 10.1111/bph.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Pulpitis is associated with tooth hypersensitivity and results in pulpal damage. Thermosensitive transient receptor potential (TRP) ion channels expressed in the dental pulp may be key transducers of inflammation and nociception. We aimed at investigating the expression and role of thermo-TRPs in primary human dental pulp cells (hDPCs) in normal and inflammatory conditions. EXPERIMENTAL APPROACH Inflammatory conditions were induced in hDPC cultures by applying polyinosinic:polycytidylic acid (poly(I:C)). Gene expression and pro-inflammatory cytokine release were measured by RT-qPCR and ELISA. Functions of TRPA1 channels were investigated by monitoring changes in intracellular Ca2+ concentration. Mitochondrial superoxide production was measured using a fluorescent substrate. Cellular viability was assessed by measuring the activity of mitochondrial dehydrogenases and cytoplasmic esterases. TRPA1 activity was modified by agonists, antagonists, and gene silencing. KEY RESULTS Transcripts of TRPV1, TRPV2, TRPV4, TRPC5, and TRPA1 were highly expressed in control hDPCs, whereas TRPV3, TRPM2, and TRPM3 expressions were much lower, and TRPM8 was not detected. Poly(I:C) markedly up-regulated TRPA1 but not other thermo-TRPs. TRPA1 agonist-induced Ca2+ signals were highly potentiated in inflammatory conditions. Poly(I:C)-treated cells displayed increased Ca2+ responses to H2O2, which was abolished by TRPA1 antagonists. Inflammatory conditions induced oxidative stress, stimulated mitochondrial superoxide production, resulted in mitochondrial damage, and decreased cellular viability of hDPCs. This inflammatory cellular damage was partly prevented by the co-application of TRPA1 antagonist or TRPA1 silencing. CONCLUSION AND IMPLICATIONS Pharmacological blockade of TRPA1 channels may be a promising therapeutic approach to alleviate pulpitis and inflammation-associated pulpal damage.
Collapse
Affiliation(s)
- Árpád Kunka
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dentoalveolar Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Bohács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Márk Racskó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kelemen
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Kovalecz
- Department of Pediatric and Preventive Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Etelka D Tóth
- Department of Dentoalveolar Surgery, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kinga Bágyi
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Rita Marincsák
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
32
|
Lecoultre M, Walker PR, El Helali A. Oncolytic virus and tumor-associated macrophage interactions in cancer immunotherapy. Clin Exp Med 2024; 24:202. [PMID: 39196415 PMCID: PMC11358230 DOI: 10.1007/s10238-024-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Oncolytic viruses (OV) are a promising strategy in cancer immunotherapy. Their capacity to promote anti-tumoral immunity locally raises hope that cancers unresponsive to current immunotherapy approaches could be tackled more efficiently. In this context, tumor-associated macrophages (TAM) must be considered because of their pivotal role in cancer immunity. Even though TAM tend to inhibit anti-tumoral responses, their ability to secrete pro-inflammatory cytokines and phagocytose cancer cells can be harnessed to promote therapeutic cancer immunity. OVs have the potential to promote TAM pro-inflammatory functions that favor anti-tumoral immunity. But in parallel, TAM pro-inflammatory functions induce OV clearance in the tumor, thereby limiting OV efficacy and highlighting that the interaction between OV and TAM is a double edge sword. Moreover, engineered OVs were recently developed to modulate specific TAM functions such as phagocytic activity. The potential of circulating monocytes to deliver OV into the tumor after intravenous administration is also emerging. In this review, we will present the interaction between OV and TAM, the potential of engineered OV to modulate specific TAM functions, and the promising role of circulating monocytes in OV delivery to the tumor.
Collapse
Affiliation(s)
- Marc Lecoultre
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China
- Division of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Paul R Walker
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Immunobiology of Brain Tumours Laboratory, Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Aya El Helali
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong, China.
| |
Collapse
|
33
|
Bourner LA, Chung LA, Long H, McGettrick AF, Xiao J, Roth K, Bailey JD, Strickland M, Tan B, Cunningham J, Lutzke B, McGee J, Otero FJ, Gemperline DC, Zhang L, Wang YC, Chalmers MJ, Yang CW, Gutierrez JA, O'Neill LAJ, Dorsey FC. Endogenously produced itaconate negatively regulates innate-driven cytokine production and drives global ubiquitination in human macrophages. Cell Rep 2024; 43:114570. [PMID: 39093697 DOI: 10.1016/j.celrep.2024.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
A wide variety of electrophilic derivatives of itaconate, the Kreb's cycle-derived metabolite, are immunomodulatory, yet these derivatives have overlapping and sometimes contradictory activities. Therefore, we generated a genetic system to interrogate the immunomodulatory functions of endogenously produced itaconate in human macrophages. Endogenous itaconate is driven by multiple innate signals restraining inflammatory cytokine production. Endogenous itaconate directly targets cysteine 13 in IRAK4 (disrupting IRAK4 autophosphorylation and activation), drives the degradation of nuclear factor κB, and modulates global ubiquitination patterns. As a result, cells unable to make itaconate overproduce inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and IL-1β in response to these innate activators. In contrast, the production of interferon (IFN)β, downstream of LPS, requires the production of itaconate. These data demonstrate that itaconate is a critical arbiter of inflammatory cytokine production downstream of multiple innate signaling pathways, laying the groundwork for the development of itaconate mimetics for the treatment of autoimmunity.
Collapse
Affiliation(s)
- Luke A Bourner
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Linda A Chung
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Haiyan Long
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Anne F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, D02 PN40 Dublin, Ireland
| | - Junpeng Xiao
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Kenneth Roth
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jade D Bailey
- Sitryx Therapeutics Limited, Bellhouse Building, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, UK
| | - Marie Strickland
- Sitryx Therapeutics Limited, Bellhouse Building, Magdalen Centre, The Oxford Science Park, Oxford OX4 4GA, UK
| | - Bo Tan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jason Cunningham
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Barry Lutzke
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - James McGee
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Francella J Otero
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - David C Gemperline
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Lin Zhang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ying C Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Michael J Chalmers
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Chiao-Wen Yang
- Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Jesus A Gutierrez
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, D02 PN40 Dublin, Ireland
| | - Frank C Dorsey
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
34
|
Xie Y, Chi Y, Tao X, Yu P, Liu Q, Zhang M, Yang N, Liu S, Zhu W. Rabies Virus Regulates Inflammatory Response in BV-2 Cells through Activation of Myd88 and NF-κB Signaling Pathways via TLR7. Int J Mol Sci 2024; 25:9144. [PMID: 39273091 PMCID: PMC11395267 DOI: 10.3390/ijms25179144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Rabies is a fatal neurological infectious disease caused by rabies virus (RABV), which invades the central nervous system (CNS). RABV with varying virulence regulates chemokine expression, and the mechanisms of signaling pathway activation remains to be elucidated. The relationship between Toll-like receptors (TLRs) and immune response induced by RABV has not been fully clarified. Here, we investigated the role of TLR7 in the immune response induced by RABV, and one-way analysis of variance (ANOVA) was employed to evaluate the data. We found that different RABV strains (SC16, HN10, CVS-11) significantly increased CCL2, CXCL10 and IL-6 production. Blocking assays indicated that the TLR7 inhibitor reduced the expression of CCL2, CXCL10 and IL-6 (p < 0.01). The activation of the Myd88 pathway in BV-2 cells stimulated by RABV was TLR7-dependent, whereas the inhibition of Myd88 activity reduced the expression of CCL2, CXCL10 and IL-6 (p < 0.01). Meanwhile, the RABV stimulation of BV-2 cells resulted in TRL7-mediated activation of NF-κB and induced the nuclear translocation of NF-κB p65. CCL2, CXCL10 and IL-6 release was attenuated by the specific NF-κB inhibitor used (p < 0.01). The findings above demonstrate that RABV-induced expression of CCL2, CXCL10 and IL-6 involves Myd88 and NF-κB pathways via the TLR7 signal.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuqing Liu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.X.); (Y.C.); (X.T.); (P.Y.); (Q.L.); (M.Z.); (N.Y.)
| | - Wuyang Zhu
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, NHC Key Laboratory of Biosafety, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (Y.X.); (Y.C.); (X.T.); (P.Y.); (Q.L.); (M.Z.); (N.Y.)
| |
Collapse
|
35
|
Salz R, Vorsteveld EE, van der Made CI, Kersten S, Stemerdink M, Riepe TV, Hsieh TH, Mhlanga M, Netea MG, Volders PJ, Hoischen A, ’t Hoen PA. Multi-omic profiling of pathogen-stimulated primary immune cells. iScience 2024; 27:110471. [PMID: 39091463 PMCID: PMC11293528 DOI: 10.1016/j.isci.2024.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/23/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
We performed long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new transcript and protein isoforms expressed during immune responses to diverse pathogens. Long-read transcriptome profiling reveals novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. Widespread loss of intron retention occurs as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression differences did not result in differences in the amounts of secreted proteins. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and poly(I:C)-stimulated PBMCs. Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.
Collapse
Affiliation(s)
- Renee Salz
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Emil E. Vorsteveld
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Caspar I. van der Made
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Simone Kersten
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Merel Stemerdink
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tabea V. Riepe
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tsung-han Hsieh
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Musa Mhlanga
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Laboratory of Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium
| | - Alexander Hoischen
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Peter A.C. ’t Hoen
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
36
|
Xie Z, Lu H, Zheng J, Song J, Sun K. Origin recognition complex subunit 6 (ORC6) is a key mediator of LPS-induced NFκB activation and the pro-inflammatory response. Cell Commun Signal 2024; 22:399. [PMID: 39143485 PMCID: PMC11323635 DOI: 10.1186/s12964-024-01768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024] Open
Abstract
Lipopolysaccharide (LPS)-activated pro-inflammatory responses play a critical role in sepsis, a life-threatening condition. This study investigates the role of origin recognition complex subunit 6 (ORC6) in LPS responses in macrophages and monocytes. Silencing ORC6 using targeted shRNA significantly reduced LPS-induced expression and production of IL-1β (interleukin-1 beta), TNF-α (tumor necrosis factor alpha), and IL-6 (interleukin-6) in THP-1 human macrophages, peripheral blood mononuclear cells (PBMCs), and bone marrow-derived macrophages (BMDMs). Additionally, ORC6 knockout (KO) via the CRISPR/Cas9 method in THP-1 macrophages inhibited LPS-induced pro-inflammatory responses, while ectopic overexpression of ORC6 enhanced LPS-induced expression and production of pro-inflammatory cytokines. ORC6 is crucial for the activation of the nuclear factor kappa B (NFκB) signaling cascade in macrophages and monocytes. LPS-induced NFκB activation was largely inhibited by ORC6 silencing or KO, but potentiated following ORC6 overexpression. Mechanistically, ORC6 associated with nuclear p65 after LPS stimulation, an interaction necessary for NFκB activation. Overexpression of ORC6 did not recover the reduced pro-inflammatory response to LPS in THP-1 macrophages with silenced p65. Furthermore, the NFκB inhibitor BMS-345,541 nearly eliminated the pro-inflammatory response enhanced by ORC6 overexpression in response to LPS. Further studies revealed that ORC6 depletion inhibited NFκB activation induced by double-stranded RNA (dsRNA) and high mobility group box 1 (HMGB1) in THP-1 macrophages. In vivo experiments demonstrated that macrophage-specific knockdown of ORC6 protected mice from LPS-induced septic shock and inhibited LPS-stimulated production of IL-1β, TNF-α, and IL-6 in mouse serum. ORC6 silencing also inhibited LPS-induced NFκB activation in ex vivo cultured PBMCs following macrophage-specific knockdown of ORC6. These findings highlight ORC6 as a pivotal mediator in LPS-induced NFκB activation and the pro-inflammatory response in sepsis, suggesting that targeting ORC6 could be a novel therapeutic strategy for managing sepsis and related inflammatory conditions.
Collapse
Affiliation(s)
- Zichen Xie
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Haisu Lu
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiayi Zheng
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Jianfeng Song
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China.
| | - Keyu Sun
- Emergency Department, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Najem MY, Rys RN, Laurance S, Bertin FR, Gourdou-Latyszenok V, Gourhant L, Le Gall L, Le Corre R, Couturaud F, Blostein MD, Lemarié CA. Extracellular RNA Induces Neutrophil Recruitment Via Toll-Like Receptor 3 During Venous Thrombosis After Vascular Injury. J Am Heart Assoc 2024; 13:e034492. [PMID: 39028040 DOI: 10.1161/jaha.124.034492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Venous thromboembolism is associated with endothelial cell activation that contributes to the inflammation-dependent activation of the coagulation system. Cellular damage is associated with the release of different species of extracellular RNA (eRNA) involved in inflammation and coagulation. TLR3 (toll-like receptor 3), which recognizes (viral) single-stranded or double-stranded RNAs and self-RNA fragments, might be the receptor of these species of eRNA during venous thromboembolism. Here, we investigate how the TLR3/eRNA axis contributes to venous thromboembolism. METHODS AND RESULTS Thrombus formation and size in wild-type and TLR3 deficient (-/-) mice were monitored by ultrasonography after venous thrombosis induction using the ferric chloride and stasis models. Mice were treated with RNase I, with polyinosinic-polycytidylic acid, a TLR3 agonist, or with RNA extracted from murine endothelial cells. Gene expression and signaling pathway activation were analyzed in HEK293T cells overexpressing TLR3 in response to eRNA or in human umbilical vein endothelial cells transfected with a small interference RNA against TLR3. Plasma clot formation on treated human umbilical vein endothelial cells was analyzed. Thrombosis exacerbated eRNA release in vivo and increased eRNA content within the thrombus. RNase I treatment reduced thrombus size compared with vehicle-treated mice (P<0.05). Polyinosinic-polycytidylic acid and eRNA treatments increased thrombus size in wild-type mice (P<0.01 and P<0.05), but not in TLR3-/- mice, by reinforcing neutrophil recruitment (P<0.05). Mechanistically, TLR3 activation in endothelial cells promotes CXCL5 (C-X-C motif chemokine 5) secretion (P<0.001) and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation (P<0.05). Finally, eRNA triggered plasma clot formation in vitro (P<0.01). CONCLUSIONS We show that eRNA and TLR3 activation enhance venous thromboembolism through neutrophil recruitment possibly through secretion of CXCL5, a potent neutrophil chemoattractant.
Collapse
Affiliation(s)
| | - Ryan N Rys
- Lady Davis Institute for Medical Research Montréal Québec Canada
| | - Sandrine Laurance
- Lady Davis Institute for Medical Research Montréal Québec Canada
- INSERM, BIGR, Université de Paris and Université des Antilles Paris France
| | - François-René Bertin
- Lady Davis Institute for Medical Research Montréal Québec Canada
- School of Veterinary Science The University of Queensland Gatton Queensland Australia
| | | | | | | | | | - Francis Couturaud
- Univ Brest, Inserm, UMR 1304, GETBO Brest France
- Département de Pneumologie et de Médecine Interne CHU Brest Brest France
| | - Mark D Blostein
- Lady Davis Institute for Medical Research Montréal Québec Canada
- Department of Medicine Sir Mortimer B. Davis-Jewish General Hospital, McGill University Montréal Québec Canada
| | - Catherine A Lemarié
- Univ Brest, Inserm, UMR 1304, GETBO Brest France
- Département de Pneumologie et de Médecine Interne CHU Brest Brest France
- Lady Davis Institute for Medical Research Montréal Québec Canada
| |
Collapse
|
38
|
Veeram A, Shaikh TB, Kaur R, Chowdary EA, Andugulapati SB, Sistla R. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation 2024; 47:1423-1443. [PMID: 38466531 DOI: 10.1007/s10753-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.
Collapse
Affiliation(s)
- Anjali Veeram
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Taslim B Shaikh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Rajwinder Kaur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - E Abhisheik Chowdary
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
39
|
Yao Z, Liang Z, Li M, Wang H, Ma Y, Guo Y, Chen C, Xue C, Sun B. Aluminum oxyhydroxide-Poly(I:C) combination adjuvant with balanced immunostimulatory potentials for prophylactic vaccines. J Control Release 2024; 372:482-493. [PMID: 38914205 DOI: 10.1016/j.jconrel.2024.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The development of high-purity antigens promotes the urgent need of novel adjuvant with the capability to trigger high levels of immune response. Polyinosinic-polycytidylic (Poly(I:C)) is a synthetic double-stranded RNA (dsRNA) that can engage Toll-like receptor 3 (TLR3) to initiate immune responses. However, the Poly(I:C)-induced toxicity and inefficient delivery prevent its applications. In our study, combination adjuvants are formulated by aluminum oxyhydroxide nanorods (AlOOH NRs) and Poly(I:C), named Al-Poly(I:C), and the covalent interaction between the two components is further demonstrated. Al-Poly(I:C) mediates enhanced humoral and cellular immune responses in three antigen models, i.e., HBsAg virus-like particles (VLPs), human papilloma virus (HPV) VLPs and varicella-zoster virus (VZV) glycoprotein E (gE). Further mechanistic studies demonstrate that the dose and molecular weight (MW) of Poly(I:C) determine the physicochemical properties and adjuvanticity of the Al-Poly(I:C) combination adjuvants. Al-Poly(I:C) with higher Poly(I:C) dose promotes antigen-bearing dendritic cells (DCs) recruitment and B cells proliferation in lymph nodes. Al-Poly(I:C) formulated with higher MW Poly(I:C) induces higher activation of helper T cells, B cells, and CTLs. This study demonstrates that Al-Poly(I:C) potentiates the humoral and cellular responses in vaccine formulations. It offers insights for adjuvant design to meet the formulation requirements in both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zhiying Yao
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Min Li
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Huiyang Wang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yubin Ma
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; MOE Key Laboratory Bio-Intelligent Manufacturing, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
40
|
Zhi Y, Wei J, Liu Z, Zhang Q, Zhang T, Hu G. Inhibitory effects of Belamcanda extract on inflammatory response and antiviral mechanism in H9N2 Avian influenza virus: insights from in vitro and in vivo studies. Poult Sci 2024; 103:103885. [PMID: 38851182 PMCID: PMC11208944 DOI: 10.1016/j.psj.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/18/2024] [Indexed: 06/10/2024] Open
Abstract
Avian influenza, particularly the H9N2 subtype, presents significant challenges to poultry health, underscoring the need for effective antiviral interventions. This study explores the antiviral capabilities of Belamcanda extract, a traditional Chinese medicinal herb, against H9N2 Avian influenza virus (AIV) in specific pathogen-free (SPF) chicks. Through a comprehensive approach, we evaluated the impact of the extract on cytokine modulation and crucial immunological signaling pathways, essential for understanding the host-virus interaction. Our findings demonstrate that Belamcanda extract significantly modulates the expression of key inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), interleukin-2 (IL-2), and interleukin-6 (IL-6), which are pivotal to the host's response to H9N2 AIV infection. Western blot analysis further revealed that the extract markedly reduces the expression of critical immune signaling molecules such as toll-like receptor 3 (TLR3), TIR-domain-containing adapter-inducing interferon-β (TRIF), and nuclear factor kappa B (NF-κB). These insights into the mechanisms by which Belamcanda extract influences host immune responses and hinders viral replication highlight its potential as an innovative antiviral agent for poultry health management. The study advances our comprehension of natural compounds' antiviral mechanisms and lays the groundwork for developing strategies to manage viral infections in poultry. The demonstrated ability of Belamcanda extract to modulate immune responses and inhibit viral replication establishes it as a promising candidate for future antiviral therapy development, especially in light of the need for effective treatments against evolving influenza virus strains and the critical demand for enhanced poultry health management strategies.
Collapse
Affiliation(s)
- Yan Zhi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jingjie Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhenyi Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qian Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Tao Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ge Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
41
|
Robertsen B, Greiner-Tollersrud L. Atlantic salmon type I interferon genes revisited. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109694. [PMID: 38871143 DOI: 10.1016/j.fsi.2024.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Type I interferons (IFN-I) play a pivotal role in vertebrate innate immunity against viruses. This study is an analysis of IFN-I genes in an updated version of the Atlantic salmon genome published in 2021 (version Ssal_v3.1), revealing 47 IFN-I genes in the Atlantic salmon genome. The GH1 locus of chromosome (Chr) 3 harbors 9 IFNa genes, 5 IFNb genes, 6 IFNc genes, 11 IFNe genes and 1 IFNf gene. The GH2 locus on Chr6 contains 1 IFNa gene, 12 IFNc genes and 1 IFNf gene while Chr19 carries a single IFNd gene. Intraperitoneal injection of Atlantic salmon presmolts with poly I:C, a mimic of virus double-stranded RNA, significantly up-regulated IFNc genes from both Chr3 and Chr6 in heart, with lower expression in head kidney. IFNe expression increased in the heart, but not in the head kidney while IFNf was strongly up-regulated in both tissues. Antiviral activity of selected IFNs was assessed by transfection of salmon cells with IFN-expressing plasmids followed by infectious pancreatic necrosis virus infection, and by injection of fish with IFN-plasmids followed by measuring expression of the antiviral Mx1 gene. The results demonstrated that IFNc from both Chr3 and Chr6 provided full protection of cells against virus infection, whereas IFNe and IFNf showed lesser protection. IFNc from Chr3 and Chr6 along with IFNe and IFNf, up-regulated the Mx1 gene in the muscle, while only the IFNcs caused induction of Mx1 in liver. Overall, this study reveals that Atlantic salmon possesses an even more potent innate immune defense against viruses than previously understood.
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037, Tromsø, Norway.
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
42
|
Xing X, Ni X, Wang J, Shi J. Necroptosis in recurrent implantation failure: A bioinformatics analysis of key genes and therapeutic targets. Medicine (Baltimore) 2024; 103:e38907. [PMID: 39058876 PMCID: PMC11272259 DOI: 10.1097/md.0000000000038907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Recurrent implantation failure (RIF), a major issue in assisted reproductive technology (ART), may be influenced by necroptosis, a form of cell death linked to several diseases. This study was aimed at investigating the involvement of necroptosis in RIF. Using RNA-sequencing data from the Gene Expression Omnibus database, we identified differentially expressed necroptosis-related genes (DENRGs) in RIF patients compared with those in controls. Functional enrichment, protein-protein interaction (PPI) networks, and transcription factor (TF) regulatory networks were analyzed to identify key genes. Immune cell infiltration was analyzed using the single-sample gene set enrichment analysis (ssGSEA) algorithm. Finally, potential therapeutic drugs targeting key genes were explored using a Drug Gene Interaction Database. In total, 20 DENRGs associated with RIF were identified, with a focus on 6 key genes (MLKL, FASLG, XIAP, CASP1, BIRC3, and TLR3) implicated in necroptosis and immune processes. These genes were used to develop a predictive model for RIF, which was validated in 2 datasets. The model and TF network analysis underscored the importance of TLR3. Immune infiltration analysis showed reduced levels of 16 immune cells in RIF patients, highlighting immune system alterations. Several drugs targeting CASP1, such as nivocasan and emricasan, were identified as potential treatments. The study sheds light on the role of necroptosis in RIF, identifying key genes and immune alterations that could serve as biomarkers and therapeutic targets. These findings pave the way for future experimental research and clinical applications targeting necroptosis in RIF treatment.
Collapse
Affiliation(s)
- Xiuye Xing
- Department of Reproductive Medicine, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaoxiao Ni
- Department of Obstetrics, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Jiaojiao Wang
- Department of Obstetrics, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| | - Junmei Shi
- Department of Obstetrics, Haidian District Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
43
|
Unagolla JM, Das S, Flanagan R, Oehler M, Menon JU. Targeting chronic liver diseases: Molecular markers, drug delivery strategies and future perspectives. Int J Pharm 2024; 660:124381. [PMID: 38917958 PMCID: PMC11246230 DOI: 10.1016/j.ijpharm.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Chronic liver inflammation, a pervasive global health issue, results in millions of annual deaths due to its progression from fibrosis to the more severe forms of cirrhosis and hepatocellular carcinoma (HCC). This insidious condition stems from diverse factors such as obesity, genetic conditions, alcohol abuse, viral infections, autoimmune diseases, and toxic accumulation, manifesting as chronic liver diseases (CLDs) such as metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), alcoholic liver disease (ALD), viral hepatitis, drug-induced liver injury, and autoimmune hepatitis. Late detection of CLDs necessitates effective treatments to inhibit and potentially reverse disease progression. However, current therapies exhibit limitations in consistency and safety. A potential breakthrough lies in nanoparticle-based drug delivery strategies, offering targeted delivery to specific liver cell types, such as hepatocytes, Kupffer cells, and hepatic stellate cells. This review explores molecular targets for CLD treatment, ongoing clinical trials, recent advances in nanoparticle-based drug delivery, and the future outlook of this research field. Early intervention is crucial for chronic liver disease. Having a comprehensive understanding of current treatments, molecular biomarkers and novel nanoparticle-based drug delivery strategies can have enormous impact in guiding future strategies for the prevention and treatment of CLDs.
Collapse
Affiliation(s)
- Janitha M Unagolla
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Subarna Das
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Riley Flanagan
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Marin Oehler
- Department of Biomedical Engineering, College of Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
44
|
Xu X, Hong Y, Fan H, Guo Z. Nucleic Acid Materials-Mediated Innate Immune Activation for Cancer Immunotherapy. ChemMedChem 2024; 19:e202400111. [PMID: 38622787 DOI: 10.1002/cmdc.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Abnormally localized nucleic acids (NAs) are considered as pathogen associated molecular patterns (PAMPs) in innate immunity. They are recognized by NAs-specific pattern recognition receptors (PRRs), leading to the activation of associated signaling pathways and subsequent production of type I interferons (IFNs) and pro-inflammatory cytokines, which further trigger the adaptive immunity. Notably, NAs-mediated innate immune activation is highly dependent on the conformation changes, especially the aggregation of PRRs. Evidence indicates that the characteristics of NAs including their length, concentration and even spatial structure play essential roles in inducing the aggregation of PRRs. Therefore, nucleic acid materials (NAMs) with high valency of NAs and high-order structures hold great potential for activating innate and adaptive immunity, making them promising candidates for cancer immunotherapy. In recent years, a variety of NAMs have been developed and have demonstrated significant efficacy in achieving satisfactory anti-tumor immunity in multiple mouse models, exhibiting huge potential for clinical application in cancer treatment. This review aims to discuss the mechanisms of NAMs-mediated innate immune response, and summarize their applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yuxuan Hong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
45
|
Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: Principles to practice. Cancer Cell 2024; 42:1163-1184. [PMID: 38848720 DOI: 10.1016/j.ccell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Vaccines are the most impactful medicines to improve health. Though potent against pathogens, vaccines for cancer remain an unfulfilled promise. However, recent advances in RNA technology coupled with scientific and clinical breakthroughs have spurred rapid discovery and potent delivery of tumor antigens at speed and scale, transforming cancer vaccines into a tantalizing prospect. Yet, despite being at a pivotal juncture, with several randomized clinical trials maturing in upcoming years, several critical questions remain: which antigens, tumors, platforms, and hosts can trigger potent immunity with clinical impact? Here, we address these questions with a principled framework of cancer vaccination from antigen detection to delivery. With this framework, we outline features of emergent RNA technology that enable rapid, robust, real-time vaccination with somatic mutation-derived neoantigens-an emerging "ideal" antigen class-and highlight latent features that have sparked the belief that RNA could realize the enduring vision for vaccines against cancer.
Collapse
Affiliation(s)
- Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
46
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
47
|
Kawai A, Noda M, Hirata H, Munakata L, Matsuda T, Omata D, Takemura N, Onoe S, Hirose M, Kato T, Saitoh T, Hirai T, Suzuki R, Yoshioka Y. Lipid Nanoparticle with 1,2-Di-O-octadecenyl-3-trimethylammonium-propane as a Component Lipid Confers Potent Responses of Th1 Cells and Antibody against Vaccine Antigen. ACS NANO 2024; 18:16589-16609. [PMID: 38885198 PMCID: PMC11223497 DOI: 10.1021/acsnano.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Hirata
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lisa Munakata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Teppei Matsuda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Omata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Naoki Takemura
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sakura Onoe
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika Hirose
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yasuo Yoshioka
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of
Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
48
|
Fisch D, Zhang T, Sun H, Ma W, Tan Y, Gygi SP, Higgins DE, Kagan JC. Molecular definition of the endogenous Toll-like receptor signalling pathways. Nature 2024; 631:635-644. [PMID: 38961291 DOI: 10.1038/s41586-024-07614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
Innate immune pattern recognition receptors, such as the Toll-like receptors (TLRs), are key mediators of the immune response to infection and central to our understanding of health and disease1. After microbial detection, these receptors activate inflammatory signal transduction pathways that involve IκB kinases, mitogen-activated protein kinases, ubiquitin ligases and other adaptor proteins. The mechanisms that connect the proteins in the TLR pathways are poorly defined. To delineate TLR pathway activities, we engineered macrophages to enable microscopy and proteomic analysis of the endogenous myddosome constituent MyD88. We found that myddosomes form transient contacts with activated TLRs and that TLR-free myddosomes are dynamic in size, number and composition over the course of 24 h. Analysis using super-resolution microscopy revealed that, within most myddosomes, MyD88 forms barrel-like structures that function as scaffolds for effector protein recruitment. Proteomic analysis demonstrated that myddosomes contain proteins that act at all stages and regulate all effector responses of the TLR pathways, and genetic analysis defined the epistatic relationship between these effector modules. Myddosome assembly was evident in cells infected with Listeria monocytogenes, but these bacteria evaded myddosome assembly and TLR signalling during cell-to-cell spread. On the basis of these findings, we propose that the entire TLR signalling pathway is executed from within the myddosome.
Collapse
Affiliation(s)
- Daniel Fisch
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Molecular Genetics & Comprehensive Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - He Sun
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Weiyi Ma
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yunhao Tan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Darren E Higgins
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Kozlovski I, Jaimes-Becerra A, Sharoni T, Lewandowska M, Karmi O, Moran Y. Induction of apoptosis by double-stranded RNA was present in the last common ancestor of cnidarian and bilaterian animals. PLoS Pathog 2024; 20:e1012320. [PMID: 39012849 PMCID: PMC11251625 DOI: 10.1371/journal.ppat.1012320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.
Collapse
Affiliation(s)
- Itamar Kozlovski
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrian Jaimes-Becerra
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ton Sharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ola Karmi
- Research Infrastructure Facility, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
50
|
Lu S, He S, Yue K, Mi J, Huang Y, Song L, Yang T, Ren Z, Ren L, Xu J. Lactobacillus plantarum GUANKE modulate anti-viral function of dendritic cells in mice. Int Immunopharmacol 2024; 134:112169. [PMID: 38728879 DOI: 10.1016/j.intimp.2024.112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
GUANKE is a Lactobacillus plantarum isolated from the feces of healthy volunteer. We have previously shown that GUANKE enhances the efficacy of the SARS-CoV-2 vaccine and prolongs the duration of vaccine protection by upregulating the IFN pathway and T and B lymphocyte functions of the host. The purpose of this study was to evaluate the protective effects and mechanism of oral administration of Lactobacillus plantarum GUANKE in the influenza (A virus A/Puerto Rico/8/34) infection mouse model. In our experiment, oral administration of GUANKE significantly decreased viral load and increased tight junction proteins expression in lung tissues of influenza-infected mice. After GUANKE was co-cultured with mBMDCs in vitro, mBMDCs' maturity and antiviral ability were enhanced, and matured mBMDCs induced polarization of naïve CD4+ T cells into T helper (Th) 1 cells. Adoptive transfer of GUANKE-treated mBMDCs could protect mice from influenza infections. This study suggests that oral administration of Lactobacillus plantarum GUANKE could provide protection against influenza infection in mice, and this protective effect may be mediated, at least in part, by dendritic cells.
Collapse
Affiliation(s)
- Simin Lu
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Siqin He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kun Yue
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jielan Mi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Institute of Public Health, Nankai University, Tianjin, China
| | - Yuanming Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liqiong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Lili Ren
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jianguo Xu
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Institute of Public Health, Nankai University, Tianjin, China.
| |
Collapse
|