1
|
Ziarniak K, Dudek M, Matuszewska J, Bijoch Ł, Skrzypski M, Celichowski J, Sliwowska JH. Two weeks of moderate intensity locomotor training increased corticosterone concentrations but did not alter the number of adropin-immunoreactive cells in the hippocampus of diabetic type 2 and control rats. Acta Histochem 2021; 123:151751. [PMID: 34229193 DOI: 10.1016/j.acthis.2021.151751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Adropin (ADR) plays a role in metabolism regulation and its alterations in obesity and diabetes have been found. Treatment with ADR was beneficial in metabolic diseases, and physical exercise increased ADR concentrations in obese patients. However, data on the distribution of ADR in the brain are sparse. The role of metabolic status and physical exercise on its expression in the brain is undiscovered. We hypothesized that diabetes type 2 (DM2) and/or exercise will alter number of ADR-immunoractive (-ir) cells in the rat brain. Animals were divided into groups: diabetes type 2 (receiving high-fat diet and injections of streptozotocin) and control (fed laboratory chow diet; C). Rats were further divided into: running group (2 weeks of forced exercise on a treadmill) and non-running group. Body mass, metabolic and hormonal profiles were assessed. Immunohistochemistry was run to study ADR-ir cells in the brain. We found that: 1) in DM2 animals, running decreased insulin and increased glucose concentrations; 2) in C rats, running decreased insulin concentrations and had no effect on glucose concentration in blood; 3) running increased corticosterone (CORT) concentrations in DM2 and C rats; 4) ADR-ir cells were detected in the hippocampus and ADR-ir fibers in the arcuate nucleus of the hypothalamus, which is a novel location; 5) metabolic status and running, however, did not change number of these cells. We concluded that 2 weeks of forced moderate intensity locomotor training induced stress response present as increased concentration of CORT and did not influence number of ADR-ir cells in the brain.
Collapse
|
2
|
Diaz-Castroverde S, Gómez-Hernández A, Fernández S, García-Gómez G, Di Scala M, González-Aseguinolaza G, Fernández-Millán E, González-Rodríguez Á, García-Bravo M, Chambon P, Álvarez C, Perdomo L, Beneit N, Escribano O, Benito M. Insulin receptor isoform A ameliorates long-term glucose intolerance in diabetic mice. Dis Model Mech 2016; 9:1271-1281. [PMID: 27562101 PMCID: PMC5117224 DOI: 10.1242/dmm.025288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion. Previous in vitro data showed that insulin receptor isoform A, but not B, favours basal glucose uptake through its specific association with endogenous GLUT1/2 in murine hepatocytes and beta cells. With this background, we hypothesized that hepatic expression of insulin receptor isoform A in a mouse model of type 2 diabetes could potentially increase the glucose uptake of these cells, decreasing the hyperglycaemia and therefore ameliorating the diabetic phenotype. To assure this hypothesis, we have developed recombinant adeno-associated viral vectors expressing insulin receptor isoform A (IRA) or isoform B (IRB) under the control of a hepatocyte-specific promoter. Our results demonstrate that in the long term, hepatic expression of IRA in diabetic mice is more efficient than IRB in ameliorating glucose intolerance. Consequently, it impairs the induction of compensatory mechanisms through beta cell hyperplasia and/or hypertrophy that finally lead to beta cell failure, reverting the diabetic phenotype in about 8 weeks. Our data suggest that long-term hepatic expression of IRA could be a promising therapeutic approach for the treatment of type 2 diabetes mellitus. Summary: The specific hepatic expression of insulin receptor isoform A, but not isoform B, is able to revert, in the long term, the global glucose intolerance observed in diabetic mice.
Collapse
Affiliation(s)
- Sabela Diaz-Castroverde
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain.,CIBER of Diabetes and Related Diseases (CIBERDEM), Health Institute Carlos III (ISCIII), Madrid 28029, Spain.,Mechanisms of Insulin Resistance Consortium (MOIR), Madrid 28040, Spain
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain.,CIBER of Diabetes and Related Diseases (CIBERDEM), Health Institute Carlos III (ISCIII), Madrid 28029, Spain
| | - Silvia Fernández
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain.,CIBER of Diabetes and Related Diseases (CIBERDEM), Health Institute Carlos III (ISCIII), Madrid 28029, Spain
| | - Gema García-Gómez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain.,CIBER of Diabetes and Related Diseases (CIBERDEM), Health Institute Carlos III (ISCIII), Madrid 28029, Spain
| | - Marianna Di Scala
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra 31008, Spain
| | - Gloria González-Aseguinolaza
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra 31008, Spain
| | - Elisa Fernández-Millán
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain.,CIBER of Diabetes and Related Diseases (CIBERDEM), Health Institute Carlos III (ISCIII), Madrid 28029, Spain.,Mechanisms of Insulin Resistance Consortium (MOIR), Madrid 28040, Spain
| | - Águeda González-Rodríguez
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Amadeo Vives 2, Madrid 28009, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Health Institute Carlos III (ISCIII), Madrid 28029, Spain
| | - María García-Bravo
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, CIEMAT-CIBER of Rare Diseases (CIBERER)-Institute of Health Investigation Jiménez Díaz Foundation (IIS-FJD), Madrid 28040, Spain
| | - Pierre Chambon
- Institute of Genetic and Molecular and Cellular Biology (CNRS UMR7104; INSERM U596; ULP, Collége de France) and Mouse Clinical Institute, Illkirch, Strasbourg 67400, France
| | - Carmen Álvarez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain.,CIBER of Diabetes and Related Diseases (CIBERDEM), Health Institute Carlos III (ISCIII), Madrid 28029, Spain.,Mechanisms of Insulin Resistance Consortium (MOIR), Madrid 28040, Spain
| | - Liliana Perdomo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain
| | - Nuria Beneit
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain
| | - Oscar Escribano
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain .,CIBER of Diabetes and Related Diseases (CIBERDEM), Health Institute Carlos III (ISCIII), Madrid 28029, Spain.,Mechanisms of Insulin Resistance Consortium (MOIR), Madrid 28040, Spain
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University of Madrid, Madrid 28040, Spain.,CIBER of Diabetes and Related Diseases (CIBERDEM), Health Institute Carlos III (ISCIII), Madrid 28029, Spain.,Mechanisms of Insulin Resistance Consortium (MOIR), Madrid 28040, Spain
| |
Collapse
|
3
|
Escribano O, Gómez-Hernández A, Díaz-Castroverde S, Nevado C, García G, Otero YF, Perdomo L, Beneit N, Benito M. Insulin receptor isoform A confers a higher proliferative capability to pancreatic beta cells enabling glucose availability and IGF-I signaling. Mol Cell Endocrinol 2015; 409:82-91. [PMID: 25797178 DOI: 10.1016/j.mce.2015.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/16/2015] [Accepted: 03/14/2015] [Indexed: 11/29/2022]
Abstract
The main compensatory response to insulin resistance is the pancreatic beta cell hyperplasia to account for increased insulin secretion. In fact, in a previous work we proposed a liver-pancreas endocrine axis with IGF-I (insulin-like growth factor type I) secreted by the liver acting on IRA insulin receptor in beta cells from iLIRKO mice (inducible Liver Insulin Receptor KnockOut) that showed a high IRA/IRB ratio. However, the role of insulin receptor isoforms in the IGF-I-induced beta cell proliferation as well as the underlying molecular mechanisms remain poorly understood. For this purpose, we have used four immortalized mouse beta cell lines: bearing IR (IRLoxP), lacking IR (IRKO), expressing exclusively IRA (IRA), or alternatively expressing IRB (IRB). Pancreatic beta cell proliferation studies showed that IRA cells are more sensitive than those expressing IRB to the mitogenic response induced by IGF-I, acting through the pathway IRA/IRS-1/2/αp85/Akt/mTORC1/p70S6K. More importantly, IRA beta cells, but not IRB, showed an increased glucose uptake as compared with IRLoxP cells, this effect being likely owing to an enhanced association between Glut-1 and Glut-2 with IRA. Overall, our results strongly suggest a prevalent role of IRA in glucose availability and IGF-I-induced beta cell proliferation mainly through mTORC1. These results could explain, at least partially, the role played by the liver-secreted IGF-I in the compensatory beta cell hyperplasia observed in response to severe hepatic insulin resistance in iLIRKO mice.
Collapse
Affiliation(s)
- Oscar Escribano
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sabela Díaz-Castroverde
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Carmen Nevado
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Gema García
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Yolanda F Otero
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Liliana Perdomo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Nuria Beneit
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Health Research Institute of San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
4
|
Lee JJ, Yi HY, Yang JW, Shin JS, Kwon JH, Kim CW. Characterization of Streptozotocin-induced Diabetic Rats and Pharmacodynamics of Insulin Formulations. Biosci Biotechnol Biochem 2014; 67:2396-401. [PMID: 14646199 DOI: 10.1271/bbb.67.2396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Morphological and functional changes of rat pancreatic islets caused by administration of streptozotocin (STZ) and the bioavailability of insulin formulations administered to STZ-induced diabetic rats with fasting (12 h) or non-fasting were investigated. Islets isolated from normal rats maintained a good three-dimensional structure and the islet yield was 962.5+/-86.5 islet equivalent number (IEQ, islets converted to an average diameter of 150 microm). In the diabetic group (>500 mg/ml blood glucose), the islet yield was only 44.4+/-8.3 IEQ and the islet was severely damaged. The minimum reduction of blood glucose of each formulation, such as insulin solution, microcrystal, and insulin microcrystal capsule, was shown to be 11.3, 11.0, and 16.3 mg/dl, respectively, at 6 h in fasting with diabetic rats. These results indicated that the administration of insulin formulations to the fasting groups increased the severe hypoglycemic effect of insulin action more than in non-fasting diabetic rats. The diabetic rat with fasting has a regulatory disorder in maintaining the blood glucose level. Accordingly, the validity of pharmacological availability as an optimal modeling of insulin formulations is best in non-fasting STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Jae-Jeong Lee
- Graduate School of Life Sciences and Biotechnology, Korea University, Seoul
| | | | | | | | | | | |
Collapse
|
5
|
Palouzier-Paulignan B, Lacroix MC, Aimé P, Baly C, Caillol M, Congar P, Julliard AK, Tucker K, Fadool DA. Olfaction under metabolic influences. Chem Senses 2012; 37:769-97. [PMID: 22832483 PMCID: PMC3529618 DOI: 10.1093/chemse/bjs059] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis.
Collapse
Affiliation(s)
- Brigitte Palouzier-Paulignan
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
- Equal contribution
| | - Marie-Christine Lacroix
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
- Equal contribution
| | - Pascaline Aimé
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Christine Baly
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Monique Caillol
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - Patrice Congar
- INRA, UR1197 Neurobiologie de l’Olfaction et Modélisation en ImagerieF-78350, Jouy-en-JosasFrance
- IFR 144NeuroSud Paris, 91190 Gif-Sur-YvetteFrance
| | - A. Karyn Julliard
- Centre de Recherche des Neurosciences de Lyon, Equipe Olfaction du Codage à la Mémoire, INSERM U 1028/CNRS 5292, Université de Lyon150 Ave. Tony Garnier, 69366, Lyon, Cedex 07,France
| | - Kristal Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA 15261USAand
| | - Debra Ann Fadool
- Department of Biological Science, Programs in Neuroscience and Molecular Biophysics, The Florida State UniversityTallahassee, FL 32306-4295USA
| |
Collapse
|
6
|
Dutta T, Chai HS, Ward LE, Ghosh A, Persson XMT, Ford GC, Kudva YC, Sun Z, Asmann YW, Kocher JPA, Nair KS. Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes. Diabetes 2012; 61:1004-16. [PMID: 22415876 PMCID: PMC3331761 DOI: 10.2337/db11-0874] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin regulates many cellular processes, but the full impact of insulin deficiency on cellular functions remains to be defined. Applying a mass spectrometry-based nontargeted metabolomics approach, we report here alterations of 330 plasma metabolites representing 33 metabolic pathways during an 8-h insulin deprivation in type 1 diabetic individuals. These pathways included those known to be affected by insulin such as glucose, amino acid and lipid metabolism, Krebs cycle, and immune responses and those hitherto unknown to be altered including prostaglandin, arachidonic acid, leukotrienes, neurotransmitters, nucleotides, and anti-inflammatory responses. A significant concordance of metabolome and skeletal muscle transcriptome-based pathways supports an assumption that plasma metabolites are chemical fingerprints of cellular events. Although insulin treatment normalized plasma glucose and many other metabolites, there were 71 metabolites and 24 pathways that differed between nondiabetes and insulin-treated type 1 diabetes. Confirmation of many known pathways altered by insulin using a single blood test offers confidence in the current approach. Future research needs to be focused on newly discovered pathways affected by insulin deficiency and systemic insulin treatment to determine whether they contribute to the high morbidity and mortality in T1D despite insulin treatment.
Collapse
Affiliation(s)
- Tumpa Dutta
- Division of Endocrinology and Endocrine Research Unit Rochester, Rochester, Minnesota
- Center for Translational Science Activities Metabolomics Core Facility, Mayo Clinic, Rochester, Minnesota
| | - High Seng Chai
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Lawrence E. Ward
- Center for Translational Science Activities Metabolomics Core Facility, Mayo Clinic, Rochester, Minnesota
| | - Aditya Ghosh
- Center for Translational Science Activities Metabolomics Core Facility, Mayo Clinic, Rochester, Minnesota
| | - Xuan-Mai T. Persson
- Center for Translational Science Activities Metabolomics Core Facility, Mayo Clinic, Rochester, Minnesota
| | - G. Charles Ford
- Center for Translational Science Activities Metabolomics Core Facility, Mayo Clinic, Rochester, Minnesota
| | - Yogish C. Kudva
- Division of Endocrinology and Endocrine Research Unit Rochester, Rochester, Minnesota
| | - Zhifu Sun
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Yan W. Asmann
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | - K. Sreekumaran Nair
- Division of Endocrinology and Endocrine Research Unit Rochester, Rochester, Minnesota
- Center for Translational Science Activities Metabolomics Core Facility, Mayo Clinic, Rochester, Minnesota
- Corresponding author: K. Sreekumaran Nair,
| |
Collapse
|
7
|
Function-based discovery of significant transcriptional temporal patterns in insulin stimulated muscle cells. PLoS One 2012; 7:e32391. [PMID: 22396763 PMCID: PMC3291562 DOI: 10.1371/journal.pone.0032391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 01/30/2012] [Indexed: 11/23/2022] Open
Abstract
Background Insulin action on protein synthesis (translation of transcripts) and post-translational modifications, especially of those involving the reversible modifications such as phosphorylation of various signaling proteins, are extensively studied but insulin effect on transcription of genes, especially of transcriptional temporal patterns remains to be fully defined. Methodology/Principal Findings To identify significant transcriptional temporal patterns we utilized primary differentiated rat skeletal muscle myotubes which were treated with insulin and samples were collected every 20 min for 8 hours. Pooled samples at every hour were analyzed by gene array approach to measure transcript levels. The patterns of transcript levels were analyzed based on a novel method that integrates selection, clustering, and functional annotation to find the main temporal patterns associated to functional groups of differentially expressed genes. 326 genes were found to be differentially expressed in response to in vitro insulin administration in skeletal muscle myotubes. Approximately 20% of the genes that were differentially expressed were identified as belonging to the insulin signaling pathway. Characteristic transcriptional temporal patterns include: (a) a slow and gradual decrease in gene expression, (b) a gradual increase in gene expression reaching a peak at about 5 hours and then reaching a plateau or an initial decrease and other different variable pattern of increase in gene expression over time. Conclusion/Significance The new method allows identifying characteristic dynamic responses to insulin stimulus, common to a number of genes and associated to the same functional group. The results demonstrate that insulin treatment elicited different clusters of gene transcript profile supporting a temporal regulation of gene expression by insulin in skeletal muscle cells.
Collapse
|
8
|
Polymorphism of adiponectin (45T/G) and adiponectin receptor-2 (795G/A) in an Iranian population: relation with insulin resistance and response to treatment with pioglitazone in patients with type 2 diabetes mellitus. Mol Biol Rep 2011; 39:5511-8. [PMID: 22187345 DOI: 10.1007/s11033-011-1354-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 12/12/2011] [Indexed: 02/06/2023]
Abstract
Adiponectin, an adipose-derived plasma protein, is reduced in patients with obesity and type 2 diabetes. Thiazolidinediones can increase adiponectin levels and improve insulin sensitivity. This study investigated the associations between type 2 diabetes and two single-nucleotide polymorphisms in the adiponectin (45T/G) and adiponectin receptor-2 gene (795G/A), and investigated whether these genetic variants affect the response to pioglitazone in Iranian patients with type 2 diabetes. We genotyped 128 non-diabetic participants and 101 patients with type 2 diabetes for 45T/G and 795G/A with polymerase chain reaction-restriction fragment length polymorphism assays. Patients were treated with pioglitazone for 12 weeks, after which we compared laboratory parameters in these two groups. Fasting blood sugar differed significantly in individuals with different 795G/A genotypes after pioglitazone treatment (P = 0.009). The mean decrease in insulin/glucose ratio after treatment also differed significantly in individuals with different 45T/G genotypes (P = 0.035). The T allele frequency for 45T/G was 87.11% in controls versus 81.68% in patients (P = 0.071). The TG and GG genotypes were more frequent in patients (P = 0.032). The G allele frequency for 795G/A was 76.17% in controls versus 80.20% in patients (P = 0.179). 795G/A variants were not significantly different between patient and control group. The adiponectin gene 45T/G mutation may be an important determinant of type 2 diabetes in the Iranian population. However, adiponectin 45T/G and adiponectin receptor-2 795G/A polymorphisms were not significantly associated with the response to pioglitazone in our sample.
Collapse
|
9
|
Abstract
Insulin resistance is the most important pathophysiological feature in many pre-diabetic states. Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion by pancreatic beta cells. The creation of monogenic or polygenic genetically manipulated mice models in a tissue-specific manner was of great help to elucidate the tissue-specificity of insulin action and its contribution to the overall insulin resistance. However, complete understanding of the molecular bases of the insulin action and resistance requires the identification of the intracellular pathways that regulate insulin-stimulated proliferation, differentiation and metabolism. Accordingly, cell lines derived from insulin target tissues such as brown adipose tissue, liver and beta islets lacking insulin receptors or sensitive candidate genes such as IRS-1, IRS-2, IRS-3, IR and PTP1B were developed. Indeed, these cell lines have been also very useful to understand the tissue-specificity of insulin action and inaction.
Collapse
Affiliation(s)
- Manuel Benito
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
10
|
Bartke A. Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci 2011; 366:28-34. [PMID: 21115527 DOI: 10.1098/rstb.2010.0281] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Studies of the effects of single-gene mutations on longevity in Caenorhabditis elegans, Drosophila melanogaster and Mus musculus identified homologous, highly conserved signalling pathways that influence ageing. In each of these very distantly related species, single mutations which lead-directly or indirectly-to reduced insulin, insulin-like growth factor (IGF) or insulin/IGF-like signalling (IIS) can produce significant increases in both average and maximal lifespan. In mice, most of the life-extending mutations described to date reduce somatotropic (growth hormone (GH) and IGF-1) signalling. The reported extensions of longevity are most robust in GH-deficient and GH-resistant mice, while suppression of somatotropic signalling 'downstream' of the GH receptor produces effects that are generally smaller and often limited to female animals. This could be due to GH influencing ageing by both IGF-1-mediated and IGF-1-independent mechanisms. In mutants that have been examined in some detail, increased longevity is associated with various indices of delayed ageing and extended 'healthspan'. The mechanisms that probably underlie the extension of both lifespan and healthspan of these animals include increased stress resistance, improved antioxidant defences, alterations in insulin signalling (e.g. hypoinsulinaemia combined with improved insulin sensitivity in some mutants and insulin resistance in others), a shift from pro- to anti-inflammatory profile of circulating adipokines, reduced mammalian target of rapamycin-mediated translation and altered mitochondrial function including greater utilization of lipids when compared with carbohydrates.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Physiology, Southern Illinois University School of Medicine, 801 North Rutledge Street, Room 4389, Springfield, IL 62794-9628, USA.
| |
Collapse
|
11
|
Abstract
Insulin resistance is the most important pathophysiological feature in many pre-diabetic states. Type 2 diabetes mellitus is a complex metabolic disease and its pathogenesis involves abnormalities in both peripheral insulin action and insulin secretion by pancreatic β-cells. The creation of monogenic or polygenic genetically manipulated mice models in a tissue-specific manner was of great help to elucidate the tissue specificity of insulin action and its contribution to the overall insulin resistance. However, a complete understanding of the molecular bases of insulin action and resistance requires the identification of intracellular pathways that regulate insulin-stimulated proliferation, differentiation and metabolism. Accordingly, cell lines derived from insulin target tissues such as brown adipose tissue, liver and beta islets lacking insulin resistance or sensitive candidate genes such as IRS-1, IRS-2, IRS-3, IR and PTP1B have been developed. Indeed, these cell lines have also been very useful to understand the tissue specificity of insulin action and inaction. Obesity is a risk factor for several components of the metabolic syndromes such as type 2 diabetes, dyslipidaemia and systolic hypertension, because white and brown adipose tissues as endocrine organs express and secrete a variety of adipocytokines that can act at both local and systemic levels, modulating the insulin sensitivity. Recent studies revealed that the subjects with the highest transcription rates of genes encoding TNF-α and IL-6 were prone to develop obesity, insulin resistance and type 2 diabetes. Accordingly, we specifically focus in this review on the impact of those adipocytokines on the modulation of insulin action in skeletal muscle.
Collapse
Affiliation(s)
- M Benito
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
12
|
Escribano O, Guillén C, Nevado C, Gómez-Hernández A, Kahn CR, Benito M. Beta-Cell hyperplasia induced by hepatic insulin resistance: role of a liver-pancreas endocrine axis through insulin receptor A isoform. Diabetes 2009; 58:820-8. [PMID: 19136656 PMCID: PMC2661585 DOI: 10.2337/db08-0551] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased beta-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and beta-cell mass. Ultimately, the beta-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic beta-cells of iLIRKO mice and IGF-1-induced proliferation was higher than in the controls. In mouse beta-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the beta-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A.
Collapse
Affiliation(s)
- Oscar Escribano
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; and
| | - Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; and
| | - Carmen Nevado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; and
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; and
| | - C. Ronald Kahn
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; and
- Corresponding author: Manuel Benito,
| |
Collapse
|
13
|
Yamanaka M, Itakura Y, Ono-Kishino M, Tsuchida A, Nakagawa T, Taiji M. Intermittent administration of brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and prevents pancreatic exhaustion in diabetic mice. J Biosci Bioeng 2008; 105:395-402. [PMID: 18499057 DOI: 10.1263/jbb.105.395] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/23/2008] [Indexed: 12/12/2022]
Abstract
We previously demonstrated that repetitive administration of brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and energy expenditure in obese diabetic db/db mice. However, we have not evaluated in detail the effect of single or intermittent BDNF administration on glucose metabolism in a diabetic animal model. The objectives of this study were to examine the dose-response effect and dosing interval of BDNF administration in db/db mice and to evaluate the effect of intermittent BDNF administration on pancreatic function in db/db mice. We evaluated the dose-response effect of BDNF by single administration in db/db mice. First, single administration of BDNF greater than 70 mg/kg significantly reduced blood glucose concentration one day after administered, and the BDNF effect was maintained for 6 d. Next, the effects of BDNF administered twice a week at 4, 10, 25, and 62.5 mg/kg on blood glucose concentration, and the effects of BDNF administered once a week at 10, 20, 30, 50, and 70 mg/kg on blood glucose concentration were examined in db/db mice. In the intermittent treatment studies, BDNF dose-dependently ameliorated glucose metabolism by not only the twice-a-week administration but also the once-a-week administration. Lastly, because BDNF reduces the food intake of obese hyperphagic diabetic mice, the effects of BDNF administered once or twice a week on the blood glucose concentration and plasma and pancreatic insulin concentrations in db/db mice were compared with those of the vehicle under pair-fed conditions. Under pair-fed conditions, the intermittent administration of BDNF (25 mg/kg, twice a week, or 50 mg/kg, once a week) significantly reduced the blood glucose concentration and increased the plasma and pancreatic insulin concentrations compared with those in the pair-fed vehicle-treated db/db mice. This indicates that the prolonged hypoglycemic effect of BDNF is not simply due to the reduction of food intake. In conclusion, we demonstrated that the intermittent administration of BDNF ameliorates glucose metabolism and prevents pancreatic exhaustion in obese diabetic mice. These findings indicate that BDNF may have potential as a unique hypoglycemic agent for the treatment of diabetes at a fundamental level with good patient compliance.
Collapse
Affiliation(s)
- Mitsugu Yamanaka
- Discovery Pharmacology I, Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade Naka, Konohana-ku, Osaka 554-0022, Japan
| | | | | | | | | | | |
Collapse
|
14
|
YAMANAKA M, ITAKURA Y, TSUCHIDA A, NAKAGAWA T, TAIJI M. Brain-derived neurotrophic factor (BDNF) prevents the development of diabetes in prediabetic mice. Biomed Res 2008; 29:147-53. [DOI: 10.2220/biomedres.29.147] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Lei XY, Zhang S, Bohrer A, Bao S, Song H, Ramanadham S. The group VIA calcium-independent phospholipase A2 participates in ER stress-induced INS-1 insulinoma cell apoptosis by promoting ceramide generation via hydrolysis of sphingomyelins by neutral sphingomyelinase. Biochemistry 2007; 46:10170-85. [PMID: 17685585 PMCID: PMC2530898 DOI: 10.1021/bi700017z] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Beta-cell mass is regulated by a balance between beta-cell growth and beta-cell death, due to apoptosis. We previously reported that apoptosis of INS-1 insulinoma cells due to thapsigargin-induced ER stress was suppressed by inhibition of the group VIA Ca2+-independent phospholipase A2 (iPLA2beta), associated with an increased level of ceramide generation, and that the effects of ER stress were amplified in INS-1 cells in which iPLA2beta was overexpressed (OE INS-1 cells). These findings suggested that iPLA2beta and ceramides participate in ER stress-induced INS-1 cell apoptosis. Here, we address this possibility and also the source of the ceramides by examining the effects of ER stress in empty vector (V)-transfected and iPLA2beta-OE INS-1 cells using apoptosis assays and immunoblotting, quantitative PCR, and mass spectrometry analyses. ER stress induced expression of ER stress factors GRP78 and CHOP, cleavage of apoptotic factor PARP, and apoptosis in V and OE INS-1 cells. Accumulation of ceramide during ER stress was not associated with changes in mRNA levels of serine palmitoyltransferase (SPT), the rate-limiting enzyme in de novo synthesis of ceramides, but both message and protein levels of neutral sphingomyelinase (NSMase), which hydrolyzes sphingomyelins to generate ceramides, were temporally increased in the INS-1 cells. The increases in the level of NSMase expression in the ER-stressed INS-1 cells were associated with corresponding temporal elevations in ER-associated iPLA2beta protein and catalytic activity. Pretreatment with BEL inactivated iPLA2beta and prevented induction of NSMase message and protein in ER-stressed INS-1 cells. Relative to that in V INS-1 cells, the effects of ER stress were accelerated and/or amplified in the OE INS-1 cells. However, inhibition of iPLA2beta or NSMase (chemically or with siRNA) suppressed induction of NSMase message, ceramide generation, sphingomyelin hydrolysis, and apoptosis in both V and OE INS-1 cells during ER stress. In contrast, inhibition of SPT did not suppress ceramide generation or apoptosis in either V or OE INS-1 cells. These findings indicate that iPLA2beta activation participates in ER stress-induced INS-1 cell apoptosis by promoting ceramide generation via NSMase-catalyzed hydrolysis of sphingomyelins, raising the possibility that this pathway contributes to beta-cell apoptosis due to ER stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Sasanka Ramanadham
- *Address correspondence to: Sasanka Ramanadham, Dept. Medicine, Washington University School of Medicine, Campus Box 8127, 660 S. Euclid Ave., St. Louis, MO 63110; telephone 314-362-8194; FAX 314-362-7641; E-mail:
| |
Collapse
|
16
|
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:105-25. [PMID: 17569207 DOI: 10.1007/978-0-387-46401-5_3] [Citation(s) in RCA: 747] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin, a yellow pigment from Curcuma longa, is a major component of turmeric and is commonly used as a spice and food-coloring agent. It is also used as a cosmetic and in some medical preparations. The desirable preventive or putative therapeutic properties of curcumin have also been considered to be associated with its antioxidant and anti-inflammatory properties. Because free-radical-mediated peroxidation of membrane lipids and oxidative damage of DNA and proteins are believed to be associated with a variety of chronic pathological complications such as cancer, atherosclerosis, and neurodegenerative diseases, curcumin is thought to play a vital role against these pathological conditions. The anti-inflammatory effect of curcumin is most likely mediated through its ability to inhibit cyclooxygenase-2 (COX-2), lipoxygenase (LOX), and inducible nitric oxide synthase (iNOS). COX-2, LOX, and iNOS are important enzymes that mediate inflammatory processes. Improper upregulation of COX-2 and/or iNOS has been associated with the pathophysiology of certain types of human cancer as well as inflammatory disorders. Because inflammation is closely linked to tumor promotion, curcumin with its potent anti-inflammatory property is anticipated to exert chemopreventive effects on carcinogenesis. Hence, the past few decades have witnessed intense research devoted to the antioxidant and anti-inflammatory properties of curcumin. In this review, we describe both antioxidant and anti-inflammatory properties of curcumin, the mode of action of curcumin, and its therapeutic usage against different pathological conditions.
Collapse
Affiliation(s)
- Venugopal P Menon
- Department of Biochemistry & Center for Micronutrient Research, Annamalai University, Tamilnadu, India.
| | | |
Collapse
|
17
|
Yamanaka M, Itakura Y, Inoue T, Tsuchida A, Nakagawa T, Noguchi H, Taiji M. Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism 2006; 55:1286-92. [PMID: 16979397 DOI: 10.1016/j.metabol.2006.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
We have previously demonstrated that brain-derived neurotrophic factor (BDNF) ameliorates glucose metabolism and energy expenditure in obese diabetic db/db mice. In the present study, the effect of BDNF treatment on pancreatic islets of db/db mice was examined, using vehicle-treated pair-fed db/db mice as controls. Brain-derived neurotrophic factor (10 mg/kg) or vehicle was subcutaneously administered to male db/db mice for 4 weeks. The food intake of vehicle-treated db/db mice was restricted and precisely synchronized with that of BDNF-treated db/db mice using a pellet pair-feeding apparatus because BDNF decreases food intake in hyperphagic mice. Repetitive administration of BDNF significantly lowered the blood glucose concentration compared with pair-fed vehicle-treated db/db mice. The pancreatic insulin and glucagon concentrations were measured in db/db mice to evaluate the effect of BDNF on the pancreas. Although the insulin concentration in the pancreas of pair-fed vehicle-treated db/db mice was lower than in nondiabetic control +m/+m mice, it was higher in BDNF-treated db/db mice than in vehicle-treated pair-fed db/db mice and comparable to the concentration in +m/+m mice. The glucagon concentration in the pancreas of vehicle-treated pair-fed db/db mice was higher than in +m/+m mice, and BDNF partially decreased the glucagon concentration in the pancreas of db/db mice compared with vehicle. Histologic analyses of pancreatic sections were performed to characterize the mechanism through which BDNF modulates the hormonal concentration in the pancreas of db/db mice. Although there were no significant differences in the number and total area of islets between the BDNF- and vehicle-treated groups, immunostaining with an anti-insulin antibody indicated that the islet beta-cell area in BDNF-treated db/db mice was larger than that in vehicle-treated pair-fed db/db mice. Furthermore, immunostaining with an antiglucagon antibody indicated that BDNF normalized the delocalization of non-beta cells in islets of db/db mice. Electron microscopic images of beta cells indicated a decrease in secretory granules in vehicle-treated pair-fed db/db mice; this change was reversed in BDNF-treated db/db mice and reached a level comparable to that found in +m/+m mice. These findings suggest that BDNF prevents exhaustion of the pancreas in diabetic mice by maintaining the histologic cellular organization of beta cells and non-beta cells in pancreatic islets and restoring the level of insulin-secreting granules in beta cells.
Collapse
Affiliation(s)
- Mitsugu Yamanaka
- Discovery Pharmacology Group I, Pharmacology Research Laboratories, Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., Chuo-ku, Tokyo 541-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Guo L, Tabrizchi R. Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance. Pharmacol Ther 2005; 111:145-73. [PMID: 16305809 DOI: 10.1016/j.pharmthera.2005.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/03/2005] [Indexed: 01/08/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. The activation of PPAR-gamma, an isotype of PPARs, can either increase or decrease the transcription of target genes. The genes controlled by this form of PPAR have been shown to encode proteins or peptides that participate in the pathogenesis of insulin resistance. Insulin resistance is defined as a state of reduced responsiveness to normal circulating concentrations of insulin and it often co-exists with central obesity, hypertension, dyslipidemia, and atherosclerosis. There is substantial evidence that links obesity with insulin resistance and type-2 diabetes. The early phase of obesity-related insulin resistance has 2 components: (a) interruption of lipid homeostasis leading to the increased plasma concentration of fatty acids that is normally suppressed by the activation of PPAR-gamma, and (b) activation of factors such as cytokines depressed by PPAR-gamma that cause insulin resistance. Therefore, it is logical to suggest that activation of PPAR-gamma may partially reverse the state of insulin resistance. Evidently, activation of the nuclear receptor, PPAR-gamma, by thiazolidinediones has been reported to ameliorate insulin resistance. Although hepatotoxity and possibility to induce congestive heart failure (CHF) limit the widely use of thiazolodinediones, they are still powerful weapon to fight against insulin resistance and type-2 diabetes if use properly. This article reviews the physiology of PPAR-gamma and insulin-signaling transduction, the pathogenesis of insulin resistance in obesity-related type-2 diabetes, the pharmacological role of PPAR-gamma in insulin resistance, and additional effects of thiazolidinediones.
Collapse
Affiliation(s)
- Liang Guo
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3V6
| | | |
Collapse
|
19
|
Heled Y, Dror Y, Moran DS, Rosenzweig T, Sampson SR, Epstein Y, Meyerovitch J. Physical exercise increases the expression of TNFα and GLUT 1 in muscle tissue of diabetes prone Psammomys obesus. Life Sci 2005; 77:2977-85. [PMID: 16043194 DOI: 10.1016/j.lfs.2005.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Tumor necrosis factor-alpha (TNFalpha) is a major mediator of insulin resistance. On the other hand, it has been suggested that TNFalpha may facilitate glucose uptake through GLUT 1 expression. We recently found that physical exercise prevented the progression to type 2 diabetes mellitus in diabetes prone Psammomys obesus (sand rat). AIM The aim of the present study was to characterize the influence of physical exercise on the expression of TNFalpha, its receptor R1 and GLUT 1 in muscle tissue of this animal model. METHODS Animals were assigned for 4 weeks to four groups: high-energy diet (HC), high-energy diet and exercise (HE), low-energy diet (LC), low-energy diet and exercise (LE). TNFalpha, R1 and GLUT 1 expression were analyzed using Western blot technique. RESULTS None of the animals in the HE group became diabetic while all the animals in the HC group became diabetic. TNFalpha, its receptor (R1) and GLUT 1 expressions were significantly higher in the two exercising groups (LE and HE) and significantly lower in the HC group compared to the control LC group. CONCLUSIONS Physical exercise augments the expression of TNFalpha, its receptor R1 and the glucose transporter GLUT 1 in muscle tissue. We suggest that this mechanism may improve glucose uptake through pathways parallel and unrelated to insulin signaling that may include MAPK and/or NO. These biochemical processes contribute to the beneficial effects of physical exercise on the prevention of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Y Heled
- Heller Institute of Medical Research, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Ramat Gan 52621, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Nair KS, Jaleel A, Asmann YW, Short KR, Raghavakaimal S. Proteomic research: potential opportunities for clinical and physiological investigators. Am J Physiol Endocrinol Metab 2004; 286:E863-74. [PMID: 15140753 DOI: 10.1152/ajpendo.00370.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteomics is the comprehensive and systematic study of proteins, which are functional molecules. Although proteins are products of gene expression, there are more proteins than genes due to the posttranslational modifications of proteins, making the study of proteins difficult. Protein expression is tissue specific, and its function is modulated by variety of factors, including other proteins, phosphates, sulfates, carbohydrates, and lipids, as well as other metabolites. Because of the dynamic nature of protein expression and posttranslational modifications, identification and quantification of proteins alone are not sufficient to understand functional changes. Emerging technologies will allow investigators to perform a combination of metabolic labeling and identification as well as quantification and measurement of the synthesis rates of a large number of proteins in a tissue. This offers the opportunity to better understand the regulation of tissue functions. Rapid advances in mass spectrometry, protein purification techniques, isotope labeling of proteins, and bioinformatics are likely to improve our understanding of physiological states and altered functions in diseased states. Such mechanistic information will improve the ability to perform early diagnosis of tumors and other diseases and develop prognostic indexes and novel therapies.
Collapse
Affiliation(s)
- K Sreekumaran Nair
- Mayo Clinic School of Medicine, Endocrinology Research Unit, Joseph 5-194, 200 First St. SW, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
21
|
Ramanadham S, Hsu FF, Zhang S, Jin C, Bohrer A, Song H, Bao S, Ma Z, Turk J. Apoptosis of insulin-secreting cells induced by endoplasmic reticulum stress is amplified by overexpression of group VIA calcium-independent phospholipase A2 (iPLA2 beta) and suppressed by inhibition of iPLA2 beta. Biochemistry 2004; 43:918-30. [PMID: 14744135 PMCID: PMC3732319 DOI: 10.1021/bi035536m] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The death of insulin-secreting beta-cells that causes type I diabetes mellitus (DM) occurs in part by apoptosis, and apoptosis also contributes to progressive beta-cell dysfunction in type II DM. Recent reports indicate that ER stress-induced apoptosis contributes to beta-cell loss in diabetes. Agents that deplete ER calcium levels induce beta-cell apoptosis by a process that is independent of increases in [Ca(2+)](i). Here we report that the SERCA inhibitor thapsigargin induces apoptosis in INS-1 insulinoma cells and that this is inhibited by a bromoenol lactone (BEL) inhibitor of group VIA calcium-independent phospholipase A(2) (iPLA(2)beta). Overexpression of iPLA(2)beta amplifies thapsigargin-induced apoptosis of INS-1 cells, and this is also suppressed by BEL. The magnitude of thapsigargin-induced INS-1 cell apoptosis correlates with the level of iPLA(2)beta expression in various cell lines, and apoptosis is associated with stimulation of iPLA(2)beta activity, perinuclear accumulation of iPLA(2)beta protein and activity, and caspase-3-catalyzed cleavage of full-length 84 kDa iPLA(2)beta to a 62 kDa product that associates with nuclei. Thapsigargin also induces ceramide accumulation in INS-1 cells, and this response is amplified in cells that overexpress iPLA(2)beta. These findings indicate that iPLA(2)beta participates in ER stress-induced apoptosis, a pathway that promotes beta-cell death in diabetes.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Washington University School of Medicine, Box 8127, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
D'Alessandris C, Andreozzi F, Federici M, Cardellini M, Brunetti A, Ranalli M, Del Guerra S, Lauro D, Del Prato S, Marchetti P, Lauro R, Sesti G. IncreasedO‐glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic β‐cells. FASEB J 2004; 18:959-61. [PMID: 15059979 DOI: 10.1096/fj.03-0725fje] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Because adverse effects of glucose were attributed to its increased routing through the hexosamine pathway (HBP), we inquired whether HBP activation affects pancreatic beta-cell survival. Exposure of human islets to high glucose resulted in increased apoptosis of beta-cells upon serum deprivation that was reversed by azaserine. Also, glucosamine, a direct precursor of the downstream product of the HBP, increased human beta-cells apoptosis upon serum deprivation, which was reversed by benzyl-2-acetamido-2-deoxy-alpha-d-galactopyranoside (BADGP), an inhibitor of protein O-glycosylation. These results were reproduced in RIN rat beta-cells. Glucosamine treatment resulted in inhibition of tyrosine-phosphorylation of the insulin receptor (IR), IRS-1, and IRS-2, which was associated with increased O-glycosylation. These changes caused impaired activation of the PI 3-kinase/Akt survival signaling that resulted in reduced GSK-3 and FOXO1a inactivation. BADGP reversed the glucosamine-induced reduction in insulin-stimulated phosphorylation of IR, IRS-1, IRS-2, Akt, GSK-3, and FOXO1a. Impaired FOXO1a inactivation sustained expression of the pro-apoptotic protein Bim, without affecting Bad, Bcl-XL, or Bcl-2 expression. These results indicate that hyperglycemia may increase susceptibility to apoptosis of human and rat beta-cell through activation of the HBP. Increased routing of glucose through this metabolic pathway results in impaired activation of the IR/IRSs/PI3-kinase/Akt survival pathway by induction of O-glycosylation of signaling molecules.
Collapse
Affiliation(s)
- Cristina D'Alessandris
- Laboratory of Molecular Medicine, Department of Internal Medicine, University of Rome-Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Matsumoto M, Ogawa W, Teshigawara K, Inoue H, Miyake K, Sakaue H, Kasuga M. Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 2002; 51:1672-80. [PMID: 12031952 DOI: 10.2337/diabetes.51.6.1672] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanism by which insulin induces the expression of the sterol regulatory element binding protein 1c (SREBP-1c) and glucokinase genes was investigated in cultured rat hepatocytes. Overexpression of an NH(2)-terminal fragment of IRS-1 that contains the pleckstrin homology and phosphotyrosine binding domains (insulin receptor substrate-1 NH(2)-terminal fragment [IRS-1N]) inhibited insulin-induced tyrosine phosphorylation of IRS-1 as well as the association of IRS-1 with phosphatidylinositol (PI) 3-kinase activity, whereas the tyrosine phosphorylation of IRS-2 and its association with PI 3-kinase activity were slightly enhanced. The equivalent fragment of IRS-2 (IRS-2N) prevented insulin-induced tyrosine phosphorylation of both IRS-1 and IRS-2, although that of IRS-1 was inhibited more efficiently. The insulin-induced increases in the abundance of SREBP-1c and glucokinase mRNAs, both of which were sensitive to a dominant-negative mutant of PI 3-kinase, were blocked in cells in which the insulin-induced tyrosine phosphorylation of IRS-1 was inhibited by IRS-1N or IRS-2N. A dominant-negative mutant of Akt enhanced insulin-induced tyrosine phosphorylation of IRS-1 (but not that of IRS-2) and its association with PI 3-kinase activity, suggesting that Akt contributes to negative feedback regulation of IRS-1. The Akt mutant also promoted the effects of insulin on the accumulation of SREBP-1c and glucokinase mRNAs. These results suggest that the IRS-1-PI 3-kinase pathway is essential for insulin-induced expression of SREBP-1c and glucokinase genes.
Collapse
Affiliation(s)
- Michihiro Matsumoto
- Department of Clinical Molecular Medicine, Division of Diabetes, Digestive, and Kidney Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Shojima N, Sakoda H, Ogihara T, Fujishiro M, Katagiri H, Anai M, Onishi Y, Ono H, Inukai K, Abe M, Fukushima Y, Kikuchi M, Oka Y, Asano T. Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells. Diabetes 2002; 51:1737-44. [PMID: 12031960 DOI: 10.2337/diabetes.51.6.1737] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Resistin is a hormone secreted by adipocytes that acts on skeletal muscle myocytes, hepatocytes, and adipocytes themselves, reducing their sensitivity to insulin. In the present study, we investigated how the expression of resistin is affected by glucose and by mediators known to affect insulin sensitivity, including insulin, dexamethasone, tumor necrosis factor-alpha (TNF-alpha), epinephrine, and somatropin. We found that resistin expression in 3T3-L1 adipocytes was significantly upregulated by high glucose concentrations and was suppressed by insulin. Dexamethasone increased expression of both resistin mRNA and protein 2.5- to 3.5-fold in 3T3-L1 adipocytes and by approximately 70% in white adipose tissue from mice. In contrast, treatment with troglitazone, a thiazolidinedione antihyperglycemic agent, or TNF-alpha suppressed resistin expression by approximately 80%. Epinephrine and somatropin were both moderately inhibitory, reducing expression of both the transcript and the protein by 30-50% in 3T3-L1 adipocytes. Taken together, these data make it clear that resistin expression is regulated by a variety of hormones and that cytokines are related to glucose metabolism. Furthermore, they suggest that these factors affect insulin sensitivity and fat tissue mass in part by altering the expression and eventual secretion of resistin from adipose cells.
Collapse
Affiliation(s)
- Nobuhiro Shojima
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Heled Y, Shapiro Y, Shani Y, Moran DS, Langzam L, Braiman L, Sampson SR, Meyerovitch J. Physical exercise prevents the development of type 2 diabetes mellitus in Psammomys obesus. Am J Physiol Endocrinol Metab 2002; 282:E370-5. [PMID: 11788369 DOI: 10.1152/ajpendo.00296.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that exercise training might prevent diabetes mellitus in Psammomys obesus. Animals were assigned to three groups: high-energy diet (CH), high-energy diet and exercise (EH), and low-energy diet (CL). The EH group ran on a treadmill 5 days/wk, twice a day. After 4 wk, 93% of the CH group were diabetic compared with only 20% of the EH group. There was no difference in weight gain among the groups. Both EH and CH groups were hyperinsulinemic. Epididymal fat (% of body weight) was higher in the CH group than in either the EH and or the CL group. Protein kinase C (PKC)-delta activity and serine phosphorylation were higher in the EH group. No differences were found in tyrosine phosphorylation of the insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase among the groups. We demonstrate for the first time that exercise training effectively prevents the progression of diabetes mellitus type 2 in Psammomys obesus. PKC-delta may be involved in the adaptive effects of exercise in skeletal muscles that lead to the prevention of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yuval Heled
- Heller Institute of Medical Research, Tel Aviv University, Tel Aviv 52621, Israel
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Pancreatic beta-cell dysfunction and insulin resistance are two interrelated defects in the pathophysiology of type 2 diabetes. Defects in peripheral insulin action precede the development of glucose intolerance, as the pancreas compensates for insulin resistance by increasing insulin production and secretion. This may be achieved by enhancing cellular secretory capacity or by increasing beta-cell mass. Over time, the pancreatic secretion of insulin becomes inadequate for the extent of insulin resistance, and the levels of fasting and postprandial glucose rise leading to the onset of frank hyperglycemia, which leads to reduction in beta-cell function and survival through a process referred to as glucose toxicity. There is increasing evidence that apoptosis is the main mode of pancreatic beta-cell death not only in type 1 but also in type 2 diabetes. Recently, studies in knockout mice, human and rat islets, and pancreatic beta-cell lines demonstrated that defective insulin signaling in beta-cells might play an important pathophysiological role by affecting both secretory function and cell survival. The purpose of this review is to present recent advances in understanding of the interrelationship between molecular mechanisms underlying defects in insulin secretion and beta-cell survival in type 2 diabetes caused by impaired activation of insulin signaling pathways.
Collapse
Affiliation(s)
- Giorgio Sesti
- Department of Experimental and Clinical Medicine, University of Catanzaro-Magna Graecia, IT-88100 Catanzaro, Italy.
| |
Collapse
|
27
|
Abstract
Insulin resistance is defined as a clinical state in which a normal or elevated insulin level produces an attenuated biologic response. Specifically, the biologic response most studied is insulin-stimulated glucose disposal, yet the precise cellular mechanism responsible is not yet known. However, the presence of insulin resistance is observed many years before the onset of clinical hyperglycemia and the diagnosis of Type 2 diabetes. Insulin resistance at this stage appears to be significantly associated with a clustering of cardiovascular risk factors predisposing the individual to accelerated cardiovascular disease. An overview of insulin resistance and the associated clinical insulin resistant state will be discussed.
Collapse
Affiliation(s)
- W T Cefalu
- Department of Medicine, University of Vermont College of Medicine, Burlington 05405, USA.
| |
Collapse
|
28
|
Bikhazi AB, Azar ST, Birbari AE, El-Zein GN, Haddad GE, Haddad RE, Bitar KM. Characterization of insulin-resistance: role of receptor alteration in insulin-dependent diabetes mellitus, essential hypertension and cardiac hypertrophy. Eur J Pharm Sci 2000; 11:299-306. [PMID: 11033073 DOI: 10.1016/s0928-0987(00)00110-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin-resistance is associated with a number of disease states such as diabetes, syndrome X, and hypertension. These situations may be coupled to insulin-resistance through the insulin signaling system as a common pathway. The purpose of this study was to investigate the receptor binding alterations in streptozotocin-induced diabetic rats, spontaneously hypertensive rats and aortocaval shunted rats (eccentric cardiac hypertrophy). A physical model describing a 1:1 stoichiometry of ligand binding with its receptor is proposed describing reversible binding of [(125)I]insulin or [(125)I]IGF-1 at the microvascular endothelial as well as with the cardiac myocytes after CHAPS-treatment. Analysis of the collected effluents are curve-fitted with a conservation equation and a first-order Bessel function which allowed the calculation of the forward binding constants (k(n)), the reversible constants (k(-n)), the dissociation constants (k(d)) and the residency time constants (tau). The results showed that streptozotocin-induced diabetic rats showed insulin-resistance through alterations in the kinetics of insulin receptor binding. The normotensive controls of the spontaneously hypertension rats (SHR) carry themselves insulin-resistant receptors whose binding to insulin worsens in the hypertensive SHR. Negative cooperativity between insulin-like growth factor IGF-1 and insulin receptors could be a causative factor predisposing for insulin-resistance in the aortocaval shunted rats to insulin resistance. The defects may be occurring at the receptor level in insulin-dependent diabetes mellitus, Wistar-Kyoto rats and spontaneously hypertensive rats. In conclusion, alterations in the kinetics of insulin binding to its receptor seem to play a central role for the initiation of insulin-resistance during the various pathophysiological states.
Collapse
Affiliation(s)
- A B Bikhazi
- Department of Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | | | | | | | | | | |
Collapse
|
29
|
Shimoni Y, Severson D, Ewart HS. Insulin resistance and the modulation of rat cardiac K(+) currents. Am J Physiol Heart Circ Physiol 2000; 279:H639-49. [PMID: 10924063 DOI: 10.1152/ajpheart.2000.279.2.h639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K(+) currents were measured using a whole cell voltage-clamp method in enzymatically isolated rat ventricular myocytes obtained from two hyperinsulinemic, insulin-resistant models. Fructose-fed rats as well as genetically obese rats, both of which are resistant to the metabolic effects of insulin, were used. The normal augmentation of a calcium-independent sustained K(+) current was reduced or abolished in insulin-resistant states. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadyl sulfate (3-4 wk treatment or after 5-6 h in vitro) enhanced the sustained K(+) current. The in vitro effect of vanadyl was blocked by cycloheximide. Insulin resistance of the K(+) current was not reversed by vanadyl sulfate. The results show that insulin resistance is expressed in terms of insulin actions on ion channels, in addition to its actions on metabolism. This resistance can be reversed by the insulin-sensitizing drug metformin. Vanadate compounds, which mimic the effects of insulin on metabolism, also mimic the augmenting effects of insulin on a cardiac K(+) current in a manner suggesting synthesis of new channels.
Collapse
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | |
Collapse
|
30
|
Ueki K, Yamauchi T, Tamemoto H, Tobe K, Yamamoto-Honda R, Kaburagi Y, Akanuma Y, Yazaki Y, Aizawa S, Nagai R, Kadowaki T. Restored insulin-sensitivity in IRS-1-deficient mice treated by adenovirus-mediated gene therapy. J Clin Invest 2000; 105:1437-45. [PMID: 10811851 PMCID: PMC315460 DOI: 10.1172/jci7656] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Insulin resistance is commonly observed both in overt diabetes and in individuals prone to, but not yet manifesting, diabetes. Hence the maintenance or restoration of insulin sensitivity may prevent the onset of this disease. We previously showed that homozygous disruption of insulin receptor substrate-1 (IRS-1) in mice resulted in insulin resistance but not diabetes. Here, we have explored the mechanism of systemic insulin resistance in these mice and used adenovirus-mediated gene therapy to restore their insulin sensitivity. Mice expressing the IRS-1transgene showed almost normal insulin sensitivity. Expression of an IRS-1 mutant (IRS-1Deltap85) lacking the binding site for the p85 subunit of phosphatidylinositol 3-kinase (PI3K) also restored insulin sensitivity, although PI3K is known to play a crucial role in insulin's metabolic responses. Protein kinase B (PKB) activity in liver was decreased in null mice compared with the wild-type and the null mice expressing IRS-1 or IRS-1Deltap85. In primary hepatocytes isolated from null mice, expression of IRS-1 enhanced both PI3K and PKB activities, but expression of IRS-1Deltap85 enhanced only PKB. These data suggest that PKB in liver plays a pivotal role in systemic glucose homeostasis and that PKB activation might be sufficient for reducing insulin resistance even without full activation of PI3K.
Collapse
Affiliation(s)
- K Ueki
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shih KC, Kwok CF, Ho LT. Combined use of insulin and endothelin-1 causes decrease of protein expression of beta-subunit of insulin receptor, insulin receptor substrate-1, and insulin-stimulated glucose uptake in rat adipocytes. J Cell Biochem 2000; 78:231-40. [PMID: 10842318 DOI: 10.1002/(sici)1097-4644(20000801)78:2<231::aid-jcb6>3.0.co;2-o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previously, we reported that insulin-stimulated glucose uptake (ISGU) can be inhibited by endothelin (ET-1). However, the mechanism by which ET-1 impairs ISGU in adipocytes remains unclear. This study investigated the effects of ET-1 on insulin action in rat adipocytes in order to elucidate the molecular mechanism of action of ET-1 on ISGU. The results show that ISGU was increased fivefold after 3-h treatment with 1 nM insulin. Treatment with 100 nM ET-1 had no effect on basal glucose uptake. However, ET-1 inhibited approximately 25% of ISGU and 20% of insulin binding after 3-h treatment in the presence of 1 nM insulin. Expression of the beta-subunit of the insulin receptor (IRbeta) and the insulin receptor substrate-1 (IRS-1) in adipocytes was not significantly affected by 1 nM insulin or by 100 nM ET-1, even after 3-h treatment. However, expressions of IRbeta and IRS-1 were dramatically decreased in a dose- and time-dependent manner when adipocytes were treated with both insulin and ET-1. Approximately 50% of IRbeta and 65% of IRS-1 expression levels were suppressed when adipocytes were simultaneously treated with both 1 nM insulin and 100 nM ET-1 for 3 h. These results suggest that the inhibitory effect of ET-1 on ISGU may be mediated via the insulin receptor and suppression of IRbeta/IRS-1 expression.
Collapse
Affiliation(s)
- K C Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
32
|
Kvasnicka J, Marek J, Kvasnicka T, Weiss V, Marková M, Stĕpán J, Umlaufová A. Increase of adhesion molecules, fibrinogen, type-1 plasminogen activator inhibitor and orosomucoid in growth hormone (GH) deficient adults and their modulation by recombinant human GH replacement. Clin Endocrinol (Oxf) 2000; 52:543-8. [PMID: 10792332 DOI: 10.1046/j.1365-2265.2000.01002.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE GH deficiency (GHD) is usually associated with a higher incidence of cardiovascular disease (CVD). The aim of this study was to establish whether patients with GHD, like those with CVD, show an increase in fibrinogen (FBG), type-1 plasminogen activator inhibitor (PAI-1), acute phase response proteins (APR), and soluble adhesion molecules. The effect of recombinant human GH (rhGH) replacement, on these parameters was also investigated. PATIENTS AND DESIGN Concentrations of PAI-1 antigen (Ag), adhesion molecules sE-selectin, sP-selectin, and intercellular adhesion molecule-1 (sICAM-1), FBG and levels of APR orosomucoid (ORM), and 'negative APR' transferrin (TRF) were established in 11 panhypopituitary (PHP) patients (eight men and three women, age median 39.0 years, body mass index (BMI) 27. 49 +/- 3.89 kg/m2) before and after 12-month replacement with rhGH. Control values were obtained by examination of 33 healthy age and sex matched subjects (24 men and nine women with BMI 24.16 +/- 1.99 kg/m2). RESULTS PHP patients had higher concentrations of ORM (0.80 +/- 0.25, vs. 0.61 +/- 0.20 g/l; P = 0.05), FBG (3.22 +/- 0.48, vs. 2.57 +/- 0.47 g/l; P = 0.001), PAI-1 Ag (97.12 +/- 33.23, vs. 44.11 +/- 21.40 microgram/l; P = 0.001), sE-selectin (72.42 +/- 28.35, vs. 42. 80 +/- 12.60 microgram/l; P = 0.004), sP-selectin (221.26 +/- 75.12, vs. 104.79 +/- 26.01 microgram/l; P = 0.001) sICAM-1 (409.75 +/- 137.78, vs. 228.10 +/- 37.54 microgram/l; P = 0.001), and lower levels of TRF (2.14 +/- 0.40, vs. 2.76 +/- 0.39 g/l; P = 0.001) than controls. After 12-month rhGH replacement the patients showed an increase of TRF (2.64 +/- 0.84 g/l, P = 0.037) and decrease of soluble adhesion molecules (sE-selectin 57.98 +/- 27.04 microgram/l, P = 0.01, sP-selectin 121.74 +/- 50.42 microgram/l, P = 0.007; and sICAM-1 279.95 +/- 88.32 microgram/l, P = 0.005), which then, similarly to the ORM (0. 67 +/- 0.12 g/l) and FBG level (2.82 +/- 0.51 g/l), did not statistically differ from the values in the control group. CONCLUSION rhGH replacement led to modulation of the 'inflammatory response' in panhypopituitary patients. This modulation occurred locally at vascular endothelium level where after rhGH replacement, sE-selectin, sP-selectin and sICAM-1 concentrations decreased, a similar effect as in the systemic inflammatory response, as was also apparent from the changes in acute phase response protein levels.
Collapse
Affiliation(s)
- J Kvasnicka
- Department of Clinical Haematology, General University Hospital, 1st Medical Faculty of Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
33
|
Paquot N, Castillo MJ, Lefèbvre PJ, Scheen AJ. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab 2000; 85:1316-9. [PMID: 10720082 DOI: 10.1210/jcem.85.3.6417] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inhibition of tumor necrosis factor (TNF)-alpha results in a marked increase in insulin sensitivity in obese rodents. We investigated the influence of a TNF antagonist [Ro 45-2081, a recombinant fusion protein that consists of the soluble TNF-receptor (p55) linked to the Fc portion of human IgG1] on insulin sensitivity of patients with android obesity. Seven patients (five women and two men; mean +/- SD age, 41 +/- 4 yr; body mass index, 36.1 +/- 4.7 kg/m2; waist to hip ratio, 0.99 +/- 0.11) were studied (three patients with normal glucose tolerance and four patients with impaired glucose tolerance or mild diabetes; all were hyperinsulinemic). Each patient underwent two consecutive euglycemic hyperinsulinemic glucose-clamp tests: 48 h after injection of placebo and 48 h after a single i.v. injection of 50 mg Ro 45-2081. In both tests, steady-state plasma glucose and insulin levels were similar. Insulin-mediated glucose disposal (2.23 +/- 0.74 vs. 2.38 +/- 0.99 mg/kg(-1) x min(-1)) and glucose metabolic clearance rate (2.28 +/- 0.85 vs. 2.48 +/- 1.03 mL/kg(-1) x min(-1)) were similar after placebo and after the drug. Indirect calorimetry showed no difference in substrate oxidation rates between the two experimental conditions. In conclusion, under the conditions of this study, no improvement in insulin sensitivity was observed in obese insulin-resistant patients following a single i.v. administration of a recombinant TNF receptor: Fc fusion protein.
Collapse
Affiliation(s)
- N Paquot
- Department of Medicine, C.H.U. Sart-Tilman, Liège, Belgium
| | | | | | | |
Collapse
|
34
|
Hoogwerf B, Danese RD. Drug selection and the management of corticosteroid-related diabetes mellitus. Rheum Dis Clin North Am 1999; 25:489-505. [PMID: 10467625 DOI: 10.1016/s0889-857x(05)70083-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glucocorticoid use is associated with the risk of hyperglycemia in patients without known diabetes mellitus and worsened glycemic control in diabetic patients. The effects are greater in the fed than fasting state. Management includes use of diet and exercise (as appropriate for the individual) in all patients. Mild hyperglycemia can often be managed with oral agents, especially those with rapid onset of action. Marked hyperglycemia, especially in diabetic patients or patients with liver or renal disease, requires insulin. Adjustments in insulin can be done both in anticipation of the glucocorticoid effect and based on home glucose monitoring. The effects of glucocorticoids on hyperglycemia usually remit within 48 hours of discontinuation of oral administration.
Collapse
Affiliation(s)
- B Hoogwerf
- Department of Endocrinology, Cleveland Clinic Foundation, Ohio, USA.
| | | |
Collapse
|
35
|
Kim ES, Park SJ, Lee EJ, Kim BK, Huh H, Lee BJ. Purification and characterization of Moran 20K from Morus alba. Arch Pharm Res 1999; 22:9-12. [PMID: 10071952 DOI: 10.1007/bf02976428] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new glycoprotein was purified from the aqueous methanolic extract of the root bark of Morus alba which has been used as a component of antidiabetic remedy in Oriental Medicine. SDS-PAGE result shows that the molecular weight of the glycoprotein was approximately 20 kDa. This new glycoprotein was named as Moran 20K. The protein lowered blood glucose level in streptozotocin-induced hyperglycemic mice model and it also increased the glucose transport in cultured epididymis fat cells. The amino acid composition of the protein was analyzed, and the protein contained above 20% serine and cysteine such as insulin. The actual molecular weight of the protein was determined as 21,858 Da by MALDI-TOF mass spectroscopy.
Collapse
Affiliation(s)
- E S Kim
- Department of Pharmacy, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
36
|
Sankaranarayanan K, Chakraborty R, Boerwinkle EA. Ionizing radiation and genetic risks. VI. Chronic multifactorial diseases: a review of epidemiological and genetical aspects of coronary heart disease, essential hypertension and diabetes mellitus. Mutat Res 1999; 436:21-57. [PMID: 9878681 DOI: 10.1016/s1383-5742(98)00017-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper provides a broad overview of the epidemiological and genetical aspects of common multifactorial diseases in man with focus on three well-studied ones, namely, coronary heart disease (CHD), essential hypertension (EHYT) and diabetes mellitus (DM). In contrast to mendelian diseases, for which a mutant gene either in the heterozygous or homozygous condition is generally sufficient to cause disease, for most multifactorial diseases, the concepts of genetic susceptibility' and risk factors' are more appropriate. For these diseases, genetic susceptibility is heterogeneous. The well-studied diseases such as CHD permit one to conceptualize the complex relationships between genotype and phenotype for chronic multifactorial diseases in general, namely that allelic variations in genes, through their products interacting with environmental factors, contribute to the quantitative variability of biological risk factor traits and thus ultimately to disease outcome. Two types of such allelic variations can be distinguished, namely those in genes whose mutant alleles have (i) small to moderate effects on the risk factor trait, are common in the population (polymorphic alleles) and therefore contribute substantially to the variability of biological risk factor traits and (ii) profound effects, are rare in the population and therefore contribute far less to the variability of biological risk factor traits. For all the three diseases considered in this review, a positive family history is a strong risk factor. CHD is one of the major contributors to mortality in most industrialized countries. Evidence from epidemiological studies, clinical correlations, genetic hyperlipidaemias etc., indicate that lipids play a key role in the pathogenesis of CHD. The known lipid-related risk factors include: high levels of low density lipoprotein cholesterol, low levels of high density lipoprotein cholesterol, high apoB levels (the major protein fraction of the low density lipoprotein particles) and elevated levels of Lp(a) lipoprotein. Among the risk factors which are not related to lipids are: high levels of homocysteine, low activity of paraoxonase and possibly also elevated plasma fibrinogen levels. In addition to the above, hypertension, diabetes and obesity (which themselves have genetic determinants) are important risk factors for CHD. Among the environmental risk factors are: high dietary fat intake, smoking, stress, lack of exercise etc. About 60% of the variability of the plasma cholesterol is genetic in origin. While a few genes have been identified whose mutant alleles have large effects on this trait (e.g., LDLR, familial defective apoB-100), variability in cholesterol levels among individuals in most families is influenced by allelic variation in many genes (polymorphisms) as well as environmental exposures. A proportion of this variation can be accounted for by two alleles of the apoE locus that increase (ε4) and decrease (ε2) cholesterol levels, respectively. A polymorphism at the apoB gene (XbaI) also has similar effects, but is probably not mediated through lipids. High density lipoprotein cholesterol levels are genetically influenced and are related to apoA1 and hepatic lipase (LIPC) gene functions. Mutations in the apoA1 gene are rare and there are data which suggest a role of allelic variation at or linked LIPC gene in high density lipoprotein cholesterol levels. Polymorphism at the apoA1--C3 loci is often associated with hypertriglyceridemia. The apo(a) gene which codes for Lp(a) is highly polymorphic, each allele determining a specific number of multiple tandem repeats of a unique coding sequence known as Kringle 4. The size of the gene correlates with the size of the Lp(a) protein. The smaller the size of the Lp(a) protein, the higher are the Lp(a) levels. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- K Sankaranarayanan
- MGC, Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, Leiden University, Wassenaarseweg 72, 2333 AL, Leiden,
| | | | | |
Collapse
|
37
|
Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20:284-7. [PMID: 9806549 DOI: 10.1038/3099] [Citation(s) in RCA: 916] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The peroxisome proliferator-activated receptor-gamma (PPARgamma) is a transcription factor that has a pivotal role in adipocyte differentiation and expression of adipocyte-specific genes. The PPARgamma1 and gamma2 isoforms result from alternative splicing and have ligand-dependent and -independent activation domains. PPARgamma2 has an additional 28 amino acids at its amino terminus that renders its ligand-independent activation domain 5-10-fold more effective than that of PPARgamma1. Insulin stimulates the ligand-independent activation of PPARgamma1 and gamma2 (ref. 5), however, obesity and nutritional factors only influence the expression of PPARgamma2 in human adipocytes. Here, we report that a relatively common Pro12Ala substitution in PPARgamma2 is associated with lower body mass index (BMI; P=0.027; 0.015) and improved insulin sensitivity among middle-aged and elderly Finns. A significant odds ratio (4.35, P=0.028) for the association of the Pro/Pro genotype with type 2 diabetes was observed among Japanese Americans. The PPARgamma2 Ala allele showed decreased binding affinity to the cognate promoter element and reduced ability to transactivate responsive promoters. These findings suggest that the PPARgamma2 Pro12Ala variant may contribute to the observed variability in BMI and insulin sensitivity in the general population.
Collapse
Affiliation(s)
- S S Deeb
- Department of Medicine, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Knebel B, Kellner S, Kotzka J, Siemeister G, Dreyer M, Streicher R, Schiller M, Rüdiger HW, Seemanova E, Krone W, Müller-Wieland D. Defects of insulin and IGF-1 action at receptor and postreceptor level in a patient with type A syndrome of insulin resistance. Biochem Biophys Res Commun 1997; 234:626-30. [PMID: 9175764 DOI: 10.1006/bbrc.1997.6696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The action of insulin and IGF-1 in comparison to non-diabetic controls was studied in cultured fibroblasts of a patient with an inherited syndrome of insulin resistance (Type A syndrome). Insulin binding was reduced due to decreased receptor affinity, but sequence analyses revealed no alterations of splicing or primary insulin receptor (IR) structure. Most likely due to the IR affinity defect analyses of signal transduction pathways showed an impairment of insulin action on glucose uptake, total RNA synthesis and phosphorylation as well as activity of MAP-kinase. In addition inducibility of c-fos mRNA level was strongly impaired by insulin and IGF-1, but comparable to controls by PDGF indicating a postreceptor defect. In conclusion, we provide evidence that genetic syndromes of insulin resistance can be associated with both, receptor and postreceptor defects.
Collapse
Affiliation(s)
- B Knebel
- Klinik II und Poliklinik für Innere Medizin der Universität zu Köln,Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu X, Sonntag WE. Growth hormone-induced nuclear translocation of Stat-3 decreases with age: modulation by caloric restriction. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E903-9. [PMID: 8944679 DOI: 10.1152/ajpendo.1996.271.5.e903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- X Xu
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27157-1083, USA
| | | |
Collapse
|
40
|
Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A 1996; 93:12490-5. [PMID: 8901609 PMCID: PMC38019 DOI: 10.1073/pnas.93.22.12490] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (AII), acting via its G-protein linked receptor, is an important regulator of cardiac, vascular, and renal function. Following injection of AII into rats, we find that there is also a rapid tyrosine phosphorylation of the major insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) in the heart. This phenomenon appears to involve JAK2 tyrosine kinase, which associates with the AT1 receptor and IRS-1/IRS-2 after AII stimulation. AII-induced phosphorylation leads to binding of phosphatidylinositol 3-kinase (PI 3-kinase) to IRS-1 and IRS-2; however, in contrast to other ligands, AII injection results in an acute inhibition of both basal and insulin-stimulated PI 3-kinase activity. The latter occurs without any reduction in insulin receptor or IRS phosphorylation or in the interaction of the p85 and p110 subunits of PI 3-kinase with each other or with IRS-1/IRS-2. These effects of AII are inhibited by AT1 receptor antagonists. Thus, there is direct cross-talk between insulin and AII signaling pathways at the level of both tyrosine phosphorylation and PI 3-kinase activation. These interactions may play an important role in the association of insulin resistance, hypertension, and cardiovascular disease.
Collapse
Affiliation(s)
- L A Velloso
- Laboratory of Cellular and Molecular Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Varela-Nieto I, León Y, Caro HN. Cell signalling by inositol phosphoglycans from different species. Comp Biochem Physiol B Biochem Mol Biol 1996; 115:223-41. [PMID: 8939003 DOI: 10.1016/0305-0491(96)00087-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The discovery of glycosyl-phosphatidylinositol (GPI) molecules and their products has given new insight into the field of signal transduction. In the last decade a novel mechanism of protein attachment to membranes has emerged, which involves a covalent linkage of the protein to the glycan moiety of a GPI. The discovery that GPI-anchored proteins are ubiquitous throughout the eukaryotes was followed by the observation that uncomplexed GPI molecules are implicated in signal transduction for a diversity of hormones and growth factors. The hydrolysis of free-GPI generates a novel second messenger: the inositol phosphoglycan (IPG). The aim of this article is to review the role of IPG and IPG-like molecules in signal transduction and to discuss future research directions.
Collapse
Affiliation(s)
- I Varela-Nieto
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | | | | |
Collapse
|
42
|
|
43
|
Folli F, Saad MJ, Kahn CR. Insulin receptor/IRS-1/PI 3-kinase signaling system in corticosteroid-induced insulin resistance. Acta Diabetol 1996; 33:185-92. [PMID: 8904923 DOI: 10.1007/bf02048541] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- F Folli
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Vanadium complexes with insulin mimic actions—A second line of protection against diabetes. Indian J Clin Biochem 1996. [DOI: 10.1007/bf02896425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Affiliation(s)
- A A Alzaid
- Riyadh Armed Forces Hospital, Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Søvik O, Vestergaard H, Trygstad O, Pedersen O. Studies of insulin resistance in congenital generalized lipodystrophy. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1996; 413:29-37. [PMID: 8783770 DOI: 10.1111/j.1651-2227.1996.tb14263.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Two well-characterized patients with congenital, generalized lipodystrophy have been studied by the euglycaemic hyperinsulinaemic clamp technique in combination with indirect calorimetry. Furthermore, glycogen synthase in muscle biopsies was studied in one patient with regard to enzyme activity, immunoreactive protein and mRNA levels. The patients had fasting hyperinsulinaemia, and the rate of total glucose disposal was severely impaired, primarily due to a decreased non-oxidative glucose metabolism. In the patient studied with muscle biopsy, the expected activation of glycogen synthase by insulin did not occur. In both patients there was severely increased hepatic glucose output in the basal state, suggesting a failure of insulin to suppress hepatic gluconeogenesis. During insulin infusion a substantially elevated rate of lipid oxidation remained in the patients, in contrast to the almost completely suppressed lipid oxidation in the controls. It is concluded that patients with congenital generalized lipodystrophy may present severe insulin resistance with regard to hepatic glucose production as well as muscle glycogen synthesis and lipid oxidation. The results suggest a postreceptor defect in the action of insulin in congenital generalized lipodystrophy. The further localization of such a defect is hampered by the still incomplete understanding of the pathways that link insulin-stimulated tyrosine phosphorylation to the ultimate action of insulin upon target cells.
Collapse
Affiliation(s)
- O Søvik
- Department of Paediatrics, University Hospital, Bergen, Norway
| | | | | | | |
Collapse
|
47
|
Mendall MA, Patel P, Ballam L, Strachan D, Northfield TC. C reactive protein and its relation to cardiovascular risk factors: a population based cross sectional study. BMJ (CLINICAL RESEARCH ED.) 1996; 312:1061-5. [PMID: 8616412 PMCID: PMC2350910 DOI: 10.1136/bmj.312.7038.1061] [Citation(s) in RCA: 573] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To test the hypothesis that minor chronic insults such as smoking, chronic bronchitis, and two persistent bacterial infections may be associated with increases in C reactive protein concentration within the normal range and that variations in the C reactive protein concentration in turn may be associated with levels of cardiovascular risk factors and chronic coronary heart disease. DESIGN Population based cross sectional study. SETTING General practices in Merton, Sutton, and Wandsworth. SUBJECTS A random sample of 388 men aged 50-69 years from general practice registers. 612 men were invited to attend and 413 attended, of whom 25 non-white men were excluded. The first 303 of the remaining 388 men had full risk factor profiles determined. INTERVENTIONS Measurements of serum C reactive protein concentrations by in house enzyme linked immunosorbent assay (ELISA); other determinations by standard methods. Coronary heart disease was sought by the Rose angina questionnaire and Minnesota coded electrocardiograms. MAIN OUTCOME MEASURES Serum C reactive protein concentrations, cardiovascular risk factor levels, and the presence of coronary heart disease. RESULTS Increasing age, smoking, symptoms of chronic bronchitis, Helicobacter pylori and Chlamydia pneumoniae infections, and body mass index were all associated with raised concentrations of C reactive protein. C Reactive protein concentration was associated with raised serum fibrinogen, sialic acid, total cholesterol, triglyceride, glucose, and apolipoprotein B values. C Reactive protein concentration was negatively associated with high density lipoprotein cholesterol concentration. There was a weaker positive relation with low density lipoprotein cholesterol concentration and no relation with apolipoprotein A I value. C Reactive protein concentration was also strongly associated with coronary heart disease. CONCLUSION The body's response to inflammation may play an important part in influencing the progression of atherosclerosis. The association of C reactive protein concentration with coronary heart disease needs testing in prospective studies.
Collapse
Affiliation(s)
- M A Mendall
- Division of Biochemical Medicine, St George's Medical School, London
| | | | | | | | | |
Collapse
|
48
|
Kalabay L, Mathur S, Bobin S, Arnaud P. Electrophoretic and isoelectric focusing analysis of human recombinant alpha 2-HS glycoprotein produced in insect cells: analysis of the post-translational events. Electrophoresis 1996; 17:529-32. [PMID: 8740174 DOI: 10.1002/elps.1150170320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alpha 2-HS glycoprotein (AHSG) is a human serum glycoprotein synthesized by liver cells. It is a natural inhibitor of the insulin receptor tyrosine kinase activity. We produced this protein in insect cells by using a recombinant baculovirus expressing the whole coding sequence of the protein. By analyzing AHSG on isoelectric focusing and on sodium dodecyl sulfate (SDS) gels, followed by immunoblot, AHSG produced in insect cells was found to be phosphorylated and to possess the connecting peptide between the A and the B chains. The same features were found in the protein produced by Hep3B, a human liver cell line that synthesizes AHSG. By contrast, no phosphorylation could be detected in AHSG present in normal human plasma, and the connecting peptide was clipped. As the protein produced in insect cells is active on insulin receptors, in contrast to the plasma protein, our results suggest that the biological activity of the protein may be associated with its single chain form together with its phosphorylation.
Collapse
Affiliation(s)
- L Kalabay
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29464, USA
| | | | | | | |
Collapse
|
49
|
Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR. In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 1995; 153:217-31. [PMID: 8927042 DOI: 10.1007/bf01075941] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vivo vanadate and vanadyl have been shown to mimic the action of insulin and to be effective treatment for animal models of both Type I and Type II diabetes. The molecular mechanism of action of the vanadium salts on insulin sensitivity remains uncertain, and several potential sites proposed for the insulin-like effects are reviewed. In human trials, insulin sensitivity improved in patients with NIDDM, as well as in some patients with IDDM after two weeks of treatment with sodium metavanadate. This increase in insulin sensitivity was primarily due to an increase in non-oxidative glucose disposal, whereas oxidative glucose disposal and both basal and insulin stimulated suppression of hepatic glucose output (HGP) were unchanged. Clinically, oral vanadate was associated with a small decrease in insulin requirements in IDDM subjects. Of additional benefit, there was a decrease in total cholesterol levels in both IDDM and NIDDM subjects. Furthermore, there was an increase in the basal activities of MAP and S6 kinases to levels similar to the insulin-stimulated levels in controls, but there was little or no further stimulation with insulin was seen. Further understanding of the mechanism of vanadium action may ultimately be useful in the design of drugs that improve glucose tolerance.
Collapse
Affiliation(s)
- A B Goldfine
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Membrane transporter proteins are encoded by numerous genes that can be classified into several superfamilies, on the basis of sequence identity and biological function. Prominent examples include facilitative transporters, the secondary active symporters and antiporters driven by ion gradients, and active ABC (ATP binding cassette) transporters involved in multiple-drug resistance and targeting of antigenic peptides to MHC Class I molecules. Transported substrates range from nutrients and ions to a broad variety of drugs, peptides and proteins. Deleterious mutations of transporter genes may lead to genetic diseases or loss of cell viability. Transporter structure, function and regulation, genetic factors, and pharmaceutical implications are summarized in this review.
Collapse
Affiliation(s)
- W Sadée
- School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|