1
|
Chhabra KH, Shoemaker R, Herath CB, Thomas MC, Filipeanu CM, Lazartigues E. Molecular dissection of the role of ACE2 in glucose homeostasis. Physiol Rev 2025; 105:935-973. [PMID: 39918873 PMCID: PMC12124467 DOI: 10.1152/physrev.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) was discovered 25 years ago as a negative regulator of the renin-angiotensin system, opposing the effects of angiotensin II. Beyond its well-demonstrated roles in cardiovascular regulation and COVID-19 pathology, ACE2 is involved in a plethora of physiopathological processes. In this review, we summarize the latest discoveries on the role of ACE2 in glucose homeostasis and regulation of metabolism. In the endocrine pancreas, ACE2 is expressed at low levels in β-cells, but loss of its expression inhibits glucose-stimulated insulin secretion and impairs glucose tolerance. Conversely, overexpression of ACE2 improved glycemia, suggesting that recombinant ACE2 might be a future therapy for diabetes. In the skeletal muscle of ACE2-deficient mice a progressive triglyceride accumulation was observed, whereas in diabetic kidney the initial increase in ACE2 is followed by a chronic reduction of expression in kidney tubules and impairment of glucose metabolism. At the intestinal level dysregulation of the enzyme alters the amino acid absorption and intestinal microbiome, whereas at the hepatic level ACE2 protects against diabetic fatty liver disease. Not least, ACE2 is upregulated in adipocytes in response to nutritional stimuli, and administration of recombinant ACE2 decreased body weight and increased thermogenesis. In addition to tissue-specific regulation of ACE2 function, the enzyme undergoes complex cellular posttranslational modifications that are changed during diabetes evolution, with at least proteolytic cleavage and ubiquitination leading to modifications in ACE2 activity. Detailed characterization of ACE2 in a cellular and tissue-specific manner holds promise for improving therapeutic outcomes in diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Robin Shoemaker
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky, United States
| | - Chandana B Herath
- Department of Medicine, Melbourne Medical School, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Merlin C Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Catalin M Filipeanu
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Wong A, Alejandro EU. Post translational modification regulation of transcription factors governing pancreatic β-cell identity and functional mass. Front Endocrinol (Lausanne) 2025; 16:1562646. [PMID: 40134803 PMCID: PMC11932907 DOI: 10.3389/fendo.2025.1562646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Dysfunction of the insulin-secreting β-cells is a key hallmark of Type 2 diabetes (T2D). In the natural history of the progression of T2D, factors such as genetics, early life exposures, lifestyle, and obesity dictate an individual's susceptibility risk to disease. Obesity is associated with insulin resistance and increased demand for insulin to maintain glucose homeostasis. Studies in both mouse and human islets have implicated the β-cell's ability to compensate through proliferation and survival (increasing functional β-cell mass) as a tipping point toward the development of disease. A growing body of evidence suggests the reduction of β-cell mass in T2D is driven majorly by loss of β-cell identity, rather than by apoptosis alone. The development and maintenance of pancreatic β-cell identity, function, and adaptation to stress is governed, in part, by the spatiotemporal expression of transcription factors (TFs), whose activity is regulated by signal-dependent post-translational modifications (PTM). In this review, we examine the role of these TFs in the developing pancreas and in the mature β-cell. We discuss functional implications of post-translational modifications on these transcription factors' activities and how an understanding of the pathways they regulate can inform therapies to promoteβ-cell regeneration, proliferation, and survival in diabetes.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
3
|
Franks PW, Rich SS, Linder B, Zaghloul NA, Cefalu WT. A Research Roadmap to Address the Heterogeneity of Diabetes and Advance Precision Medicine. J Clin Endocrinol Metab 2025; 110:601-610. [PMID: 39657245 PMCID: PMC12063085 DOI: 10.1210/clinem/dgae844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
The current classification of diabetes had its genesis over 85 years ago, when individuals with diabetes were first subclassified into insulin sensitive and insulin insensitive states based on the response to an oral glucose tolerance test. About 35 years later, the contemporary classifications of type 1 and type 2 diabetes were coined. Today's evidence, however, suggests that multiple etiologic and pathogenic processes lead to both type 1 and type 2 diabetes, reflecting significant heterogeneity in factors associated with initiation, progression, and clinical presentation of each disorder of glucose homeostasis. Further, the current classification fails to recognize what is currently defined as "atypical" diabetes. Heterogeneity of diabetes continues through the life-course of an individual, with modification of prognosis risk (eg, diabetic complications) altered by genetics, life experience, comorbidities, and therapy. Understanding the sources of heterogeneity in diabetes will likely improve diagnosis, prevention, treatment, and prediction of complications in both the medical and public health settings. Such knowledge will help inform progress in the emerging era of precision diabetes medicine. This article presents NIDDK's Heterogeneity of Diabetes Initiative and a corresponding roadmap for future research in type 2 diabetes heterogeneity.
Collapse
Affiliation(s)
- Paul W Franks
- Department of Clinical Sciences, Lund University, Helsingborg Hospital, Helsingborg 251 87, Sweden
| | - Stephen S Rich
- Department of Genome Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Barbara Linder
- Division of Diabetes, Endocrinology & Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norann A Zaghloul
- Division of Diabetes, Endocrinology & Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William T Cefalu
- Division of Diabetes, Endocrinology & Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Le Collen L, Froguel P, Bonnefond A. Towards the recognition of oligogenic forms of type 2 diabetes. Trends Endocrinol Metab 2025; 36:109-117. [PMID: 38955653 DOI: 10.1016/j.tem.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
The demarcation between monogenic and polygenic type 2 diabetes (T2D) is less distinct than previously believed. Notably, recent research has highlighted a new entity, that we suggest calling oligogenic forms of T2D, serving as a genetic link between these two forms. In this opinion article, we have reviewed scientific advances that suggest categorizing genes involved in oligogenic T2D. Research focused on polygenic T2D has faced challenges in deepening our comprehension of the pathophysiology of T2D due to the inability to directly establish causal links between a signal and the molecular mechanisms underlying the disease. However, the study of oligogenic forms of T2D has illuminated distinct causal connections between genes and disease risk, thereby indicating potential new drug targets.
Collapse
Affiliation(s)
- Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France
| | - Philippe Froguel
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK
| | - Amélie Bonnefond
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille University Hospital, Lille, France; University of Lille, Lille, France; Department of Metabolism, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
5
|
Bonnefond A, Florez JC, Loos RJF, Froguel P. Dissection of type 2 diabetes: a genetic perspective. Lancet Diabetes Endocrinol 2025; 13:149-164. [PMID: 39818223 DOI: 10.1016/s2213-8587(24)00339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025]
Abstract
Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome. Although obesity and a sedentary lifestyle are considerable contributors, research over the last 25 years has shown that type 2 diabetes develops on a predisposing genetic background, with family and twin studies indicating considerable heritability (ie, 31-72%). This Review explores type 2 diabetes from a genetic perspective, highlighting insights into its pathophysiology and the implications for precision medicine. More specifically, the traditional understanding of type 2 diabetes genetics has focused on a dichotomy between monogenic and polygenic forms. However, emerging evidence suggests a continuum that includes monogenic, oligogenic, and polygenic contributions, revealing their complementary roles in type 2 diabetes pathophysiology. Recent genetic studies provide deeper insights into disease mechanisms and pave the way for precision medicine approaches that could transform type 2 diabetes management. Additionally, the effect of environmental factors on type 2 diabetes, particularly from epigenetic modifications, adds another layer of complexity to understanding and addressing this multifaceted disease.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philippe Froguel
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
6
|
Tong A, Wang D, Jia N, Zheng Y, Qiu Y, Chen W, El-Seed HR, Zhao C. Algal Active Ingredients and Their Involvement in Managing Diabetic Mellitus. BIOLOGY 2024; 13:904. [PMID: 39596859 PMCID: PMC11591677 DOI: 10.3390/biology13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Diabetes mellitus (DM) is becoming increasingly prominent, posing a serious threat to human health. Its prevalence is rising every year, and often affects young people. In the past few decades, research on marine algae has been recognized as a major field of drug discovery. Seaweed active substances, including algal polysaccharides, algal polyphenols, algal unsaturated fatty acids, and algal dietary fiber, have unique biological activities. This article reviews the effects and mechanisms of the types, structures, and compositions of seaweed on inhibiting glucose and lipid metabolism disorders, with a focus on the inhibitory effect of active substances on blood glucose reduction. The aim is to provide a basis for the development of seaweed active substance hypoglycemic drugs.
Collapse
Affiliation(s)
- Aijun Tong
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China;
| | - Dengwei Wang
- Department of Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China;
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
| | - Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusong Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hesham R. El-Seed
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Sánchez-Cazorla E, Carrera N, García-González MÁ. HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis. Int J Mol Sci 2024; 25:10609. [PMID: 39408938 PMCID: PMC11476927 DOI: 10.3390/ijms251910609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype-phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Miguel Ángel García-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Maagensen H, Hædersdal S, Krogh J, Hansen T, Knop FK, Thuesen ACB, Vilsbøll T. Clinical effects of SGLT2 inhibitors in seven persons with HNF1A-MODY (MODY3). Diabet Med 2024; 41:e15387. [PMID: 38875310 DOI: 10.1111/dme.15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Affiliation(s)
- Henrik Maagensen
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Hellerup, Denmark
| | - Sofie Hædersdal
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Hellerup, Denmark
| | - Jesper Krogh
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Medicine, Clinic for Pituitary Disorders, Zealand University Hospital, Køge, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Cathrine Baun Thuesen
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Ka M, Hawkins E, Pouponnot C, Duvillié B. Modelling human diabetes ex vivo: a glance at maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2024; 15:1427413. [PMID: 39387055 PMCID: PMC11461259 DOI: 10.3389/fendo.2024.1427413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes is a complex metabolic disease which most commonly has a polygenic origin; however, in rare cases, diabetes may be monogenic. This is indeed the case in both Maturity Onset Diabetes of the Young (MODY) and neonatal diabetes. These disease subtypes are believed to be simpler than Type 1 (T1D) and Type 2 Diabetes (T2D), which allows for more precise modelling. During the three last decades, many studies have focused on rodent models. These investigations provided a wealth of knowledge on both pancreas development and beta cell function. In particular, they allowed the establishment of a hierarchy of the transcription factors and highlighted the role of microenvironmental factors in the control of progenitor cell proliferation and differentiation. Transgenic mice also offered the possibility to decipher the mechanisms that define the functional identity of the pancreatic beta cells. Despite such interest in transgenic mice, recent data have also indicated that important differences exist between mice and human. To overcome these limitations, new human models are necessary. In the present review, we describe these ex vivo models, which are created using stem cells and organoids, and represent an important step toward islet cell therapy and drug discovery.
Collapse
Affiliation(s)
- Moustapha Ka
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Eleanor Hawkins
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Celio Pouponnot
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Bertrand Duvillié
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| |
Collapse
|
10
|
Hasballa I, Maggi D. MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants. Int J Mol Sci 2024; 25:8790. [PMID: 39201476 PMCID: PMC11354648 DOI: 10.3390/ijms25168790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY) represents the most frequent form of monogenic diabetes mellitus (DM), currently classified in 14 distinct subtypes according to single gene mutations involved in the differentiation and function of pancreatic β-cells. A significant proportion of MODY has unknown etiology, suggesting that the genetic landscape is still to be explored. Recently, novel potentially MODY-causal genes, involved in the differentiation and function of β-cells, have been identified, such as RFX6, NKX2.2, NKX6.1, WFS1, PCBD1, MTOR, TBC1D4, CACNA1E, MNX1, AKT2, NEUROG3, EIF2AK3, GLIS3, HADH, and PTF1A. Genetic and clinical features of MODY variants remain highly heterogeneous, with no direct genotype-phenotype correlation, especially in the low-penetrant subtypes. This is a narrative review of the literature aimed at describing the current state-of-the-art of the novel likely MODY-associated variants. For a deeper understanding of MODY complexity, we also report some related controversies concerning the etiological role of some of the well-known pathological genes and MODY inheritance pattern, as well as the rare association of MODY with autoimmune diabetes. Due to the limited data available, the assessment of MODY-related genes pathogenicity remains challenging, especially in the setting of rare and low-penetrant subtypes. In consideration of the crucial importance of an accurate diagnosis, prognosis and management of MODY, more studies are warranted to further investigate its genetic landscape and the genotype-phenotype correlation, as well as the pathogenetic contribution of the nongenetic modifiers in this cohort of patients.
Collapse
Affiliation(s)
- Iderina Hasballa
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Diabetes Clinic, IRCCS Ospedale Policlinico San Martino Genoa, 16132 Genoa, Italy
| |
Collapse
|
11
|
Nammo T, Funahashi N, Udagawa H, Kozawa J, Nakano K, Shimizu Y, Okamura T, Kawaguchi M, Uebanso T, Nishimura W, Hiramoto M, Shimomura I, Yasuda K. Single-housing-induced islet epigenomic changes are related to polymorphisms in diabetic KK mice. Life Sci Alliance 2024; 7:e202302099. [PMID: 38876803 PMCID: PMC11178941 DOI: 10.26508/lsa.202302099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024] Open
Abstract
A lack of social relationships is increasingly recognized as a type 2 diabetes (T2D) risk. To investigate the underlying mechanism, we used male KK mice, an inbred strain with spontaneous diabetes. Given the association between living alone and T2D risk in humans, we divided the non-diabetic mice into singly housed (KK-SH) and group-housed control mice. Around the onset of diabetes in KK-SH mice, we compared H3K27ac ChIP-Seq with RNA-Seq using pancreatic islets derived from each experimental group, revealing a positive correlation between single-housing-induced changes in H3K27ac and gene expression levels. In particular, single-housing-induced H3K27ac decreases revealed a significant association with islet cell functions and GWAS loci for T2D and related diseases, with significant enrichment of binding motifs for transcription factors representative of human diabetes. Although these H3K27ac regions were preferentially localized to a polymorphic genomic background, SNVs and indels did not cause sequence disruption of enriched transcription factor motifs in most of these elements. These results suggest alternative roles of genetic variants in environment-dependent epigenomic changes and provide insights into the complex mode of disease inheritance.
Collapse
Affiliation(s)
- Takao Nammo
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuaki Funahashi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, Chigasaki, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Miho Kawaguchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Uebanso
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Wataru Nishimura
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Chiba, Japan
- Division of Anatomy, Bio-Imaging and Neuro-cell Science, Jichi Medical University, Tochigi, Japan
| | - Masaki Hiramoto
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Mathisen AF, Legøy TA, Larsen U, Unger L, Abadpour S, Paulo JA, Scholz H, Ghila L, Chera S. The age-dependent regulation of pancreatic islet landscape is fueled by a HNF1a-immune signaling loop. Mech Ageing Dev 2024; 220:111951. [PMID: 38825059 DOI: 10.1016/j.mad.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Animal longevity is a function of global vital organ functionality and, consequently, a complex polygenic trait. Yet, monogenic regulators controlling overall or organ-specific ageing exist, owing their conservation to their function in growth and development. Here, by using pathway analysis combined with wet-biology methods on several dynamic timelines, we identified Hnf1a as a novel master regulator of the maturation and ageing in the adult pancreatic islet during the first year of life. Conditional transgenic mice bearing suboptimal levels of this transcription factor in the pancreatic islets displayed age-dependent changes, with a profile echoing precocious maturation. Additionally, the comparative pathway analysis revealed a link between Hnf1a age-dependent regulation and immune signaling, which was confirmed in the ageing timeline of an overly immunodeficient mouse model. Last, the global proteome analysis of human islets spanning three decades of life largely backed the age-specific regulation observed in mice. Collectively, our results suggest a novel role of Hnf1a as a monogenic regulator of the maturation and ageing process in the pancreatic islet via a direct or indirect regulatory loop with immune signaling.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Norway; Institute for Surgical Research, Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Abel ED, Gloyn AL, Evans-Molina C, Joseph JJ, Misra S, Pajvani UB, Simcox J, Susztak K, Drucker DJ. Diabetes mellitus-Progress and opportunities in the evolving epidemic. Cell 2024; 187:3789-3820. [PMID: 39059357 PMCID: PMC11299851 DOI: 10.1016/j.cell.2024.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes, a complex multisystem metabolic disorder characterized by hyperglycemia, leads to complications that reduce quality of life and increase mortality. Diabetes pathophysiology includes dysfunction of beta cells, adipose tissue, skeletal muscle, and liver. Type 1 diabetes (T1D) results from immune-mediated beta cell destruction. The more prevalent type 2 diabetes (T2D) is a heterogeneous disorder characterized by varying degrees of beta cell dysfunction in concert with insulin resistance. The strong association between obesity and T2D involves pathways regulated by the central nervous system governing food intake and energy expenditure, integrating inputs from peripheral organs and the environment. The risk of developing diabetes or its complications represents interactions between genetic susceptibility and environmental factors, including the availability of nutritious food and other social determinants of health. This perspective reviews recent advances in understanding the pathophysiology and treatment of diabetes and its complications, which could alter the course of this prevalent disorder.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Anna L Gloyn
- Department of Pediatrics, Division of Endocrinology & Diabetes, Department of Genetics, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shivani Misra
- Department of Metabolism, Digestion and Reproduction, Imperial College London, and Imperial College NHS Trust, London, UK
| | - Utpal B Pajvani
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Ng NHJ, Ghosh S, Bok CM, Ching C, Low BSJ, Chen JT, Lim E, Miserendino MC, Tan YS, Hoon S, Teo AKK. HNF4A and HNF1A exhibit tissue specific target gene regulation in pancreatic beta cells and hepatocytes. Nat Commun 2024; 15:4288. [PMID: 38909044 PMCID: PMC11193738 DOI: 10.1038/s41467-024-48647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/08/2024] [Indexed: 06/24/2024] Open
Abstract
HNF4A and HNF1A encode transcription factors that are important for the development and function of the pancreas and liver. Mutations in both genes have been directly linked to Maturity Onset Diabetes of the Young (MODY) and type 2 diabetes (T2D) risk. To better define the pleiotropic gene regulatory roles of HNF4A and HNF1A, we generated a comprehensive genome-wide map of their binding targets in pancreatic and hepatic cells using ChIP-Seq. HNF4A was found to bind and regulate known (ACY3, HAAO, HNF1A, MAP3K11) and previously unidentified (ABCD3, CDKN2AIP, USH1C, VIL1) loci in a tissue-dependent manner. Functional follow-up highlighted a potential role for HAAO and USH1C as regulators of beta cell function. Unlike the loss-of-function HNF4A/MODY1 variant I271fs, the T2D-associated HNF4A variant (rs1800961) was found to activate AKAP1, GAD2 and HOPX gene expression, potentially due to changes in DNA-binding affinity. We also found HNF1A to bind to and regulate GPR39 expression in beta cells. Overall, our studies provide a rich resource for uncovering downstream molecular targets of HNF4A and HNF1A that may contribute to beta cell or hepatic cell (dys)function, and set up a framework for gene discovery and functional validation.
Collapse
Affiliation(s)
- Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Chek Mei Bok
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Blaise Su Jun Low
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Juin Ting Chen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Euodia Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - María Clara Miserendino
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, IMCB, A*STAR, Singapore, 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
- Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
15
|
Crowley MT, Paponette B, Bacon S, Byrne MM. Management of pregnancy in women with monogenic diabetes due to mutations in GCK, HNF1A and HNF4A genes. Front Genet 2024; 15:1362977. [PMID: 38933924 PMCID: PMC11199717 DOI: 10.3389/fgene.2024.1362977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Women with maturity-onset diabetes of the young (MODY) need tailored antenatal care and monitoring of their offspring. Each MODY subtype has different implications for glycaemic targets, treatment choices and neonatal management. Hyperglycaemia of MODY is often first diagnosed in adolescence or early adulthood and therefore is clinically relevant to pregnant women. MODY remains an under-recognised and undiagnosed condition. Pregnancy represents an opportune time to make a genetic diagnosis of MODY and provide precision treatment. This review describes the nuance of antenatal care in women with MODY and the implications for pregnancies affected by a positive paternal genotype. Mutations in hepatic nuclear factor 1-alpha (HNF1A) and 4-alpha (HNF4A) genes are associated with progressive β-cell dysfunction resulting in early onset diabetes. Patients are largely managed with sulphonylureas outside of pregnancy. Macrosomia and persistent neonatal hypoglycaemia are reported in 54% and 15% of HNF4A genotype positive offspring respectively with a median increase in birthweight of 790 g. Close observation of foetal growth in utero allows optimal timing of delivery to minimise peri- and postpartum materno-foetal complications. Glucokinase (GCK)-MODY causes mild fasting hyperglycaemia which does not require treatment outside of pregnancy. Birthweight of offspring of maternal carriers is dependent on foetal genotype; heterozygous mutation carriers are usually normal weight while genotype negative offspring are large for gestational age (600 g heavier). Affected offspring of paternal carriers may be small for gestational age (500 g lighter). Serial growth scans with measurement of the abdominal circumference indirectly differentiate foetal genotype. Measurement of cell free foetal DNA in maternal blood from the late first trimester is superior to traditionally used ultrasound to distinguish foetal genotype. Cost and accessibility may limit its use.
Collapse
Affiliation(s)
- M. T. Crowley
- Department of Endocrinology and Diabetes, Mater Misericordiae University Hospital, Dublin, Ireland
| | - B. Paponette
- Department of Endocrinology and Diabetes, Sligo University Hospital, Sligo, Ireland
| | - S. Bacon
- Department of Endocrinology and Diabetes, Sligo University Hospital, Sligo, Ireland
| | - M. M. Byrne
- Department of Endocrinology and Diabetes, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
16
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. eLife 2024; 12:RP89967. [PMID: 38700926 PMCID: PMC11068355 DOI: 10.7554/elife.89967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.
Collapse
Affiliation(s)
- Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jinsun Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Soma Behera
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | | | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
17
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
18
|
Konkwo C, Chowdhury S, Vilarinho S. Genetics of liver disease in adults. Hepatol Commun 2024; 8:e0408. [PMID: 38551385 PMCID: PMC10984672 DOI: 10.1097/hc9.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic liver disease stands as a significant global health problem with an estimated 2 million annual deaths across the globe. Combining the use of next-generation sequencing technologies with evolving knowledge in the interpretation of genetic variation across the human genome is propelling our understanding, diagnosis, and management of both rare and common liver diseases. Here, we review the contribution of risk and protective alleles to common forms of liver disease, the rising number of monogenic diseases affecting the liver, and the role of somatic genetic variants in the onset and progression of oncological and non-oncological liver diseases. The incorporation of genomic information in the diagnosis and management of patients with liver disease is driving the beginning of a new era of genomics-informed clinical hepatology practice, facilitating personalized medicine, and improving patient care.
Collapse
Affiliation(s)
- Chigoziri Konkwo
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shanin Chowdhury
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Wen KW, Kakar S. Hepatic Precancerous Lesions and Early Hepatocellular Carcinoma. Gastroenterol Clin North Am 2024; 53:109-132. [PMID: 38280744 DOI: 10.1016/j.gtc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This review discusses the diagnostic challenges of diagnosing and treating precursor lesions of hepatocellular carcinoma (HCC) in both cirrhotic and non-cirrhotic livers. The distinction of high-grade dysplastic nodule (the primary precursor lesion in cirrhotic liver) from early HCC is emphasized based on morphologic, immunohistochemical, and genomic features. The risk factors associated with HCC in hepatocellular adenomas (precursor lesion in non-cirrhotic liver) are delineated, and the risk in different subtypes is discussed with emphasis on terminology, diagnosis, and genomic features.
Collapse
Affiliation(s)
- Kwun Wah Wen
- 505 Parnassus Avenue, M545, Box #0102, San Francisco, CA 94143, USA.
| | - Sanjay Kakar
- 505 Parnassus Avenue, M545, Box #0102, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545631. [PMID: 37546831 PMCID: PMC10401960 DOI: 10.1101/2023.06.20.545631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The gain-of-function mutation in the TALK-1 K + channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion (GSIS). The KCNK16 gene encoding TALK-1, is the most abundant and β-cell-restricted K + channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the mixed C57BL/6J:CD-1(ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K + currents resulting in blunted glucose-stimulated Ca 2+ entry and loss of glucose-induced Ca 2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impaired glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet hormone secretion during development. These data strongly suggest that TALK-1 is an islet-restricted target for the treatment of diabetes.
Collapse
|
21
|
Mancera-Rincón P, Luna-España MC, Rincon O, Guzmán I, Alvarez M. Maturity-onset Diabetes of the Young Type 7 (MODY7) and the Krüppellike Factor 11 Mutation (KLF11). A Review. Curr Diabetes Rev 2024; 20:e210323214817. [PMID: 36944622 DOI: 10.2174/1573399819666230321114456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) is a rare disease due to a single gene mutation that affects several family members in most cases. The Krüppel-like factor 11 (KLF11) gene mutation is associated with decreased insulin sensitivity to high glucose levels. KLF 11 has been implicated in the pathogenesis of MODY type 7 but given its low prevalence, prolonged subclinical period, and the emergence of new information, doubts are raised about its association. METHODS A literature search of the PubMed, Scopus, and EBSCO databases was performed. The terms "Diabetes Mellitus, Type 2/genetics", "Mason-Type Diabetes" , "Maturity-Onset diabetes of the young", "KLF11 protein, human", and "Maturity-Onset Diabetes of the Young, Type 7" were used"., "Diagnosis" The search selection was not standardized. RESULTS The KLF1 mutation is rare and represents <1% of the mutations associated with monogenic diabetes. Its isolation in European family lines in the first studies and the emergence of new variants pose new diagnostic challenges. This article reviews the definition, epidemiology, pathophysiology, diagnosis, and treatment of MODY type 7. CONCLUSION MODY type 7 diabetes represents a rare form of monogenic diabetes with incomplete penetrance. Given its rarity, its association with impaired glucose metabolism has been questioned. Strict evaluation of glycemic control and the appearance of microvascular complications are key areas in the follow-up of patients diagnosed with MODY 7. More studies will be required to characterize the population with KLF11 mutation and clarify its correlation with MODY.
Collapse
Affiliation(s)
| | | | - Oswaldo Rincon
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| | - Issac Guzmán
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| | - Mauricio Alvarez
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| |
Collapse
|
22
|
Hoff FW, Xing C, Simha V, Agarwal AK, Zhang X, Lekkala L, Vaishnav MS, Vuitch F, Garg A. Early-onset diabetes mellitus as a presenting feature of Werner's syndrome in an Indian family. Mol Genet Genomic Med 2024; 12:e2299. [PMID: 37815015 PMCID: PMC10767583 DOI: 10.1002/mgg3.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) in children and adolescents is typically caused by type 1 DM, followed by type 2 DM and maturity-onset diabetes of the young (MODY). We report an unusual Asian Indian family in which three members presented with DM at ages 15, 20, and 30, but not fitting the typical clinical picture of type 1 DM, type 2 DM, or MODY. The primary objective was to elucidate the molecular genetic basis of DM in this family. METHODS The proband, a 22-year-old man, had short stature, gray hair, osteoporosis, and markedly reduced subcutaneous fat on the body, especially on the extremities along with acanthosis nigricans, and developed myxoid malignant peripheral nerve sheath tumor. Detailed family history revealed multiple loops of consanguinity. The proband underwent whole-genome sequencing, and seven relatives underwent whole-exome sequencing. RESULTS The proband and three additional family members were found to have the homozygous c.561A>G nucleotide variant of WRN RecQ-like helicase (WRN) gene consistent with the diagnosis of Werner's syndrome. The c.561A>G variant induces a new splicing site on exon 6 resulting in a truncated WRN protein, p.Lys187Trpfs*13. CONCLUSION Our report brings to attention the onset of DM during childhood or early adulthood in patients with Werner's syndrome who typically develop type 2 DM around the age of 30-40 years. Presence of consanguinity among parents, dysmorphic features, and malignancy should prompt consideration of diagnosis of Werner's syndrome.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chao Xing
- McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Vinaya Simha
- Division of EndocrinologyMayo ClinicRochesterMinnesotaUSA
| | - Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine and the Center for Human NutritionUniversity of Texas Southwestern Medical CenterTexasDallasUSA
| | - Xunzhi Zhang
- McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Leena Lekkala
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical CenterBengaluruIndia
| | - Madhumati S. Vaishnav
- Samatvam Endocrinology Diabetes Center, Jnana Sanjeevini Diabetes Hospital and Medical CenterBengaluruIndia
- Center for Nano Science and Engineering, Indian Institute of ScienceBengaluruIndia
| | - Frank Vuitch
- Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine and the Center for Human NutritionUniversity of Texas Southwestern Medical CenterTexasDallasUSA
| |
Collapse
|
23
|
Szczerbinski L, Florez JC. Precision medicine in diabetes - current trends and future directions. Is the future now? COMPREHENSIVE PRECISION MEDICINE 2024:458-483. [DOI: 10.1016/b978-0-12-824010-6.00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
25
|
Mozhui K, Kim H, Villani F, Haghani A, Sen S, Horvath S. Pleiotropic influence of DNA methylation QTLs on physiological and ageing traits. Epigenetics 2023; 18:2252631. [PMID: 37691384 PMCID: PMC10496549 DOI: 10.1080/15592294.2023.2252631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is influenced by genetic and non-genetic factors. Here, we chart quantitative trait loci (QTLs) that modulate levels of methylation at highly conserved CpGs using liver methylome data from mouse strains belonging to the BXD family. A regulatory hotspot on chromosome 5 had the highest density of trans-acting methylation QTLs (trans-meQTLs) associated with multiple distant CpGs. We refer to this locus as meQTL.5a. Trans-modulated CpGs showed age-dependent changes and were enriched in developmental genes, including several members of the MODY pathway (maturity onset diabetes of the young). The joint modulation by genotype and ageing resulted in a more 'aged methylome' for BXD strains that inherited the DBA/2J parental allele at meQTL.5a. Further, several gene expression traits, body weight, and lipid levels mapped to meQTL.5a, and there was a modest linkage with lifespan. DNA binding motif and protein-protein interaction enrichment analyses identified the hepatic nuclear factor, Hnf1a (MODY3 gene in humans), as a strong candidate. The pleiotropic effects of meQTL.5a could contribute to variations in body size and metabolic traits, and influence CpG methylation and epigenetic ageing that could have an impact on lifespan.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hyeonju Kim
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Kim H, Kim HY, Kim JH, Seo SH, Park KU. Novel pathogenic PDX1 gene variant in a Korean family with maturity-onset diabetes of the young. Cold Spring Harb Mol Case Stud 2023; 9:a006305. [PMID: 37652665 PMCID: PMC10815283 DOI: 10.1101/mcs.a006305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
The diagnosis of maturity-onset diabetes of the young (MODY), a monogenic form of diabetes mellitus caused by a mutation in a single gene, is often uncertain until genetic testing is performed. We report a 13-yr-old Korean boy who was initially diagnosed with type 2 diabetes (T2DM). MODY was suspected because of his nonobese body habitus and family history of multiple affected members. Targeted panel sequencing of all MODY-related genes was performed using the NextSeq 550Dx platform (Illumina). Sanger sequencing was performed using blood samples from the parents, siblings, and other relatives. A frameshift variant in the 3' region of the last exon of PDX1 was detected in the patient and his family members with diabetes. PP1_Moderate criterion was applied and this variant was confirmed to be the genetic cause of diabetes in the family and classified as likely pathogenic. The study highlights the importance of genetic testing for nonobese, early-onset diabetic patients with multiple affected family members. Increased awareness and aggressive genetic testing for MODY are needed.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hwa Young Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea;
| | - Kyung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
27
|
Liu M, Liu L, Guo H, Fan X, Liu T, Xu C, He Z, Song Y, Gao L, Shao S, Zhao J, Lu P. Dominant-negative HNF1α mutant promotes liver steatosis and inflammation by regulating hepatic complement factor D. iScience 2023; 26:108018. [PMID: 37841581 PMCID: PMC10568430 DOI: 10.1016/j.isci.2023.108018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Patients with HNF1A variants may develop liver steatosis, while the underlying mechanism is still unclear. Here, we established a mouse model carrying the dominant-negative HNF1α P291fsinsC mutation (hHNF1Amut/-) and found that the mutant mice developed liver steatosis spontaneously under the normal chow diet. Transcriptome analysis showed significant upregulation of Cfd and other genes related to innate immune response in the liver of hHNF1Amut/- mice. The changes in lipid metabolism and complement pathways were also confirmed by proteomics. We demonstrated that HNF1α inhibited CFD expression in hepatocytes, and the P291fsinsC mutant could reverse this inhibitory effect. Furthermore, the suppression of CFD with specific inhibitor or siRNAs reduced triglyceride levels in hepatocytes, suggesting that CFD regulated hepatocyte lipid deposition. Our results demonstrate that the HNF1α P291fsinsC mutant promotes hepatic steatosis and inflammation by upregulating CFD expression, and targeting CFD may delay the progression of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Moke Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Luna Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Honglin Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiude Fan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Tianbao Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Chao Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Zhao He
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Yongfeng Song
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan 250021, China
| | - Peng Lu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan 250021, China
| |
Collapse
|
28
|
Chu Y, Zhao L, Liu X, Chen H, Zhao C, Chen S, Xiang S, Lu J, Wang X, Wan Y, Dong D, Yao S, Li C, Yin R, Ren G, Yang X, Yu M. Lysine 117 Residue Is Essential for the Function of the Hepatocyte Nuclear Factor 1α. Diabetes 2023; 72:1502-1516. [PMID: 37440709 DOI: 10.2337/db22-0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Hepatocyte nuclear factor 1α (HNF1α) plays essential roles in controlling development and metabolism; its mutations are clearly linked to the occurrence of maturity-onset diabetes of the young (MODY3) in humans. Lysine 117 (K117) to glutamic acid (E117) mutation in the HNF1α gene has been clinically associated with MODY3, but no functional data on this variant are available. Here, we addressed the role of lysine 117 in HNF1α function using a knock-in animal model and site-directed mutagenesis. HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. These phenotypes were very similar to those of mice with complete HNF1α deficiency, suggesting that K117 is critical to HNF1α functions. K117E homozygotes developed diabetes in the early postnatal period. The relative deficiency of serum insulin levels and the normal response to insulin treatment in homozygous mice were markedly similar to those in the MODY3 disorder in humans. Moreover, K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of MODY3 as well. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization. Collectively, our findings reveal a previously unappreciated role of POU domain of HNF1α in homodimerization and provide important clues for identifying the molecular basis of HNF1α-related diseases such as MODY3. ARTICLE HIGHLIGHTS HNF1α K117E homozygous mice exhibited dwarfism, hepatic dysfunction, renal Fanconi syndrome, and progressive wasting syndrome. K117E homozygotes developed diabetes in the early postnatal period. K117E heterozygous mutant causes age-dependent glucose intolerance, which is similar to the pathogenesis of maturity-onset diabetes of the young. K117 mutants significantly reduced the overall transactivation and DNA binding capacity of HNF1α by disrupting dimerization.
Collapse
Affiliation(s)
- Yuan Chu
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Long Zhao
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Chen Zhao
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Sicong Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Shensi Xiang
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jun Lu
- Hepatology and Cancer Biotherapy Ward, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaofang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Institute of Life Sciences, He Bei University, Baoding, China
| | - Yue Wan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medical Sciences, An Hui Medical University, Hefei, China
| | - Diandian Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Institute of Life Sciences, He Bei University, Baoding, China
| | - Songhui Yao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medical Sciences, An Hui Medical University, Hefei, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Guangming Ren
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Institute of Life Sciences, He Bei University, Baoding, China
- School of Basic Medical Sciences, An Hui Medical University, Hefei, China
| |
Collapse
|
29
|
DeForest N, Kavitha B, Hu S, Isaac R, Krohn L, Wang M, Du X, De Arruda Saldanha C, Gylys J, Merli E, Abagyan R, Najmi L, Mohan V, Alnylam Human Genetics, AMP-T2D Consortium, Flannick J, Peloso GM, Gordts PL, Heinz S, Deaton AM, Khera AV, Olefsky J, Radha V, Majithia AR. Human gain-of-function variants in HNF1A confer protection from diabetes but independently increase hepatic secretion of atherogenic lipoproteins. CELL GENOMICS 2023; 3:100339. [PMID: 37492105 PMCID: PMC10363808 DOI: 10.1016/j.xgen.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 07/27/2023]
Abstract
Loss-of-function mutations in hepatocyte nuclear factor 1A (HNF1A) are known to cause rare forms of diabetes and alter hepatic physiology through unclear mechanisms. In the general population, 1:100 individuals carry a rare, protein-coding HNF1A variant, most of unknown functional consequence. To characterize the full allelic series, we performed deep mutational scanning of 11,970 protein-coding HNF1A variants in human hepatocytes and clinical correlation with 553,246 exome-sequenced individuals. Surprisingly, we found that ∼1:5 rare protein-coding HNF1A variants in the general population cause molecular gain of function (GOF), increasing the transcriptional activity of HNF1A by up to 50% and conferring protection from type 2 diabetes (odds ratio [OR] = 0.77, p = 0.007). Increased hepatic expression of HNF1A promoted a pro-atherogenic serum profile mediated in part by enhanced transcription of risk genes including ANGPTL3 and PCSK9. In summary, ∼1:300 individuals carry a GOF variant in HNF1A that protects carriers from diabetes but enhances hepatic secretion of atherogenic lipoproteins.
Collapse
Affiliation(s)
- Natalie DeForest
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Babu Kavitha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Affiliated with University of Madras, Chennai, India
| | - Siqi Hu
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roi Isaac
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Minxian Wang
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaomi Du
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Camila De Arruda Saldanha
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jenny Gylys
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Edoardo Merli
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laeya Najmi
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Viswanathan Mohan
- Department of Diabetology, Dr. Mohan’s Diabetes Specialties Centre (IDF Centre of Education) & Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Alnylam Human Genetics
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Affiliated with University of Madras, Chennai, India
- Alnylam Pharmaceuticals, Cambridge, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Diabetology, Dr. Mohan’s Diabetes Specialties Centre (IDF Centre of Education) & Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - AMP-T2D Consortium
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Affiliated with University of Madras, Chennai, India
- Alnylam Pharmaceuticals, Cambridge, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Diabetology, Dr. Mohan’s Diabetes Specialties Centre (IDF Centre of Education) & Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jason Flannick
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Philip L.S.M. Gordts
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Sven Heinz
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Amit V. Khera
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jerrold Olefsky
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Affiliated with University of Madras, Chennai, India
| | - Amit R. Majithia
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Kavitha B, Ranganathan S, Gopi S, Vetrivel U, Hemavathy N, Mohan V, Radha V. Molecular characterization and re-interpretation of HNF1A variants identified in Indian MODY subjects towards precision medicine. Front Endocrinol (Lausanne) 2023; 14:1177268. [PMID: 37396188 PMCID: PMC10313120 DOI: 10.3389/fendo.2023.1177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background HNF1A is an essential component of the transcription factor network that controls pancreatic β-cell differentiation, maintenance, and glucose stimulated insulin secretion (GSIS). A continuum of protein malfunction is caused by variations in the HNF1A gene, from severe loss-of-function (LOF) variants that cause the highly penetrant Maturity Onset Diabetes of the Young (MODY) to milder LOF variants that are far less penetrant but impart a population-wide risk of type 2 diabetes that is up to five times higher. Before classifying and reporting the discovered variations as relevant in clinical diagnosis, a critical review is required. Functional investigations offer substantial support for classifying a variant as pathogenic, or otherwise as advised by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) ACMG/AMP criteria for variant interpretation. Objective To determine the molecular basis for the variations in the HNF1A gene found in patients with monogenic diabetes in India. Methods We performed functional protein analyses such as transactivation, protein expression, DNA binding, nuclear localization, and glucose stimulated insulin secretion (GSIS) assay, along with structural prediction analysis for 14 HNF1A variants found in 20 patients with monogenic diabetes. Results Of the 14 variants, 4 (28.6%) were interpreted as pathogenic, 6 (42.8%) as likely pathogenic, 3 (21.4%) as variants of uncertain significance, and 1 (7.14%) as benign. Patients harboring the pathogenic/likely pathogenic variants were able to successfully switch from insulin to sulfonylureas (SU) making these variants clinically actionable. Conclusion Our findings are the first to show the need of using additive scores during molecular characterization for accurate pathogenicity evaluations of HNF1A variants in precision medicine.
Collapse
Affiliation(s)
- Babu Kavitha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| | | | - Sundaramoorthy Gopi
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| | - Umashankar Vetrivel
- Department of Bioinformatics, Vision Research Foundation, Chennai, India
- Department of Virology Biotechnology, Indian Council of Medical Research (ICMR)-National Institute of Traditional Medicine, Belagavi, India
| | | | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation, Chennai and Dr. Mohan’s Diabetes Specialties Centre, International Diabetes Federation (IDF) Centre of Education, Chennai, India
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, Indian Council of Medical Research (ICMR) Centre for Advanced Research on Diabetes, Affiliated to University of Madras, Chennai, India
| |
Collapse
|
31
|
Kwak SH, Srinivasan S, Chen L, Todd J, Mercader J, Jensen E, Divers J, Mottl A, Pihoker C, Gandica R, Laffel L, Isganaitis E, Haymond M, Levitsky L, Pollin T, Florez J, Flannick J. Insights from rare variants into the genetic architecture and biology of youth-onset type 2 diabetes. RESEARCH SQUARE 2023:rs.3.rs-2886343. [PMID: 37292813 PMCID: PMC10246295 DOI: 10.21203/rs.3.rs-2886343/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Youth-onset type 2 diabetes (T2D) is a growing public health concern. Its genetic basis and relationship to other forms of diabetes are largely unknown. To gain insight into the genetic architecture and biology of youth-onset T2D, we analyzed exome sequences of 3,005 youth-onset T2D cases and 9,777 ancestry matched adult controls. We identified (a) monogenic diabetes variants in 2.1% of individuals; (b) two exome-wide significant (P < 4.3×10-7) common coding variant associations (in WFS1 and SLC30A8); (c) three exome-wide significant (P < 2.5×10-6) rare variant gene-level associations (HNF1A, MC4R, ATX2NL); and (d) rare variant association enrichments within 25 gene sets broadly related to obesity, monogenic diabetes, and β-cell function. Many association signals were shared between youth-onset and adult-onset T2D but had larger effects for youth-onset T2D risk (1.18-fold increase for common variants and 2.86-fold increase for rare variants). Both common and rare variant associations contributed more to youth-onset T2D liability variance than they did to adult-onset T2D, but the relative increase was larger for rare variant associations (5.0-fold) than for common variant associations (3.4-fold). Youth-onset T2D cases showed phenotypic differences depending on whether their genetic risk was driven by common variants (primarily related to insulin resistance) or rare variants (primarily related to β-cell dysfunction). These data paint a picture of youth-onset T2D as a disease genetically similar to both monogenic diabetes and adult-onset T2D, in which genetic heterogeneity might be used to sub-classify patients for different treatment strategies.
Collapse
Affiliation(s)
| | | | - Ling Chen
- Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jason Flannick
- Broad Institute of MIT and Harvard/Boston Children's Hospital/Harvard Medical School
| |
Collapse
|
32
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
33
|
Genetic Variants of HNF4A, WFS1, DUSP9, FTO, and ZFAND6 Genes Are Associated with Prediabetes Susceptibility and Inflammatory Markers in the Saudi Arabian Population. Genes (Basel) 2023; 14:genes14030536. [PMID: 36980809 PMCID: PMC10048403 DOI: 10.3390/genes14030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Prediabetes is a reversible, intermediate stage of type 2 diabetes mellitus (T2DM). Lifestyle changes that include healthy diet and exercise can substantially reduce progression to T2DM. The present study explored the association of 37 T2DM- and obesity-linked single nucleotide polymorphisms (SNPs) with prediabetes risk in a homogenous Saudi Arabian population. A total of 1129 Saudi adults [332 with prediabetes (29%) and 797 normoglycemic controls] were randomly selected and genotyped using the KASPar SNP genotyping method. Anthropometric and various serological parameters were measured following standard procedures. Heterozygous GA of HNF4A-rs4812829 (0.64; 95% CI 0.47–0.86; p < 0.01), heterozygous TC of WFS1-rs1801214 (0.60; 95% confidence interval (CI) 0.44–0.80; p < 0.01), heterozygous GA of DUSP9-rs5945326 (0.60; 95% CI 0.39–0.92; p = 0.01), heterozygous GA of ZFAND6-rs11634397 (0.75; 95% CI 0.56–1.01; p = 0.05), and homozygous AA of FTO-rs11642841 (1.50; 95% CI 0.8–1.45; p = 0.03) were significantly associated with prediabetes, independent of age and body mass index (BMI). Additionally, C-reactive protein (CRP) levels in rs11634397 (AA) with a median of 5389.0 (2767.4–7412.8) were significantly higher than in the heterozygous GA genotype with a median of 1736.3 (1024.4–4452.0) (p < 0.01). In conclusion, only five of the 37 genetic variants previously linked to T2DM and obesity in the Saudi Arabian population [HNF4A-rs4812829, WFS1-rs1801214, DUSP9-rs5945326, ZFAND6-rs11634397, FTO-rs11642841] were associated with prediabetes susceptibility. Prospective studies are needed to confirm the potential clinical value of the studied genetic variants of interest.
Collapse
|
34
|
Takase K, Yokota H, Ohno A, Watanabe M, Kushiyama A, Kushiyama S, Yamagami S, Nagaoka T. A pilot study of diabetic retinopathy in a porcine model of maturity onset diabetes of the young type 3 (MODY3). Exp Eye Res 2023; 227:109379. [PMID: 36608813 DOI: 10.1016/j.exer.2022.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in the working population. Because novel therapeutic intervention require testing, there is an urgent need for reliable animal models that faithfully replicate DR. Pig eyes have many similarities to human eyes anatomically and physiologically. Thus, attempts have been made to establish porcine models of DR by surgical, pharmaceutical or genetical induction of insulin deficiency, and dietary intervention. A previous study reported a transgenic pig model of maturity onset diabetes of the young type 3 (MODY3) developed signs of severe DR such as hemorrhage and proliferative tissue at the surface of the retina. However, the course of development of DR has not been studied in detail in this model. The purpose of this study was to investigate the early phase of DR in a MODY3. MODY3 and wild-type (WT) pigs underwent fundus photography and fluorescein angiogram (FA) before they developed cataracts. Animals were euthanized at age 1, 4, 7, and 10 months. Whole-mount retina and 10-μm thick paraffinized sections were stained with isolectin B4, and vessel density was determined by MATLAB software. At 4 and 7 months, retinal arterioles were immediately cannulated, and vasomotor action was measured by incubation with bradykinin and sodium nitroprusside. In the MODY3 pigs, fasting blood sugar levels gradually increased up to 500 mg/dL. Vascular tortuosity and yellowish spindle-shaped lesions were confirmed in MODY3 pigs at the age of 7 months; however, no microaneurysms were detected on FA. Compared with age-matched WT pigs, MODY3 pigs showed a significant decrease in blood vessel density in the intermediate and deep vascular plexus at 4 and 7 months of age and a slight decrease in capillary density in the superficial vascular plexus at 7 months of age. In MODY3 pigs, electron microscopy revealed thickening of the capillary basement membrane and leukostasis in the major blood vessels at 10 months of age. Bradykinin-induced dilation of retinal arterioles was diminished in MODY3 pigs as early as 7 months of age. Within 1 year after birth, MODY3 pigs show all typical early vascular lesions of diabetes except for microaneurysm formation. This pilot study suggests that the MODY3 pigs may serve as a suitable DR model to test effects of newly developed compounds on DR.
Collapse
Affiliation(s)
- Koyo Takase
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Harumasa Yokota
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan.
| | - Akira Ohno
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Masahisa Watanabe
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Sakura Kushiyama
- Division of Life Science, Department of Nursing, National College of Nursing, Kiyose, Tokyo, 204-8575, Japan
| | - Satoru Yamagami
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| | - Taiji Nagaoka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Itabashi, Tokyo, 173-8610, Japan
| |
Collapse
|
35
|
Ren XY, Xue MR, Yan ZL, Zhang SJ, Liu M, Li AZ. Clinical Characteristics and Gene Mutations of Two Families with MODY 3 in Inner Mongolia. Pharmgenomics Pers Med 2022; 15:1019-1027. [PMID: 36567880 PMCID: PMC9785186 DOI: 10.2147/pgpm.s371141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Objective This study aimed to analyze the clinical characteristics and gene mutations of two families with maturity-onset diabetes of the young 3 (MODY 3) in Inner Mongolia. Methods Fifty-three patients in Inner Mongolia suspected of having MODY 3 were enrolled in this study according to clinical manifestations. Blood samples were collected, and all exons of the HNF1α gene were analyzed; the second-generation DNA of the splicing regions of the gene was determined by direct sequencing. Results In Family 1, the proband, mother, and uncle all carried the missense heterozygous mutation on exon 2 of the HNF1α gene (c.512G>A, p.Arg171Gln), and both the proband and uncle had MODY 3. In Family 2, the proband, grandfather, father, uncle I, and uncle II all carried a missense mutation on exon 2 (c.391C>t, p.Arg131Trp), and all had MODY 3. The blood glucose control in these patients was stable while they were being treated with oral sulfonylurea hypoglycemic drugs alone or with insulin. Uncle II had serious macrovascular and microvascular complications. Conclusion Maturity-onset diabetes of the young 3 gene mutations (c.512G>A, p.Arg171Gln) and (c.391C>T, p.Arg131Trp) may be the main pathogenic genes of the two families with MODY 3. The two gene mutations found in this study have not been reported previously in China.
Collapse
Affiliation(s)
- Xiao-Yan Ren
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Meng-Ruo Xue
- Department of Interventional Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Zhao-Li Yan
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China,Correspondence: Zhao-Li Yan, Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, No. 1, North Tongdao Street, Huiming District, Hohhot, 010050, People’s Republic of China, Tel +86 13848177245, Email
| | - Shao-Jie Zhang
- Department of Anatomy, Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Min Liu
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| | - Ai-Zhen Li
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, People’s Republic of China
| |
Collapse
|
36
|
Connally NJ, Nazeen S, Lee D, Shi H, Stamatoyannopoulos J, Chun S, Cotsapas C, Cassa CA, Sunyaev SR. The missing link between genetic association and regulatory function. eLife 2022; 11:e74970. [PMID: 36515579 PMCID: PMC9842386 DOI: 10.7554/elife.74970] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of cis-linked genes. However, despite the availability of gene expression and epigenomic datasets, few variant-to-gene links have emerged. It is unclear whether these sparse results are due to limitations in available data and methods, or to deficiencies in the underlying assumed model. To better distinguish between these possibilities, we identified 220 gene-trait pairs in which protein-coding variants influence a complex trait or its Mendelian cognate. Despite the presence of expression quantitative trait loci near most GWAS associations, by applying a gene-based approach we found limited evidence that the baseline expression of trait-related genes explains GWAS associations, whether using colocalization methods (8% of genes implicated), transcription-wide association (2% of genes implicated), or a combination of regulatory annotations and distance (4% of genes implicated). These results contradict the hypothesis that most complex trait-associated variants coincide with homeostatic expression QTLs, suggesting that better models are needed. The field must confront this deficit and pursue this 'missing regulation.'
Collapse
Affiliation(s)
- Noah J Connally
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Sumaiya Nazeen
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Daniel Lee
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Huwenbo Shi
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Epidemiology, Harvard T.H. Chan School of Public HealthBostonUnited States
| | | | - Sung Chun
- Division of Pulmonary Medicine, Boston Children’s HospitalBostonUnited States
| | - Chris Cotsapas
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Neurology, Yale Medical SchoolNew HavenUnited States
- Department of Genetics, Yale Medical SchoolNew HavenUnited States
| | - Christopher A Cassa
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical SchoolBostonUnited States
- Brigham and Women’s Hospital, Division of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Medical and Population Genetics, Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
37
|
Greeley SAW, Polak M, Njølstad PR, Barbetti F, Williams R, Castano L, Raile K, Chi DV, Habeb A, Hattersley AT, Codner E. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1188-1211. [PMID: 36537518 PMCID: PMC10107883 DOI: 10.1111/pedi.13426] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Siri Atma W. Greeley
- Section of Pediatric and Adult Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center and Comer Children's HospitalUniversity of Chicago MedicineChicagoIllinoisUSA
| | - Michel Polak
- Hôpital Universitaire Necker‐Enfants MaladesUniversité de Paris Cité, INSERM U1016, Institut IMAGINEParisFrance
| | - Pål R. Njølstad
- Department of Clinical ScienceUniversity of Bergen, and Children and Youth Clinic, Hauk eland University HospitalBergenNorway
| | - Fabrizio Barbetti
- Clinical Laboratory UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Rachel Williams
- National Severe Insulin Resistance ServiceCambridge University Hospitals NHS TrustCambridgeUK
| | - Luis Castano
- Endocrinology and Diabetes Research Group, Biocruces Bizkaia Health Research InstituteCruces University Hospital, CIBERDEM, CIBERER, Endo‐ERN, UPV/EHUBarakaldoSpain
| | - Klemens Raile
- Department of Paediatric Endocrinology and DiabetologyCharité – UniversitätsmedizinBerlinGermany
| | - Dung Vu Chi
- Center for Endocrinology, Metabolism, Genetics and Molecular Therapy, Departement of Pediatric Endocrinology and DiabetesVietnam National Children's HospitalHanoiVietnam
- Department of Pediatrics and Department of Biology and Medical GeneticsHanoi Medical UniversityHanoiVietnam
| | - Abdelhadi Habeb
- Department of PediatricsPrince Mohamed bin Abdulaziz Hopsital, National Guard Health AffairsMadinahSaudi Arabia
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical SciencesUniversity of Exeter Medical SchoolExeterUK
| | - Ethel Codner
- Institute of Maternal and Child ResearchSchool of Medicine, University of ChileSantiagoChile
| |
Collapse
|
38
|
Nag A, Dhindsa RS, Mitchell J, Vasavda C, Harper AR, Vitsios D, Ahnmark A, Bilican B, Madeyski-Bengtson K, Zarrouki B, Zoghbi AW, Wang Q, Smith KR, Alegre-Díaz J, Kuri-Morales P, Berumen J, Tapia-Conyer R, Emberson J, Torres JM, Collins R, Smith DM, Challis B, Paul DS, Bohlooly-Y M, Snowden M, Baker D, Fritsche-Danielson R, Pangalos MN, Petrovski S. Human genetics uncovers MAP3K15 as an obesity-independent therapeutic target for diabetes. SCIENCE ADVANCES 2022; 8:eadd5430. [PMID: 36383675 PMCID: PMC9668288 DOI: 10.1126/sciadv.add5430] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 05/30/2023]
Abstract
We performed collapsing analyses on 454,796 UK Biobank (UKB) exomes to detect gene-level associations with diabetes. Recessive carriers of nonsynonymous variants in MAP3K15 were 30% less likely to develop diabetes (P = 5.7 × 10-10) and had lower glycosylated hemoglobin (β = -0.14 SD units, P = 1.1 × 10-24). These associations were independent of body mass index, suggesting protection against insulin resistance even in the setting of obesity. We replicated these findings in 96,811 Admixed Americans in the Mexico City Prospective Study (P < 0.05)Moreover, the protective effect of MAP3K15 variants was stronger in individuals who did not carry the Latino-enriched SLC16A11 risk haplotype (P = 6.0 × 10-4). Separately, we identified a Finnish-enriched MAP3K15 protein-truncating variant associated with decreased odds of both type 1 and type 2 diabetes (P < 0.05) in FinnGen. No adverse phenotypes were associated with protein-truncating MAP3K15 variants in the UKB, supporting this gene as a therapeutic target for diabetes.
Collapse
Affiliation(s)
- Abhishek Nag
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ryan S. Dhindsa
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Chirag Vasavda
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Andrew R. Harper
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dimitrios Vitsios
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrea Ahnmark
- Bioscience Metabolism, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bilada Bilican
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Katja Madeyski-Bengtson
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bader Zarrouki
- Bioscience Metabolism, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anthony W. Zoghbi
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Katherine R. Smith
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jesus Alegre-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Coyoacán, 4360 Ciudad de México, Mexico
| | - Pablo Kuri-Morales
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Coyoacán, 4360 Ciudad de México, Mexico
| | - Jaime Berumen
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Coyoacán, 4360 Ciudad de México, Mexico
| | - Roberto Tapia-Conyer
- Faculty of Medicine, National Autonomous University of Mexico, Copilco Universidad, Coyoacán, 4360 Ciudad de México, Mexico
| | - Jonathan Emberson
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, England, UK
| | - Jason M. Torres
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, England, UK
| | - Rory Collins
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, England, UK
| | - David M. Smith
- Emerging Innovations, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Benjamin Challis
- Translational Science and Experimental Medicine, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dirk S. Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mohammad Bohlooly-Y
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mike Snowden
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David Baker
- Bioscience Metabolism, Early CVRM, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
40
|
Marku A, Da Dalt L, Galli A, Dule N, Corsetto P, Rizzo AM, Moregola A, Uboldi P, Bonacina F, Marciani P, Castagna M, Catapano AL, Norata GD, Perego C. Pancreatic PCSK9 controls the organization of the β-cell secretory pathway via LDLR-cholesterol axis. Metabolism 2022; 136:155291. [PMID: 35981632 DOI: 10.1016/j.metabol.2022.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholesterol is central to pancreatic β-cell physiology and alterations of its homeostasis contribute to β-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane. PCSK9 is also expressed in the pancreas and loss of function mutations of PCSK9 result in higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Aim of this study was to investigate whether PCSK9 also impacts β-cells function. METHODS Pancreas-specific Pcsk9 null mice (Pdx1Cre/Pcsk9 fl/fl) were generated and characterized for glucose tolerance, insulin release and islet morphology. Isolated Pcsk9-deficient islets and clonal β-cells (INS1E) were employed to characterize the molecular mechanisms of PCSK9 action. RESULTS Pdx1Cre/Pcsk9 fl/fl mice exhibited normal blood PCSK9 and cholesterol levels but were glucose intolerant and had defective insulin secretion in vivo. Analysis of PCSK9-deficient islets revealed comparable β-cell mass and insulin content but impaired stimulated secretion. Increased proinsulin/insulin ratio, modifications of SNARE proteins expression and decreased stimulated‑calcium dynamics were detected in PCSK9-deficient β-cells. Mechanistically, pancreatic PCSK9 silencing impacts β-cell LDLR expression and cholesterol content, both in vivo and in vitro. The key role of LDLR is confirmed by the demonstration that LDLR downregulation rescued the phenotype. CONCLUSIONS These findings establish pancreatic PCSK9 as a novel critical regulator of the functional maturation of the β-cell secretory pathway, via modulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Algerta Marku
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Lorenzo Da Dalt
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alessandra Galli
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Nevia Dule
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Corsetto
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Angela Maria Rizzo
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Annalisa Moregola
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Patrizia Uboldi
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Fabrizia Bonacina
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alberico Luigi Catapano
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, 20099 Milan, Italy
| | - Giuseppe Danilo Norata
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, 20092 Cinisello Balsamo, Italy.
| | - Carla Perego
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy.
| |
Collapse
|
41
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Bonner C, Saponaro C. Where to for precision treatment of HNF1A-MODY? Diabetologia 2022; 65:1825-1829. [PMID: 35412067 DOI: 10.1007/s00125-022-05696-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Caroline Bonner
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.
| | - Chiara Saponaro
- Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| |
Collapse
|
43
|
Chen Y, Jia J, Zhao Q, Zhang Y, Huang B, Wang L, Tian J, Huang C, Li M, Li X. Novel Loss-of-Function Variant in HNF1a Induces β-Cell Dysfunction through Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:ijms232113022. [PMID: 36361808 PMCID: PMC9656704 DOI: 10.3390/ijms232113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
Heterozygous variants in the hepatocyte nuclear factor 1a (HNF1a) cause MODY3 (maturity-onset diabetes of the young, type 3). In this study, we found a case of novel HNF1a p.Gln125* (HNF1a-Q125ter) variant clinically. However, the molecular mechanism linking the new HNF1a variant to impaired islet β-cell function remains unclear. Firstly, a similar HNF1a-Q125ter variant in zebrafish (hnf1a+/−) was generated by CRISPR/Cas9. We further crossed hnf1a+/− with several zebrafish reporter lines to investigate pancreatic β-cell function. Next, we introduced HNF1a-Q125ter and HNF1a shRNA plasmids into the Ins-1 cell line and elucidated the molecular mechanism. hnf1a+/− zebrafish significantly decreased the β-cell number, insulin expression, and secretion. Moreover, β cells in hnf1a+/− dilated ER lumen and increased the levels of ER stress markers. Similar ER-stress phenomena were observed in an HNF1a-Q125ter-transfected Ins-1 cell. Follow-up investigations demonstrated that HNF1a-Q125ter induced ER stress through activating the PERK/eIF2a/ATF4 signaling pathway. Our study found a novel loss-of-function HNF1a-Q125ter variant which induced β-cell dysfunction by activating ER stress via the PERK/eIF2a/ATF4 signaling pathway.
Collapse
Affiliation(s)
- Yinling Chen
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jianxin Jia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qing Zhao
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yuxian Zhang
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- Fujian Province Key Laboratory of Diabetes Translational Medicine, Xiamen Diabetes Institute, Xiamen 361003, China
| | - Bingkun Huang
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- Fujian Province Key Laboratory of Diabetes Translational Medicine, Xiamen Diabetes Institute, Xiamen 361003, China
| | - Likun Wang
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Juanjuan Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Caoxin Huang
- Fujian Province Key Laboratory of Diabetes Translational Medicine, Xiamen Diabetes Institute, Xiamen 361003, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (M.L.); (X.L.)
| | - Xuejun Li
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
- Fujian Province Key Laboratory of Diabetes Translational Medicine, Xiamen Diabetes Institute, Xiamen 361003, China
- Correspondence: (M.L.); (X.L.)
| |
Collapse
|
44
|
Zamanfar D, Ferdosipour F, Ebrahimi P, Moghadam M, Amoli MM, Asadi M, Monajati M. Study of the frequency and clinical features of maturity-onset diabetes in the young in the pediatric and adolescent diabetes population in Iran. J Pediatr Endocrinol Metab 2022; 35:1240-1249. [PMID: 36100423 DOI: 10.1515/jpem-2022-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Maturity-onset diabetes of the young (MODY), an autosomal dominant disease, is frequently misdiagnosed as type 1 or 2 diabetes. Molecular diagnosis is essential to distinguish them. This study was done to investigate the prevalence of MODY subtypes and patients' clinical characteristics. METHODS A total of 43 out of 230 individuals with diabetes were selected based on the age of diagnosis >6 months, family history of diabetes, absence of marked obesity, and measurable C-peptide. Next-generation and direct SANGER sequencing was performed to screen MODY-related mutations. The variants were interpreted using the Genome Aggregation Database (genomAD), Clinical Variation (ClinVar), and pathogenicity prediction tools. RESULTS There were 23 males (53.5%), and the mean age at diabetes diagnosis was 6.7 ± 3.6 years. Sixteen heterozygote single nucleotide variations (SNVs) from 14 patients (14/230, 6%) were detected, frequently GCK (37.5%) and BLK (18.7%). Two novel variants were identified in HNF4A and ABCC8. Half of the detected variants were categorized as likely pathogenic. Most prediction tools predicted Ser28Cys in HNF4A as benign and Tyr123Phe in ABCC8 as a pathogenic SNV. Six cases (42.8%) with positive MODY SNVs had islet autoantibodies. At diagnosis, age, HbA1c, and C-peptide level were similar between SNV-positive and negative patients. CONCLUSIONS This is the first study investigating 14 variants of MODY in Iran. The results recommend genetic screening for MODY in individuals with unusual type 1 or 2 diabetes even without family history. Treatment modifies depending on the type of patients' MODY and is associated with the quality of life.
Collapse
Affiliation(s)
- Daniel Zamanfar
- Diabetes Research Center of Mazandaran, Mazandaran University of Medical Sciences, Sari, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences(DFSSN) University of Calabria, Calabria, Italy
| | - Mohamad Moghadam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahila Monajati
- Department of Internal Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
45
|
Younis H, Ha SE, Jorgensen BG, Verma A, Ro S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. J Pers Med 2022; 12:1762. [PMID: 36573710 PMCID: PMC9697644 DOI: 10.3390/jpm12111762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a rare form of diabetes which affects between 1% and 5% of diagnosed diabetes cases. Clinical characterizations of MODY include onset of diabetes at an early age (before the age of 30), autosomal dominant inheritance pattern, impaired glucose-induced secretion of insulin, and hyperglycemia. Presently, 14 MODY subtypes have been identified. Within these subtypes are several mutations which contribute to the different MODY phenotypes. Despite the identification of these 14 subtypes, MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus due to an overlap in clinical features, high cost and limited availability of genetic testing, and unfamiliarity with MODY outside of the medical profession. The primary aim of this review is to investigate the genetic characterization of the MODY subtypes. Additionally, this review will elucidate the link between the genetics, function, and clinical manifestations of MODY in each of the 14 subtypes. In providing this knowledge, we hope to assist in the accurate diagnosis of MODY patients and, subsequently, in ensuring they receive appropriate treatment.
Collapse
Affiliation(s)
- Hazar Younis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Arushi Verma
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
- RosVivo Therapeutics, Applied Research Facility, Reno, NV 89557, USA
| |
Collapse
|
46
|
Wei J, Zhang W, Li J, Jin Y, Qiu Z. Application of the transgenic pig model in biomedical research: A review. Front Cell Dev Biol 2022; 10:1031812. [PMID: 36325365 PMCID: PMC9618879 DOI: 10.3389/fcell.2022.1031812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The large animal model has gradually become an essential part of preclinical research studies, relating to exploring the disease pathological mechanism, genic function, pharmacy, and other subjects. Although the mouse model has already been widely accepted in clinical experiments, the need for finding an animal model with high similarity compared with a human model is urgent due to the different body functions and systems between mice and humans. The pig is an optimal choice for replacement. Therefore, enhancing the production of pigs used for models is an important part of the large animal model as well. Transgenic pigs show superiority in pig model creation because of the progress in genetic engineering. Successful cases of transgenic pig models occur in the clinical field of metabolic diseases, neurodegenerative diseases, and genetic diseases. In addition, the choice of pig breed influences the effort and efficiency of reproduction, and the mini pig has relative obvious advantages in pig model production. Indeed, pig models in these diseases provide great value in studies of their causes and treatments, especially at the genetic level. This review briefly outlines the method used to create transgenic pigs and species of producing transgenic pigs and provides an overview of their applications on different diseases and limitations for present pig model developments.
Collapse
Affiliation(s)
| | | | | | - Ye Jin
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | | |
Collapse
|
47
|
Beucher A, Miguel-Escalada I, Balboa D, De Vas MG, Maestro MA, Garcia-Hurtado J, Bernal A, Gonzalez-Franco R, Vargiu P, Heyn H, Ravassard P, Ortega S, Ferrer J. The HASTER lncRNA promoter is a cis-acting transcriptional stabilizer of HNF1A. Nat Cell Biol 2022; 24:1528-1540. [PMID: 36202974 PMCID: PMC9586874 DOI: 10.1038/s41556-022-00996-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
The biological purpose of long non-coding RNAs (lncRNAs) is poorly understood. Haploinsufficient mutations in HNF1A homeobox A (HNF1A), encoding a homeodomain transcription factor, cause diabetes mellitus. Here, we examine HASTER, the promoter of an lncRNA antisense to HNF1A. Using mouse and human models, we show that HASTER maintains cell-specific physiological HNF1A concentrations through positive and negative feedback loops. Pancreatic β cells from Haster mutant mice consequently showed variegated HNF1A silencing or overexpression, resulting in hyperglycaemia. HASTER-dependent negative feedback was essential to prevent HNF1A binding to inappropriate genomic regions. We demonstrate that the HASTER promoter DNA, rather than the lncRNA, modulates HNF1A promoter-enhancer interactions in cis and thereby regulates HNF1A transcription. Our studies expose a cis-regulatory element that is unlike classic enhancers or silencers, it stabilizes the transcription of its target gene and ensures the fidelity of a cell-specific transcription factor program. They also show that disruption of a mammalian lncRNA promoter can cause diabetes mellitus.
Collapse
Affiliation(s)
- Anthony Beucher
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Irene Miguel-Escalada
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Diego Balboa
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Matías G De Vas
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Miguel Angel Maestro
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Javier Garcia-Hurtado
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Aina Bernal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Roser Gonzalez-Franco
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Holger Heyn
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Philippe Ravassard
- Biotechnology and Biotherapy Team, Institut du Cerveau et de la Moelle, CNRS UMR7225, INSERM U975, University Pierre et Marie Curie, Paris, France
| | - Sagrario Ortega
- Transgenics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Jorge Ferrer
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.
| |
Collapse
|
48
|
Precision diabetes is becoming a reality in India. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Tosur M, Philipson LH. Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY). J Diabetes Investig 2022; 13:1465-1471. [PMID: 35638342 PMCID: PMC9434589 DOI: 10.1111/jdi.13860] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Maturity-onset of diabetes of the young (MODY) are monogenic forms of diabetes characterized by early onset diabetes with autosomal dominant inheritance. Since its first description about six decades ago, there have been significant advancements in our understanding of MODY from clinical presentations to molecular diagnostics and therapeutic responses. The prevalence of MODY is estimated as at least 1.1-6.5% of the pediatric diabetes population with a high degree of geographic variability that might arise from several factors in the criteria used to ascertain cases. GCK-MODY, HNF1A-MODY, and HNF4A-MODY account for >90% of MODY cases. While some MODY forms do not require treatment (i.e., GCK-MODY), some others are highly responsive to oral agents (i.e., HNF1A-MODY). The risk of micro- and macro-vascular complications of diabetes also differ significantly between MODY forms. Despite its high clinical impact, 50-90% of MODY cases are estimated to be misdiagnosed as type 1 or type 2 diabetes. Although there are many clinical features suggestive of MODY diagnosis, there is no single clinical criterion. An online MODY Risk Calculator can be a useful tool for clinicians in the decision-making process for MODY genetic testing in some situations. Molecular genetic tests with a commercial gene panel should be performed in cases with a suspicion of MODY. Unresolved atypical cases can be further studied by exome or genome sequencing in a clinical or research setting, as available.
Collapse
Affiliation(s)
- Mustafa Tosur
- The Division of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes CenterUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
50
|
Abstract
Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.
Collapse
Affiliation(s)
- Cecilia González Corona
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|