1
|
Trapp S, Brierley DI. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment. Br J Pharmacol 2021; 179:557-570. [PMID: 34323288 PMCID: PMC8820179 DOI: 10.1111/bph.15638] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022] Open
Abstract
This review considers the similarities and differences between the physiological systems regulated by gut-derived and neuronally produced glucagon-like peptide 1 (GLP-1). It addresses the questions of whether peripheral and central GLP-1 sources constitute separate, linked or redundant systems and whether the brain GLP-1 system consists of disparate sections or is a homogenous entity. This review also explores the implications of the answers to these questions for the use of GLP-1 receptor agonists as anti-obesity drugs.
Collapse
Affiliation(s)
- Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
2
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
3
|
Chaffin ATB, Fang Y, Larson KR, Mul JD, Ryan KK. Sex-dependent effects of MC4R genotype on HPA axis tone: implications for stress-associated cardiometabolic disease. Stress 2019; 22:571-580. [PMID: 31184537 PMCID: PMC6690797 DOI: 10.1080/10253890.2019.1610742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) facilitates hypothalamic-pituitary-adrenocortical (HPA) axis responses to acute stress in male rodents and is a well known to regulator of energy balance. Mutations in the MC4R is the most common monogenic cause of obesity in humans and has been associated with sex-specific effects, but whether stress regulation by the MC4R is sex-dependent, and whether the MC4R facilitates HPA responses to chronic stress, is unknown. We hypothesized that MC4R-signaling contributes to HPA axis dysregulation and metabolic pathophysiology following chronic stress exposure. We measured changes in energy balance, HPA axis tone, and vascular remodeling during chronic variable stress (CVS) in male and female rats with MC4R loss-of-function. Rats were placed into three groups (n = 9-18/genotype/sex) and half of each group was subjected to CVS for 30 days or were non-stressed littermate controls. All rats underwent an acute restraint stress challenge on Day 30. Rats were euthanized on Day 31, adrenals collected for weight, and descending aortas fixed for morphological indices of vascular pathophysiology. We observed a marked interaction between Mc4r genotype and sex for basal HPA axis tone and acute stress responsivity. MC4R loss-of-function blunted both endpoints in males but exaggerated them in females. Contrary to our hypothesis, Mc4r genotype had no effect on either HPA axis responses or metabolic responses to chronic stress. Heightened stress reactivity of females with MC4R mutations suggests a possible mechanism for the sex-dependent effects associated with this mutation in humans and highlights how stress may differentially regulate metabolism in males and females. Lay summary The hypothalamic melanocortin system is an important regulator of energy balance and stress responses. Here, we report a sex-difference in the stress reactivity of rats with a mutation in this system. Our findings highlight how stress may regulate metabolism differently in males and females and may provide insight into sex-differences associated with this mutation in humans.
Collapse
Affiliation(s)
- Aki T-B Chaffin
- a Department of Neurobiology, Physiology and Behavior, University of California , Davis , CA , USA
| | - Yanbin Fang
- a Department of Neurobiology, Physiology and Behavior, University of California , Davis , CA , USA
| | - Karlton R Larson
- a Department of Neurobiology, Physiology and Behavior, University of California , Davis , CA , USA
| | - Joram D Mul
- b Amsterdam UMC, University of Amsterdam , The Netherlands
- c Metabolism and Reward Group, Netherlands Institute for Neuroscience , Amsterdam , The Netherlands
| | - Karen K Ryan
- a Department of Neurobiology, Physiology and Behavior, University of California , Davis , CA , USA
| |
Collapse
|
4
|
Knudsen LB. Inventing Liraglutide, a Glucagon-Like Peptide-1 Analogue, for the Treatment of Diabetes and Obesity. ACS Pharmacol Transl Sci 2019; 2:468-484. [PMID: 32259078 DOI: 10.1021/acsptsci.9b00048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 01/08/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) has been in focus since the early 1980s as a long looked for incretin hormone, released from the gastrointestinal tract and with an important effect on glucose-dependent insulin secretion, providing efficient glucose lowering, with little risk for hypoglycemia. The enzyme dipeptidyl peptidase-4 (DPP-4) degrades GLP-1 very fast, and the remaining metabolite is cleared rapidly by the kidneys. Liraglutide is a fatty acid acylated analogue of GLP-1 that provides efficacy for 24 h/day. The mechanism of action for liraglutide is reviewed in detail with focus on pancreatic efficacy and safety, thyroid safety, and weight loss mechanism. Evolving science hypothesizes that GLP-1 has important effects on atherosclerosis, relevant for the cardiovascular benefit seen in the treatment of diabetes and obesity. Also, GLP-1 may be relevant in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lotte Bjerre Knudsen
- Global Drug Discovery, Novo Nordisk, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| |
Collapse
|
5
|
Diz-Chaves Y, Gil-Lozano M, Toba L, Fandiño J, Ogando H, González-Matías LC, Mallo F. Stressing diabetes? The hidden links between insulinotropic peptides and the HPA axis. J Endocrinol 2016; 230:R77-94. [PMID: 27325244 DOI: 10.1530/joe-16-0118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus exerts metabolic stress on cells and it provokes a chronic increase in the long-term activity of the hypothalamus-pituitary-adrenocortical (HPA) axis, perhaps thereby contributing to insulin resistance. GLP-1 receptor (GLP-1R) agonists are pleiotropic hormones that not only affect glycaemic and metabolic control, but they also produce many other effects including activation of the HPA axis. In fact, several of the most relevant effects of GLP-1 might involve, at least in part, the modulation of the HPA axis. Thus, the anorectic activity of GLP-1 could be mediated by increasing CRF at the hypothalamic level, while its lipolytic effects could imply a local increase in glucocorticoids and glucocorticoid receptor (GC-R) expression in adipose tissue. Indeed, the potent activation of the HPA axis by GLP-1R agonists occurs within the range of therapeutic doses and with a short latency. Interestingly, the interactions of GLP-1 with the HPA axis may underlie most of the effects of GLP-1 on food intake control, glycaemic metabolism, adipose tissue biology and the responses to stress. Moreover, such activity has been observed in animal models (mice and rats), as well as in normal humans and in type I or type II diabetic patients. Accordingly, better understanding of how GLP-1R agonists modulate the activity of the HPA axis in diabetic subjects, especially obese individuals, will be crucial to design new and more efficient therapies for these patients.
Collapse
Affiliation(s)
- Yolanda Diz-Chaves
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Manuel Gil-Lozano
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Laura Toba
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Juan Fandiño
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Hugo Ogando
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Lucas C González-Matías
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| | - Federico Mallo
- Laboratory of EndocrinologyCenter for Biomedical Research - CINBIO, University of Vigo, Vigo, Spain Instituto de Investigación Sanitaria Galicia Sur - IISGSVigo, Spain
| |
Collapse
|
6
|
Brunetti L, Di Nisio C, Orlando G, Ferrante C, Vacca M. The Regulation of Feeding: A Cross Talk between Peripheral and Central Signalling. Int J Immunopathol Pharmacol 2016; 18:201-12. [PMID: 15888244 DOI: 10.1177/039463200501800203] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Feeding and energy expenditures are modulated by the interplay of hormones and neurotransmitters in the central nervous system (CNS), where the hypothalamus plays a pivotal role in the transduction of peripheral afferents into satiety and feeding signals. Aminergic neurotransmitters such as dopamine (DA), norepinephrine (NE) and serotonin (5-hydroxytryptamine, 5-HT) are historically considered to play a key role, but a number of peptides are involved in finely tuning feeding regulation. This review summarizes the current understanding of the CNS mechanisms of orexigenic peptides, such as neuropeptide Y, orexins, and ghrelin, as well as anorectic peptides, such as leptin, neurotensin (NT), cocaine- and amphetamine regulated transcript (CART) peptide, thyrotropin-releasing hormone (TRH), corticotropin-releasing hormone (CRH), urocortin, amylin.
Collapse
Affiliation(s)
- L Brunetti
- Department of Drug Sciences, G. D'Annunzio University, Chieti, Italy
| | | | | | | | | |
Collapse
|
7
|
Richard JE, Farkas I, Anesten F, Anderberg RH, Dickson SL, Gribble FM, Reimann F, Jansson JO, Liposits Z, Skibicka KP. GLP-1 receptor stimulation of the lateral parabrachial nucleus reduces food intake: neuroanatomical, electrophysiological, and behavioral evidence. Endocrinology 2014; 155:4356-67. [PMID: 25116706 PMCID: PMC4256827 DOI: 10.1210/en.2014-1248] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The parabrachial nucleus (PBN) is a key nucleus for the regulation of feeding behavior. Inhibitory inputs from the hypothalamus to the PBN play a crucial role in the normal maintenance of feeding behavior, because their loss leads to starvation. Viscerosensory stimuli result in neuronal activation of the PBN. However, the origin and neurochemical identity of the excitatory neuronal input to the PBN remain largely unexplored. Here, we hypothesize that hindbrain glucagon-like peptide 1 (GLP-1) neurons provide excitatory inputs to the PBN, activation of which may lead to a reduction in feeding behavior. Our data, obtained from mice expressing the yellow fluorescent protein in GLP-1-producing neurons, revealed that hindbrain GLP-1-producing neurons project to the lateral PBN (lPBN). Stimulation of lPBN GLP-1 receptors (GLP-1Rs) reduced the intake of chow and palatable food and decreased body weight in rats. It also activated lPBN neurons, reflected by an increase in the number of c-Fos-positive cells in this region. Further support for an excitatory role of GLP-1 in the PBN is provided by electrophysiological studies showing a remarkable increase in firing of lPBN neurons after Exendin-4 application. We show that within the PBN, GLP-1R activation increased gene expression of 2 energy balance regulating peptides, calcitonin gene-related peptide (CGRP) and IL-6. Moreover, nearly 70% of the lPBN GLP-1 fibers innervated lPBN CGRP neurons. Direct intra-lPBN CGRP application resulted in anorexia. Collectively, our molecular, anatomical, electrophysiological, pharmacological, and behavioral data provide evidence for a functional role of the GLP-1R for feeding control in the PBN.
Collapse
Affiliation(s)
- Jennifer E Richard
- Department of Physiology/Metabolic Physiology (J.E.R., R.H.A., K.P.S.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-40530, Sweden; Laboratory of Endocrine Neurobiology (I.F., Z.L.), Institute of Experimental Medicine, Budapest 1083, Hungary; Department of Physiology/Endocrinology (F.A., S.L.D., J.-O.J.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-40530, Sweden; and Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council Institute of Metabolic Science (F.M.G., F.R.), University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Borer KT. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World J Diabetes 2014; 5:606-629. [PMID: 25317239 PMCID: PMC4138585 DOI: 10.4239/wjd.v5.i5.606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 05/15/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
A re-examination of the mechanism controlling eating, locomotion, and metabolism prompts formulation of a new explanatory model containing five features: a coordinating joint role of the (1) autonomic nervous system (ANS); (2) the suprachiasmatic (SCN) master clock in counterbalancing parasympathetic digestive and absorptive functions and feeding with sympathetic locomotor and thermogenic energy expenditure within a circadian framework; (3) interaction of the ANS/SCN command with brain substrates of reward encompassing dopaminergic projections to ventral striatum and limbic and cortical forebrain. These drive the nonhomeostatic feeding and locomotor motivated behaviors in interaction with circulating ghrelin and lateral hypothalamic neurons signaling through melanin concentrating hormone and orexin-hypocretin peptides; (4) counterregulation of insulin by leptin of both gastric and adipose tissue origin through: potentiation by leptin of cholecystokinin-mediated satiation, inhibition of insulin secretion, suppression of insulin lipogenesis by leptin lipolysis, and modulation of peripheral tissue and brain sensitivity to insulin action. Thus weight-loss induced hypoleptimia raises insulin sensitivity and promotes its parasympathetic anabolic actions while obesity-induced hyperleptinemia supresses insulin lipogenic action; and (5) inhibition by leptin of bone mineral accrual suggesting that leptin may contribute to the maintenance of stability of skeletal, lean-body, as well as adipose tissue masses.
Collapse
|
9
|
Chan SW, Lin G, Yew DTW, Yeung CK, Rudd JA. Separation of emetic and anorexic responses of exendin-4, a GLP-1 receptor agonist in Suncus murinus (house musk shrew). Neuropharmacology 2013; 70:141-7. [PMID: 23357334 DOI: 10.1016/j.neuropharm.2013.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
The use of glucagon-like peptide-1 (7-36) amide (GLP-1) receptor agonists for the treatment of type 2 diabetes mellitus is commonly associated with nausea and vomiting. Therefore, the present studies investigated the potential of GLP-1 receptor ligands to modulate emesis and feeding in Suncus murinus. Exendin-4, a selective GLP-1 receptor agonist, was administered subcutaneously (1-30 nmol/kg) or intracerebroventricularly (0.03-3 nmol) after 12-h of fasting. In other studies, animals were pretreated with the GLP-1 receptor antagonist, exendin (9-39), or saline (5 μl) 15 min prior to exendin-4 (3 nmol, i.c.v.). Behaviour of animals and food and water intake were then recorded for 1-2 h; c-Fos expression was also assessed in the brains of animals in the i.c.v. studies. The subcutaneous administration of exendin-4 reduced food and water intake (p < 0.001) and induced emesis in 40% of animals (p > 0.05). The intracerebroventricular administration of exendin-4 also prevented feeding, and induced emesis (p < 0.01). In these studies, exendin (9-39) (30 nmol, i.c.v.) antagonised emesis induced by exendin-4 and the increased c-Fos expressions in the brainstem and hypothalamus (p < 0.05), but it was ineffective in reversing the exendin-4-induced inhibition of food and water intake (p > 0.05). These data suggest that exendin-4 exerts its emetic effects in the brainstem and/or hypothalamus via GLP-1 receptors. The action of exendin-4 to suppress feeding may involve non-classical GLP-1 receptors or other mechanisms.
Collapse
Affiliation(s)
- Sze Wa Chan
- Emesis Research Group, Neuro-degeneration, Development and Repair, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | | | | | | | | |
Collapse
|
10
|
Sandoval D, Barrera JG, Stefater MA, Sisley S, Woods SC, D'Alessio DD, Seeley RJ. The anorectic effect of GLP-1 in rats is nutrient dependent. PLoS One 2012; 7:e51870. [PMID: 23284795 PMCID: PMC3524167 DOI: 10.1371/journal.pone.0051870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 11/07/2012] [Indexed: 12/15/2022] Open
Abstract
GLP-1-induced insulin secretion from the β-cell is dependent upon glucose availability. The purpose of the current study was to determine whether CNS GLP-1 signaling is also glucose-dependent. We found that fasting blunted the ability of 3(rd) cerebroventricularly (i3vt)-administered GLP-1 to reduce food intake. However, fasted animals maintained the anorexic response to melanotan II, a melanocortin receptor agonist, indicating a specific effect of fasting on GLP-1 action. We also found that i3vt administration of leptin, which is also decreased with fasting, was not able to potentiate GLP-1 action in fasted animals. However, we did find that CNS glucose sensing is important in GLP-1 action. Specifically, we found that i3vt injection of 2DG, a drug that blocks cellular glucose utilization, and AICAR which activates AMPK, both blocked GLP-1-induced reductions in food intake. To examine the role of glucokinase, an important CNS glucose sensor, we studied glucokinase-heterozygous knockout mice, but found that they responded normally to peripherally administered GLP-1 and exendin-4. Interestingly, oral, but not i3vt or IP glucose potentiated GLP-1's anorectic action. Thus, CNS and peripheral fuel sensing are both important in GLP-1-induced reductions in food intake.
Collapse
Affiliation(s)
- Darleen Sandoval
- Division of Endocrinology and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Folli F, Guardado Mendoza R. Potential use of exenatide for the treatment of obesity. Expert Opin Investig Drugs 2011; 20:1717-22. [PMID: 22017240 DOI: 10.1517/13543784.2011.630660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Obesity is a major health threat in the Western world because of its high incidence and prevalence, and its association with metabolic and cardiovascular disease as well as cancer. The reduction of food intake in obese patients can be achieved only transiently (generally for no longer than 6 months), in the absence of concomitant pharmacological therapy. Only bariatric surgery provides a means to increase satiety and/or decrease nutrient absorption in obese patients, in the long term. AREAS COVERED This article reviews the available pharmacological treatments for obesity as well as the pharmacology and mechanism of action of exenatide in obese type 2 diabetic patients. EXPERT OPINION Exenatide is a potential new candidate treatment for obesity, possibly in combination with other hormones that increase satiety (leptin) and slow gastric emptying (amylin).
Collapse
Affiliation(s)
- Franco Folli
- University of Texas Health Science Center at San Antonio, Division of Diabetes, Department of Medicine, Texas, USA.
| | | |
Collapse
|
12
|
McKay NJ, Kanoski SE, Hayes MR, Daniels D. Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1755-64. [PMID: 21975647 DOI: 10.1152/ajpregu.00472.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is produced by and released from the small intestine following ingestion of nutrients. GLP-1 receptor (GLP-1R) agonists applied peripherally or centrally decrease food intake and increase glucose-stimulated insulin secretion. These effects make the GLP-1 system an attractive target for the treatment of type 2 diabetes mellitus and obesity. In addition to these more frequently studied effects of GLP-1R stimulation, previous reports indicate that GLP-1R agonists suppress water intake. The present experiments were designed to provide greater temporal resolution and site specificity for the effect of GLP-1 and the long-acting GLP-1R agonists, exendin-4 and liraglutide, on unstimulated water intake when food was and was not available. All three GLP-1R ligands suppressed water intake after peripheral intraperitoneal administration, both in the presence of and the absence of food; however, the magnitude and time frame of water intake suppression varied by drug. GLP-1 had an immediate, but transient, hypodipsic effect when administered peripherally, whereas the water intake suppression by IP exendin-4 and liraglutide was much more persistent. Additionally, intracerebroventricular administration of GLP-1R agonists suppressed water intake when food was absent, but the suppression of intake showed modest differences depending on whether the drug was administered to the lateral or fourth ventricle. To the best of our knowledge, this is the first demonstration of GLP-1 receptor agonists affecting unstimulated, overnight intake in the absence of food, the first test for antidipsogenic effects of hindbrain application of GLP-1 receptor agonists, and the first test of a central effect (forebrain or hindbrain) of liraglutide on water intake. Overall, these results show that GLP-1R agonists have a hypodipsic effect that is independent of GLP-1R-mediated effects on food intake, and this occurs, in part, through central nervous system GLP-1R activation.
Collapse
Affiliation(s)
- Naomi J McKay
- Behavioral Neuroscience Program, Department of Psychology, The State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|
13
|
Jensen PB, Larsen PJ, Karlsen C, Jensen HI, Holst JJ, Madsen OD. Foetal proglucagon processing in relation to adult appetite control: lessons from a transplantable rat glucagonoma with severe anorexia. Diabetes Obes Metab 2011; 13 Suppl 1:60-8. [PMID: 21824258 DOI: 10.1111/j.1463-1326.2011.01439.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have previously reported severe anorexia abruptly induced in rats 2-3 weeks after they have been transplanted subcutaneously with the glucagonoma MSL-G-AN. Vagotomy did not affect the time of onset and severity of anorexia, and the anorectic state resembles hunger with strongly elevated neuropeptide Y (NPY) mRNA levels in the nucleus arcuatus. We now show that circulating levels of bioactive glucagon-like peptide-1 (GLP-1) (7-36amide) start to increase above control levels exactly at the time of onset of anorexia. At this time-point, bioactive glucagon as well as total glucagon precursors and GLP-1 metabolites are already vastly elevated compared to controls. We further show that intravenous administration of very high concentrations of GLP-1 to hungry schedule-fed rats causes anorexia in a dose-dependent manner, which is blocked by the GLP-1 receptor antagonist exendin (9-39). GLP-1 (7-36amide) has a well-characterized anorectic effect but also causes taste aversion when administered centrally. The anorectic effect is blocked in rats treated neonatally by monosodium glutamate (MSG). We show that MSG treatment does not prevent the MSL-G-AN-induced anorexia, thereby suggesting a different type of anorectic function. We show a very strong component of taste aversion as anorectic rats, when presented to novel or known alternative food items, will resume normal feeding for 1 day, and then redevelop anorexia. We hypothetize that the anorexia in MSL-G-AN tumour-bearing rats correlates with a foetal processing pattern of proglucagon to both glucagon and GLP-1 (7-36amide), and is due to taste aversion. The sudden onset is characterized by a dramatic increase in circulating levels of biologically active GLP-1 (7-36amide), suggesting eventual saturation of proteolytic inactivation of its N-terminus.
Collapse
Affiliation(s)
- P B Jensen
- Beta Cell Biology, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.
Collapse
|
15
|
Abstract
Incretin hormones are intestinally derived peptides that are known to augment glucose-stimulated insulin secretion and suppress glucagon levels. Incretin mimetics are attractive adjunctive therapy for type 2 diabetes due to its efficacy on reducing hyperglycemia with a minimal risk of hypoglycemia. In contrast to most available hypoglycemia agents that cause weight gain, incretin mimetics are associated with moderate weight loss. In this review, we focused our discussion on the actions of glucagon-like peptide 1 (GLP-1) in the brain regulation of energy expenditure and food intake. Furthermore, we reviewed the data from preclinical and clinical studies in humans and discussed the actions of GLP-1, GLP-1 analogs, dipeptidyl pepidase 4 (DPP-4) inhibitors on body weight regulation as well as mechanism by which these effects may occur. The gastrointestinal side effects common to GLP-1 based therapeutics such as nausea hamper its wide spread use. Here, we discussed theoretical possibilities for maximizing weight loss and minimizing nausea with of incretin-based therapy.
Collapse
|
16
|
Punjabi M, Arnold M, Geary N, Langhans W, Pacheco-López G. Peripheral glucagon-like peptide-1 (GLP-1) and satiation. Physiol Behav 2011; 105:71-6. [PMID: 21371486 DOI: 10.1016/j.physbeh.2011.02.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 01/23/2023]
Abstract
Peripheral GLP-1 is produced by post-translational processing of pro-glucagon in enteroendocrine L-cells and is released in response to luminal nutrient (primarily carbohydrate and fat) stimulation. GLP-1 is well known for its potent insulinotropic and gluco-regulatory effects. GLP-1 receptors (GLP-1R) are expressed in the periphery and in several brain areas that are implicated in the control of eating. Both central and peripheral administration of GLP-1 have been shown to reduce food intake. Unresolved, however, is whether these effects reflect functions of endogenous GLP-1. Data collected in our laboratory indicate that in chow-fed rats: 1) Remotely controlled, intra-meal intravenous (IV) or intraperitoneal (IP) GLP-1 infusions selectively reduce meal size; 2) hindbrain GLP-1R activation is involved in the eating-inhibitory effect of IV infused GLP-1, whereas intact abdominal vagal afferents are necessary for the eating-inhibitory effect of IP, but not IV, infused GLP-1; 3) GLP-1 degradation in the liver prevents a systemic increase in endogenous GLP-1 during normal chow meals in rats; and 4) peripheral or hindbrain GLP-1R antagonism by exendin-9 does not affect spontaneous eating. Also, although our data indicate that peripheral GLP-1 can act in two different sites to inhibit eating, they argue against a role of systemic increases in endogenous GLP-1 in satiation in chow-fed rats. Therefore, further studies should examine whether a local paracrine action of GLP-1 in the intestine or and endocrine action in the hepatic-portal area is physiologically relevant for satiation.
Collapse
Affiliation(s)
- Mukesh Punjabi
- Physiology and Behaviour Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Vrang N, Larsen PJ. Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 2010; 92:442-62. [PMID: 20638440 DOI: 10.1016/j.pneurobio.2010.07.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 12/16/2022]
Abstract
The scientific understanding of preproglucagon derived peptides has provided people with type 2 diabetes with two novel classes of glucose lowering agents, the dipeptidyl peptidase IV (DPP-IV) inhibitors and GLP-1 receptor agonists. For the scientists, the novel GLP-1 agonists, and DPP-IV inhibitors have evolved as useful tools to understand the role of the preproglucagon derived peptides in normal physiology and disease. However, the overwhelming interest attracted by GLP-1 analogues as potent incretins has somewhat clouded the efforts to understand the importance of preproglucagon derived peptides in other physiological contexts. In particular, our neurobiological understanding of the preproglucagon expressing neuronal pathways in the central nervous system as well as the degree to which central GLP-1 receptors are targeted by peripherally administered GLP-1 receptor agonists is still fairly limited. The role of GLP-1 as an anorectic neurotransmitter is well recognized, but clarification of the neuronal targets and physiological basis of this response is further warranted, as is the mapping of GLP-1 sensitive neurons involved in a variety of neuroendocrine and behavioral responses. Further recent evidence points to GLP-1 as a central neuropeptide with neuroprotective capabilities potentially mitigating a wide array of neurodegenerative conditions. It is the aim of the present review to summarize our current understanding of preproglucagon derived peptides as neurotransmitters in the central nervous system.
Collapse
Affiliation(s)
- Niels Vrang
- Gubra ApS, Ridebanevej 12, 1870 Frederiksberg, Denmark.
| | | |
Collapse
|
18
|
Baumgartner I, Pacheco-López G, Rüttimann EB, Arnold M, Asarian L, Langhans W, Geary N, Hillebrand JJG. Hepatic-portal vein infusions of glucagon-like peptide-1 reduce meal size and increase c-Fos expression in the nucleus tractus solitarii, area postrema and central nucleus of the amygdala in rats. J Neuroendocrinol 2010; 22:557-63. [PMID: 20298455 DOI: 10.1111/j.1365-2826.2010.01995.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We recently reported that brief, remotely controlled intrameal hepatic-portal vein infusions of glucagon-like peptide-1 (GLP-1) reduced spontaneous meal size in rats. To investigate the neurobehavioural correlates of this effect, we equipped male Sprague-Dawley rats with hepatic-portal vein catheters and assessed (i) the effect on eating of remotely triggered infusions of GLP-1 (1 nmol/kg, 5 min) or vehicle during the first nocturnal meal after 3 h of food deprivation and (ii) the effect of identical infusions performed at dark onset on c-Fos expression in several brain areas involved in the control of eating. GLP-1 reduced (P < 0.05) the size of the first nocturnal meal and increased its satiety ratio. Also, GLP-1 increased (P < 0.05) the number of c-Fos-expressing cells in the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala, but not in the arcuate or paraventricular hypothalamic nuclei. These data suggest that the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala play a role in the eating-inhibitory actions of GLP-1 infused into the hepatic-portal vein; it remains to be established whether activation of these brain nuclei reflect satiation, aversion, or both.
Collapse
Affiliation(s)
- I Baumgartner
- Physiology and Behaviour Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vahl TP, Drazen DL, Seeley RJ, D'Alessio DA, Woods SC. Meal-anticipatory glucagon-like peptide-1 secretion in rats. Endocrinology 2010; 151:569-75. [PMID: 19915164 PMCID: PMC2817629 DOI: 10.1210/en.2009-1002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Animals anticipating a meal initiate a series of responses enabling them to better cope with the meal's metabolic impact. These responses, such as cephalic insulin, occur prior to the onset of ingestion and are especially evident in animals maintained on a meal-feeding schedule with limited but predictable access to food each day. We tested the hypothesis that meal-fed rats secrete the incretin hormone glucagon-like peptide-1 (GLP-1) cephalically when anticipating a large meal. Male Long-Evans rats were fed ad libitum (controls) or adapted to a schedule on which food was available for the same 4-h period each day (meal fed animals). Plasma GLP-1 increased in meal-fed rats over an interval from 75 to 60 min prior to feeding time, from a baseline of 10 to around 40 pm, and then returned to baseline prior to food presentation. Controls had steady plasma GLP-1 levels (10-15 pm) over the same span. Meal-fed rats also secreted cephalic insulin starting around 15 min prior to food presentation. Administration of the selective GLP-1 receptor antagonist exendin-4[desHis-1,Glu-9] prior to the premeal spike of GLP-1 caused meal-fed rats to eat significantly less food than normal, whereas administration of the antagonist after the GLP-1 spike but prior to food presentation resulted in a significant increase in food consumption. These findings document for the first time a cephalic increase of plasma GLP-1 and suggest that it functions to facilitate consumption of a large meal.
Collapse
Affiliation(s)
- Torsten P Vahl
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Lee Y, Kwon MK, Kang ES, Park YM, Choi SH, Ahn CW, Kim KS, Park CW, Cha BS, Kim SW, Sung JK, Lee EJ, Lee HC. Adenoviral vector-mediated glucagon-like peptide 1 gene therapy improves glucose homeostasis in Zucker diabetic fatty rats. J Gene Med 2008; 10:260-8. [PMID: 18085721 DOI: 10.1002/jgm.1153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone that plays an important role in glucose homeostasis. Its functions include glucose-stimulated insulin secretion, suppression of glucagon secretion, deceleration of gastric emptying, and reduction in appetite and food intake. Despite the numerous antidiabetic properties of GLP-1, its therapeutic potential is limited by its short biological half-life due to rapid enzymatic degradation by dipeptidyl peptidase IV. The present study aimed to demonstrate the therapeutic effects of constitutively expressed GLP-1 in an overt type 2 diabetic animal model using an adenoviral vector system. METHODS A novel plasmid (pAAV-ILGLP-1) and recombinant adenoviral vector (Ad-ILGLP-1) were constructed with the cytomegalovirus promoter and insulin leader sequence followed by GLP-1(7-37) cDNA. RESULTS The results of an enzyme-linked immunosorbent assay showed significantly elevated levels of GLP-1(7-37) secreted by human embryonic kidney cells transfected with the construct containing the leader sequence. A single intravenous administration of Ad-ILGLP-1 into 12-week-old Zucker diabetic fatty (ZDF) rats, which have overt type 2 diabetes mellitus (T2DM), achieved near normoglycemia for 3 weeks and improved utilization of blood glucose in glucose tolerance tests. Circulating plasma levels of GLP-1 increased in GLP-1-treated ZDF rats, but diminished 21 days after treatment. When compared with controls, Ad-ILGLP-1-treated ZDF rats had a lower homeostasis model assessment for insulin resistance score indicating amelioration in insulin resistance. Immunohistochemical staining showed that cells expressing GLP-1 were found in the livers of GLP-1-treated ZDF rats. CONCLUSIONS These data suggest that GLP-1 gene therapy can improve glucose homeostasis in fully developed diabetic animal models and may be a promising treatment modality for T2DM in humans.
Collapse
Affiliation(s)
- Yongho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sandoval DA, Bagnol D, Woods SC, D'Alessio DA, Seeley RJ. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 2008; 57:2046-54. [PMID: 18487451 PMCID: PMC2494674 DOI: 10.2337/db07-1824] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) promotes glucose homeostasis through regulation of islet hormone secretion, as well as hepatic and gastric function. Because GLP-1 is also synthesized in the brain, where it regulates food intake, we hypothesized that the central GLP-1 system regulates glucose tolerance as well. RESEARCH DESIGN AND METHODS We used glucose tolerance tests and hyperinsulinemic-euglycemic clamps to assess the role of the central GLP-1 system on glucose tolerance, insulin secretion, and hepatic and peripheral insulin sensitivity. Finally, in situ hybridization was used to examine colocalization of GLP-1 receptors with neuropeptide tyrosine and pro-opiomelanocortin neurons. RESULTS We found that central, but not peripheral, administration of low doses of a GLP-1 receptor antagonist caused relative hyperglycemia during a glucose tolerance test, suggesting that activation of central GLP-1 receptors regulates key processes involved in the maintenance of glucose homeostasis. Central administration of GLP-1 augmented glucose-stimulated insulin secretion, and direct administration of GLP-1 into the arcuate, but not the paraventricular, nucleus of the hypothalamus reduced hepatic glucose production. Consistent with a role for GLP-1 receptors in the arcuate, GLP-1 receptor mRNA was found to be expressed in 68.1% of arcuate neurons that expressed pro-opiomelanocortin mRNA but was not significantly coexpressed with neuropeptide tyrosine. CONCLUSIONS These data suggest that the arcuate GLP-1 receptors are a key component of the GLP-1 system for improving glucose homeostasis by regulating both insulin secretion and glucose production.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Departments of Psychiatry and Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | | | | | |
Collapse
|
23
|
Picha KM, Cunningham MR, Drucker DJ, Mathur A, Ort T, Scully M, Soderman A, Spinka-Doms T, Stojanovic-Susulic V, Thomas BA, O'Neil KT. Protein engineering strategies for sustained glucagon-like peptide-1 receptor-dependent control of glucose homeostasis. Diabetes 2008; 57:1926-34. [PMID: 18426860 PMCID: PMC2453616 DOI: 10.2337/db07-1775] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/17/2008] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We have developed a novel platform for display and delivery of bioactive peptides that links the biological properties of the peptide to the pharmacokinetic properties of an antibody. Peptides engineered in the MIMETIBODY platform have improved biochemical and biophysical properties that are quite distinct from those of Fc-fusion proteins. CNTO736 is a glucagon-like peptide 1 (GLP-1) receptor agonist engineered in our MIMETIBODY platform. It retains many activities of native GLP-1 yet has a significantly enhanced pharmacokinetic profile. Our goal was to develop a long-acting GLP-1 receptor agonist with sustained efficacy. RESEARCH DESIGN AND METHODS In vitro and in vivo activity of CNTO736 was evaluated using a variety of rodent cell lines and diabetic animal models. RESULTS Acute pharmacodynamic studies in diabetic rodents demonstrate that CNTO736 reduces fasting and postprandial glucose, decreases gastric emptying, and inhibits food intake in a GLP-1 receptor-specific manner. Reduction of food intake following CNTO736 dosing is coincident with detection of the molecule in the circumventricular organs of the brain and activation of c-fos in regions protected by the blood-brain barrier. Diabetic rodents dosed chronically with CNTO736 have lower fasting and postprandial glucose and reduced body weight. CONCLUSIONS Taken together, our data demonstrate that CNTO736 produces a spectrum of GLP-1 receptor-dependent actions while exhibiting significantly improved pharmacokinetics relative to the native GLP-1 peptide.
Collapse
|
24
|
Sandoval D. CNS GLP-1 regulation of peripheral glucose homeostasis. Physiol Behav 2008; 94:670-4. [PMID: 18508100 DOI: 10.1016/j.physbeh.2008.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/02/2008] [Indexed: 02/08/2023]
Abstract
Current models hold that peripheral and CNS GLP-1 signaling operate as distinct systems whereby CNS GLP-1 regulates food intake and circulating GLP-1 regulates glucose homeostasis. There is accumulating evidence that the arcuate nucleus, an area of the CNS that regulates energy homeostasis, responds to hormones and nutrients to regulate glucose homeostasis as well. Recent data suggest that GLP-1 may be another signal acting on the arcuate to regulate glucose homeostasis challenging the conventional model of GLP-1 physiology. This review discusses the peripheral and central GLP-1 systems and presents a model whereby these systems are integrated in regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Darleen Sandoval
- Department of Psychiatry, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
25
|
Sandoval D, Cota D, Seeley RJ. The integrative role of CNS fuel-sensing mechanisms in energy balance and glucose regulation. Annu Rev Physiol 2008; 70:513-35. [PMID: 17988209 DOI: 10.1146/annurev.physiol.70.120806.095256] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The incidences of both obesity and type 2 diabetes mellitus are rising at epidemic proportions. Despite this, the balance between caloric intake and expenditure is tremendously accurate under most circumstances. Growing evidence suggests that nutrient and hormonal signals converge and directly act on brain centers, leading to changes in fuel metabolism and, thus, stable body weight over time. Growing evidence also suggests that these same signals act on the central nervous system (CNS) to regulate glucose metabolism independently. We propose that this is not coincidental and that the CNS responds to peripheral signals to orchestrate changes in both energy and glucose homeostasis. In this way the CNS ensures that the nutrient demands of peripheral tissues (and likely of the brain itself) are being met. Consequently, dysfunction of the ability of the CNS to integrate fuel-sensing signals may underlie the etiology of metabolic diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Darleen Sandoval
- Department of Psychiatry, Genome Research Institute, University of Cincinnati, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
26
|
Parsons GB, Souza DW, Wu H, Yu D, Wadsworth SG, Gregory RJ, Armentano D. Ectopic expression of glucagon-like peptide 1 for gene therapy of type II diabetes. Gene Ther 2006; 14:38-48. [PMID: 16929351 DOI: 10.1038/sj.gt.3302842] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a promising candidate for the treatment of type II diabetes. However, the short in vivo half-life of GLP-1 has made peptide-based treatments challenging. Gene therapy aimed at achieving continuous GLP-1 expression presents one way to circumvent the rapid turnover of GLP-1. We have created a GLP-1 minigene that can direct the secretion of active GLP-1 (amino acids 7-37). Plasmid and adenoviral expression vectors encoding the 31-amino-acid peptide linked to leader sequences required for secretion of GLP-1 yielded sustained levels of active GLP-1 that were significantly greater than endogenous levels. Systemic administration of expression vectors to animals using two diabetic rodent models, db/db mice and Zucker Diabetic Fatty (ZDF) rats, yielded elevated GLP-1 levels that lowered both the fasting and random-fed hyperglycemia present in these animals. Because the insulinotropic actions of GLP-1 are glucose dependent, no evidence of hypoglycemia was observed. Improved glucose homeostasis was demonstrated by improvements in %HbA1c (glycated hemoglobin) and in glucose tolerance tests. GLP-1-treated animals had higher circulating insulin levels and increased insulin immunostaining of pancreatic sections. GLP-1-treated ZDF rats showed diminished food intake and, in the first few weeks following vector administration, a diminished weight gain. These results demonstrate the feasibility of gene therapy for type II diabetes using GLP-1 expression vectors.
Collapse
Affiliation(s)
- G B Parsons
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA 01701, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH 45237, USA.
| |
Collapse
|
28
|
Mack C, Laugero K, Liu Q, Jodka C, Young A, Parkes D. Therapeutic applications of incretin mimetics for metabolic diseases: preclinical studies. Drug Dev Res 2006. [DOI: 10.1002/ddr.20121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Mack CM, Moore CX, Jodka CM, Bhavsar S, Wilson JK, Hoyt JA, Roan JL, Vu C, Laugero KD, Parkes DG, Young AA. Antiobesity action of peripheral exenatide (exendin-4) in rodents: effects on food intake, body weight, metabolic status and side-effect measures. Int J Obes (Lond) 2006; 30:1332-40. [PMID: 16534527 DOI: 10.1038/sj.ijo.0803284] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Exenatide (exendin-4) is an incretin mimetic currently marketed as an antidiabetic agent for patients with type 2 diabetes. In preclinical models, a reduction in body weight has also been shown in low-fat-fed, leptin receptor-deficient rodents. OBJECTIVE To more closely model the polygenic and environmental state of human obesity, we characterized the effect of exenatide on food intake and body weight in high-fat-fed, normal (those with an intact leptin signaling system) rodents. As glucagon-like peptide-1 receptor agonism has been found to elicit behaviors associated with visceral illness in rodents, we also examined the effect of peripheral exenatide on kaolin consumption and locomotor activity. METHODS AND RESULTS High-fat-fed C57BL/6 mice and Sprague-Dawley rats were treated with exenatide (3, 10 and 30 microg/kg/day) for 4 weeks via subcutaneously implanted osmotic pumps. Food intake and body weight were assessed weekly. At 4 weeks, body composition and plasma metabolic profiles were measured. Kaolin consumption and locomotor activity were measured in fasted Sprague-Dawley rats following a single intraperitoneal injection of exenatide (0.1-10 microg/kg). Exenatide treatment in mice and rats dose-dependently decreased food intake and body weight; significant reductions in body weight gain were observed throughout treatment at 10 and 30 microg/kg/day (P<0.05). Decreased body weight gain was associated with a significant decrease in fat mass (P<0.05) with sparing of lean tissue. Plasma cholesterol, triglycerides and insulin were also significantly reduced (P<0.05). Exenatide at 10 microg/kg significantly reduced food intake (P<0.05) but failed to induce kaolin intake. In general, locomotor activity was reduced at doses of exenatide that decreased food intake, although a slightly higher dose was required to produce significant changes in activity. CONCLUSION Systemic exenatide reduces body weight gain in normal, high-fat-fed rodents, a model that parallels human genetic variation and food consumption patterns, and may play a role in metabolic pathways mediating food intake.
Collapse
Affiliation(s)
- C M Mack
- Amylin Pharmaceuticals Inc., San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Despite dramatic fluctuations in calorie intake, animals maintain a very stable body weight. The reason is that energy intake and expenditure are precisely matched. Long-term regulation of energy balance is dependent on the coordination and interpretation of signals such as those given by insulin and leptin indicating sufficient long-term energy stores as well as short-term, meal-related signals such as those given by cholecystokinin (CCK). Within the last 30 years, our knowledge of short-term signals has increased dramatically. Throughout the cephalo-caudal axis of the gastrointestinal system, discrete enteroendocrine cells respond to both mechanical and chemical stimulation. Meal-associated hormone release is dependent on the concentration and composition of the nutrients ingested. Released signals are transmitted neurally through vagal afferents or humorally as circulating ligands for specific receptor populations in the periphery and central nervous system. These signals are interpreted by the CNS and manifested as a behavioral modification of feeding. This review will present past and recent literature in support of gut hormones and their roles as mediators of satiety. Evidence from pharmacologic and physiologic studies involving both humans and rodents will be presented, along with a short section outlining the knowledge gained through the use of murine knockout models. Last, the contribution of satiety hormones as likely mediators of the effectiveness seen following obesity surgery will be reviewed. Although traditionally thought of as short-term, meal-related signals, enhanced, chronic hormone secretion and signaling resulting from gut reconstruction as seen with gastric bypass surgery most likely contributes to the superior efficacy of surgery as a treatment for obesity.
Collapse
Affiliation(s)
- April D Strader
- Genome Research Institute, University of Cincinnati Medical Center, 2170 E. Galbraith Road, Cincinnati, OH 45237, USA
| | | |
Collapse
|
31
|
CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci 2003. [PMID: 12867498 DOI: 10.1523/jneurosci.23-15-06163.2003] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Responses to stressors serve to adjust physiology and behavior to increase short-term survival at the potential expense of increasing susceptibility to disease over the long term. We show that glucagon-like peptide-1 (7-36) amide (GLP-1) increases levels of the stress-activated hormones ACTH and corticosterone when administered directly into the rat brain and increases levels of anxiety as measured by the elevated plus maze. The endocrine response is preferentially activated by GLP-1 administration in the paraventricular nucleus of the hypothalamus, whereas the anxiety response is preferentially activated by administration in the central nucleus of the amygdala. Furthermore, GLP-1 antagonists block increases in stress hormones associated with the toxin LiCl and both the endocrine and anxiety responses to vertical heights. Although diverse neural circuits must necessarily process disparate stressors, the current data implicate a role for the GLP-1 system as a critical mediator of multiple stress responses.
Collapse
|
32
|
Abstract
Eating a meal is a mechanical process involving autonomous pathways that relay sensory and motor information between the whole length of the digestive tract and the central nervous system. This circuitry is able to initiate and terminate the meal, primarily by gut-brainstem-gut reflex arcs, and is independent of the caloric content of a meal. However, as part of our ability to regulate body weight over time, we must be able to modulate the amount of energy that we take in as food and the amount of energy that we expend. Thus, the gut-brainstem axis must be coupled to other systems that take account of factors such as food availability and preference, changing energy requirements and our social habits. Here, we review the importance of the brainstem nucleus of the tractus solitarius as a site of integration and the routes by which it connects the gut-brainstem axis with regulatory neuronal and endocrine networks that allow for strict body weight management.
Collapse
Affiliation(s)
- Simon M Luckman
- School of Biological Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, UK.
| | | |
Collapse
|
33
|
The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci 2002. [PMID: 12451146 DOI: 10.1523/jneurosci.22-23-10470.2002] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracerebroventricular administration of glucagon-like peptide-1 (7-36) amide (GLP-1) reduces food intake and produces symptoms of visceral illness, such as a conditioned taste aversion (CTA). The central hypothesis of the present work is that separate populations of GLP-1 receptors mediate the anorexia and taste aversion associated with GLP-1 administration. To test this hypothesis, we first compared the ability of various doses of GLP-1 to induce anorexia or CTA when administered into either the lateral or fourth ventricle. Lateral and fourth ventricular GLP-1 resulted in reduction of food intake at similar doses, whereas only lateral ventricular GLP-1 resulted in a CTA. Such data indicate that both hypothalamic and caudal brainstem GLP-1 receptors are likely to participate in the ability of GLP-1 to reduce food intake. We also hypothesized that the site that must mediate the ability of GLP-1 to induce visceral illness is in the central nucleus of the amygdala (CeA). Administration of 0.2 or 1.0 microg of GLP-1 (7-36) but not the inactive GLP-1 (9-36) resulted in a strong CTA with no accompanying anorexia. In addition, bilateral CeA administration of 2.5 microg of a GLP-1 receptor antagonist before intraperitoneal administration of the toxin lithium chloride resulted in a diminished CTA. Together, these data indicate that separate GLP-1 receptor populations mediate the multiple responses to GLP-1. These results indicate that GLP-1 is a flexible system that can be activated under various circumstances to alter the ingestion of nutrients and/or produce other visceral illness responses, depending on the ascending pathways of the GLP-1 system that are recruited.
Collapse
|
34
|
Abstract
Energy homeostasis is controlled by a complex neuroendocrine system consisting of peripheral signals like leptin and central signals, in particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic (NPY, AgRP, and MCH) actions are involved in this complex (partly redundant) controlling system. Starvation as well as overfeeding lead to changes in expression levels of these neuropeptides, which act downstream of leptin, resulting in a physiological response. In this review the role of several anorexigenic and orexigenic (hypothalamic) neuropeptides on food intake and body weight regulation is summarized.
Collapse
Affiliation(s)
- J J G Hillebrand
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
35
|
Abstract
Feeding provides substrate for energy metabolism, which is vital to the survival of every living animal and therefore is subject to intense regulation by brain homeostatic and hedonic systems. Over the last decade, our understanding of the circuits and molecules involved in this process has changed dramatically, in large part due to the availability of animal models with genetic lesions. In this review, we examine the role played in homeostatic regulation of feeding by systemic mediators such as leptin and ghrelin, which act on brain systems utilizing neuropeptide Y, agouti-related peptide, melanocortins, orexins, and melanin concentrating hormone, among other mediators. We also examine the mechanisms for taste and reward systems that provide food with its intrinsically reinforcing properties and explore the links between the homeostatic and hedonic systems that ensure intake of adequate nutrition.
Collapse
Affiliation(s)
- Clifford B Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
36
|
Zhang R, Nakanishi T, Ohgushi A, Ando R, Yoshimatsu T, Denbow DM, Furuse M. Interaction of corticotropin-releasing factor and glucagon-like peptide-1 on behaviors in chicks. Eur J Pharmacol 2001; 430:73-8. [PMID: 11698065 DOI: 10.1016/s0014-2999(01)01363-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Both corticortropin-releasing factor (CRF) and glucagon-like peptide-1 (GLP-1) inhibit food intake of chicks, but they also produce other behaviors. The present experiments were undertaken to clarify the interaction of CRF and GLP-1 regarding their anorectic actions as well as other behaviors. In Experiment 1, birds were injected intracerebroventricularly (i.c.v.), following a 3-h fast, with either saline, 0.1 microg of CRF, 0.1 microg of CRF+0.1 microg of GLP-1 or 0.1 microg of CRF+1 microg of GLP-1, and food intake was measured for 2 h. The injection of CRF decreased food intake, and CRF injected with GLP-1 suppressed food intake for up to 2 h. Birds were treated similarly in Experiment 2 in which the doses of CRF and GLP-1 were reversed. GLP-1 strongly suppressed food intake, and this effect was augmented by coadministration of CRF. In Experiment 3, the behaviors of chicks injected with saline, CRF (0.1 microg), GLP-1 (0.1 microg) or CRF (0.1 microg)+GLP-1 (0.1 microg) were monitored for the numbers of steps, vocalization and locomotion. Chicks were excited, moved more and vocalized loudly following injection of CRF, whereas an opposite response was seen with GLP-1. The behaviors were intermediate following the coinjection of the two peptides. In conclusion, CRF and GLP-1 interact in the chick brain, but the response depends on the behavior being measured.
Collapse
Affiliation(s)
- R Zhang
- Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 812-8581, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Food intake is the simplest and most obvious measure of gastrointestinal function, yet it rarely receives more than cursory attention from surgeons. In this review we cover recent findings on relationships between gut function and appetite regulation mediated via neuropeptides influenced by afferent and efferent vagal activity. Evidence from the new discipline known as neurogastroenterology elucidates gastric and intestinal signals involved in the elicitation of hunger, satiety, and aversion. Discovery of the adipose-tissue-derived hormone, leptin, has energized the field of metabolism spawning increasing numbers of publications related to interactions between leptin and insulin release and glucose disposal, as well as appetitive behavior. Peptides such as cholecystokinin (CCK), the proglucagon-derived peptides, glucagon-like peptides 1 and 2 (GLP-1 and GLP-2), and the recently identified powerful intake-stimulating molecule, orexin, are examples of potential targets for drug development and studies of surgical pathophysiology. A major conclusion of this work is that the considerable redundancy and overlap between mediators of caloric intake subserving survival of the species, while beneficial after foregut surgery, contribute to the complexity of treating the global epidemic of obesity. Possibly knowledge derived from basic research in neurogastroenterology can translate into advances in surgical treatment of obesity.
Collapse
Affiliation(s)
- E Näslund
- Division of Surgery, Karolinska Institutet Danderyd Hospital, SE-182 88 Danderyd, Sweden.
| | | | | |
Collapse
|
38
|
Catalina F, Speciale SG, Kumar V, Milewich L, Bennett M. Food restriction-like effects of dietary dehydroepiandrosterone. Hypothalamic neurotransmitters and metabolites in male C57BL/6 and (C57BL/6 x DBA/2)F1 mice. Exp Biol Med (Maywood) 2001; 226:208-15. [PMID: 11361039 DOI: 10.1177/153537020122600308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) is a precursor of sex hormones in mammals. Dietary DHEA serves to prevent or inhibit various diseases and also lengthens life spans of animals. Moreover, dietary DHEA inhibits food intake in certain strains of mice. We administered DHEA (0.45% w/w of food) to C57BL/6 (B6) and (B6 x DBA/2)F1 (BDF1) mice for 5 weeks. Food intake was inhibited in both strains of mice during the first week. Thereafter, B6, but not BDF1, mice consumed less food. Because hypothalamic serotonin and/or dopamine regulate appetite, satiety and other behaviors, the hypothesis tested was that hypothalamic concentration of serotonin, dopamine and/or their metabolites are affected differentially in B6 and BDF1 mice fed DHEA. In another study, mice were fed the AIN-76A diet with or without DHEA for 1 and 7 days or were pair-fed to DHEA-fed mice for 7 days. On Day 1 of DHEA feeding (acute effects) hypothalamic levels of serotonin, dopamine, and metabolites were unchanged in B6 mice, but levels of dopamine were increased and levels of dopamine metabolites were decreased in BDF1 mice. On Day 7 of DHEA feeding, levels of serotonin were increased in BDF1 but not B6 mice. On Day 7 of pair-feeding there were decreased levels of hypothalamic dopamine metabolites in BDF1 but not B6 mice. Paraventricular nuclei of BDF1 mice had decreased levels of serotonin but not of dopamine in all groups. Serum levels of DHEA and its metabolite, 5-androstene-3beta,17beta-diol, correlated significantly only with serotonin concentrations in BDF1 mice. The salient findings of these experiments are that DHEA inhibits food intake to a greater extent in B6 than in BDF1 mice. However, alterations of hypothalamic neurotransmitters were greater in BDF1 than in B6 mice. Because BDF1 and B6 mice share B6 genes, relevant gene(s) derived from DBA/2 mice might mediate the different responses detected.
Collapse
Affiliation(s)
- F Catalina
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | |
Collapse
|
39
|
Choi YH, Anderson GH. An interaction between hypothalamic glucagon-like peptide-1 and macronutrient composition determines food intake in rats. J Nutr 2001; 131:1819-25. [PMID: 11385073 DOI: 10.1093/jn/131.6.1819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) release in response to food ingestion has been associated with decreased food intake. In the present study, we tested the hypothesis that the feeding response to GLP-1 injection into the hypothalamic paraventricular nucleus (PVN) is influenced by the macronutrient composition of the food consumed. In the first experiment, rats were injected with GLP-1 (0.2 microg) or saline (0.5 microL) in the PVN at dark onset (1800 h), and food intake from a maintenance diet (18% protein) was measured at 1, 2 and 14 h. In Experiment 2, after GLP-1 injection, rats were fed a carbohydrate (protein-free) diet for the first 2 h or gavaged with glucose (1.4 g/5 mL). In Experiment 3, after GLP-1 injection, rats were fed a protein (50%) diet for the first 2 h, or were preloaded with egg albumin (1.0 g). In the last experiment, GLP-1 was given after corn oil gavage (2.4 g). GLP-1 injection resulted in a reduced consumption of the maintenance diet from 2 to 14 h. The decreased food intake from 2 to 14 h after GLP-1 administration occurred after carbohydrate intake, either by meal or preloads, but not after protein intake, either as a meal or preload. A transient interaction of GLP-1 with a corn oil gavage was detected but only in early feeding (0-2 h). We conclude that the effect of GLP-1 injected in the PVN on food intake is influenced by the macronutrient composition of the food consumed. Carbohydrate enhances, protein blocks and corn oil has a transient effect on the suppression of food intake caused by GLP-1 in the PVN.
Collapse
Affiliation(s)
- Y H Choi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3E2, Canada
| | | |
Collapse
|
40
|
Silverstein JT, Bondareva VM, Leonard JB, Plisetskaya EM. Neuropeptide regulation of feeding in catfish, Ictalurus punctatus: a role for glucagon-like peptide-1 (GLP-1)? Comp Biochem Physiol B Biochem Mol Biol 2001; 129:623-31. [PMID: 11399498 DOI: 10.1016/s1096-4959(01)00357-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glucagon-like peptide 1 is a compound known to cause reduced food intake in mammals, though its action on feed intake in fish is unknown. The clear differences in the effects of GLP-1 on mammalian and teleostean glucose homeostasis suggest that we cannot assume a similar action of GLP-1 on feeding in mammals and fish. In this study the effects and specificity of centrally administered GLP-1 on feed intake were examined. It was demonstrated that intracerebroventricular (ICV) injection of glucagon-like peptide 1 (GLP-1) in the channel catfish (Ictalurus punctatus) is a potent inhibitor of feed intake with a dose of 0.25 ng g(-1) body wt. reducing feed intake by 50%. The weak response to intraperitoneal (i.p.) and intravenous (i.v.) injection treatments with GLP-1 suggests the major effects on feed intake are centrally mediated. GLP-1 action on feed intake was not antagonized by ICV injection of exendin(9-39). Immunoneutralization of GLP-1 by ICV injection of antisalmon GLP-1 antisera did not affect feed intake over 48 h, while ICV injection of GLP-1 at a dose of 30 ng g(-1) body wt. reduced feed intake for over 20 h. Additionally, there is some evidence that GLP-1 caused gastric evacuation. We conclude that GLP-1 is a potent inhibitor of feeding in fish, but its involvement in feed intake regulation under physiological conditions remains to be clarified.
Collapse
Affiliation(s)
- J T Silverstein
- USDA, ARS, Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, 38776, Stoneville, MS, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Feeding behavior results from complex interactions arising between numerous neuromediators, including classical neurotransmitters and neuropeptides present in hypothalamic networks. One way to unravel these complex mechanisms is to examine animal models with a deletion of genes coding for the different neuropeptides involved in the regulation of feeding. The aim of this review is to focus on feeding and body weight regulation in mice lacking neuropeptide Y (NPY), melanocortins (POMC), corticotropin-releasing hormone, melanin-concentrating hormone, or bombesin-like peptides respectively. The phenotypes, which relate to the deletion of gene coding for the peptides, rarely include changes in body weight and food intake, indicating therefore the existence of redundant mechanisms to compensate for the loss of the peptide. The phenotype is much more marked when the gene deletion is targeted towards the functioning of the peptidergic machinery, e.g. the receptors and especially the POMC and NPY receptors, as well as one subtype of bombesin receptor (BRS-3). These knockout models are also interesting when examining the role of environmental and social factors in the determination of feeding behavior. They have granted us better knowledge of all these integrated and complex mechanisms. Moreover, they are also valuable tools for pharmacological studies when specific antagonists are lacking. From the information obtained by the study of knockouts, it is possible to determine certain targets for selective drugs that could be efficient for the pharmacological treatment of obesity. However, at the present state of our knowledge, it seems necessary to target several peptides in order to get good results with weight loss. It will also be imperative to associate these multitherapies with changes in eating and behavioral habits, in order to obtain complete effectiveness and long-lasting results.
Collapse
Affiliation(s)
- B Beck
- Centre de Recherches INSERM, Systèmes Neuromodulateurs des Comportements Ingestifs, 38 rue Lionnois. 54000, Nancy, France.
| |
Collapse
|
42
|
Abstract
Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide produced by neurons of the lateral hypothalamic area (LHA). Because genetic MCH deficiency induces hypophagia and loss of body fat, we hypothesized that MCH neurons may represent a specific LHA pathway that, when inhibited, contributes to the pathogenesis of certain anorexia syndromes. To test this hypothesis, we measured behavioral, hormonal, and hypothalamic neuropeptide responses in two models of hyperestrogenemia in male rats, a highly reproducible anorexia paradigm. Whereas estrogen-induced weight loss engaged multiple systems that normally favor recovery of lost weight, the expected increase of MCH mRNA expression induced by energy restriction was selectively and completely abolished. These findings identify MCH neurons as specific targets of estrogen action and suggest that inhibition of these neurons may contribute to the hypophagic effect of estrogen.
Collapse
|
43
|
Rodriquez de Fonseca F, Navarro M, Alvarez E, Roncero I, Chowen JA, Maestre O, Gómez R, Muñoz RM, Eng J, Blázquez E. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism 2000; 49:709-17. [PMID: 10877194 DOI: 10.1053/meta.2000.6251] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study explores the potential utility of peripheral versus central administration of glucagon-like peptide-1 (GLP-1) receptor agonists in the regulation of feeding behavior in Wistar and Zucker obese rats. Acute central (intracerebroventricular [i.c.v.]) and peripheral (subcutaneous [s.c.]) administration of both GLP-1 (7-36) amide and exendin-4 resulted in a reduction in food intake for at least 4 hours, exendin-4 being much more potent than GLP-1 (7-36) amide, especially after peripheral administration. Both Zucker obese rats (fa/fa) and their lean littermates (Fa/-) responded to acute central and peripheral administration of exendin-4. Moreover, in situ hybridization revealed specific labeling for the mRNA for GLP-1 receptors in several brain areas of both the obese and lean rats. The presence of this receptor was also detected by affinity cross-linking assays. Long-term s.c. administration of exendin-4 (1 single injection per day, 1 hour prior to the onset of the dark phase of the cycle) decreased daily food intake and practically blocked weight gain in obese rats. In contrast to previous studies, these findings show that peripheral (s.c.) administration of both GLP-1 receptor agonists also induces satiety and weight loss in rats, and suggest the potential usefulness of exendin-4 as a therapeutic tool for the treatment of diabetes and/or obesity.
Collapse
Affiliation(s)
- F Rodriquez de Fonseca
- Department of Psychobiology, Faculty of Psychology, Complutense University, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mojsov S. Glucagon-like Peptide-1 (GLP-1) and the Control of Glucose Metabolism in Mammals and Teleost Fish. ACTA ACUST UNITED AC 2000. [DOI: 10.1093/icb/40.2.246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
45
|
Mojsov S. Glucagon-like Peptide-1 (GLP-1) and the Control of Glucose Metabolism in Mammals and Teleost Fish1. ACTA ACUST UNITED AC 2000. [DOI: 10.1668/0003-1569(2000)040[0246:glpgat]2.0.co;2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
The role of CNS glucagon-like peptide-1 (7-36) amide receptors in mediating the visceral illness effects of lithium chloride. J Neurosci 2000. [PMID: 10662851 DOI: 10.1523/jneurosci.20-04-01616.2000] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral administration of large doses of lithium chloride (LiCl) to rats causes a spectrum of effects that are consistent with visceral illness. LiCl reduces food intake, decreases salt ingestion after sodium depletion, induces pica, and produces robust conditioned taste aversions. Because some of the effects of peripheral LiCl are mimicked by centrally administered glucagon-like peptide-1 (7-36) amide (GLP-1), we hypothesized that this peptide is involved in the neural pathways by which LiCl causes visceral illness. To test this hypothesis, we pretreated rats with a selective and potent GLP-1 receptor antagonist given directly into the third ventricle via an indwelling cannula before administration of peripheral LiCl. The GLP-1 receptor antagonist completely blocked the effect of LiCl to reduce food intake, induce pica, and produce a conditioned taste aversion. The same dose of GLP-1 receptor antagonist did not reverse the LiCl-induced reduction in NaCl intake. The data indicate a role for GLP-1 receptors in the CNS pathway that mediates some of the effects of visceral illness.
Collapse
|
47
|
Seeley RJ, Woods SC, D'Alessio D. Targeted gene disruption in endocrine research--the case of glucagon-like peptide-1 and neuroendocrine function. Endocrinology 2000; 141:473-5. [PMID: 10650925 DOI: 10.1210/endo.141.2.7372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Affiliation(s)
- T J Kieffer
- Department of Medicine, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
49
|
Affiliation(s)
- G A Bray
- Louisiana State University, Pennington Biomedical Research Center, Baton Rouge 70808-4124, USA
| | | |
Collapse
|
50
|
Rinaman L. A functional role for central glucagon-like peptide-1 receptors in lithium chloride-induced anorexia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1537-40. [PMID: 10564228 DOI: 10.1152/ajpregu.1999.277.5.r1537] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study sought to determine whether central glucagon-like peptide-1 (GLP-1)-receptor signalling contributes to the anorexigenic effects of systemically administered lithium chloride (LiCl). Male Sprague-Dawley rats with chronic intracerebroventricular (ICV) cannulas were acclimated to a feeding schedule that included daily 30-min access to palatable mash. In the first experiment, ICV infusion of a GLP-1-receptor antagonist [exendin-4-(3-39)] significantly attenuated (10 microgram dose) or completely blocked (20 microgram dose) the inhibition of food intake produced by subsequent ICV infusion of GLP-1-(7-36) amide (5 microgram). In the second experiment, rats were infused with 0, 10, or 20 microgram of the GLP-1-receptor antagonist ICV, followed by injection of 0.15 M LiCl (50 mg/kg ip) or the same volume of 0.15 M NaCl. The ability of LiCl treatment to suppress food intake was significantly attenuated in rats that were pretreated with the GLP-1-receptor antagonist. These results support the view that central mechanisms underlying LiCl-induced anorexia include a prominent role for endogenous GLP-1 neural pathways.
Collapse
Affiliation(s)
- L Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|