1
|
Zhang H, Si W, Wang B, Han J, Ding F, Xue Q, Cao X. Schizophrenia-like phenotypes and long-term synaptic plasticity impairment in GluN2A-transgenic mice. Pharmacol Biochem Behav 2025; 252:174026. [PMID: 40306373 DOI: 10.1016/j.pbb.2025.174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
While N-methyl-d-aspartate receptor (NMDAR) hypofunction has been suggested as a hallmark of schizophrenia, the role of subunit-specific dysregulation such as GluN2A overexpression remains poorly understood. The present study comprehensively investigated the impact of GluN2A overexpression on behavioral phenotypes, cognitive functions, and synaptic plasticity in transgenic mice with forebrain-specific overexpression of the GluN2A subunit (GluN2A-TG). Behavioral assessments revealed schizophrenia-like phenotypes, including prolonged stereotypic movement duration, impaired sensorimotor gating, reduced social interaction, and diminished nest-building activity in GluN2A-TG mice. Consistently, GluN2A-TG mice exhibited not only deficits in spatial working memory and olfactory working memory but also impaired associative learning. In addition, both long-term potentiation and long-term depression were significantly attenuated in the prefrontal cortex (PFC) of GluN2A-TG mice. Furthermore, electrophysiological analysis of NMDAR-mediated excitatory postsynaptic currents in PFC neurons revealed altered kinetics characterized by a faster decay time and significantly increased amplitude in GluN2A-TG mice. Collectively, these findings suggest that GluN2A overexpression may induce schizophrenia-like phenotypes via impairing NMDAR-dependent long-term synaptic plasticity in the PFC, likely due to altered NMDAR subunit composition leading to disrupted calcium signaling dynamics. These results provide critical insights into the pathological role of GluN2A in schizophrenia.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Wen Si
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Bo Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Jiao Han
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Fan Ding
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai 200062, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 2 Ruijin Rd., Shanghai 200025, China.
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai 200062, China.
| |
Collapse
|
2
|
Quach TT, Duchemin AM. Intelligence, brain structure, dendrites, and genes: Genetic, epigenetic and the underlying of the quadruple helix complexity. Neurosci Biobehav Rev 2025; 175:106212. [PMID: 40389043 DOI: 10.1016/j.neubiorev.2025.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Intelligence can be referred to as the mental ability to learn, comprehend abstract concepts, and solve complex problems. Twin and adoption studies have provided insights into the influence of the familial environment and highlighted the importance of heritability in the development of cognition. Detecting the relative contribution of brain areas, neuronal structures, and connectomes has brought some understanding on how various brain areas, white/gray matter structures and neuronal connectivity process information and contribute to intelligence. Using histological, anatomical, electrophysiological, neuropsychological, neuro-imaging and molecular biology methods, several key concepts have emerged: 1) the parietofrontal-hippocampal integrations probably constitute a substrate for smart behavior, 2) neuronal activity results in structural plasticity of dendritic branches responsible for information transfer, critical for learning and memory, 3) intelligent people process information efficiently, 4) the environment triggers mnemonic epigenomic programs (via dynamic regulation of chromatin accessibility, DNA methylation, loop interruption/formation and histone modification) conferring cognitive phenotypes throughout life, and 5) single/double DNA breaks are prominent in human brain disorders associated with cognitive impairment including Alzheimer's disease and schizophrenia. Along with these observations, molecular/cellular/biological studies have identified sets of specific genes associated with higher scores on intelligence tests. Interestingly, many of these genes are associated with dendritogenesis. Because dendrite structure/function is involved in cognition, the control of dendrite genesis/maintenance may be critical for understanding the landscape of general/specific cognitive ability and new pathways for therapeutic approaches.
Collapse
Affiliation(s)
- Tam T Quach
- Department of Neuroscience. The Ohio State University, Columbus, OH 43210, USA.
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Yu H, Wang C, Wu Y, He C, Zou S. Association between GRIN2B DNA methylation and cognitive impairment: a cross-sectional study of patients with bipolar depression. Front Psychiatry 2025; 16:1574391. [PMID: 40438331 PMCID: PMC12116458 DOI: 10.3389/fpsyt.2025.1574391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Background Cognitive impairment is a prevalent feature throughout the course of bipolar disorder (BD) and may contribute to recurrent episodes and poor prognosis. Despite its significant clinical impact, the biological mechanisms underlying cognitive impairment in BD remain poorly understood, complicating treatment efforts. The NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor, encoded by the GRIN2B gene, plays a critical role in cognitive functions. Methods In this study, we measured the methylation levels of the promoter region of the GRIN2B gene in peripheral blood samples from patients with bipolar depression and healthy controls using the MassARRAY method. Cognitive performance was assessed through a series of standardized neuropsychological tests. Subsequently, we analyzed the correlation between GRIN2B gene promoter methylation levels and cognitive performance in patients with bipolar depression. Results We identified aberrant methylation levels at multiple CpG sites within the GRIN2B gene promoter region in patients with bipolar depression compared to healthy controls. These methylation changes were significantly associated with impairments in several cognitive domains, including attention and executive function, even after adjusting for potential confounding factors. These findings suggest that aberrant methylation in the GRIN2B gene promoter region may play a critical role in cognitive impairment in bipolar depression. Conclusions DNA methylation levels in the GRIN2B gene promoter region may represent a potential therapeutic target for addressing cognitive impairment in bipolar depression. These findings provide a theoretical foundation for future clinical diagnosis and the development of targeted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Shaohong Zou
- Department of Clinical Psychology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
4
|
Nadi Moghadam N, Torkaman-Boutorabi A, Farhoudian A, Razaghi EM. Effects of acamprosate on alprazolam-induced conditioned place preference in male rats: The role of GABA and NMDA receptor subunits. Eur J Pharmacol 2025; 999:177643. [PMID: 40306538 DOI: 10.1016/j.ejphar.2025.177643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Alprazolam, a commonly prescribed benzodiazepine (BZD), poses a risk for abuse and has been linked to conditioned place preference (CPP). Research indicates that effective long-term treatments for alprazolam misuse are lacking. The mechanisms of tolerance and dependence for BZDs are similar to those seen with alcohol, involving gamma-aminobutyric acid (GABA) and glutamate neurotransmitter systems. Additionally, managing withdrawal symptoms and reducing relapse rates may be identical for both substances. Acamprosate's ability to reduce alcohol cravings and relapse has led this study to explore its potential as a treatment for the extinction and reinstatement of alprazolam-induced CPP. Accordingly, we evaluated the effects of different doses of acamprosate on the extinction period and reinstatement of alprazolam-induced CPP in male rats. We also assessed hippocampal gene expression of GABAA receptor (α1, α5, γ2) subunits and N-methyl-D-aspartate (NMDA) receptor (NR1, NR2A, NR2B) subunits after reinstatement, given alprazolam's action on these receptors. Alprazolam (1.5 mg/kg) could induce CPP in a 14-day paradigm. Acamprosate (20, 50, and 100 mg/kg) attenuated alprazolam-induced extinction period and reinstatement (P < 0.01). At the molecular level, acamprosate reduced the gene expression of α1 (P < 0.05) while increased α5 and γ2 subunits of GABAA receptors (p < 0.01). Besides, the gene expression of NR1, NR2A, and NR2B subunits of NMDA receptors were significantly enhanced by acamprosate (P < 0.001). These findings suggest that acamprosate is able to reduce the duration of extinction and reinstatement of alprazolam-induced CPP in male rats.
Collapse
Affiliation(s)
- Nasim Nadi Moghadam
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Farhoudian
- Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Sun Y, An P, Cai Y, Yang W, Fang Y, Liu H, Zhang G, Shan Y, Wang J, Zhang Y, Zhou X. Environmental enrichment reverses noise induced impairments in learning and memory associated with the hippocampus in female rats. Sci Rep 2025; 15:11509. [PMID: 40181175 PMCID: PMC11968901 DOI: 10.1038/s41598-025-96119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Environmental enrichment (EE) has positive effects on brain function and behavior in both healthy and behaviorally impaired animals. In earlier studies, we showed that rats exposed to noise during early development exhibited deficits in learning and memory associated with the hippocampus. In this study, we investigated whether EE provided during adulthood can reverse such noise-induced impairments. We found that four weeks of EE substantially improved learning and memory in adult female rats exposed to noise during early development. The behavioral changes observed after EE were accompanied by the restoration of parvalbumin-positive (PV+) inhibitory interneurons in the hippocampal subregions. EE also reversed noise-induced reductions in hippocampal long-term potentiation (LTP) of synaptic connections, a mechanism essential for learning and memory processing. However, an enriched environment that lacked social interaction had little effect on restoring LTP in noise-exposed rats. These findings suggest that EE effectively mitigates hippocampal impairments that stem from early noise exposure, with social interaction playing a crucial role in this recovery process.
Collapse
Affiliation(s)
- Yutian Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Yongjian Cai
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Wenjing Yang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Yue Fang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Hui Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Guimin Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Wuhu Hospital, East China Normal University, Wuhu, 241000, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China.
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- Institute of Brain and Cognitive Science, New York University-East China Normal University (NYU-ECNU), NYU-Shanghai, Shanghai, 200062, China.
| |
Collapse
|
6
|
Trent S, Abdullah MH, Parwana K, Valdivieso MA, Hassan Z, Müller CP. Fear conditioning: Insights into learning, memory and extinction and its relevance to clinical disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111310. [PMID: 40056965 DOI: 10.1016/j.pnpbp.2025.111310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Fear, whether innate or learned, is an essential emotion required for survival. The learning, and subsequent memory, of fearful events enhances our ability to recognise and respond to threats, aiding adaptation to new, ever-changing environments. Considerable research has leveraged associative learning protocols such as contextual or auditory forms of fear conditioning in rodents, to understand fear learning, memory consolidation and extinction phases of memory. Such assays have led to detailed characterisation of the underlying neurocircuitry and neurobiology supporting fear learning processes. Given fear processing is conserved across rodents and humans, fear conditioning experiments provide translational insights into fundamental memory processes and fear-related pathologies. This review examines associative learning protocols used to measure fear learning, memory and extinction, before providing an overview on the underlying complex neurocircuitry including the amygdala, hippocampus and medial prefrontal cortex. This is followed by an in-depth commentary on the neurobiology, particularly synaptic plasticity mechanisms, which regulate fear learning, memory and extinction. Next, we consider how fear conditioning assays in rodents can inform our understanding of disrupted fear memory in human disorders such as post-traumatic stress disorder (PTSD), anxiety and psychiatric disorders including schizophrenia. Lastly, we critically evaluate fear conditioning protocols, highlighting some of the experimental and theoretical limitations and the considerations required when conducting such assays, alongside recent methodological advancements in the field. Overall, rodent-based fear conditioning assays remain central to making progress in uncovering fundamental memory phenomena and understanding the aetiological mechanisms that underpin fear associated disorders, alongside the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Simon Trent
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK.
| | | | - Krishma Parwana
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Maria Alcocer Valdivieso
- School of Life Sciences, Faculty of Natural Sciences, Huxley Building, Keele University, Keele ST5 5BG, UK
| | - Zurina Hassan
- Centre for Drug Research, Universiti Malaysia (USM), 11800 Penang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
7
|
Reid P, Scherer K, Halasz D, Simal AL, Tang J, Zaheer F, Tuling J, Levine G, Michaud J, Clark AL, Descalzi G. Astrocyte neuronal metabolic coupling in the anterior cingulate cortex of mice with inflammatory pain. Brain Behav Immun 2025; 125:212-225. [PMID: 39694343 DOI: 10.1016/j.bbi.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/14/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024] Open
Abstract
Chronic pain is a major global concern, with at least 1 in 5 people suffering from chronic pain worldwide. Mounting evidence indicates that neuroplasticity of the anterior cingulate cortex (ACC) is a critical step in the development of chronic pain. Previously, we found that chronic pain and fear learning are both associated with enhanced neuronal excitability and cause similar neuroplasticity-related gene expression changes in the ACC of male mice. However, neuroplasticity, imposes large metabolic demands. In the brain, neurons have the highest energy needs and interact with astrocytes, which extract glucose from blood, mobilize glycogen, and release lactate in response to neuronal activity. Here, we use chronic and continuous inflammatory pain models in female and male mice to investigate the involvement of astrocyte-neuronal lactate shuttling (ANLS) in the ACC of female and male mice experiencing inflammatory pain. We found that ANLS in the mouse ACC promotes the development of chronic inflammatory pain, and expresses sex specific patterns of activation. Specifically, whereas both male and female mice show similar levels of chronic pain hypersensitivity, only male mice show sustained increases in lactate levels. Accordingly, chronic pain alters the expression levels of proteins involved in lactate metabolism and shuttling in a sexually dimorphic manner. We found that disrupting astrocyte-neuronal lactate shuttling in the ACC prior to inflammatory injury prevents the development of pain hypersensitivity in female and male mice, but only reduces temporary pain in male mice. Furthermore, using a transgenic mouse model (itga1-null mice) that displays a naturally occurring form of spontaneous osteoarthritis (OA), a painful inflammatory pain condition, we found that whereas both female and male mice develop OA, only male mice show increases in mechanisms involved in astrocyte-neuronal lactate shuttling. Our findings thus indicate that there are sex differences in astrocyte-neuronal metabolic coupling in the mouse ACC during chronic pain development.
Collapse
Affiliation(s)
- Paige Reid
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Kaitlin Scherer
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Danielle Halasz
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Ana Leticia Simal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - James Tang
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Fariya Zaheer
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Jaime Tuling
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Gabriel Levine
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Jana Michaud
- Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Andrea L Clark
- Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Giannina Descalzi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada.
| |
Collapse
|
8
|
Brown JC, Philip NS. Pharmaco-Transcranial Magnetic Stimulation: Letting Mechanism Guide the Way. Am J Psychiatry 2025; 182:240-242. [PMID: 40022531 DOI: 10.1176/appi.ajp.20241151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Affiliation(s)
- Joshua C Brown
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Mass.; Department of Psychiatry, Harvard Medical School, Boston (Brown); Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence R.I.; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence R.I. (Philip)
| | - Noah S Philip
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Mass.; Department of Psychiatry, Harvard Medical School, Boston (Brown); Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence R.I.; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence R.I. (Philip)
| |
Collapse
|
9
|
Vinn O. How to solve the problem of inherited behavior patterns and increase the sustainability of technological civilization. Front Psychol 2025; 16:1562943. [PMID: 40018008 PMCID: PMC11866485 DOI: 10.3389/fpsyg.2025.1562943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Affiliation(s)
- Olev Vinn
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
Blanco FA, Saifullah MAB, Cheng JX, Abella C, Scala F, Firozi K, Niu S, Park J, Chin J, Tolias KF. Targeting Tiam1 Enhances Hippocampal-Dependent Learning and Memory in the Adult Brain and Promotes NMDA Receptor-Mediated Synaptic Plasticity and Function. J Neurosci 2025; 45:e0298242024. [PMID: 39725519 PMCID: PMC11800756 DOI: 10.1523/jneurosci.0298-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood. Tiam1 is an actin cytoskeleton regulator prominently expressed in the dentate gyrus (DG) throughout life. Previously, we showed that Tiam1 promotes dentate granule cell synapse and spine stabilization during development, but its role in the adult hippocampus remains unclear. Here, we deleted Tiam1 from adult forebrain excitatory neurons (Tiam1fKO ) and assessed the effects on hippocampal-dependent behaviors. Adult male and female Tiam1fKO mice displayed enhanced contextual fear memory, fear extinction, and spatial discrimination. Investigation into underlying mechanisms revealed that dentate granule cells from Tiam1fKO brain slices exhibited augmented synaptic plasticity and N-methyl-D-aspartate-type glutamate receptor (NMDAR) function. Additionally, Tiam1 loss in primary hippocampal neurons blocked agonist-induced NMDAR internalization, reduced filamentous actin levels, and promoted activity-dependent spine remodeling. Notably, strong NMDAR activation in wild-type hippocampal neurons triggered Tiam1 loss from spines. Our results suggest that Tiam1 normally constrains hippocampal-dependent learning and memory in the adult brain by restricting NMDAR-mediated synaptic plasticity in the DG. We propose that Tiam1 achieves this by limiting NMDAR availability at synaptic membranes and stabilizing spine actin cytoskeleton and that these constraints can be alleviated by activity-dependent degradation of Tiam1. These findings reveal a previously unknown mechanism restricting hippocampal synaptic plasticity and highlight Tiam1 as a therapeutic target for enhancing cognitive function.
Collapse
Affiliation(s)
- Francisco A Blanco
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Jinxuan X Cheng
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Carlota Abella
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Federico Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Sanyong Niu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Memory & Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Memory & Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
11
|
Żuradzki T, Bystranowski P, Dranseika V. Discussions on Human Enhancement Meet Science: A Quantitative Analysis. SCIENCE AND ENGINEERING ETHICS 2025; 31:6. [PMID: 39907843 PMCID: PMC11799069 DOI: 10.1007/s11948-025-00531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
The analysis of citation flow from a collection of scholarly articles might provide valuable insights into their thematic focus and the genealogy of their main concepts. In this study, we employ a topic model to delineate a subcorpus of 1,360 papers representative of bioethical discussions on enhancing human life. We subsequently conduct an analysis of almost 11,000 references cited in that subcorpus to examine quantitatively, from a bird's-eye view, the degree of openness of this part of scholarship to the specialized knowledge produced in biosciences. Although almost half of the analyzed references point to journals classified as Natural Science and Engineering (NSE), we do not find strong evidence of the intellectual influence of recent discoveries in biosciences on discussions on human enhancement. We conclude that a large part of the discourse surrounding human enhancement is inflected with "science-fictional habits of mind." Our findings point to the need for a more science-informed approach in discussions on enhancing human life.
Collapse
Affiliation(s)
- Tomasz Żuradzki
- Jagiellonian University, Institute of Philosophy & Interdisciplinary Centre for Ethics, ul. Grodzka 52, Kraków, 31-044, Poland.
| | - Piotr Bystranowski
- Jagiellonian University, Interdisciplinary Centre for Ethics, ul. Grodzka 52, Kraków, 31-044, Poland
- Max Planck Institute for Research on Collective Goods, Bonn, Germany
| | - Vilius Dranseika
- Jagiellonian University, Interdisciplinary Centre for Ethics, ul. Grodzka 52, Kraków, 31-044, Poland
| |
Collapse
|
12
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2025; 477:187-199. [PMID: 39482558 PMCID: PMC11761519 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Antón‐Fernández A, Cauchola RP, Hernández F, Ávila J. Hippocampal rejuvenation by a single intracerebral injection of one-carbon metabolites in C57BL6 old wild-type mice. Aging Cell 2025; 24:e14365. [PMID: 39380362 PMCID: PMC11709095 DOI: 10.1111/acel.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
The Izpisua-Belmonte group identified a cocktail of metabolites that promote partial reprogramming in cultured muscle cells. We tested the effect of brain injection of these metabolites in the dentate gyrus of aged wild-type mice. The dentate gyrus is a brain region essential for memory function and is extremely vulnerable to aging. A single injection of the cocktail containing four compounds (putrescine, glycine, methionine and threonine) partially reversed brain aging phenotypes and epigenetic alterations in age-associated genes. Our analysis revealed three levels: chromatin methylation, RNA sequencing, and protein expression. Functional studies complemented the previous ones, showing cognitive improvement. In summary, we report the reversal of various age-associated epigenetic changes, such as the transcription factor Zic4, and several changes related to cellular rejuvenation in the dentate gyrus (DG). These changes include increased expression of the Sox2 protein. Finally, the increases in the survival of newly generated neurons and the levels of the NMDA receptor subunit GluN2B were accompanied by improvements in both short-term and long-term memory performance. Based on these results, we propose the use of these metabolites to explore new strategies for the development of potential treatments for age-related brain diseases.
Collapse
Affiliation(s)
- Alejandro Antón‐Fernández
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
- Present address:
Department of Neuroscience and Biomedical SciencesCarlos III University (UC3M)MadridSpain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC‐UAMMadridSpain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
14
|
Nielsen AC, Anderson CL, Ens C, Boyce AKJ, Thompson RJ. Non-ionotropic NMDAR signalling activates Panx1 to induce P2X4R-dependent long-term depression in the hippocampus. J Physiol 2024. [PMID: 39709529 DOI: 10.1113/jp285193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024] Open
Abstract
In recent years, evidence supporting non-ionotropic signalling by the NMDA receptor (niNMDAR) has emerged, including roles in long-term depression (LTD). Here, we investigated whether niNMDAR-pannexin-1 (Panx1) contributes to LTD at the CA3-CA1 hippocampal synapse. Using whole-cell, patch clamp electrophysiology in rat hippocampal slices, we show that a low-frequency stimulation (3 Hz) of the Schaffer collaterals produces LTD that is blocked by continuous but not transient application of the NMDAR competitive antagonist, MK-801. After transient MK-801, LTD involved pannexin-1 and sarcoma (Src) kinase. We show that pannexin-1 is not permeable to Ca2+, but probably releases ATP to induce LTD via P2X4 purinergic receptors because LTD after transient MK-801 application was prevented by 5-BDBD. Thus, we conclude that niNMDAR activation of Panx1 can link glutamatergic and purinergic pathways to produce LTD following low frequency synaptic stimulation when NMDARs are transiently inhibited. KEY POINTS: Differential effect of short-term D-APV and MK-801 application on long-term depression (LTD) suggests that the NMDA receptor (niNMDAR) contributes to later phases of synaptic depression. niNMDAR LTD involved sarcoma (Src) kinase and pannexin-1 (Panx1), which is a pathway previously identified to be active during excitotoxicity. Panx1 was not calcium permeable but may contribute to late phase LTD via ATP release. Panx1 blockers prevent LTD, and this was rescued with exogenous ATP application. Inhibition of LTD with 5-BDBD suggests the downstream involvement of postsynaptic P2X4 receptors.
Collapse
Affiliation(s)
- Allison C Nielsen
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Connor L Anderson
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carina Ens
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew K J Boyce
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Roger J Thompson
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Zimmerman AJ, Serrano-Rodriguez A, Sun M, Wilson SJ, Linsenbardt DN, Brigman JL, Weick JP. Knockout of AMPA receptor binding protein Neuron-specific gene 2 (NSG2) enhances associative learning and cognitive flexibility. Mol Brain 2024; 17:95. [PMID: 39695712 DOI: 10.1186/s13041-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
Affiliation(s)
- Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
- Present Address: Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Antonio Serrano-Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Melody Sun
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Sandy J Wilson
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - David N Linsenbardt
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA.
| |
Collapse
|
16
|
Hu Z, Zhu X, Liang Y, Zhang Y, Zheng P, Zhang X. Levo-Stepholidine as a Potential Cognitive Enhancer: Insights into Executive Function and Memory Improvements. Biomedicines 2024; 12:2680. [PMID: 39767588 PMCID: PMC11727210 DOI: 10.3390/biomedicines12122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Levo-Stepholidine (l-SPD), a compound extracted from Chinese herbs, has the potential to treat psychotic disorders where cognitive deficits are a critical challenge. L-SPD displays a D1R agonism/D2R antagonism pharmacological profile, and its effect on cognitive function is still vague and lacks comprehensive study. Here, we investigated the impact of l-SPD on two core indexes of executive function, working memory and response inhibition, and learning and memory. METHODS Using a delayed alternation T-maze task (DAT), we investigated the impact of l-SPD on working memory, evaluated its effect on response inhibition using the stop-signal task (SST), and assessed the impact on learning and memory using trace fear conditioning in Sprague-Dawley rats. We further evaluated its effects on prefrontal glutamate receptor expression using western blot. RESULTS Rats receiving l-SPD made fewer errors in the T-maze, exhibited faster stop action in response to the stop signal, and showed longer-lasting memory retention. Molecular mechanism investigations reveal that l-SPD upregulates the expression of prefrontal glutamate receptors. These results demonstrate that l-SPD improves executive function and memory. CONCLUSIONS Here, we show the enhancement effect of l-SPD on cognitive function, which provides essential implicants for the treatment of cognitive deficits, which is a critical unmet need in psychiatric care.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuehan Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Ullman EZ, Perszyk RE, Paladugu S, Fritzemeier RG, Akins NS, Jacobs L, Liotta DC, Traynelis SF. Mechanisms of Action Underlying Conductance-Modifying Positive Allosteric Modulators of the NMDA Receptor. Mol Pharmacol 2024; 106:334-353. [PMID: 39443157 PMCID: PMC11585258 DOI: 10.1124/molpharm.124.001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate a slow, Ca2+-permeable component of excitatory neurotransmission. Modulation of NMDAR function has the potential for disease modification as NMDAR dysfunction has been implicated in neurodevelopment, neuropsychiatric, neurologic, and neurodegenerative disorders. We recently described the thieno[2,3-day]pyrimidin-4-one (EU1622) class of positive allosteric modulators, including several potent and efficacious analogs. Here we have used electrophysiological recordings from Xenopus oocytes, human embryonic kidney cells, and cultured cerebellar and cortical neurons to determine the mechanisms of action of a representative member of this class of modulator. EU1622-240 enhances current response to saturating agonist (doubling response amplitude at 0.2-0.5 μM), slows the deactivation time course following rapid removal of glutamate, increases open probability, enhances coagonist potency, and reduces single-channel conductance. We also show that EU1622-240 facilitates NMDAR activation when only glutamate or glycine is bound. EU1622-240-bound NMDARs channels activated by a single agonist (glutamate or glycine) open to a unique conductance level with different pore properties and Mg2+ sensitivity, in contrast to channels arising from activation of NMDARs with both coagonists bound. These data demonstrate that previously hypothesized distinct gating steps can be controlled by glutamate and glycine binding and shows that the 1622-series modulators enable glutamate- or glycine-bound NMDARs to generate open conformations with different pore properties. The properties of this class of allosteric modulators present intriguing therapeutic opportunities for the modulation of circuit function. SIGNIFICANCE STATEMENT: NMDA receptors are expressed throughout the central nervous system and are permeable to calcium. EU1622-240 increases open probability and agonist potency while reducing single-channel conductance and prolonging the deactivation time course. EU1622-240 allows NMDA receptor activation by the binding of one coagonist (glycine or glutamate), which produces channels with distinct properties. Evaluation of this modulator provides insight into gating mechanisms and may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elijah Z Ullman
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Riley E Perszyk
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Srinu Paladugu
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Russell G Fritzemeier
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Nicholas S Akins
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Leon Jacobs
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Dennis C Liotta
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Stephen F Traynelis
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| |
Collapse
|
18
|
Hayes SH, Patel SV, Arora P, Zhao L, Schormans AL, Whitehead SN, Allman BL. Neurophysiological, structural, and molecular alterations in the prefrontal and auditory cortices following noise-induced hearing loss. Neurobiol Dis 2024; 200:106619. [PMID: 39079581 DOI: 10.1016/j.nbd.2024.106619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
It is well established that hearing loss can lead to widespread plasticity within the central auditory pathway, which is thought to contribute to the pathophysiology of audiological conditions such as tinnitus and hyperacusis. Emerging evidence suggests that hearing loss can also result in plasticity within brain regions involved in higher-level cognitive functioning like the prefrontal cortex; findings which may underlie the association between hearing loss and cognitive impairment documented in epidemiological studies. Using the 40-Hz auditory steady state response to assess sound-evoked gamma oscillations, we previously showed that noise-induced hearing loss results in impaired gamma phase coherence within the prefrontal but not the auditory cortex. To determine whether region-specific structural or molecular changes accompany this differential plasticity following hearing loss, in the present study we utilized Golgi-Cox staining to assess dendritic organization and synaptic density, as well as Western blotting to measure changes in synaptic signaling proteins in these cortical regions. We show that following noise exposure, impaired gamma phase coherence within the prefrontal cortex is accompanied by alterations in pyramidal cell dendritic morphology and decreased expression of proteins involved in GABAergic (GAD65) and glutamatergic (NR2B) neurotransmission; findings that were not observed in the auditory cortex, where gamma phase coherence remained unchanged post-noise exposure. In contrast to the noise-induced effects we observed in the prefrontal cortex, plasticity in the auditory cortex was characterized by an increase in NR2B suggesting increased excitability, as well as increases in the synaptic proteins PSD95 and synaptophysin within the auditory cortex. Overall, our results highlight the disparate effect of noise-induced hearing loss on auditory and higher-level brain regions as well as potential structural and molecular mechanisms by which hearing loss may contribute to impaired cognitive and sensory functions mediated by the prefrontal and auditory cortices.
Collapse
Affiliation(s)
- Sarah H Hayes
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; Department of Otolaryngology, University of Rochester, 601 Elmwood Ave, Box 629, Rochester, NY 14642, USA.
| | - Salonee V Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Parinita Arora
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Lin Zhao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Ashley L Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
19
|
Lee S, Jung WB, Moon H, Im GH, Noh YW, Shin W, Kim YG, Yi JH, Hong SJ, Jung Y, Ahn S, Kim SG, Kim E. Anterior cingulate cortex-related functional hyperconnectivity underlies sensory hypersensitivity in Grin2b-mutant mice. Mol Psychiatry 2024; 29:3195-3207. [PMID: 38704508 PMCID: PMC11449790 DOI: 10.1038/s41380-024-02572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024]
Abstract
Sensory abnormalities are observed in ~90% of individuals with autism spectrum disorders (ASD), but the underlying mechanisms are poorly understood. GluN2B, an NMDA receptor subunit that regulates long-term depression and circuit refinement during brain development, has been strongly implicated in ASD, but whether GRIN2B mutations lead to sensory abnormalities remains unclear. Here, we report that Grin2b-mutant mice show behavioral sensory hypersensitivity and brain hyperconnectivity associated with the anterior cingulate cortex (ACC). Grin2b-mutant mice with a patient-derived C456Y mutation (Grin2bC456Y/+) show sensory hypersensitivity to mechanical, thermal, and electrical stimuli through supraspinal mechanisms. c-fos and functional magnetic resonance imaging indicate that the ACC is hyperactive and hyperconnected with other brain regions under baseline and stimulation conditions. ACC pyramidal neurons show increased excitatory synaptic transmission. Chemogenetic inhibition of ACC pyramidal neurons normalizes ACC hyperconnectivity and sensory hypersensitivity. These results suggest that GluN2B critically regulates ASD-related cortical connectivity and sensory brain functions.
Collapse
Affiliation(s)
- Soowon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Young Woo Noh
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yong Gyu Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seok Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yongwhan Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Sunjoo Ahn
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
20
|
Dai M, Li J, Hao X, Li N, Zheng M, He M, Gu Y. High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7. Neurosci Bull 2024; 40:1245-1260. [PMID: 38833201 PMCID: PMC11365890 DOI: 10.1007/s12264-024-01242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/06/2024] [Indexed: 06/06/2024] Open
Abstract
Abnormal visual experience during the critical period can cause deficits in visual function, such as amblyopia. High magnesium (Mg2+) supplementary can restore ocular dominance (OD) plasticity, which promotes the recovery of amblyopic eye acuity in adults. However, it remains unsolved whether Mg2+ could recover binocular vision in amblyopic adults and what the molecular mechanism is for the recovery. We found that in addition to the recovery of OD plasticity, binocular integration can be restored under the treatment of high Mg2+ in amblyopic mice. Behaviorally, Mg2+-treated amblyopic mice showed better depth perception. Moreover, the effect of high Mg2+ can be suppressed with transient receptor potential melastatin-like 7 (TRPM7) knockdown. Collectively, our results demonstrate that high Mg2+ could restore binocular visual functions from amblyopia. TRPM7 is required for the restoration of plasticity in the visual cortex after high Mg2+ treatment, which can provide possible clinical applications for future research and treatment of amblyopia.
Collapse
Affiliation(s)
- Menghan Dai
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiangwen Hao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Mingfang Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Zimmerman AJ, Serrano-Rodriguez A, Wilson SJ, Linsenbardt DN, Brigman JL, Weick J. Knockout of AMPA receptor binding protein Neuron-Specific Gene 2 (NSG2) enhances associative learning and cognitive flexibility. RESEARCH SQUARE 2024:rs.3.rs-4790348. [PMID: 39257983 PMCID: PMC11384823 DOI: 10.21203/rs.3.rs-4790348/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
|
22
|
Gong R, Qin L, Chen L, Wang N, Bao Y, Lu W. Myosin Va-dependent Transport of NMDA Receptors in Hippocampal Neurons. Neurosci Bull 2024; 40:1053-1075. [PMID: 38291290 PMCID: PMC11306496 DOI: 10.1007/s12264-023-01174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 02/01/2024] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR) trafficking is a key process in the regulation of synaptic efficacy and brain function. However, the molecular mechanism underlying the surface transport of NMDARs is largely unknown. Here we identified myosin Va (MyoVa) as the specific motor protein that traffics NMDARs in hippocampal neurons. We found that MyoVa associates with NMDARs through its cargo binding domain. This association was increased during NMDAR surface transport. Knockdown of MyoVa suppressed NMDAR transport. We further demonstrated that Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates NMDAR transport through its direct interaction with MyoVa. Furthermore, MyoVa employed Rab11 family-interacting protein 3 (Rab11/FIP3) as the adaptor proteins to couple themselves with NMDARs during their transport. Accordingly, the knockdown of FIP3 impairs hippocampal memory. Together, we conclude that in hippocampal neurons, MyoVa conducts active transport of NMDARs in a CaMKII-dependent manner.
Collapse
Affiliation(s)
- Ru Gong
- Ministry of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Linwei Qin
- Ministry of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Linlin Chen
- Department of Neurobiology, Nanjing Medical University, Nanjing, 210096, China
| | - Ning Wang
- Department of Neurobiology, Nanjing Medical University, Nanjing, 210096, China
| | - Yifei Bao
- Ministry of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- Ministry of Education (MOE) Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
- Department of Neurobiology, Nanjing Medical University, Nanjing, 210096, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
23
|
Zhu Z, McClintock TS, Bieberich E. Transcriptomics analysis reveals potential regulatory role of nSMase2 (Smpd3) in nervous system development and function of middle-aged mouse brains. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12911. [PMID: 39171374 PMCID: PMC11339599 DOI: 10.1111/gbb.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Neutral sphingomyelinase-2 (nSMase2), gene name sphingomyelin phosphodiesterase-3 (Smpd3), is a key regulatory enzyme responsible for generating the sphingolipid ceramide. The function of nSMase2 in the brain is still controversial. To better understand the functional roles of nSMase2 in the aging mouse brain, we applied RNA-seq analysis, which identified a total of 1462 differentially abundant mRNAs between +/fro and fro/fro, of which 891 were increased and 571 were decreased in nSMase2-deficient mouse brains. The most strongly enriched GO and KEGG annotation terms among transcripts increased in fro/fro mice included synaptogenesis, synapse development, synaptic signaling, axon development, and axonogenesis. Among decreased transcripts, enriched annotations included ribosome assembly and mitochondrial protein complex functions. KEGG analysis of decreased transcripts also revealed overrepresentation of annotations for Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington disease (HD). Ingenuity Pathway Analysis (IPA) tools predicted lower susceptibility to these neurodegenerative disorders, as well as predictions agreeing with stronger synaptic function, learning, and memory in fro/fro mice. The IPA tools identified signaling proteins, epigenetic regulators, and microRNAs as likely upstream regulators of the broader set of genes encoding the affected transcripts. It also revealed 16 gene networks, each linked to biological processes identified as overrepresented annotations among the affected transcripts by multiple analysis methods. Therefore, the analysis of these RNA-seq data indicates that nSMase2 impacts synaptic function and neural development, and may contribute to the onset and development of neurodegenerative diseases in middle-aged mice.
Collapse
Affiliation(s)
- Zhihui Zhu
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Timothy S. McClintock
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| | - Erhard Bieberich
- Department of PhysiologyUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
- Veterans Affairs Medical CenterLexingtonKentuckyUSA
| |
Collapse
|
24
|
Shakhawat AMD, Foltz JG, Nance AB, Bhateja J, Raymond JL. Systemic pharmacological suppression of neural activity reverses learning impairment in a mouse model of Fragile X syndrome. eLife 2024; 12:RP92543. [PMID: 38953282 PMCID: PMC11219043 DOI: 10.7554/elife.92543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2-Db (MHCI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.
Collapse
Affiliation(s)
- Amin MD Shakhawat
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | | | - Adam B Nance
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Jaydev Bhateja
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | | |
Collapse
|
25
|
Keith RE, Wild GA, Keith MJ, Chen D, Pack S, Dumas TC. Individual NMDA receptor GluN2 subunit signaling domains differentially regulate the postnatal maturation of hippocampal excitatory synaptic transmission and plasticity but not dendritic morphology. Synapse 2024; 78:e22292. [PMID: 38813758 PMCID: PMC11141731 DOI: 10.1002/syn.22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
N-methyl-d-aspartate receptors (NMDARs) at hippocampal excitatory synapses undergo a late postnatal shift in subunit composition, from an initial prevalence of GluN2B subunit incorporation to a later predominance of GluN2A. This GluN2B to GluN2A shift alters NMDAR calcium conductance dynamics and intracellular molecular signaling that are individually regulated by distinct GluN2 signaling domains and temporally align with developmental alterations in dendritic and synaptic plasticity. However, the impacts of individual GluN2B to GluN2A signaling domains on neuronal development remain unknown. Ionotropic and intracellular signaling domains of GluN2 subunits were separated by creating chimeric GluN2 subunits that were expressed in two transgenic mouse lines. Western blot and immunoprecipitation revealed that roughly one third of native synaptic NMDARs were replaced by transformed NMDARs without altering total synaptic NMDAR content. Schaffer collateral synaptic strength was transiently increased in acutely prepared hippocampal slices at just over 3 weeks of age in animals overexpressing the GluN2B carboxy terminus. Long-term potentiation (LTP) induction following lower frequency stimulation was regulated by GluN2 ionotropic signaling domains in an age-dependent manner and LTP maintenance was enhanced by overexpression of the GluN2B CTD in mature animals. After higher frequency stimulation, the induction and maintenance of LTP were increased in young adult animals overexpressing the GluN2B ionotropic signaling domains but reduced in juveniles just over 3 weeks of age. Confocal imaging of green fluorescent protein (GFP)- labeled CA1 pyramidal neurons revealed no alterations in dendritic morphology or spine density in mice expressing chimeric GluN2 subunits. These results illustrate how individual GluN2 subunit signaling domains do or do not control physiological and morphological development of hippocampal excitatory neurons and better clarify the neurobiological factors that govern hippocampal maturation. SIGNIFICANCE STATEMENT: A developmental reduction in the magnitude of hippocampal long-term synaptic potentiation (LTP) and a concomitant improvement in spatial maze performance coincide with greater incorporation of GluN2A subunits into synaptic NMDARs. Corroborating our prior discovery that overexpression of GluN2A-type ionotropic signaling domains enables context-based navigation in immature mice, GluN2A-type ionotropic signaling domain overexpression reduces LTP induction threshold and magnitude in immature mice. Also, we previously found that GluN2B carboxy terminal domain (CTD) overexpression enhances long-term spatial memory in mature mice and now report that the GluN2B CTD is associated with greater amplitude of LTP after induction in mature mice. Thus, the late postnatal maturation of context encoding likely relies on a shift toward GluN2A-type ionotropic signaling and a reduction in the threshold to induce LTP while memory consolidation and LTP maintenance are regulated by GluN2B subunit CTD signaling.
Collapse
Affiliation(s)
- Rachel E. Keith
- Interdisciplinary Program in Neuroscience, College of Science; George Mason University, Fairfax, VA 22030
| | - Grace A. Wild
- Psychology Department, College of Humanities and Social Sciences; George Mason University, Fairfax, VA 22030
| | - Matthew J. Keith
- Interdisciplinary Program in Neuroscience, College of Science; George Mason University, Fairfax, VA 22030
| | - Diyi Chen
- Interdisciplinary Program in Neuroscience, College of Science; George Mason University, Fairfax, VA 22030
| | | | - Theodore C. Dumas
- Interdisciplinary Program in Neuroscience, College of Science; George Mason University, Fairfax, VA 22030
- Psychology Department, College of Humanities and Social Sciences; George Mason University, Fairfax, VA 22030
| |
Collapse
|
26
|
Shibata Y, Toji N, Wang H, Go Y, Wada K. Expansion of learning capacity elicited by interspecific hybridization. SCIENCE ADVANCES 2024; 10:eadn3409. [PMID: 38896617 PMCID: PMC11186503 DOI: 10.1126/sciadv.adn3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Learned behavior, a fundamental adaptive trait in fluctuating environments, is shaped by species-specific constraints. This phenomenon is evident in songbirds, which acquire their species-specific songs through vocal learning. To explore the neurogenetic mechanisms underlying species-specific song learning, we generated F1 hybrid songbirds by crossing Taeniopygia guttata with Aidemosyne modesta. These F1 hybrids demonstrate expanded learning capacities, adeptly mimicking songs from both parental species and other heterospecific songs more extensively than their parental counterparts. Despite the conserved size of brain regions and neuron numbers in the neural circuits for song learning and production, single-cell transcriptomics reveals distinctive transcriptional characteristics in the F1 hybrids, especially in vocal-motor projection neurons. These neurons exhibit enrichment for nonadditively expressed genes, particularly those related to ion channel activity and cell adhesion, which are associated with the degree of song learning among F1 individuals. Our findings provide insights into the emergence of altered learning capabilities through hybridization, linked to cell type-specific transcriptional changes.
Collapse
Affiliation(s)
- Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Research Fellowship for Young Scientists of the Japan Society for the Promotion of Science, Sapporo 060-0810, Japan
| | - Noriyuki Toji
- Research Fellowship for Young Scientists of the Japan Society for the Promotion of Science, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hongdi Wang
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0497, Japan
| | - Yasuhiro Go
- Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
27
|
Tan T, Jiang L, He Z, Ding X, Xiong X, Tang M, Chen Y, Tang Y. NR1 Splicing Variant NR1a in Cerebellar Granule Neurons Constitutes a Better Motor Learning in the Mouse. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1112-1120. [PMID: 37880519 PMCID: PMC11102416 DOI: 10.1007/s12311-023-01614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
As an excitatory neuron in the cerebellum, the granule cells play a crucial role in motor learning. The assembly of NMDAR in these neurons varies in developmental stages, while the significance of this variety is still not clear. In this study, we found that motor training could specially upregulate the expression level of NR1a, a splicing form of NR1 subunit. Interestingly, overexpression of this splicing variant in a cerebellar granule cell-specific manner dramatically elevated the NMDAR binding activity. Furthermore, the NR1a transgenic mice did not only show an enhanced motor learning, but also exhibit a higher efficacy for motor training in motor learning. Our results suggested that as a "junior" receptor, NR1a facilitates NMDAR activity as well as motor skill learning.
Collapse
Affiliation(s)
- Ting Tan
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Linyan Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Zhengxiao He
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xuejiao Ding
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoli Xiong
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yuan Chen
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yaping Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
28
|
Kellner S, Berlin S. Rescuing tri-heteromeric NMDA receptor function: the potential of pregnenolone-sulfate in loss-of-function GRIN2B variants. Cell Mol Life Sci 2024; 81:235. [PMID: 38795169 PMCID: PMC11127902 DOI: 10.1007/s00018-024-05243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs emerging from GRIN genes) are tetrameric receptors that form diverse channel compositions in neurons, typically consisting of two GluN1 subunits combined with two GluN2(A-D) subunits. During prenatal stages, the predominant channels are di-heteromers with two GluN1 and two GluN2B subunits due to the high abundance of GluN2B subunits. Postnatally, the expression of GluN2A subunits increases, giving rise to additional subtypes, including GluN2A-containing di-heteromers and tri-heteromers with GluN1, GluN2A, and GluN2B subunits. The latter emerge as the major receptor subtype at mature synapses in the hippocampus. Despite extensive research on purely di-heteromeric receptors containing two identical GRIN variants, the impact of a single variant on the function of other channel forms, notably tri-heteromers, is lagging. In this study, we systematically investigated the effects of two de novo GRIN2B variants (G689C and G689S) in pure, mixed di- and tri-heteromers. Our findings reveal that incorporating a single variant in mixed di-heteromers or tri-heteromers exerts a dominant negative effect on glutamate potency, although 'mixed' channels show improved potency compared to pure variant-containing di-heteromers. We show that a single variant within a receptor complex does not impair the response of all receptor subtypes to the positive allosteric modulator pregnenolone-sulfate (PS), whereas spermine completely fails to potentiate tri-heteromers containing GluN2A and -2B-subunits. We examined PS on primary cultured hippocampal neurons transfected with the variants, and observed a positive impact over current amplitudes and synaptic activity. Together, our study supports previous observations showing that mixed di-heteromers exhibit improved glutamate potency and extend these findings towards the exploration of the effect of Loss-of-Function variants over tri-heteromers. Notably, we provide an initial and crucial demonstration of the beneficial effects of GRIN2B-relevant potentiators on tri-heteromers. Our results underscore the significance of studying how different variants affect distinct receptor subtypes, as these effects cannot be inferred solely from observations made on pure di-heteromers. Overall, this study contributes to ongoing efforts to understand the pathophysiology of GRINopathies and provides insights into potential treatment strategies.
Collapse
Affiliation(s)
- Shai Kellner
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel
| | - Shai Berlin
- Dept. of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron Bat Galim, Haifa, 3525433, Israel.
| |
Collapse
|
29
|
Wright GA, Rodriguez-Martinez AC, Conn H, Matarin M, Thompson P, Moore AT, Ba-Abbad R, Webster AR, Moosajee M. Enhanced Learning and Memory in Patients with CRB1 Retinopathy. Genes (Basel) 2024; 15:660. [PMID: 38927596 PMCID: PMC11203261 DOI: 10.3390/genes15060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations in the CRB1 gene are associated with a diverse spectrum of retinopathies with phenotypic variability causing severe visual impairment. The CRB1 gene has a role in retinal development and is expressed in the cerebral cortex and hippocampus, but its role in cognition has not been described before. This study compares cognitive function in CRB1 retinopathy individuals with subjects with other retinopathies and the normal population. METHODS Neuropsychological tests of cognitive function were used to test individuals with CRB1 and non-CRB1 retinopathies and compare results with a standardised normative dataset. RESULTS CRB1 retinopathy subjects significantly outperformed those with non-CRB1 retinopathy in list learning tasks of immediate (p = 0.001) and delayed memory (p = 0.007), tests of semantic verbal fluency (p = 0.017), verbal IQ digit span subtest (p = 0.037), and estimation test of higher execution function (p = 0.020) but not in the remaining tests of cognitive function (p > 0.05). CRB1 retinopathy subjects scored significantly higher than the normal population in all areas of memory testing (p < 0.05) and overall verbal IQ tests (p = 0.0012). Non-CRB1 retinopathy subjects scored significantly higher than the normal population in story recall, verbal fluency, and overall verbal IQ tests (p = 0.0016). CONCLUSIONS Subjects with CRB1 retinopathy may have enhanced cognitive function in areas of memory and learning. Further work is required to understand the role of CRB1 in cognition.
Collapse
Affiliation(s)
- Genevieve A. Wright
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Ana Catalina Rodriguez-Martinez
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Hanne Conn
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London Hospitals (UCLH), National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; (H.C.); (M.M.); (P.T.)
| | - Mar Matarin
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London Hospitals (UCLH), National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; (H.C.); (M.M.); (P.T.)
| | - Pamela Thompson
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London Hospitals (UCLH), National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; (H.C.); (M.M.); (P.T.)
| | - Anthony T. Moore
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Rola Ba-Abbad
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Andrew R. Webster
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| | - Mariya Moosajee
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (G.A.W.); (A.C.R.-M.); (A.T.M.); (R.B.-A.); (A.R.W.)
- Institute of Ophthalmology, University College London (UCL), London EC1V 9EL, UK
| |
Collapse
|
30
|
Shakhawat AM, Foltz JG, Nance AB, Bhateja J, Raymond JL. Systemic pharmacological suppression of neural activity reverses learning impairment in a mouse model of Fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561013. [PMID: 37873217 PMCID: PMC10592955 DOI: 10.1101/2023.10.05.561013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The enhancement of associative synaptic plasticity often results in impaired rather than enhanced learning. Previously, we proposed that such learning impairments can result from saturation of the plasticity mechanism (Nguyen-Vu et al., 2017), or, more generally, from a history-dependent change in the threshold for plasticity. This hypothesis was based on experimental results from mice lacking two class I major histocompatibility molecules, MHCI H2-Kb and H2Db (MH-CI KbDb-/-), which have enhanced associative long-term depression at the parallel fiber-Purkinje cell synapses in the cerebellum (PF-Purkinje cell LTD). Here, we extend this work by testing predictions of the threshold metaplasticity hypothesis in a second mouse line with enhanced PF-Purkinje cell LTD, the Fmr1 knockout mouse model of Fragile X syndrome (FXS). Mice lacking Fmr1 gene expression in cerebellar Purkinje cells (L7-Fmr1 KO) were selectively impaired on two oculomotor learning tasks in which PF-Purkinje cell LTD has been implicated, with no impairment on LTD-independent oculomotor learning tasks. Consistent with the threshold metaplasticity hypothesis, behavioral pre-training designed to reverse LTD at the PF-Purkinje cell synapses eliminated the oculomotor learning deficit in the L7-Fmr1 KO mice, as previously reported in MHCI KbDb-/-mice. In addition, diazepam treatment to suppress neural activity and thereby limit the induction of associative LTD during the pre-training period also eliminated the learning deficits in L7-Fmr1 KO mice. These results support the hypothesis that cerebellar LTD-dependent learning is governed by an experience-dependent sliding threshold for plasticity. An increased threshold for LTD in response to elevated neural activity would tend to oppose firing rate stability, but could serve to stabilize synaptic weights and recently acquired memories. The metaplasticity perspective could inform the development of new clinical approaches for addressing learning impairments in autism and other disorders of the nervous system.
Collapse
Affiliation(s)
- Amin Md Shakhawat
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | - Jacqueline G Foltz
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | | | - Jaydev Bhateja
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| |
Collapse
|
31
|
Feng Y, Qin J, Lu Y, Wang M, Wang S, Luo F. Suberoylanilide hydroxamic acid attenuates cognitive impairment in offspring caused by maternal surgery during mid-pregnancy. PLoS One 2024; 19:e0295096. [PMID: 38551911 PMCID: PMC10980197 DOI: 10.1371/journal.pone.0295096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Some pregnant women have to experience non-obstetric surgery during pregnancy under general anesthesia. Our previous studies showed that maternal exposure to sevoflurane, isoflurane, propofol, and ketamine causes cognitive deficits in offspring. Histone acetylation has been implicated in synaptic plasticity. Propofol is commonly used in non-obstetric procedures on pregnant women. Previous studies in our laboratory showed that maternal propofol exposure in pregnancy impairs learning and memory in offspring by disturbing histone acetylation. The present study aims to investigate whether HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) could attenuate learning and memory deficits in offspring caused by maternal surgery under propofol anesthesia during mid-pregnancy. Maternal rats were exposed to propofol or underwent abdominal surgery under propofol anesthesia during middle pregnancy. The learning and memory abilities of the offspring rats were assessed using the Morris water maze (MWM) test. The protein levels of histone deacetylase 2 (HDAC2), phosphorylated cAMP response-element binding (p-CREB), brain-derived neurotrophic factor (BDNF), and phosphorylated tyrosine kinase B (p-TrkB) in the hippocampus of the offspring rats were evaluated by immunofluorescence staining and western blot. Hippocampal neuroapoptosis was detected by TUNEL staining. Our results showed that maternal propofol exposure during middle pregnancy impaired the water-maze learning and memory of the offspring rats, increased the protein level of HDAC2 and reduced the protein levels of p-CREB, BDNF and p-TrkB in the hippocampus of the offspring, and such effects were exacerbated by surgery. SAHA alleviated the cognitive dysfunction and rescued the changes in the protein levels of p-CREB, BDNF and p-TrkB induced by maternal propofol exposure alone or maternal propofol exposure plus surgery. Therefore, SAHA could be a potential and promising agent for treating the learning and memory deficits in offspring caused by maternal nonobstetric surgery under propofol anesthesia.
Collapse
Affiliation(s)
- Yunlin Feng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jia Qin
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanfei Lu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mengdie Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shengqiang Wang
- Department of Anesthesiology, Yichun People’s Hospital, Yichun, China
| | - Foquan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Antón-Fernández A, Cuadros R, Peinado-Cahuchola R, Hernández F, Avila J. Role of folate receptor α in the partial rejuvenation of dentate gyrus cells: Improvement of cognitive function in 21-month-old aged mice. Sci Rep 2024; 14:6915. [PMID: 38519576 PMCID: PMC10960019 DOI: 10.1038/s41598-024-57095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Neuronal aging may be, in part, related to a change in DNA methylation. Thus, methyl donors, like folate and methionine, may play a role in cognitive changes associated to neuronal aging. To test the role of these metabolites, we performed stereotaxic microinjection of these molecules into the dentate gyrus (DG) of aged mice (an average age of 21 month). Folate, but not S-Adenosyl-Methionine (SAM), enhances cognition in aged mice. In the presence of folate, we observed partial rejuvenation of DG cells, characterized by the expression of juvenile genes or reorganization of extracellular matrix. Here, we have also tried to identify the mechanism independent of DNA methylation, that involve folate effects on cognition. Our analyses indicated that folate binds to folate receptor α (FRα) and, upon folate binding, FRα is transported to cell nucleus, where it is acting as transcription factor for expressing genes like SOX2 or GluN2B. In this work, we report that a FRα binding peptide also replicates the folate effect on cognition, in aged mice. Our data suggest that such effect is not sex-dependent. Thus, we propose the use of this peptide to improve cognition since it lacks of folate-mediated side effects. The use of synthetic FRα binding peptides emerge as a future strategy for the study of brain rejuvenation.
Collapse
Affiliation(s)
- A Antón-Fernández
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - R Cuadros
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - R Peinado-Cahuchola
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - F Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
33
|
Shi W, Chen QY, Ma Y, Wan J, Li XH, Zhuo M. Selective enhancement of fear extinction by inhibiting neuronal adenylyl cyclase 1 (AC1) in aged mice. Mol Brain 2024; 17:11. [PMID: 38389098 PMCID: PMC10885434 DOI: 10.1186/s13041-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Adenylyl cyclase 1 (AC1) is a selective subtype of ACs, which is selectively expressed in neurons. The activation of AC1 is activity-dependent, and AC1 plays an important role in cortical excitation that contributes to chronic pain and related emotional disorders. Previous studies have reported that human-used NB001 (hNB001, a selective AC1 inhibitor) produced analgesic effects in different animal models of chronic pain. However, the potential effects of hNB001 on learning and memory have been less investigated. In the present study, we found that hNB001 affected neither the induction nor the expression of trace fear, but selectively enhanced the relearning ability during the extinction in aged mice. By contrast, the same application of hNB001 did not affect recent, remote auditory fear memory, or remote fear extinction in either adult or aged mice. Furthermore, a single or consecutive 30-day oral administration of hNB001 did not affect acute nociceptive response, motor function, or anxiety-like behavior in either adult or aged mice. Our results are consistent with previous findings that inhibition of AC1 did not affect general sensory, emotional, and motor functions in adult mice, and provide strong evidence that inhibiting the activity of AC1 may be beneficial for certain forms of learning and memory in aged mice.
Collapse
Affiliation(s)
- Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Zhuomin Institute of Brain Research, Qingdao, Shandong, China
| | - Qi-Yu Chen
- Zhuomin Institute of Brain Research, Qingdao, Shandong, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, Chinese Academy of Sciences Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
| | - Yujie Ma
- Oujiang Laboratory, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinjin Wan
- Oujiang Laboratory, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Zhuomin Institute of Brain Research, Qingdao, Shandong, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Zhuomin Institute of Brain Research, Qingdao, Shandong, China.
- Oujiang Laboratory, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
34
|
Chandrasekaran J, Caldwell KK, Brigman JL. Dynamic regulation of corticostriatal glutamatergic synaptic expression during reversal learning in male mice. Neurobiol Learn Mem 2024; 208:107892. [PMID: 38242226 PMCID: PMC10936219 DOI: 10.1016/j.nlm.2024.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Behavioral flexibility, one of the core executive functions of the brain, has been shown to be an essential skill for survival across species. Corticostriatal circuits play a critical role in mediating behavioral flexibility. The molecular mechanisms underlying these processes are still unclear. Here, we measured how synaptic glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartic acid receptor (NMDAR) expression dynamically changed during specific stages of learning and reversal. Following training to well-established stages of discrimination and reversal learning on a touchscreen visual task, lateral orbitofrontal cortex (OFC), dorsal striatum (dS) as well as medial prefrontal cortex (mPFC), basolateral amygdala (BLA) and piriform cortex (Pir) were micro dissected from male mouse brain and the expression of glutamatergic receptor subunits in the synaptic fraction were measured via immunoblotting. We found that the GluN2B subunit of NMDAR in the OFC remained stable during initial discrimination learning but significantly increased in the synaptic fraction during mid-reversal stages, the period during which the OFC has been shown to play a critical role in updating outcome expectancies. In contrast, both GluA1 and GluA2 subunits of the AMPAR significantly increased in the dS synaptic fraction as new associations were learned late in reversal. Expression of NMDAR and AMPAR subunits did not significantly differ across learning stages in any other brain region. Together, these findings further support the involvement of OFC-dS circuits in moderating well-learned associations and flexible behavior and suggest that dynamic synaptic expression of NMDAR and AMPAR in these circuits may play a role in mediating efficient learning during discrimination and the ability to update previously learned associations as environmental contingencies change.
Collapse
Affiliation(s)
- Jayapriya Chandrasekaran
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kevin K Caldwell
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM 87131, USA.
| |
Collapse
|
35
|
Chaves T, Török B, Fazekas C, Correia P, Karailiev P, Oravcova H, Sipos E, Biró L, Haller J, Jezova D, Zelena D. The role of the GABAergic cells of the median raphe region in reinforcement-based learning. Sci Rep 2024; 14:1175. [PMID: 38216718 PMCID: PMC10786920 DOI: 10.1038/s41598-024-51743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Learning and memory are important in everyday life as well as in pathological conditions. The median raphe region (MRR) contributes to memory formation; however, its precise role and the neurotransmitters involved have yet to be elucidated. To address this issue, we stimulated the MRR neurons of mice by chemogenetic technique and studied them in the operant conditioning and active avoidance tests. The virus carrier infected a variety of neuron types including both GABAergic and glutamatergic ones. Behavior was not influenced by stimulation. We hypothesize that the lack of effect was due to opposing effects exerted via GABAergic and glutamatergic neurons. Therefore, next we used VGAT-Cre mice that allowed the specific manipulation of MRR-GABAergic neurons. The stimulation did not affect behavior in the learning phase of the operant conditioning task, but increased reward preference and total responses when operant contingencies were reversed. The enhanced responsiveness might be a proclivity to impulsive behavior. Stimulation facilitated learning in the active avoidance test but did not affect reversal learning in this paradigm. Our findings suggest that MRR-GABAergic neurons are involved in both learning and reversal learning, but the type of learning that is affected depends on the task.
Collapse
Affiliation(s)
- Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Csilla Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Peter Karailiev
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Henrieta Oravcova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Eszter Sipos
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - László Biró
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - József Haller
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- Ludovika University of Public Service, Budapest, Hungary
| | - Daniela Jezova
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 7624, Pecs, Hungary.
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
36
|
Xiao H, Xu Y, Cui S, Wang JH. Neuroligin-3-Mediated Synapse Formation Strengthens Interactions between Hippocampus and Barrel Cortex in Associative Memory. Int J Mol Sci 2024; 25:711. [PMID: 38255783 PMCID: PMC10815421 DOI: 10.3390/ijms25020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Memory traces are believed to be broadly allocated in cerebral cortices and the hippocampus. Mutual synapse innervations among these brain areas are presumably formed in associative memory. In the present study, we have used neuronal tracing by pAAV-carried fluorescent proteins and neuroligin-3 mRNA knockdown by shRNAs to examine the role of neuroligin-3-mediated synapse formation in the interconnection between primary associative memory cells in the sensory cortices and secondary associative memory cells in the hippocampus during the acquisition and memory of associated signals. Our studies show that mutual synapse innervations between the barrel cortex and the hippocampal CA3 region emerge and are upregulated after the memories of associated whisker and odor signals come into view. These synapse interconnections are downregulated by a knockdown of neuroligin-3-mediated synapse linkages. New synapse interconnections and the strengthening of these interconnections appear to endorse the belief in an interaction between the hippocampus and sensory cortices for memory consolidation.
Collapse
Affiliation(s)
- Huajuan Xiao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yang Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
37
|
Kumar A, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS, Samant R. Magnesium (Mg 2+): Essential Mineral for Neuronal Health: From Cellular Biochemistry to Cognitive Health and Behavior Regulation. Curr Pharm Des 2024; 30:3074-3107. [PMID: 39253923 DOI: 10.2174/0113816128321466240816075041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 09/11/2024]
Abstract
Magnesium (Mg2+) is a crucial mineral involved in numerous cellular processes critical for neuronal health and function. This review explores the multifaceted roles of Mg2+, from its biochemical interactions at the cellular level to its impact on cognitive health and behavioral regulation. Mg2+ acts as a cofactor for over 300 enzymatic reactions, including those involved in ATP synthesis, nucleic acid stability, and neurotransmitter release. It regulates ion channels, modulates synaptic plasticity, and maintains the structural integrity of cell membranes, which are essential for proper neuronal signaling and synaptic transmission. Recent studies have highlighted the significance of Mg2+ in neuroprotection, showing its ability to attenuate oxidative stress, reduce inflammation, and mitigate excitotoxicity, thereby safeguarding neuronal health. Furthermore, Mg2+ deficiency has been linked to a range of neuropsychiatric disorders, including depression, anxiety, and cognitive decline. Supplementation with Mg2+, particularly in the form of bioavailable compounds such as Magnesium-L-Threonate (MgLT), Magnesium-Acetyl-Taurate (MgAT), and other Magnesium salts, has shown some promising results in enhancing synaptic density, improving memory function, and alleviating symptoms of mental health disorders. This review highlights significant current findings on the cellular mechanisms by which Mg2+ exerts its neuroprotective effects and evaluates clinical and preclinical evidence supporting its therapeutic potential. By elucidating the comprehensive role of Mg2+ in neuronal health, this review aims to underscore the importance of maintaining optimal Mg2+ levels for cognitive function and behavioral regulation, advocating for further research into Mg2+ supplementation as a viable intervention for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Aakash Kumar
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Sidharth Mehan
- 1Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Aarti Tiwari
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Zuber Khan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Rajaram Samant
- Department of Research and Development, Celagenex Research, Thane, Maharashtra, India
| |
Collapse
|
38
|
Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, Tsai MC, Menniti FS, Traynelis SF. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 2024; 49:51-66. [PMID: 37369776 PMCID: PMC10700609 DOI: 10.1038/s41386-023-01614-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hao Xing
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
39
|
Zhuo M. Long-term plasticity of NMDA GluN2B (NR2B) receptor in anterior cingulate cortical synapses. Mol Pain 2024; 20:17448069241230258. [PMID: 38246915 PMCID: PMC10851716 DOI: 10.1177/17448069241230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024] Open
Abstract
The anterior cingulate cortex (ACC) is a key cortical area for pain perception, emotional fear and anxiety. Cortical excitation is thought to be the major mechanism for chronic pain and its related emotional disorders such as anxiety and depression. GluN2B (or called NR2B) containing NMDA receptors play critical roles for such excitation. Not only does the activation of GluN2B contributes to the induction of the postsynaptic form of LTP (post-LTP), long-term upregulation of GluN2B subunits through tyrosine phosphorylation were also detected after peripheral injury. In addition, it has been reported that presynaptic NMDA receptors may contribute to the modulation of the release of glutamate from presynaptic terminals in the ACC. It is believed that inhibiting subtypes of NMDA receptors and/or downstream signaling proteins may serve as a novel therapeutic mechanism for future treatment of chronic pain, anxiety, and depression.
Collapse
Affiliation(s)
- Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Qingdao International Academician Park, Zhuomin Institute of Brain Research, Qingdao, China
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Korff M, Chaudhary A, Li Y, Zhou X, Zhao C, Rong J, Chen J, Xiao Z, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Wang L, Abate C, Ahmed H, Crowe R, Schmidt TJ, Liang SH, Ametamey SM, Wünsch B, Haider A. Synthesis and Biological Evaluation of Enantiomerically Pure ( R) - and ( S) -[18F]OF-NB1 for Imaging the GluN2B Subunit-Containing NMDA Receptors. J Med Chem 2023; 66:16018-16031. [PMID: 37979148 DOI: 10.1021/acs.jmedchem.3c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
GluN2B subunit-containing N-methyl-d-aspartate (NMDA) receptors have been implicated in various neurological disorders. Nonetheless, a validated fluorine-18 labeled positron emission tomography (PET) ligand for GluN2B imaging in the living human brain is currently lacking. The aim of this study was to develop a novel synthetic approach that allows an enantiomerically pure radiosynthesis of the previously reported PET radioligands (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 as well as to assess their in vitro and in vivo performance characteristics for imaging the GluN2B subunit-containing NMDA receptor in rodents. A novel synthetic approach was successfully developed, which allows for the enantiomerically pure radiosynthesis of (R)-[18F]OF-NB1 and (S)-[18F]OF-NB1 and the translation of the probe to the clinic. While both enantiomers were selective over sigma2 receptors in vitro and in vivo, (R)-[18F]OF-NB1 showed superior GluN2B subunit specificity by in vitro autoradiography and higher volumes of distribution in the rodent brain by small animal PET studies.
Collapse
Affiliation(s)
- Marvin Korff
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, Halle 06120, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, Halle 06120, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, Bari 70125, Italy
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Thomas J Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, Zurich 8093, Switzerland
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, Münster D-48149, Germany
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
41
|
Watanabe T, Kakinuma Y, Watanabe K, Kinno R. Acute cerebellitis following COVID-19 infection associated with autoantibodies to glutamate receptors: a case report. J Neurovirol 2023; 29:731-733. [PMID: 37930583 PMCID: PMC10794470 DOI: 10.1007/s13365-023-01183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
While COVID-19 infection by the SARS-CoV-2 virus was initially identified as a respiratory disease, mounting evidence suggests its association with various neurological issues as well. Notably, COVID-19 has been linked to acute cerebellitis (AC) and post-infectious cerebellar ataxia. The precise underlying mechanisms behind these neurological effects remain unclear. Our case report describes AC following COVID-19 infection, associated with autoantibodies to glutamate receptors (GluRs), hinting at immunological involvement. The case is a 56-year-old woman who experienced fever and fatigue due to COVID-19 infection. About 2 weeks after these symptoms improved, she showed cerebellar symptoms such as ocular overshoot and ataxia when presenting to our hospital. Her cerebrospinal fluid (CSF) findings were normal. Brain MRI revealed cerebellar abnormalities. Treatment with methylprednisolone led to symptom improvement. Later tests of CSF yielded positive results for autoantibodies to GluRs. Our findings suggest a possible immune-mediated mechanism in the onset of AC following COVID-19 infection. Clinicians should consider the possibility of immunological pathogenesis when diagnosing cerebellar symptoms after COVID-19 infection.
Collapse
Affiliation(s)
- Takuya Watanabe
- Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo Tsuzuki-ku, Yokohama, Kanagawa, 224-8503, Japan
| | - Yuki Kakinuma
- Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo Tsuzuki-ku, Yokohama, Kanagawa, 224-8503, Japan
| | - Keiko Watanabe
- Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo Tsuzuki-ku, Yokohama, Kanagawa, 224-8503, Japan
| | - Ryuta Kinno
- Division of Neurology, Department of Internal Medicine, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo Tsuzuki-ku, Yokohama, Kanagawa, 224-8503, Japan.
| |
Collapse
|
42
|
Sharifi M, Oryan S, Komaki A, Barkley V, Sarihi A, Mirnajafi-Zadeh J. Comparing the synaptic potentiation in schaffer collateral-CA1 synapses in dorsal and intermediate regions of the hippocampus in normal and kindled rats. IBRO Neurosci Rep 2023; 15:252-261. [PMID: 37841086 PMCID: PMC10570600 DOI: 10.1016/j.ibneur.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
There is growing evidence that the hippocampus comprises diverse neural circuits that exhibit longitudinal variation in their properties, however, the intermediate region of the hippocampus has received comparatively little attention. Therefore, this study was designed to compared short- and long-term synaptic plasticity between the dorsal and intermediate regions of the hippocampus in normal and PTZ-kindled rats. Short-term plasticity was assessed by measuring the ratio of field excitatory postsynaptic potentials' (fEPSPs) slope in response to paired-pulse stimulation at three different inter-pulse intervals (20, 80, and 160 ms), while long-term plasticity was assessed using primed burst stimulation (PBS). The results showed that the basal synaptic strength differed between the dorsal and intermediate regions of the hippocampus in both control and kindled rats. In the control group, paired-pulse stimulation of Schaffer collaterals resulted in a significantly lower fEPSP slope in the intermediate part of the hippocampus compared to the dorsal region. Additionally, the magnitude of long-term potentiation (LTP) was significantly lower in the intermediate part of the hippocampus compared to the dorsal region. In PTZ-kindled rats, both short-term facilitation and long-term potentiation were impaired in both regions of the hippocampus. Interestingly, there was no significant difference in synaptic plasticity between the dorsal and intermediate regions in PTZ-kindled rats, despite impairments in both regions. This suggests that seizures eliminate the regional difference between the dorsal and intermediate parts of the hippocampus, resulting in similar electrophysiological activity in both regions in kindled animals. Future studies should consider this when investigating the responses of the dorsal and intermediate regions of the hippocampus following PTZ kindling.
Collapse
Affiliation(s)
- Maryam Sharifi
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrbanoo Oryan
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
43
|
Gentzel M. Protecting civil Liberties in a cognitively enhanced future: the role of classical liberalism. Monash Bioeth Rev 2023; 41:103-123. [PMID: 37430059 DOI: 10.1007/s40592-023-00178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
A prominent concern in the literature on the ethics of human enhancement is that unequal access to future technology will exacerbate existing societal inequalities. The philosopher Daniel Wikler has argued that a futuristic cognitively enhanced majority would be justified in restricting the civil liberties of the unenhanced minority population for their own good in the same way that, mutatis mutandis, the cognitively normal majority are now justified in restricting the civil liberties of those deemed to be cognitively incompetent. Contrary to this argument, the author of this manuscript presents and defends The Liberal Argument to Protect Cognitive 'Normals'. According to this argument, while classical liberalism authorizes the cognitively competent to paternalistically restrict the civil liberties of the cognitively incompetent, classical liberalism does not authorize the cognitively enhanced to paternalistically restrict the civil liberties of the cognitively normal. Two additional arguments are developed in support of The Liberal Argument to Protect Cognitive 'Normals'. The author of this manuscript concludes by suggesting that classical liberalism could be valuable for protecting the civil liberties of disenfranchised groups in a future in which enhancement technology could exacerbate existing societal inequalities.
Collapse
|
44
|
Rudd MT, Manley PJ, Hanney B, Meng Z, Shu Y, de Leon P, Frie JL, Han Y, Wai JMC, Yang ZQ, Perkins JJ, Hurzy DM, Manikowski JJ, Zhu H, Bungard CJ, Converso A, Meissner RS, Cosden ML, Hayashi I, Ma L, O’Brien J, Uebele VN, Schachter JB, Bhandari N, Ward GJ, Fillgrove KL, Lu B, Liang Y, Dubost DC, Puri V, Eddins DM, Vardigan JD, Drolet RE, Kern JT, Uslaner JM. Discovery of MK-8768, a Potent and Selective mGluR2 Negative Allosteric Modulator. ACS Med Chem Lett 2023; 14:1088-1094. [PMID: 37583812 PMCID: PMC10424309 DOI: 10.1021/acsmedchemlett.3c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023] Open
Abstract
Glutamate plays a key role in cognition and mood, and it has been shown that inhibiting ionotropic glutamate receptors disrupts cognition, while enhancing ionotropic receptor activity is pro-cognitive. One approach to elevating glutamatergic tone has been to antagonize presynaptic metabotropic glutamate receptor 2 (mGluR2). A desire for selectivity over the largely homologous mGluR3 motivated a strategy to achieve selectivity through the identification of mGluR2 negative allosteric modulators (NAMs). Extensive screening and optimization efforts led to the identification of a novel series of 4-arylquinoline-2-carboxamides. This series was optimized for mGluR2 NAM potency, clean off-target activity, and desirable physical properties, which resulted in the identification of improved C4 and C7 substituents. The initial lead compound from this series was Ames-positive in a single strain with metabolic activation, indicating that a reactive metabolite was likely responsible for the genetic toxicity. Metabolic profiling and Ames assessment across multiple analogs identified key structure-activity relationships associated with Ames positivity. Further optimization led to the Ames-negative mGluR2 negative allosteric modulator MK-8768.
Collapse
Affiliation(s)
- Michael T. Rudd
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Peter J. Manley
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Barbara Hanney
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Zhaoyang Meng
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Youheng Shu
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Pablo de Leon
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Jessica L. Frie
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Yongxin Han
- External
Discovery Chemistry, Merck & Co., Inc, Boston, Massachusetts 02115, United States
| | - Jenny Miu-Chun Wai
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Zhi-Qiang Yang
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - James J. Perkins
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Danielle M. Hurzy
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Jesse J. Manikowski
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Hong Zhu
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Christopher J. Bungard
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Antonella Converso
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Robert S. Meissner
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Mali L. Cosden
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Ikuo Hayashi
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Lei Ma
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Julie O’Brien
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Victor N. Uebele
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Joel B. Schachter
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Neetesh Bhandari
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Gwendolyn J. Ward
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Kerry L. Fillgrove
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Bing Lu
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Yuexia Liang
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - David C. Dubost
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Vanita Puri
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Donnie M. Eddins
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Joshua D. Vardigan
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Robert E. Drolet
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Jonathan T. Kern
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| | - Jason M. Uslaner
- Departments
of Discovery Chemistry, Neuroscience Biology Discovery, Pharmacology, Nonclinical Dug
Safety, Pharmacokinetics, Discovery Pharmaceutical Sciences, and In Vivo Pharmacology, Merck & Co., Inc, West Point, Pennsylvania 19486, United States
| |
Collapse
|
45
|
Yang G, Hu Y, Qin X, Sun J, Miao Z, Wang L, Ke Z, Zheng Y. Micheliolide attenuates neuroinflammation to improve cognitive impairment of Alzheimer's disease by inhibiting NF-κB and PI3K/Akt signaling pathways. Heliyon 2023; 9:e17848. [PMID: 37456020 PMCID: PMC10344752 DOI: 10.1016/j.heliyon.2023.e17848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Inflammatory reaction in the brain activates glial cells, and over-activated glial cells secrete inflammatory mediators, which aggravates the inflammatory response in the brain and accelerates the development of Alzheimer's disease (AD) in turn. Numerous natural compounds from herbs can alleviate inflammation, and it is very promising to find anti-neuroinflammatory natural compounds. Micheliolide (MCL) is an asesquiterpene lactone. Studies have proved that MCL showed an obvious anti-inflammatory property. Nevertheless, whether MCL can treat AD has not been determined. In this research, AD model mice were fed with a diet supplemented MCL for 3 months, the cognitive ability and inflammatory state of mice were detected. We found that MCL raised the frequency of touching novel objects, cut down the escape latency, raised the number of crossing platform, inhibited the infiltration of inflammatory cells and the secretion of interleukin-1α (IL-1α), IL-12p40, IL-13, IL-17A, tumor necrosis factor-α (TNF-α), granulocyte colony stimulating factor (G-CSF), macrophage inflammatory protein-1α (MIP-1α) and monocyte chemotactic protein-1 (MCP-1) in peripheral blood samples, inhibited the hyperplasia of glial cells and the production of IL-1α, IL-4, G-CSF, granulocyte-macrophage colony stimulating factor (GM-CSF), MIP-1α and MIP-1β, and reduced the deposition of Aβ peptides in the brain of AD mice. We also concluded that MCL dropped the expression of IL-1β, TNF-α, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and the phosphorylation of IκB, p65 and Akt in BV-2 cells. In conclusion, MCL alleviates the intensity of systemic inflammatory reaction via inhibiting nuclear transcription factor κ gene binding (NF-κB) and phosphoinositide-3-kinase/serine/threonine kinase (PI3K/Akt) pathways in glial cells, and improves the cognitive impairment of AD mice. Therefore, MCL could be a therapeutic candidate for AD.
Collapse
Affiliation(s)
- Guizhen Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - You Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiangyang Qin
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Jinxia Sun
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhulei Miao
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixin Wang
- Department of Immunology and Microbiology, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zunji Ke
- Institute of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosafety, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
46
|
Arias-Aragón F, Tristán-Clavijo E, Martínez-Gallego I, Robles-Lanuza E, Coatl-Cuaya H, Martín-Cuevas C, Sánchez-Hidalgo AC, Rodríguez-Moreno A, Martinez-Mir A, Scholl FG. A Neuroligin-1 mutation associated with Alzheimer's disease produces memory and age-dependent impairments in hippocampal plasticity. iScience 2023; 26:106868. [PMID: 37260747 PMCID: PMC10227424 DOI: 10.1016/j.isci.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by memory impairments and age-dependent synapse loss. Experimental and clinical studies have shown decreased expression of the glutamatergic protein Neuroligin-1 (Nlgn1) in AD. However, the consequences of a sustained reduction of Nlgn1 are unknown. Here, we generated a knockin mouse that reproduces the NLGN1 Thr271fs mutation, identified in heterozygosis in a familial case of AD. We found that Nlgn1 Thr271fs mutation abolishes Nlgn1 expression in mouse brain. Importantly, heterozygous Nlgn1 Thr271fs mice showed delay-dependent amnesia for recognition memory. Electrophysiological recordings uncovered age-dependent impairments in basal synaptic transmission and long-term potentiation (LTP) in CA1 hippocampal neurons of heterozygous Nlgn1 Thr271fs mice. In contrast, homozygous Nlgn1 Thr271fs mice showed impaired fear-conditioning memory and normal basal synaptic transmission, suggesting unshared mechanisms for a partial or total loss of Nlgn1. These data suggest that decreased Nlgn1 may contribute to the synaptic and memory deficits in AD.
Collapse
Affiliation(s)
- Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Enriqueta Tristán-Clavijo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Estefanía Robles-Lanuza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Celia Martín-Cuevas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Ana C. Sánchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013 Seville, Spain
| | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Francisco G. Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| |
Collapse
|
47
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
48
|
Ge Y, Wang YT. GluN2B-containing NMDARs in the mammalian brain: pharmacology, physiology, and pathology. Front Mol Neurosci 2023; 16:1190324. [PMID: 37324591 PMCID: PMC10264587 DOI: 10.3389/fnmol.2023.1190324] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) is critical for promoting physiological synaptic plasticity and neuronal viability. As a major subpopulation of the NMDAR, the GluN2B subunit-containing NMDARs have distinct pharmacological properties, physiological functions, and pathological relevance to neurological diseases compared with other NMDAR subtypes. In mature neurons, GluN2B-containing NMDARs are likely expressed as both diheteromeric and triheteromeric receptors, though the functional importance of each subpopulation has yet to be disentangled. Moreover, the C-terminal region of the GluN2B subunit forms structural complexes with multiple intracellular signaling proteins. These protein complexes play critical roles in both activity-dependent synaptic plasticity and neuronal survival and death signaling, thus serving as the molecular substrates underlying multiple physiological functions. Accordingly, dysregulation of GluN2B-containing NMDARs and/or their downstream signaling pathways has been implicated in neurological diseases, and various strategies to reverse these deficits have been investigated. In this article, we provide an overview of GluN2B-containing NMDAR pharmacology and its key physiological functions, highlighting the importance of this receptor subtype during both health and disease states.
Collapse
Affiliation(s)
- Yang Ge
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron 2023:S0896-6273(23)00344-6. [PMID: 37236178 DOI: 10.1016/j.neuron.2023.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
N-Methyl-D-aspartate ionotropic glutamate receptors (NMDARs) play key roles in synaptogenesis, synaptic maturation, long-term plasticity, neuronal network activity, and cognition. Mirroring this wide range of instrumental functions, abnormalities in NMDAR-mediated signaling have been associated with numerous neurological and psychiatric disorders. Thus, identifying the molecular mechanisms underpinning the physiological and pathological contributions of NMDAR has been a major area of investigation. Over the past decades, a large body of literature has flourished, revealing that the physiology of ionotropic glutamate receptors cannot be restricted to fluxing ions, and involves additional facets controlling synaptic transmissions in health and disease. Here, we review newly discovered dimensions of postsynaptic NMDAR signaling supporting neural plasticity and cognition, such as the nanoscale organization of NMDAR complexes, their activity-dependent redistributions, and non-ionotropic signaling capacities. We also discuss how dysregulations of these processes may directly contribute to NMDAR-dysfunction-related brain diseases.
Collapse
Affiliation(s)
- Julien P Dupuis
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Laurent Groc
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
50
|
Hernández-Guerrero C, García-Salcedo V, Buenrostro-Jauregui M, Sanchez-Castillo H, Aguilera-Reyes U, Martínez-Castro N, Galicia-Castillo O. Exposure to anandamide on young rats causes deficits in learning, temporal perception and induces changes in NMDA receptor expression. Behav Brain Res 2023; 445:114377. [PMID: 36868364 DOI: 10.1016/j.bbr.2023.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
Human use of marijuana at an early age has been reported to lead to cognitive impairment. However, researchers have not yet clearly determined whether this impairment is due to marijuana-induced alterations in the developing nervous system and whether this deficit persists into adulthood after marijuana use has ceased. We administered anandamide to developing rats to assess the effect of cannabinoids on development. We subsequently evaluated learning and performance on a temporal bisection task in adulthood and assessed the expression of genes encoding principal subunits of NMDA receptors (Grin1, Grin2A, and Grin2B) in the hippocampus and prefrontal cortex. Rats in two age groups, namely, 21-day-old and 150-day-old rats, received intraperitoneal injections of anandamide or the vehicle for 14 days. Both groups performed a temporal bisection test, which included listening to tones of different durations and classifying them as short or long. The expression of the Grin1, Grin2A and Grin2B mRNAs was evaluated using quantitative PCR in both age groups after extracting mRNA from the hippocampus and prefrontal cortex. We observed a learning impairment in the temporal bisection task (p < 0.05) and changes in the response latency (p < 0.05) in rats that received anandamide. Furthermore, these rats exhibited decreased expression of Grin2b (p = 0.001) compared to those that received the vehicle. In human subjects, the use of cannabinoids during development induces a long-term deficit, but this deficit is not observed in subjects who use cannabinoids in adulthood. Rats treated with anandamide earlier in development took longer to learn the task, suggesting that anandamide exerts a harmful effect on cognition in developing rats. Administration of anandamide during early stages of development induced deficits in learning and other cognitive processes that depend on an adequate estimation of time. The cognitive demands of the environment must be considered when evaluating the cognitive effects of cannabinoids on developing or mature brains. High cognitive demands might induce differential expression of NMDA receptors that improves cognitive capacity, overcoming altered glutamatergic function.
Collapse
Affiliation(s)
| | - Verónica García-Salcedo
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico; Laboratorio de Comportamiento Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca de Lerdo 50200, Mexico.
| | - Mario Buenrostro-Jauregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| | - Hugo Sanchez-Castillo
- Laboratorio de Neuropsicofarmacología, Facultad de Psicología, UNAM, Mexico City 04510, Mexico.
| | - Ulises Aguilera-Reyes
- Laboratorio de Comportamiento Animal, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca de Lerdo 50200, Mexico.
| | - Noemi Martínez-Castro
- Departamento de Salud, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| | - Oscar Galicia-Castillo
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Mexico City 01219, Mexico.
| |
Collapse
|