1
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
2
|
Nitta Y, Osaka J, Maki R, Hakeda-Suzuki S, Suzuki E, Ueki S, Suzuki T, Sugie A. Drosophila model to clarify the pathological significance of OPA1 in autosomal dominant optic atrophy. eLife 2024; 12:RP87880. [PMID: 39177028 PMCID: PMC11343565 DOI: 10.7554/elife.87880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Autosomal dominant optic atrophy (DOA) is a progressive form of blindness caused by degeneration of retinal ganglion cells and their axons, mainly caused by mutations in the OPA1 mitochondrial dynamin like GTPase (OPA1) gene. OPA1 encodes a dynamin-like GTPase present in the mitochondrial inner membrane. When associated with OPA1 mutations, DOA can present not only ocular symptoms but also multi-organ symptoms (DOA plus). DOA plus often results from point mutations in the GTPase domain, which are assumed to have dominant-negative effects. However, the presence of mutations in the GTPase domain does not always result in DOA plus. Therefore, an experimental system to distinguish between DOA and DOA plus is needed. In this study, we found that loss-of-function mutations of the dOPA1 gene in Drosophila can imitate the pathology of optic nerve degeneration observed in DOA. We successfully rescued this degeneration by expressing the human OPA1 (hOPA1) gene, indicating that hOPA1 is functionally interchangeable with dOPA1 in the fly system. However, mutations previously identified did not ameliorate the dOPA1 deficiency phenotype. By expressing both WT and DOA plus mutant hOPA1 forms in the optic nerve of dOPA1 mutants, we observed that DOA plus mutations suppressed the rescue, facilitating the distinction between loss-of-function and dominant-negative mutations in hOPA1. This fly model aids in distinguishing DOA from DOA plus and guides initial hOPA1 mutation treatment strategies.
Collapse
Affiliation(s)
- Yohei Nitta
- Brain Research Institute, Niigata UniversityNiigataJapan
| | - Jiro Osaka
- Brain Research Institute, Niigata UniversityNiigataJapan
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Ryuto Maki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
- Research Initiatives and Promotion Organization, Yokohama National UniversityYokohamaJapan
| | - Emiko Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan UniversityHachiojiJapan
- Department of Gene Function and Phenomics, National Institute of GeneticsMishimaJapan
| | - Satoshi Ueki
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Atsushi Sugie
- Brain Research Institute, Niigata UniversityNiigataJapan
| |
Collapse
|
3
|
Ding F, Sun Q, Long C, Rasmussen RN, Peng S, Xu Q, Kang N, Song W, Weikop P, Goldman SA, Nedergaard M. Dysregulation of extracellular potassium distinguishes healthy ageing from neurodegeneration. Brain 2024; 147:1726-1739. [PMID: 38462589 PMCID: PMC11068329 DOI: 10.1093/brain/awae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Progressive neuronal loss is a hallmark feature distinguishing neurodegenerative diseases from normal ageing. However, the underlying mechanisms remain unknown. Extracellular K+ homeostasis is a potential mediator of neuronal injury as K+ elevations increase excitatory activity. The dysregulation of extracellular K+ and potassium channel expressions during neurodegeneration could contribute to this distinction. Here we measured the cortical extracellular K+ concentration ([K+]e) in awake wild-type mice as well as murine models of neurodegeneration using K+-sensitive microelectrodes. Unexpectedly, aged wild-type mice exhibited significantly lower cortical [K+]e than young mice. In contrast, cortical [K+]e was consistently elevated in Alzheimer's disease (APP/PS1), amyotrophic lateral sclerosis (ALS) (SOD1G93A) and Huntington's disease (R6/2) models. Cortical resting [K+]e correlated inversely with neuronal density and the [K+]e buffering rate but correlated positively with the predicted neuronal firing rate. Screening of astrocyte-selective genomic datasets revealed a number of potassium channel genes that were downregulated in these disease models but not in normal ageing. In particular, the inwardly rectifying potassium channel Kcnj10 was downregulated in ALS and Huntington's disease models but not in normal ageing, while Fxyd1 and Slc1a3, each of which acts as a negative regulator of potassium uptake, were each upregulated by astrocytes in both Alzheimer's disease and ALS models. Chronic elevation of [K+]e in response to changes in gene expression and the attendant neuronal hyperexcitability may drive the neuronal loss characteristic of these neurodegenerative diseases. These observations suggest that the dysregulation of extracellular K+ homeostasis in a number of neurodegenerative diseases could be due to aberrant astrocytic K+ buffering and as such, highlight a fundamental role for glial dysfunction in neurodegeneration.
Collapse
Affiliation(s)
- Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Sun
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Carter Long
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Rune Nguyen Rasmussen
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, Neurology Department, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sisi Peng
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qiwu Xu
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ning Kang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Pia Weikop
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, Neurology Department, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, Neurology Department, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, Neurology Department, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Sanghai N, Vuong B, Burak Berk A, Afridi MSK, Tranmer GK. Current Small Molecule-Based Medicinal Chemistry Approaches for Neurodegeneration Therapeutics. ChemMedChem 2024; 19:e202300705. [PMID: 38329887 DOI: 10.1002/cmdc.202300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS) possess multifactorial aetiologies. In recent years, our understanding of the biochemical and molecular pathways across NDDs has increased, however, new advances in small molecule-based therapeutic strategies targeting NDDs are obscure and scarce. Moreover, NDDs have been studied for more than five decades, however, there is a paucity of drugs that can treat NDDs. Further, the highly lipoidal blood-brain barrier (BBB) limits the uptake of many therapeutic molecules into the brain and is a complicating factor in the development of new agents to treat neurodegeneration. Considering the highly complex nature of NDDs, the association of multiple risk factors, and the challenges to overcome the BBB junction, medicinal chemists have developed small organic molecule-based novel approaches to target NDDs over the last few decades, such as designing lipophilic molecules and applying prodrug strategies. Attempts have been made to utilize a multitarget approach to modulate different biochemical molecular pathways involved in NDDs, in addition to, medicinal chemists making better decisions in identifying optimized drug candidates for the central nervous system (CNS) by using web-based computational tools. To increase the clinical success of these drug candidates, an in vitro assay modeling the BBB has been utilized by medicinal chemists in the pre-clinical phase as a further screening measure of small organic molecules. Herein, we examine some of the intriguing strategies taken by medicinal chemists to design small organic molecules to combat NDDs, with the intention of increasing our awareness of neurodegenerative therapeutics.
Collapse
Affiliation(s)
- Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Billy Vuong
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Ahmet Burak Berk
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | | | - Geoffrey K Tranmer
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
5
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Vongthip W, Nilkhet S, Boonruang K, Sukprasansap M, Tencomnao T, Baek SJ. Neuroprotective mechanisms of luteolin in glutamate-induced oxidative stress and autophagy-mediated neuronal cell death. Sci Rep 2024; 14:7707. [PMID: 38565590 PMCID: PMC10987666 DOI: 10.1038/s41598-024-57824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal dysfunction and loss, pose significant health challenges. Glutamate accumulation contributes to neuronal cell death in diseases such as Alzheimer's disease. This study investigates the neuroprotective potential of Albizia lebbeck leaf extract and its major constituent, luteolin, against glutamate-induced hippocampal neuronal cell death. Glutamate-treated HT-22 cells exhibited reduced viability, altered morphology, increased ROS, and apoptosis, which were attenuated by pre-treatment with A. lebbeck extract and luteolin. Luteolin also restored mitochondrial function, decreased mitochondrial superoxide, and preserved mitochondrial morphology. Notably, we first found that luteolin inhibited the excessive process of mitophagy via the inactivation of BNIP3L/NIX and inhibited lysosomal activity. Our study suggests that glutamate-induced autophagy-mediated cell death is attenuated by luteolin via activation of mTORC1. These findings highlight the potential of A. lebbeck as a neuroprotective agent, with luteolin inhibiting glutamate-induced neurotoxicity by regulating autophagy and mitochondrial dynamics.
Collapse
Affiliation(s)
- Wudtipong Vongthip
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, 10330, Bangkok, Thailand
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Program in Clinical Biochemistry and Molecular Medicine, Chulalongkorn University, 10330, Bangkok, Thailand
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Kanokkan Boonruang
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Seung Joon Baek
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Boff JM, Shrestha AP, Madireddy S, Viswaprakash N, Della Santina L, Vaithianathan T. The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. Int J Mol Sci 2024; 25:2226. [PMID: 38396913 PMCID: PMC10889697 DOI: 10.3390/ijms25042226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The intricate functionality of the vertebrate retina relies on the interplay between neurotransmitter activity and calcium (Ca2+) dynamics, offering important insights into developmental processes, physiological functioning, and disease progression. Neurotransmitters orchestrate cellular processes to shape the behavior of the retina under diverse circumstances. Despite research to elucidate the roles of individual neurotransmitters in the visual system, there remains a gap in our understanding of the holistic integration of their interplay with Ca2+ dynamics in the broader context of neuronal development, health, and disease. To address this gap, the present review explores the mechanisms used by the neurotransmitters glutamate, gamma-aminobutyric acid (GABA), glycine, dopamine, and acetylcholine (ACh) and their interplay with Ca2+ dynamics. This conceptual outline is intended to inform and guide future research, underpinning novel therapeutic avenues for retinal-associated disorders.
Collapse
Affiliation(s)
- Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Saivikram Madireddy
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Nilmini Viswaprakash
- Department of Medical Education, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | | | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Yao BF, Luo XJ, Peng J. A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders. Int J Biol Macromol 2024; 254:127910. [PMID: 37939779 DOI: 10.1016/j.ijbiomac.2023.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dynamics homeostasis is sustained by continuous and balanced fission and fusion, which are determinants of morphology, abundance, biogenesis and mitophagy of mitochondria. Optic atrophy 1 (OPA1), as the only inner mitochondrial membrane fusion protein, plays a key role in stabilizing mitochondrial dynamics. The disturbance of mitochondrial dynamics contributes to the pathophysiological progress of cardiovascular disorders, which are the main cause of death worldwide in recent decades and result in tremendous social burden. In this review, we describe the latest findings regarding OPA1 and its role in mitochondrial fusion. We summarize the post-translational modifications (PTMs) for OPA1 and its regulatory role in mitochondrial dynamics. Then the diverse cell fates caused by OPA1 expression during cardiovascular disorders are discussed. Moreover, cardiovascular disorders (such as heart failure, myocardial ischemia/reperfusion injury, cardiomyopathy and cardiac hypertrophy) relevant to OPA1-dependent mitochondrial dynamics imbalance have been detailed. Finally, we highlight the potential that targeting OPA1 to impact mitochondrial fusion may be used as a novel strategy against cardiovascular disorders.
Collapse
Affiliation(s)
- Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
9
|
Mohammad HMF, Eladl MA, Abdelmaogood AKK, Elshaer RE, Ghanam W, Elaskary A, Saleh MAK, Eltrawy AH, Ali SK, Moursi SMM, Bilasy SE, Zaitone SA, Alzlaiq WA, Atteya H. Protective Effect of Topiramate against Diabetic Retinopathy and Computational Approach Recognizing the Role of NLRP3/IL-1β/TNF-α Signaling. Biomedicines 2023; 11:3202. [PMID: 38137423 PMCID: PMC10741203 DOI: 10.3390/biomedicines11123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
The possible impact of topiramate against diabetic retinopathy (DREN) and its molecular mechanisms in relation to the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome has not been studied before. Thus, in the present study, we aimed to utilize a computational approach to investigate the possible protective effect of topiramate on experimental DREN and explore its impact on NLRP3/interlukin-1β signaling and brain-derived neurotrophic factor (BDNF) expression. Male albino mice were distributed to four experimental groups and assigned the following categorizations: (i) saline, (ii) diabetic, (iii) diabetic + topiramate 10 mg/kg and (iv) diabetic + topiramate 30 mg/kg. We observed shrinkage of total retinal thickness and elevation in retinal glutamate, malondialdehyde, NLRP3 and interlukin-1β but decreased glutathione (GSH) levels in the diabetic mice. Additionally, retinal ultra-structures in the diabetic group showed abnormalities and vacuolations in the pigmented epithelium, the photoreceptor segment, the outer nuclear layer, the inner nuclear layer and the ganglion cell layer (GCL). Mice treated with topiramate 10 or 30 mg/kg showed downregulation in retinal malondialdehyde, NLRP3 and interlukin-1β levels; improvements in the retinal pathologies; enhanced immunostaining for BDNF and improved ultra-structures in different retinal layers. Overall, the current results suggest topiramate as a neuroprotective agent for DREN, and future studies are warranted to further elucidate the mechanism of its protective action.
Collapse
Affiliation(s)
- Hala M. F. Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Asmaa K. K. Abdelmaogood
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rabie E. Elshaer
- Pathology Department, Faculty of Medicine (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Walaa Ghanam
- Department of Pathology, Faculty of Medicine, Suez University, Suez 43533, Egypt
| | - Abdelhakeem Elaskary
- Ophthalmology Department, Al-Azher Asyut Faculty of Medicine for Men, Asyut 71524, Egypt (M.A.K.S.)
| | - Mohamed A. K. Saleh
- Ophthalmology Department, Al-Azher Asyut Faculty of Medicine for Men, Asyut 71524, Egypt (M.A.K.S.)
| | - Amira H. Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk 71451, Saudi Arabia
| | - Sahar K. Ali
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Suzan M. M. Moursi
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shymaa E. Bilasy
- College of Dental Medicine, California Northstate University, 9700 Taron Dr., Elk Grove, CA 95757, USA
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71451, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Wafa Ali Alzlaiq
- Department of Clinical Pharmacy, College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Hayam Atteya
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| |
Collapse
|
10
|
Brooks CD, Kodati B, Stankowska DL, Krishnamoorthy RR. Role of mitophagy in ocular neurodegeneration. Front Neurosci 2023; 17:1299552. [PMID: 37965225 PMCID: PMC10641468 DOI: 10.3389/fnins.2023.1299552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Neurons in the central nervous system are among the most metabolically active cells in the body, characterized by high oxygen consumption utilizing glucose both aerobically and anaerobically. Neurons have an abundance of mitochondria which generate adequate ATP to keep up with the high metabolic demand. One consequence of the oxidative phosphorylation mechanism of ATP synthesis, is the generation of reactive oxygen species which produces cellular injury as well as damage to mitochondria. Mitochondria respond to injury by fusion which serves to ameliorate the damage through genetic complementation. Mitochondria also undergo fission to meet an increased energy demand. Loss of mitochondria is also compensated by increased biogenesis to generate new mitochondria. Damaged mitochondria are removed by mitophagy, an autophagic process, in which damaged mitochondria are surrounded by a membrane to form an autophagosome which ultimately fuses with the lysosome resulting in degradation of faulty mitochondria. Dysregulation of mitophagy has been reported in several central nervous system disorders, including, Alzheimer's disease and Parkinson's disease. Recent studies point to aberrant mitophagy in ocular neurodegenerative disorders which could be an important contributor to the disease etiology/pathology. This review article highlights some of the recent findings that point to dysregulation of mitophagy and it's underlying mechanisms in ocular neurodegenerative diseases, including, glaucoma, age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Calvin D. Brooks
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Raghu R. Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
11
|
Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci 2023; 13:1367. [PMID: 37891735 PMCID: PMC10605666 DOI: 10.3390/brainsci13101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Xili Lake, Nanshan District, Shenzhen 518000, China;
| | - Bo-Yang Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Fang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiang-Yu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
| |
Collapse
|
12
|
Sanghai N, Tranmer GK. Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View. Cells 2023; 12:2318. [PMID: 37759540 PMCID: PMC10527779 DOI: 10.3390/cells12182318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative diseases (NDDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are defined by a myriad of complex aetiologies. Understanding the common biochemical molecular pathologies among NDDs gives an opportunity to decipher the overlapping and numerous cross-talk mechanisms of neurodegeneration. Numerous interrelated pathways lead to the progression of neurodegeneration. We present evidence from the past pieces of literature for the most usual global convergent hallmarks like ageing, oxidative stress, excitotoxicity-induced calcium butterfly effect, defective proteostasis including chaperones, autophagy, mitophagy, and proteosome networks, and neuroinflammation. Herein, we applied a holistic approach to identify and represent the shared mechanism across NDDs. Further, we believe that this approach could be helpful in identifying key modulators across NDDs, with a particular focus on AD, PD, and ALS. Moreover, these concepts could be applied to the development and diagnosis of novel strategies for diverse NDDs.
Collapse
Affiliation(s)
- Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Geoffrey K. Tranmer
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
13
|
Atamena D, Gurram V, Petsophonsakul P, Khosrobakhsh F, Arrázola MS, Botella M, Wissinger B, Szelechowski M, Belenguer P. Genetic background modulates phenotypic expressivity in OPA1 mutated mice, relevance to DOA pathogenesis. Front Mol Neurosci 2023; 16:1241222. [PMID: 37736113 PMCID: PMC10510408 DOI: 10.3389/fnmol.2023.1241222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Dominant optic atrophy (DOA) is mainly caused by OPA1 mutations and is characterized by the degeneration of retinal ganglion cells (RGCs), whose axons form the optic nerve. The penetrance of DOA is incomplete and the disease is marked by highly variable expressivity, ranging from asymptomatic patients to some who are totally blind or who suffer from multisystemic effects. No clear genotype-phenotype correlation has been established to date. Taken together, these observations point toward the existence of modifying genetic and/or environmental factors that modulate disease severity. Here, we investigated the influence of genetic background on DOA expressivity by switching the previously described DOA mouse model bearing the c.1065 + 5G → A Opa1 mutation from mixed C3H; C57BL/6 J to a pure C57BL/6 J background. We no longer observed retinal and optic nerve abnormalities; the findings indicated no degeneration, but rather a sex-dependent negative effect on RGC connectivity. This highlights the fact that RGC synaptic alteration might precede neuronal death, as has been proposed in other neurodegenerative diseases, providing new clinical considerations for early diagnosis as well as a new therapeutic window for DOA. Furthermore, our results demonstrate the importance of secondary genetic factors in the variability of DOA expressivity and offer a model for screening for aggravating environmental and genetic factors.
Collapse
Affiliation(s)
- Djamaa Atamena
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Venu Gurram
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Petnoï Petsophonsakul
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Farnoosh Khosrobakhsh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
- Department of Biological Science, University of Kurdistan, Sanandaj, Iran
| | - Macarena S. Arrázola
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Marlène Botella
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Marion Szelechowski
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| |
Collapse
|
14
|
Buonfiglio F, Pfeiffer N, Gericke A. Immunomodulatory and Antioxidant Drugs in Glaucoma Treatment. Pharmaceuticals (Basel) 2023; 16:1193. [PMID: 37765001 PMCID: PMC10535738 DOI: 10.3390/ph16091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Glaucoma, a group of diseases characterized by progressive retinal ganglion cell loss, cupping of the optic disc, and a typical pattern of visual field defects, is a leading cause of severe visual impairment and blindness worldwide. Elevated intraocular pressure (IOP) is the leading risk factor for glaucoma development. However, glaucoma can also develop at normal pressure levels. An increased susceptibility of retinal ganglion cells to IOP, systemic vascular dysregulation, endothelial dysfunction, and autoimmune imbalances have been suggested as playing a role in the pathophysiology of normal-tension glaucoma. Since inflammation and oxidative stress play a role in all forms of glaucoma, the goal of this review article is to present an overview of the inflammatory and pro-oxidant mechanisms in the pathophysiology of glaucoma and to discuss immunomodulatory and antioxidant treatment approaches.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| |
Collapse
|
15
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
Parida PK, Marquez-Palencia M, Ghosh S, Khandelwal N, Kim K, Nair V, Liu XZ, Vu HS, Zacharias LG, Gonzalez-Ericsson PI, Sanders ME, Mobley BC, McDonald JG, Lemoff A, Peng Y, Lewis C, Vale G, Halberg N, Arteaga CL, Hanker AB, DeBerardinis RJ, Malladi S. Limiting mitochondrial plasticity by targeting DRP1 induces metabolic reprogramming and reduces breast cancer brain metastases. NATURE CANCER 2023; 4:893-907. [PMID: 37248394 PMCID: PMC11290463 DOI: 10.1038/s43018-023-00563-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.
Collapse
Affiliation(s)
- Pravat Kumar Parida
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mauricio Marquez-Palencia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suvranil Ghosh
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nitin Khandelwal
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kangsan Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vidhya Nair
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Zheng Liu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hieu S Vu
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren G Zacharias
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Melinda E Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheryl Lewis
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gonçalo Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Srinivas Malladi
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Sharif NA. Recently Approved Drugs for Lowering and Controlling Intraocular Pressure to Reduce Vision Loss in Ocular Hypertensive and Glaucoma Patients. Pharmaceuticals (Basel) 2023; 16:791. [PMID: 37375739 DOI: 10.3390/ph16060791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices, and surgical techniques have been developed to lower and control IOP. The constant quest for new pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances, early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted effort and attention.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169856, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London SW7 2BX, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Gu Y, Li Y, Wang J, Zhang L, Zhang J, Wang Y. Targeting ferroptosis: Paving new roads for drug design and discovery. Eur J Med Chem 2023; 247:115015. [PMID: 36543035 DOI: 10.1016/j.ejmech.2022.115015] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Ferroptosis, first proposed in 2012, is an iron-dependent form of regulated cell death characterized by excessive polyunsaturated fatty acid oxidation. In the past decade, researchers have revealed the formation and mechanisms of ferroptosis. Cancer drug resistance can be reversed by ferroptosis induction, and inhibiting ferroptosis has been shown to block certain disease processes. As a result, several ferroptosis-targeting drugs have been developed. However, the first-generation ferroptosis-targeting agents remain hampered from clinical use, mainly due to poor selectivity and pharmacokinetics. The discoveries of FSP1, GCH1, and other potential ferroptosis-regulating pathways independent of Xc--GSH-GPX4 provide novel targets for drug design. Recently, protein-targeted degradation and antibody-drug conjugate strategy show promise in future drug design. With novel targets, further optimizations, and new technologies, the next-generation ferroptosis-targeting agents show a promising future with improved selectivity and efficacy. In this review, we summarize mechanisms, target types, drug design, and novel technologies of ferroptosis, aiming to pave the way for future drug design and discovery in the next decade.
Collapse
Affiliation(s)
- Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Yizhe Li
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
20
|
Shen X, Sun P, Zhang H, Yang H. Mitochondrial quality control in the brain: The physiological and pathological roles. Front Neurosci 2022; 16:1075141. [PMID: 36578825 PMCID: PMC9791200 DOI: 10.3389/fnins.2022.1075141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The human brain has high energetic expenses and consumes over 20% of total oxygen metabolism. Abnormal brain energy homeostasis leads to various brain diseases. Among multiple factors that contribute to these diseases, mitochondrial dysfunction is one of the most common causes. Maintenance of mitochondrial integrity and functionality is of pivotal importance to brain energy generation. Mitochondrial quality control (MQC), employing the coordination of multiple mechanisms, is evolved to overcome many mitochondrial defects. Thus, not surprisingly, aberrant mitochondrial quality control results in a wide range of brain disorders. Targeting MQC to preserve and restore mitochondrial function has emerged as a promising therapeutic strategy for the prevention and treatment of brain diseases. Here, we set out to summarize the current understanding of mitochondrial quality control in brain homeostasis. We also evaluate potential pharmaceutically and clinically relevant targets in MQC-associated brain disorders.
Collapse
|
21
|
Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 Pathway in Huntington's Disease (HD): What Is Its Role? Int J Mol Sci 2022; 23:ijms232315272. [PMID: 36499596 PMCID: PMC9739588 DOI: 10.3390/ijms232315272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that occurs worldwide. Despite some progress in understanding the onset of HD, drugs that block or delay symptoms are still not available. In recent years, many treatments have been proposed; among them, nuclear transcriptional factor-2 (Nrf2) enhancer compounds have been proposed as potential therapeutic agents to treat HD. Nrf2 triggers an endogenous antioxidant pathway activated in different neurodegenerative disorders. Probably, the stimulation of Nrf2 during either the early phase or before HD symptoms' onset, could slow or prevent striatum degeneration. In this review, we present the scientific literature supporting the role of Nrf2 in HD and the potential prophylactic and therapeutic role of this compound.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
Zeng Z, Li H, You M, Rong R, Xia X. Dephosphorylation of ERK1/2 and DRP1 S585 regulates mitochondrial dynamics in glutamate toxicity of retinal neurons in vitro. Exp Eye Res 2022; 225:109271. [PMID: 36195208 DOI: 10.1016/j.exer.2022.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
There are many theories surrounding the pathogenesis of glaucoma, and glutamate excitatory toxicity has been suggested to play an important role. Some studies have shown that glutamate excitatory toxicity is associated with mitochondrial dynamics; however, the relationship between glutamate excitatory toxicity and mitochondrial dynamics in the pathogenesis of glaucoma remains unclear. In this study, the glutamate transporter inhibitor, threohydroxyaspartate, was used to simulate the glutamate excitatory toxicity cell model of rat retinal neurons in vitro, and the changes in the level of proteins related to mitochondrial dynamics, mitochondrial morphology, and length of neuronal axons were measured. We found that in the glutamate excitotoxicity model, retinal neurons can promote mitochondrial fusion by reducing the phosphorylation of ERK1/2 and its downstream protein DRP1 S585, and enhance its ability to resist the excitotoxicity of glutamate. At the same time, the DRP1-specific inhibitor, Mdivi-1, could promote the mitochondrial fusion of retinal neurons.
Collapse
Affiliation(s)
- Zhou Zeng
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haibo Li
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengling You
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Departments of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Palanivel V, Gupta V, Mirshahvaladi SSO, Sharma S, Gupta V, Chitranshi N, Mirzaei M, Graham SL, Basavarajappa D. Neuroprotective Effects of Neuropeptide Y on Human Neuroblastoma SH-SY5Y Cells in Glutamate Excitotoxicity and ER Stress Conditions. Cells 2022; 11:cells11223665. [PMID: 36429093 PMCID: PMC9688085 DOI: 10.3390/cells11223665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide Y (NPY), a sympathetic neurotransmitter, is involved in various physiological functions, and its dysregulation is implicated in several neurodegenerative diseases. Glutamate excitotoxicity, endoplasmic reticulum (ER) stress, and oxidative stress are the common mechanisms associated with numerous neurodegenerative illnesses. The present study aimed to elucidate the protective effects of NPY against glutamate toxicity and tunicamycin-induced ER stress in the human neuroblastoma SH-SY5Y cell line. We exposed the SH-SY5Y cells to glutamate and tunicamycin for two different time points and analyzed the protective effects of NPY at different concentrations. The protective effects of NPY treatments were assessed by cell viability assay, and the signalling pathway changes were evaluated by biochemical techniques such as Western blotting and immunofluorescence assays. Our results showed that treatment of SH-SY5Y cells with NPY significantly increased the viability of the cells in both glutamate toxicity and ER stress conditions. NPY treatments significantly attenuated the glutamate-induced pro-apoptotic activation of ERK1/2 and JNK/BAD pathways. The protective effects of NPY were further evident against tunicamycin-induced ER stress. NPY treatments significantly suppressed the ER stress activation by downregulating BiP, phospho-eIF2α, and CHOP expression. In addition, NPY alleviated the Akt/FoxO3a pathway in acute oxidative conditions caused by glutamate and tunicamycin in SH-SY5Y cells. Our results demonstrated that NPY is neuroprotective against glutamate-induced cell toxicity and tunicamycin-induced ER stress through anti-apoptotic actions.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Correspondence: (V.P.); (D.B.)
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Seyed Shahab Oddin Mirshahvaladi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Correspondence: (V.P.); (D.B.)
| |
Collapse
|
24
|
Liu M, Li H, Yang R, Ji D, Xia X. GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma. J Neuroinflammation 2022; 19:262. [PMID: 36289519 PMCID: PMC9608931 DOI: 10.1186/s12974-022-02626-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/14/2022] Open
Abstract
Background Glaucoma, the major cause of irreversible blindness worldwide, is characterized by progressive degeneration of retinal ganglion cells (RGCs). Current treatments for glaucoma only slow or partially prevent the disease progression, failing to prevent RGCs death and visual field defects completely. Glutamate excitotoxicity via N-methyl-d-aspartic acid (NMDA) receptors plays a vital role in RGCs death in glaucoma, which is often accompanied by oxidative stress and NLRP3 inflammasome activation. However, the exact mechanisms remain unclear. Methods The glutamate-induced R28 cell excitotoxicity model and NMDA-induced mouse glaucoma model were established in this study. Cell counting kit-8, Hoechst 33342/PI dual staining and lactate dehydrogenase release assay were performed to evaluate cell viability. Annexin V-FITC/PI double staining was used to detect apoptosis and necrosis rate. Reactive oxygen species (ROS) and glutathione (GSH) were used to detect oxidative stress in R28 cells. Levels of proinflammatory cytokines were measured by qRT-PCR. Transmission electron microscopy (TEM) was used to detect necroptotic morphological changes in RGCs. Retinal RGCs numbers were detected by immunofluorescence. Hematoxylin and eosin staining was used to detect retinal morphological changes. The expression levels of RIP1, RIP3, MLKL and NLRP3 inflammasome-related proteins were measured by immunofluorescence and western blotting. Results We found that glutamate excitotoxicity induced necroptosis in RGCs through activation of the RIP1/RIP3/MLKL pathway in vivo and in vitro. Administration of the RIP3 inhibitor GSK872 and RIP1 inhibitor necrostatin-1 (Nec-1) prevented glutamate-induced RGCs loss, retinal damage, neuroinflammation, overproduction of ROS and a decrease in GSH. Furthermore, after suppression of the RIP1/RIP3/MLKL pathway by GSK872 and Nec-1, glutamate-induced upregulation of key proteins involved in NLRP3 inflammasome activation, including NLRP3, pro-caspase-1, cleaved-caspase-1, and interleukin-1β (IL-1β), was markedly inhibited. Conclusions Our findings suggest that the RIP1/RIP3/MLKL pathway mediates necroptosis of RGCs and regulates NLRP3 inflammasome activation induced by glutamate excitotoxicity. Moreover, GSK872 and Nec-1 can protect RGCs from necroptosis and suppress NLRP3 inflammasome activation through inhibition of RIP1/RIP3/MLKL pathway, conferring a novel neuroprotective treatment for glaucoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02626-4.
Collapse
Affiliation(s)
- Mengyuan Liu
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Haibo Li
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Rongliang Yang
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Dan Ji
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| | - Xiaobo Xia
- grid.216417.70000 0001 0379 7164Eye Center of Xiangya Hospital, Central South University, Changsha, 410008 Hunan People’s Republic of China ,grid.452223.00000 0004 1757 7615Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan People’s Republic of China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hosiptal, Central South University, Changsha, Hunan People’s Republic of China
| |
Collapse
|
25
|
Pinelis V, Krasilnikova I, Bakaeva Z, Surin A, Boyarkin D, Fisenko A, Krasilnikova O, Pomytkin I. Insulin Diminishes Superoxide Increase in Cytosol and Mitochondria of Cultured Cortical Neurons Treated with Toxic Glutamate. Int J Mol Sci 2022; 23:ijms232012593. [PMID: 36293449 PMCID: PMC9604026 DOI: 10.3390/ijms232012593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate excitotoxicity is involved in the pathogenesis of many disorders, including stroke, traumatic brain injury, and Alzheimer’s disease, for which central insulin resistance is a comorbid condition. Neurotoxicity of glutamate (Glu) is primarily associated with hyperactivation of the ionotropic N-methyl-D-aspartate receptors (NMDARs), causing a sustained increase in intracellular free calcium concentration ([Ca2+]i) and synchronous mitochondrial depolarization and an increase in intracellular superoxide anion radical (O2–•) production. Recently, we found that insulin protects neurons against excitotoxicity by decreasing the delayed calcium deregulation (DCD). However, the role of insulin in O2–• production in excitotoxicity still needs to be clarified. The present study aims to investigate insulin’s effects on glutamate-evoked O2–• generation and DCD using the fluorescent indicators dihydroethidium, MitoSOX Red, and Fura-FF in cortical neurons. We found a linear correlation between [Ca2+]i and [O2–•] in primary cultures of the rat neuron exposed to Glu, with insulin significantly reducing the production of intracellular and mitochondrial O2–• in the primary cultures of the rat neuron. MK 801, an inhibitor of NMDAR-gated Ca2+ influx, completely abrogated the glutamate effects in both the presence and absence of insulin. In experiments in sister cultures, insulin diminished neuronal death and O2 consumption rate (OCR).
Collapse
Affiliation(s)
- Vsevolod Pinelis
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Correspondence: (V.P.); (I.P.)
| | - Irina Krasilnikova
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Zanda Bakaeva
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Department of General Biology and Physiology, Kalmyk State University Named after B.B. Gorodovikov, St. Pushkin, 11, 358000 Elista, Russia
| | - Alexander Surin
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Laboratory of Pathology of Ion Transport and Intracellular Signaling, Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
| | - Dmitrii Boyarkin
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Andrei Fisenko
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Olga Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, 4 Koroleva St., 249036 Obninsk, Russia
| | - Igor Pomytkin
- Institute of Pharmacy, The First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation, St. Trubetskaya, 8, Bldg 2, 119991 Moscow, Russia
- Correspondence: (V.P.); (I.P.)
| |
Collapse
|
26
|
Liu C, Dong W, Lv Z, Kong L, Ren X. Thioredoxin-interacting protein in diabetic retinal neurodegeneration: A novel potential therapeutic target for diabetic retinopathy. Front Neurosci 2022; 16:957667. [PMID: 36017183 PMCID: PMC9396221 DOI: 10.3389/fnins.2022.957667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus and has been considered a microvascular disease for a long time. However, recent evidence suggests that diabetic retinal neurodegeneration (DRN), which manifests as neuronal apoptosis, a decrease in optic nerve axons, and reactive gliosis, occurs prior to retinal microvascular alterations. Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of thioredoxin (Trx), and it acts by inhibiting its reducing capacity, thereby promoting cellular oxidative stress. In addition, it participates in regulating multiple signaling pathways as a member of the α-arrestin family of proteins. Accumulating evidence suggests that TXNIP is upregulated in diabetes and plays a pivotal role in the pathophysiological process of DR. In this review, we summarized the role of TXNIP in DRN, aiming to provide evidence for DR treatment in the future.
Collapse
Affiliation(s)
- Chengzhi Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Wenkang Dong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Zhengshuai Lv
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Zhengshuai Lv,
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, China
- Li Kong,
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, China
- Xiang Ren,
| |
Collapse
|
27
|
Krokidis MG, Prasinou P, Efthimiadou EK, Boari A, Ferreri C, Chatgilialoglu C. Effects of Aging and Disease Conditions in Brain of Tumor-Bearing Mice: Evaluation of Purine DNA Damages and Fatty Acid Pool Changes. Biomolecules 2022; 12:1075. [PMID: 36008969 PMCID: PMC9405824 DOI: 10.3390/biom12081075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The consequences of aging and disease conditions in tissues involve reactive oxygen species (ROS) and related molecular alterations of different cellular compartments. We compared a murine model of immunodeficient (SCID) xenografted young (4 weeks old) and old (17 weeks old) mice with corresponding controls without tumor implantation and carried out a compositional evaluation of brain tissue for changes in parallel DNA and lipids compartments. DNA damage was measured by four purine 5',8-cyclo-2'-deoxynucleosides, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), and 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxo-dA). In brain lipids, the twelve most representative fatty acid levels, which were mostly obtained from the transformation of glycerophospholipids, were followed up during the aging and disease progressions. The progressive DNA damage due to age and tumoral conditions was confirmed by raised levels of 5'S-cdG and 5'S-cdA. In the brain, the remodeling involved a diminution of palmitic acid accompanied by an increase in arachidonic acid, along both age and tumor progressions, causing increases in the unsaturation index, the peroxidation index, and total TFA as indicators of increased oxidative and free radical reactivity. Our results contribute to the ongoing debate on the central role of DNA and genome instability in the aging process, and on the need for a holistic vision, which implies choosing the best biomarkers for such monitoring. Furthermore, our data highlight brain tissue for its lipid remodeling response and inflammatory signaling, which seem to prevail over the effects of DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - Paraskevi Prasinou
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Eleni K. Efthimiadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, 15310 Athens, Greece
- Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via Piero Gobetti 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
28
|
Santiago-Castañeda C, Huerta de la Cruz S, Martínez-Aguirre C, Orozco-Suárez SA, Rocha L. Cannabidiol Reduces Short- and Long-Term High Glutamate Release after Severe Traumatic Brain Injury and Improves Functional Recovery. Pharmaceutics 2022; 14:pharmaceutics14081609. [PMID: 36015236 PMCID: PMC9414526 DOI: 10.3390/pharmaceutics14081609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to determine if orally administered cannabidiol (CBD) lessens the cortical over-release of glutamate induced by a severe traumatic brain injury (TBI) and facilitates functional recovery. The short-term experiment focused on identifying the optimal oral pretreatment of CBD. Male Wistar rats were pretreated with oral administration of CBD (50, 100, or 200 mg/kg) daily for 7 days. Then, extracellular glutamate concentration was estimated by cortical microdialysis before and immediately after a severe TBI. The long-term experiment focused on evaluating the effect of the optimal treatment of CBD (pre- vs. pre- and post-TBI) 30 days after trauma. Sensorimotor function, body weight, and mortality rate were evaluated. In the short term, TBI induced a high release of glutamate (738% ± 173%; p < 0.001 vs. basal). Oral pretreatment with CBD at all doses tested reduced glutamate concentration but with higher potency at when animals received 100 mg/kg (222 ± 33%, p < 0.01 vs. TBI), an effect associated with a lower mortality rate (22%, p < 0.001 vs. TBI). In the long-term experiment, the TBI group showed a high glutamate concentration (149% p < 0.01 vs. SHAM). In contrast, animals receiving the optimal treatment of CBD (pre- and pre/post-TBI) showed glutamate concentrations like the SHAM group (p > 0.05). This effect was associated with high sensorimotor function improvement. CBD pretreatment, but not pre-/post-treatment, induced a higher body weight gain (39% ± 2.7%, p < 0.01 vs. TBI) and lower mortality rate (22%, p < 0.01 vs. TBI). These results support that orally administered CBD reduces short- and long-term TBI-induced excitotoxicity and facilitated functional recovery. Indeed, pretreatment with CBD was sufficient to lessen the adverse sequelae of TBI.
Collapse
Affiliation(s)
- Cindy Santiago-Castañeda
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Saúl Huerta de la Cruz
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Christopher Martínez-Aguirre
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
| | - Sandra Adela Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, Specialties Hospital, National Medical Center SXXI (CMN-SXXI), Mexico City 06720, Mexico;
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City 14330, Mexico; (C.S.-C.); (S.H.d.l.C.); (C.M.-A.)
- Correspondence: ; Tel.: +52-55-5483-2800
| |
Collapse
|
29
|
Ferroptosis in viral infection: the unexplored possibility. Acta Pharmacol Sin 2022; 43:1905-1915. [PMID: 34873317 PMCID: PMC8646346 DOI: 10.1038/s41401-021-00814-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication, places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatoy pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.
Collapse
|
30
|
Kobayashi NHC, Farias SV, Luz DA, Machado-Ferraro KM, da Conceição BC, da Silveira CCM, Fernandes LMP, Cartágenes SDC, Ferreira VMM, Fontes-Júnior EA, Maia CDSF. Ketamine plus Alcohol: What We Know and What We Can Expect about This. Int J Mol Sci 2022; 23:ijms23147800. [PMID: 35887148 PMCID: PMC9323326 DOI: 10.3390/ijms23147800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023] Open
Abstract
Drug abuse has become a public health concern. The misuse of ketamine, a psychedelic substance, has increased worldwide. In addition, the co-abuse with alcohol is frequently identified among misusers. Considering that ketamine and alcohol share several pharmacological targets, we hypothesize that the consumption of both psychoactive substances may synergically intensify the toxicological consequences, both under the effect of drugs available in body systems and during withdrawal. The aim of this review is to examine the toxicological mechanisms related to ketamine plus ethanol co-abuse, as well the consequences on cardiorespiratory, digestive, urinary, and central nervous systems. Furthermore, we provide a comprehensive discussion about the probable sites of shared molecular mechanisms that may elicit additional hazardous effects. Finally, we highlight the gaps of knowledge in this area, which deserves further research.
Collapse
Affiliation(s)
- Natalia Harumi Correa Kobayashi
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Sarah Viana Farias
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Diandra Araújo Luz
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Kissila Márvia Machado-Ferraro
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Brenda Costa da Conceição
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Cinthia Cristina Menezes da Silveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Vânia Maria Moraes Ferreira
- Laboratory of Psychobiology, Psychology Institute, University of Brasília, Campus Universitário Darcy Ribeiro—Asa Norte, Brasília 70910900, DF, Brazil;
| | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém 66075110, PA, Brazil; (N.H.C.K.); (S.V.F.); (D.A.L.); (K.M.M.-F.); (B.C.d.C.); (C.C.M.d.S.); (L.M.P.F.); (S.d.C.C.); (E.A.F.-J.)
- Correspondence: ; Tel.: +55-91-3201-7201
| |
Collapse
|
31
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
32
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Dorn GW, Dang X. Predicting Mitochondrial Dynamic Behavior in Genetically Defined Neurodegenerative Diseases. Cells 2022; 11:cells11061049. [PMID: 35326500 PMCID: PMC8947719 DOI: 10.3390/cells11061049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dynamics encompass mitochondrial fusion, fission, and movement. Mitochondrial fission and fusion are seemingly ubiquitous, whereas mitochondrial movement is especially important for organelle transport through neuronal axons. Here, we review the roles of different mitochondrial dynamic processes in mitochondrial quantity and quality control, emphasizing their impact on the neurological system in Charcot–Marie–Tooth disease type 2A, amyotrophic lateral sclerosis, Friedrich’s ataxia, dominant optic atrophy, and Alzheimer’s, Huntington’s, and Parkinson’s diseases. In addition to mechanisms and concepts, we explore in detail different technical approaches for measuring mitochondrial dynamic dysfunction in vitro, describe how results from tissue culture studies may be applied to a better understanding of mitochondrial dysdynamism in human neurodegenerative diseases, and suggest how this experimental platform can be used to evaluate candidate therapeutics in different diseases or in individual patients sharing the same clinical diagnosis.
Collapse
Affiliation(s)
- Gerald W. Dorn
- Correspondence: ; Tel.: +314-362-4892; Fax: +314-362-8844
| | | |
Collapse
|
34
|
Morris G, Walder K, Berk M, Carvalho AF, Marx W, Bortolasci CC, Yung AR, Puri BK, Maes M. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110481. [PMID: 34826557 DOI: 10.1016/j.pnpbp.2021.110481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolf Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Alison R Yung
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Health Science, University of Manchester, UK.
| | - Basant K Puri
- University of Winchester, UK, and C.A.R., Cambridge, UK.
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
35
|
Kalogerou M, Ioannou S, Kolovos P, Prokopiou E, Potamiti L, Kyriacou K, Panagiotidis M, Ioannou M, Fella E, Worth EP, Georgiou T. Omega-3 fatty acids promote neuroprotection, decreased apoptosis and reduced glial cell activation in the retina of a mouse model of OPA1-related autosomal dominant optic atrophy. Exp Eye Res 2022; 215:108901. [DOI: 10.1016/j.exer.2021.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023]
|
36
|
Brandley ET, Kirkland AE, Baron M, Baraniuk JN, Holton KF. The Effect of the Low Glutamate Diet on the Reduction of Psychiatric Symptoms in Veterans With Gulf War Illness: A Pilot Randomized-Controlled Trial. Front Psychiatry 2022; 13:926688. [PMID: 35795023 PMCID: PMC9251130 DOI: 10.3389/fpsyt.2022.926688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this pilot study was to examine the effects of the low glutamate diet on anxiety, post-traumatic stress disorder (PTSD), and depression in veterans with Gulf War Illness (GWI). The low glutamate diet removes dietary excitotoxins and increases consumption of micronutrients which are protective against glutamatergic excitotoxicity. This study was registered at ClinicalTrials.gov (NCT#03342482). Forty veterans with GWI completed psychiatric questionnaires at baseline and after 1-month following the low glutamate diet. Participants were then randomized into a double-blind, placebo-controlled crossover challenge with monosodium glutamate (MSG; a dietary excitotoxin) vs. placebo over three consecutive days per week, with assessments on day three. Data were analyzed across the full sample and with participants categorized by baseline symptom severity. Pre-post-dietary intervention change scores were analyzed with Wilcoxon signed-rank tests and paired sample t-tests across the full sample, and changes across symptom severity categories were analyzed using ANOVA. Crossover challenge results were analyzed with linear mixed modeling accounting for challenge material (MSG v. placebo), sequence (MSG/placebo v. placebo/MSG), period (challenge week 1 v. week 2), pre-diet baseline symptom severity category (minimal/mild, moderate, or severe), and the challenge material*symptom severity category interaction. A random effect of ID (sequence) was also included. All three measures showed significant improvement after 1 month on the diet, with significant differences between baseline severity categories. Individuals with severe psychological symptoms at baseline showed the most improvement after 1 month on the diet, while those with minimal/mild symptoms showed little to no change. Modeling results from the challenge period demonstrated a significant worsening of anxiety from MSG in only the most severe group, with no significant effects of MSG challenge on depression nor PTSD symptoms. These results suggest that the low glutamate diet may be an effective treatment for depression, anxiety, and PTSD, but that either (a) glutamate is only a direct cause of symptoms in anxiety, or (b) underlying nutrient intake may prevent negative psychiatric effects from glutamate exposure. Future, larger scale clinical trials are needed to confirm these findings and to further explore the potential influence of increased micronutrient intake on the improvements observed across anxiety, PTSD, and depression.
Collapse
Affiliation(s)
- Elizabeth T Brandley
- Department of Health Studies, American University, Washington, DC, United States
| | - Anna E Kirkland
- Medical University of South Carolina, Charleston, SC, United States
| | - Michael Baron
- Department of Mathematics and Statistics, American University, Washington, DC, United States
| | - James N Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, United States
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington, DC, United States.,Department of Neuroscience, American University, Washington, DC, United States.,Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
37
|
Welty S, Thathiah A, Levine AS. DNA Damage Increases Secreted Aβ40 and Aβ42 in Neuronal Progenitor Cells: Relevance to Alzheimer's Disease. J Alzheimers Dis 2022; 88:177-190. [PMID: 35570488 PMCID: PMC9277680 DOI: 10.3233/jad-220030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent studies suggest a strong association between neuronal DNA damage, elevated levels of amyloid-β (Aβ), and regions of the brain that degenerate in Alzheimer's disease (AD). OBJECTIVE To investigate the nature of this association, we tested the hypothesis that extensive DNA damage leads to an increase in Aβ40 and Aβ42 generation. METHODS We utilized an immortalized human neuronal progenitor cell line (NPCs), ReN VM GA2. NPCs or 20 day differentiated neurons were treated with hydrogen peroxide or etoposide and allowed to recover for designated times. Sandwich ELISA was used to assess secreted Aβ40 and Aβ42. Western blotting, immunostaining, and neutral comet assay were used to evaluate the DNA damage response and processes indicative of AD pathology. RESULTS We determined that global hydrogen peroxide damage results in increased cellular Aβ40 and Aβ42 secretion 24 h after treatment in ReN GA2 NPCs. Similarly, DNA double strand break (DSB)-specific etoposide damage leads to increased Aβ40 and Aβ42 secretion 2 h and 4 h after treatment in ReN GA2 NPCs. In contrast, etoposide damage does not increase Aβ40 and Aβ42 secretion in post-mitotic ReN GA2 neurons. CONCLUSION These findings provide evidence that in our model, DNA damage is associated with an increase in Aβ secretion in neuronal progenitors, which may contribute to the early stages of neuronal pathology in AD.
Collapse
Affiliation(s)
- Starr Welty
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arthur Samuel Levine
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Sun L, Wang H, Yu S, Zhang L, Jiang J, Zhou Q. Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. Int J Mol Med 2021; 49:17. [PMID: 34935058 PMCID: PMC8711589 DOI: 10.3892/ijmm.2021.5072] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis has been previously implicated in the pathological progression of cardiomyopathy. Herceptin (trastuzumab), which targets HER2, is commonly applied for the treatment of HER2+ breast cancer. However, its clinical use is limited by its cardiotoxicity. Therefore, the present study aimed to investigate if targeting ferroptosis could protect against Herceptin‑induced heart failure in an in vitro model of H9c2 cells after treatment of Herceptin, Herceptin + ferroptosis inhibitor ferrostatin‑1 (Fer‑1) or Herceptin + Deferoxamine. H9c2 cell viability was measured by MTT assay. Reactive oxygen species (ROS) levels were detected by measuring the fluorescence of DCFH‑DA‑A and MitoSOX™ Red. Glutathione (GSH)/oxidized glutathione (GSSG) ratio was measured using the GSH/GSSG Ratio Detection Assay kit. Mitochondrial membrane potential and ATP content were evaluated by JC‑1 staining and bioluminescent assay kits, respectively. Protein expressions of glutathione peroxidase 4, recombinant solute carrier family 7 member 11, mitochondrial optic atrophy1‑1/2, mitofusin, Acyl‑CoA synthetase long chain family member 4, cytochrome c, voltage‑dependent anion‑selective channel, dynamin‑related protein, mitochondrial fission 1 protein and mitochondrial ferritin were evaluated by western blotting. It was found that Herceptin reduced H9c2 cell viability whilst increasing intracellular and mitochondrial ROS levels in a dose‑ and time‑dependent manner. Furthermore, Herceptin decreased glutathione peroxidase (GPX) protein expression and the GSH/ GSSG ratio in H9c2 cells in a dose‑ and time‑dependent manner. The Fer‑1 abolished this Herceptin‑induced reduction in cell viability, GSH/GSSG ratio, mitochondrial membrane potential and ATP content. Fer‑1 also reversed the suppressive effects of Herceptin on the protein expression levels of GPX4, recombinant solute carrier family 7 member 11, mitochondrial optic atrophy1‑1/2 and mitofusin in H9c2 cells. Subsequently, Fer‑1 was found to reverse the Herceptin‑induced increase in mitochondrial ROS and iron levels in H9c2 cells, as well as the increased protein expression levels of Acyl‑CoA synthetase long chain family member 4, cytochrome c, voltage‑dependent anion‑selective channel, dynamin‑related protein, mitochondrial fission 1 protein and mitochondrial ferritin in H9c2 cells. However, compared with deferoxamine, an iron chelator, the effects of Fer‑1 were less effective. Collectively, these findings provided insights into the pathogenic mechanism that underlie Herceptin‑induced cardiomyopathy, which potentially provides a novel therapeutic target for the prevention of cardiotoxicity in HER2+ breast cancer treatment.
Collapse
Affiliation(s)
- Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lin Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
39
|
Blaylock RL, Faria M. New concepts in the development of schizophrenia, autism spectrum disorders, and degenerative brain diseases based on chronic inflammation: A working hypothesis from continued advances in neuroscience research. Surg Neurol Int 2021; 12:556. [PMID: 34877042 PMCID: PMC8645502 DOI: 10.25259/sni_1007_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
This paper was written prompted by a poignant film about adolescent girl with schizophrenia who babysits for a younger girl in an isolated cabin. Schizophrenia is an illness that both authors are fascinated with and that they continue to study and investigate. There is now compelling evidence that schizophrenia is a very complex syndrome that involves numerous neural pathways in the brain, far more than just dopaminergic and serotonergic systems. One of the more popular theories in recent literature is that it represents a hypo glutaminergic deficiency of certain pathways, including thalamic ones. After much review of research and study in this area, we have concluded that most such theories contain a number of shortcomings. Most are based on clinical responses to certain drugs, particularly antipsychotic drugs affecting the dopaminergic neurotransmitters; thus, assuming dopamine release was the central cause of the psychotic symptoms of schizophrenia. The theory was limited in that dopamine excess could only explain the positive symptoms of the disorder. Antipsychotic medications have minimal effectiveness for the negative and cognitive symptoms associated with schizophrenia. It has been estimated that 20–30% of patients show either a partial or no response to antipsychotic medications. In addition, the dopamine hypothesis does not explain the neuroanatomic findings in schizophrenia.
Collapse
Affiliation(s)
| | - Miguel Faria
- Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States
| |
Collapse
|
40
|
Kang EYC, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK, Tsai RK. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel) 2021; 10:1948. [PMID: 34943051 PMCID: PMC8750806 DOI: 10.3390/antiox10121948] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Ocular diseases associated with retinal ganglion cell (RGC) degeneration is the most common neurodegenerative disorder that causes irreversible blindness worldwide. It is characterized by visual field defects and progressive optic nerve atrophy. The underlying pathophysiology and mechanisms of RGC degeneration in several ocular diseases remain largely unknown. RGCs are a population of central nervous system neurons, with their soma located in the retina and long axons that extend through the optic nerve to form distal terminals and connections in the brain. Because of this unique cytoarchitecture and highly compartmentalized energy demand, RGCs are highly mitochondrial-dependent for adenosine triphosphate (ATP) production. Recently, oxidative stress and mitochondrial dysfunction have been found to be the principal mechanisms in RGC degeneration as well as in other neurodegenerative disorders. Here, we review the role of oxidative stress in several ocular diseases associated with RGC degenerations, including glaucoma, hereditary optic atrophy, inflammatory optic neuritis, ischemic optic neuropathy, traumatic optic neuropathy, and drug toxicity. We also review experimental approaches using cell and animal models for research on the underlying mechanisms of RGC degeneration. Lastly, we discuss the application of antioxidants as a potential future therapy for the ocular diseases associated with RGC degenerations.
Collapse
Affiliation(s)
- Eugene Yu-Chuan Kang
- Department of Ophthalmology, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 80424, Taiwan;
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80424, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Sarah R. Levi
- Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (P.M.J.Q.); (S.R.L.)
| | - Nan-Kai Wang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rong-Kung Tsai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97403, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 97403, Taiwan
| |
Collapse
|
41
|
Karanikas E. Psychologically Traumatic Oxidative Stress; A Comprehensive Review of Redox Mechanisms and Related Inflammatory Implications. PSYCHOPHARMACOLOGY BULLETIN 2021; 51:65-86. [PMID: 34887600 PMCID: PMC8601764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The organism's energy requirements for homeostatic balance are covered by the redox mechanisms. Yet in case of psychologically traumatic stress, allostatic regulations activate both pro-oxidant and antioxidant molecules as well as respective components of the inflammatory system. Thus a new setpoint of dynamic interactions among redox elements is reached. Similarly, a multifaceted interplay between redox and inflammatory fields is activated with the mediation of major effector systems such as the immune system, Hypothalamic-Pituitary-Adrenal axis, kynurenine, and the glycaemic regulatory one. In case of sustained and/or intense traumatic stress the prophylactic antioxidant components are inadequate to provide the organism with neuroprotection finally culminating in Oxidative Stress and subsequently to cellular apoptosis. In parallel multiple inflammatory systems trigger and/or are triggered by the redox systems in tight fashion so that the causation sequence appears obscure. This exhaustive review aims at the comprehension of the interaction among components of the redox system as well as to the collection of disperse findings relative to the redox-inflammatory interplay in the context of traumatic stress so that new research strategies could be developed.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Karanikas, Department of Psychiatry, General Military Hospital, Thessaloniki, Greece
| |
Collapse
|
42
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
43
|
Zhou X, Chen H, Wang L, Lenahan C, Lian L, Ou Y, He Y. Mitochondrial Dynamics: A Potential Therapeutic Target for Ischemic Stroke. Front Aging Neurosci 2021; 13:721428. [PMID: 34557086 PMCID: PMC8452989 DOI: 10.3389/fnagi.2021.721428] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Brain injury after ischemic stroke involves multiple pathophysiological mechanisms, such as oxidative stress, mitochondrial dysfunction, excitotoxicity, calcium overload, neuroinflammation, neuronal apoptosis, and blood-brain barrier (BBB) disruption. All of these factors are associated with dysfunctional energy metabolism after stroke. Mitochondria are organelles that provide adenosine triphosphate (ATP) to the cell through oxidative phosphorylation. Mitochondrial dynamics means that the mitochondria are constantly changing and that they maintain the normal physiological functions of the cell through continuous division and fusion. Mitochondrial dynamics are closely associated with various pathophysiological mechanisms of post-stroke brain injury. In this review, we will discuss the role of the molecular mechanisms of mitochondrial dynamics in energy metabolism after ischemic stroke, as well as new strategies to restore energy homeostasis and neural function. Through this, we hope to uncover new therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Wang
- Department of Operating Room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Lifei Lian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Holton KF. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front Neurosci 2021; 15:726457. [PMID: 34630015 PMCID: PMC8492967 DOI: 10.3389/fnins.2021.726457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Excitotoxicity has been implicated in many neurological disorders and is a leading cause of oxidative stress and neuroinflammation in the nervous system. Most of the research to date has focused on each of these conditions individually; however, excitotoxicity, oxidative stress, and neuroinflammation have the ability to influence one another in a self-sustaining manner, thus functioning as a "neurotoxic triad." This perspective article re-introduces the concept of the neurotoxic triad and reviews how specific dietary micronutrients have been shown to protect against not only oxidative stress, but also excitotoxicity and neuroinflammation. Future dietary interventions for neurological disorders could focus on the effects on all three aspects of the neurotoxic triad.
Collapse
Affiliation(s)
- Kathleen F Holton
- Nutritional Neuroscience Lab, Department of Health Studies, Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
45
|
Molina SJ, Lietti ÁE, Carreira Caro CS, Buján GE, Guelman LR. Effects of early noise exposure on hippocampal-dependent behaviors during adolescence in male rats: influence of different housing conditions. Anim Cogn 2021; 25:103-120. [PMID: 34322771 DOI: 10.1007/s10071-021-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Central nervous system (CNS) development is a very complex process that can be altered by environmental stimuli such as noise, which can generate long-term auditory and/or extra-auditory impairments. We have previously reported that early noise exposure can induce hippocampus-related behavioral alterations in postnatal day (PND) 28 adolescent rats. Furthermore, we recently found biochemical modifications in the hippocampus (HC) of these animals that seemed to endure even in more mature animals (i.e. PND35) and that have not been studied along with behavioral correlates. Thus, the aim of this work was to reveal novel data about the effects of early noise exposure on hippocampal-dependent behaviors in more mature animals. Additionally, extended enriched environment (EE) housing was evaluated to determine its capacity to induce behavioral modifications, either by its neuroprotective ability or the greater stimulation that it generates. Male Wistar rats were exposed to different noise schemes at PND7 or PND15. Upon weaning, some animals were transferred to EE whereas others were kept in standard cages. At PND35, different hippocampal-dependent behavioral assessments were performed. Results showed noise-induced behavioral changes that differed according to the scheme and age of exposure used. In addition, housing in an EE was effective either in preventing some of these changes or in inducing the appearance of new behavioral modifications. These findings suggest that CNS development would be sensitive to the effects of different type of environmental stimuli such as noise or enriched housing, leading to maladaptive behavioral changes that last even until adolescence.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina.
| | - Ángel Emanuel Lietti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina
| | - Candela Sofía Carreira Caro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
46
|
Del Dotto V, Carelli V. Dominant Optic Atrophy (DOA): Modeling the Kaleidoscopic Roles of OPA1 in Mitochondrial Homeostasis. Front Neurol 2021; 12:681326. [PMID: 34177786 PMCID: PMC8220150 DOI: 10.3389/fneur.2021.681326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
In the year 2000, the discovery of OPA1 mutations as causative for dominant optic atrophy (DOA) was pivotal to rapidly expand the field of mitochondrial dynamics and describe the complex machinery governing this pathway, with a multitude of other genes and encoded proteins involved in neurodegenerative disorders of the optic nerve. OPA1 turned out to be a much more complex protein than initially envisaged, connecting multiple pathways beyond its strict role in mitochondrial fusion, such as sensing of OXPHOS needs and mitochondrial DNA maintenance. As a consequence, an increasing need to investigate OPA1 functions at multiple levels has imposed the development of multiple tools and models that are here reviewed. Translational mitochondrial medicine, with the ultimate objective of translating basic science necessary to understand pathogenic mechanisms into therapeutic strategies, requires disease modeling at multiple levels: from the simplest, like in yeast, to cell models, including the increasing use of reprogrammed stem cells (iPSCs) from patients, to animal models. In the present review, we thoroughly examine and provide the state of the art of all these approaches.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| |
Collapse
|
47
|
17-β Estradiol Rescued Immature Rat Brain against Glutamate-Induced Oxidative Stress and Neurodegeneration via Regulating Nrf2/HO-1 and MAP-Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10060892. [PMID: 34206065 PMCID: PMC8229583 DOI: 10.3390/antiox10060892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated glutamate signaling, leading to neuronal excitotoxicity and death, has been associated with neurodegenerative pathologies. 17β-estradiol (E2) is a human steroid hormone having a role in reproduction, sexual maturation, brain health and biological activities. The study aimed to explain the neuroprotective role of E2 against glutamate-induced ROS production, MAP kinase-dependent neuroinflammation, synaptic dysfunction and neurodegeneration in the cortex and hippocampus of postnatal day 7 rat brain. Biochemical and immunofluorescence analyses were applied. Our results showed that a single subcutaneous injection of glutamate (10 mg/kg) induced brain oxidative stress after 4 h by disturbing the homeostasis of glutathione (GSH) and revealed an upsurge in ROS and LPO levels and downregulated the expression of Nrf2 and HO-1 antioxidant protein. The glutamate-exposed P7 pups illustrated increased phosphorylation of stress-activated c-Jun N-terminal kinase (JNK) and p38 kinase (p38) and downregulated expression of P-Erk1/2. This was accompanied by pathological neuroinflammation as revealed by enhanced gliosis with upregulated expression of GFAP and Iba-1, and the activation of proinflammatory cytokines (TNF-α) in glutamate-injected P7 pups. Moreover, exogenous glutamate also reduced the expression of synaptic markers (PSD-95, SYP) and induced apoptotic neurodegeneration in the cortical and hippocampal regions by dysregulating the expression of Bax, Bcl-2 and caspase-3 in the developing rat brain. On the contrary, co-treatment of E2 (10 mg/kg) with glutamate significantly abrogated brain neuroinflammation, neurodegeneration and synapse loss by alleviating brain oxidative stress by upregulating the Nrf2/HO-1 antioxidant pathway and by deactivating pro-apoptotic P-JNK/P-p38 and activation of pro-survival P-Erk1/2 MAP kinase pathways. In brief, the data demonstrate the neuroprotective role of E2 against glutamate excitotoxicity-induced neurodegeneration. The study also encourages future studies investigating if E2 may be a potent neuroprotective and neurotherapeutic agent in different neurodegenerative diseases.
Collapse
|
48
|
Holton KF, Ramachandra SS, Murray SL, Baron M, Baraniuk JN. Effect of the low glutamate diet on inflammatory cytokines in veterans with Gulf War Illness (GWI): A pilot study. Life Sci 2021; 280:119637. [PMID: 34015284 DOI: 10.1016/j.lfs.2021.119637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
AIM To examine the effects of the low glutamate diet on inflammatory cytokines in veterans with Gulf War Illness (GWI). MAIN METHODS Forty veterans with GWI were recruited from across the country. Anthropometric measurements and blood samples were collected at baseline and after one month on the low glutamate diet. Dietary adherence was measured with a glutamate food frequency questionnaire (FFQ). Inflammatory cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) were measured in pre- and post-diet serum (N = 34). Improvement was defined as being "much" or "very much" improved on the patient global impression of change scale (PGIC), or as having ≥30% of their symptoms remit. Correlations of the FFQ and the cytokines were calculated, followed by multivariable linear regression for significant findings. Mann Whitney U tests were used to compare cytokine levels according to improvement on the diet, and then logistic regression was used to estimate the association after adjustment for potential confounders. Classification trees were also produced to determine the ability of change in the inflammatory cytokines to predict improvement on the diet. KEY FINDINGS Dietary adherence was significantly associated with reduction in TNF-α, and PGIC improvement was significantly associated with reduced IL-1β, after adjustment for potential confounders. Classification trees demonstrated that IL-1β, TNF-α, and IL-6 can predict improvement on the diet with 76.5% accuracy. SIGNIFICANCE Findings suggest that the low glutamate diet may be able to reduce systemic inflammation in veterans with GWI.
Collapse
Affiliation(s)
- Kathleen F Holton
- Department of Health Studies, American University, Washington, DC 20016, United States of America; Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America.
| | - Shalini S Ramachandra
- Department of Health Studies, American University, Washington, DC 20016, United States of America; Department of Mathematics and Statistics, American University, Washington, DC 20016, United States of America
| | - Sidney L Murray
- Behavior, Cognition, and Neuroscience Program, American University, Washington, DC 20016, United States of America
| | - Michael Baron
- Department of Mathematics and Statistics, American University, Washington, DC 20016, United States of America
| | - James N Baraniuk
- Department of Medicine, Georgetown University, Washington, DC 20057, United States of America
| |
Collapse
|
49
|
The Kainic Acid Models of Temporal Lobe Epilepsy. eNeuro 2021; 8:ENEURO.0337-20.2021. [PMID: 33658312 PMCID: PMC8174050 DOI: 10.1523/eneuro.0337-20.2021] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Experimental models of epilepsy are useful to identify potential mechanisms of epileptogenesis, seizure genesis, comorbidities, and treatment efficacy. The kainic acid (KA) model is one of the most commonly used. Several modes of administration of KA exist, each producing different effects in a strain-, species-, gender-, and age-dependent manner. In this review, we discuss the advantages and limitations of the various forms of KA administration (systemic, intrahippocampal, and intranasal), as well as the histologic, electrophysiological, and behavioral outcomes in different strains and species. We attempt a personal perspective and discuss areas where work is needed. The diversity of KA models and their outcomes offers researchers a rich palette of phenotypes, which may be relevant to specific traits found in patients with temporal lobe epilepsy.
Collapse
|
50
|
Targeted pharmacotherapy against neurodegeneration and neuroinflammation in early diabetic retinopathy. Neuropharmacology 2021; 187:108498. [PMID: 33582150 DOI: 10.1016/j.neuropharm.2021.108498] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR), the most frequent complication of diabetes, is one of the leading causes of irreversible blindness in working-age adults and has traditionally been regarded as a microvascular disease. However, increasing evidence has revealed that synaptic neurodegeneration of retinal ganglion cells (RGCs) and activation of glial cells may represent some of the earliest events in the pathogenesis of DR. Upon diabetes-induced metabolic stress, abnormal glycogen synthase kinase-3β (GSK-3β) activation drives tau hyperphosphorylation and β-catenin downregulation, leading to mitochondrial impairment and synaptic neurodegeneration prior to RGC apoptosis. Moreover, glial cell activation triggers enhanced inflammation and oxidative stress, which may accelerate the deterioration of diabetic RGCs neurodegeneration. These findings have opened up opportunities for therapies, such as inhibition of GSK-3β, glial cell activation, glutamate excitotoxicity and the use of neuroprotective drugs targeting early neurodegenerative processes in the retina and halting the progression of DR before the manifestation of microvascular abnormalities. Such interventions could potentially remedy early neurodegeneration and help prevent vision loss in people suffering from DR.
Collapse
|