1
|
Liu B, Li M, Qiu J, Xue J, Liu W, Cheng Q, Zhao H, Xue Y, Nasrallah ME, Nasrallah JB, Liu P. A pollen selection system links self and interspecific incompatibility in the Brassicaceae. Nat Ecol Evol 2024; 8:1129-1139. [PMID: 38637692 DOI: 10.1038/s41559-024-02399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengya Li
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jianfang Qiu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jing Xue
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenhong Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qingqing Cheng
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hainan Zhao
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yongbiao Xue
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mikhail E Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Pei Liu
- State Key Laboratory of Nutrient Use and Management, Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Fang XZ, Xu XL, Ye ZQ, Liu D, Zhao KL, Li DM, Liu XX, Jin CW. Excessive iron deposition in root apoplast is involved in growth arrest of roots in response to low pH. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3188-3200. [PMID: 38401150 DOI: 10.1093/jxb/erae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
The rhizotoxicity of protons (H+) in acidic soils is a fundamental constraint that results in serious yield losses. However, the mechanisms underlying H+-mediated inhibition of root growth are poorly understood. In this study, we revealed that H+-induced root growth inhibition in Arabidopsis depends considerably on excessive iron deposition in the root apoplast. Reducing such aberrant iron deposition by decreasing the iron supply or disrupting the ferroxidases LOW PHOSPHATE ROOT 1 (LPR) and LPR2 attenuates the inhibitory effect of H+ on primary root growth efficiently. Further analysis showed that excessive iron deposition triggers a burst of highly reactive oxygen species, consequently impairing normal root development. Our study uncovered a valuable strategy for improving the ability of plants to tolerate H+ toxicity by manipulating iron availability.
Collapse
Affiliation(s)
- Xian Zhi Fang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiao Lan Xu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Zheng Qian Ye
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Dan Liu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Ke Li Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Dong Ming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010000, Inner Mongolia, China
| | - Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010000, Inner Mongolia, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
3
|
Wang SM, Wang YS, Cheng H. Comparative Transcriptomics and Metabolomics Analyses of Avicennia marina and Kandelia obovata under Chilling Stress during Seedling Stage. Int J Mol Sci 2023; 24:16989. [PMID: 38069316 PMCID: PMC10707264 DOI: 10.3390/ijms242316989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
One of the most productive ecosystems in the world, mangroves are susceptible to cold stress. However, there is currently insufficient knowledge of the adaptation mechanisms of mangrove plants in response to chilling stress. This study conducted a comparative analysis of transcriptomics and metabolomics to investigate the adaptive responses of Kandelia obovata (chilling-tolerant) and Avicennia marina (chilling-sensitive) to 5 °C. The transcriptomics results revealed that differentially expressed genes (DEGs) were mostly enriched in signal transduction, photosynthesis-related pathways, and phenylpropanoid biosynthesis. The expression pattern of genes involved in photosynthesis-related pathways in A. marina presented a downregulation of most DEGs, which correlated with the decrease in total chlorophyll content. In the susceptible A. marina, all DEGs encoding mitogen-activated protein kinase were upregulated. Phenylpropanoid-related genes were observed to be highly induced in K. obovata. Additionally, several metabolites, such as 4-aminobutyric acid, exhibited higher levels in K. obovata than in A. marina, suggesting that chilling-tolerant varieties regulated more metabolites in response to chilling. The investigation defined the inherent distinctions between K. obovata and A. marina in terms of signal transduction gene expression, as well as phenylpropanoid and flavonoid biosynthesis, during exposure to low temperatures.
Collapse
Affiliation(s)
- Shu-Min Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (S.-M.W.); (H.C.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (S.-M.W.); (H.C.)
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518121, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (S.-M.W.); (H.C.)
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
4
|
Li P, Li W, Zhou X, Situ J, Xie L, Xi P, Yang B, Kong G, Jiang Z. Peronophythora litchii RXLR effector P. litchii avirulence homolog 202 destabilizes a host ethylene biosynthesis enzyme. PLANT PHYSIOLOGY 2023; 193:756-774. [PMID: 37232407 DOI: 10.1093/plphys/kiad311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Oomycete pathogens can secrete hundreds of effectors into plant cells to interfere with the plant immune system during infection. Here, we identified a Arg-X-Leu-Arg (RXLR) effector protein from the most destructive pathogen of litchi (Litchi chinensis Sonn.), Peronophythora litchii, and named it P. litchii avirulence homolog 202 (PlAvh202). PlAvh202 could suppress cell death triggered by infestin 1 or avirulence protein 3a/resistance protein 3a in Nicotiana benthamiana and was essential for P. litchii virulence. In addition, PlAvh202 suppressed plant immune responses and promoted the susceptibility of N. benthamiana to Phytophthora capsici. Further research revealed that PlAvh202 could suppress ethylene (ET) production by targeting and destabilizing plant S-adenosyl-L-methionine synthetase (SAMS), a key enzyme in the ET biosynthesis pathway, in a 26S proteasome-dependent manner without affecting its expression. Transient expression of LcSAMS3 induced ET production and enhanced plant resistance, whereas inhibition of ET biosynthesis promoted P. litchii infection, supporting that litchi SAMS (LcSAMS) and ET positively regulate litchi immunity toward P. litchii. Overall, these findings highlight that SAMS can be targeted by the oomycete RXLR effector to manipulate ET-mediated plant immunity.
Collapse
Affiliation(s)
- Peng Li
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen Li
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Junjian Situ
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lizhu Xie
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Bo Yang
- College of Grassland Science/Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghui Kong
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zide Jiang
- Guangdong Key Laboratory of Microbial Signals and Disease Control/Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Xiao Z, Huang G, Lu D. A MAPK signaling cascade regulates the fusaric acid-induced cell death in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154049. [PMID: 37423042 DOI: 10.1016/j.jplph.2023.154049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Mycotoxin contamination of foods and feeds is a global problem. Fusaric acid (FA) is a mycotoxin produced by Fusarium species that are phytopathogens of many economically important plant species. FA can cause programmed cell death (PCD) in several plant species. However, the signaling mechanisms of FA-induced cell death in plants are largely unknown. Here we showed that FA induced cell death in the model plant Arabidopsis thaliana, and MPK3/6 phosphorylation was triggered by FA in Arabidopsis. Both the acid nature and the radical of FA are required for its activity in inducing MPK3/6 activation and cell death. Expression of the constitutively active MKK5DD resulted in the activation of MPK3/6 and promoted the FA-induced cell death. Our work demonstrates that the MKK5-MPK3/6 cascade positively regulates FA-induced cell death in Arabidopsis and also provides insight into the mechanisms of how cell death is induced by FA in plants.
Collapse
Affiliation(s)
- Zejun Xiao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guozhong Huang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China
| | - Dongping Lu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Huh SU. Functional analysis of hot pepper ethylene responsive factor 1A in plant defense. PLANT SIGNALING & BEHAVIOR 2022; 17:2027137. [PMID: 35192782 PMCID: PMC9176226 DOI: 10.1080/15592324.2022.2027137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some ERF genes from Capsicum annuum have been characterized. In the study, the CaERF1A gene is characterized in response to biotic stress. CaERF1A transcripts were induced by various plant defense-related hormone treatments. Knockdown of CaERF1A in hot pepper plants are negatively affected Tobacco mosaic virus-P0-mediated hypersensitive response cell death, resulting in reduced gene expression of pathogenesis-related genes and ethylene and jasmonic acid synthesis-related gene. Overexpressing CaERF1A transgenic plants show enhanced resistance to fungal pathogen via regulating ethylene and jasmonic acid synthesis-related gene expression. Thus, CaERF1A is a positive regulator of plant defense by modulating ethylene and jasmonic acid synthesis-related gene expressions.
Collapse
Affiliation(s)
- Sung Un Huh
- Department of Biology, Kunsan National University, Gunsan, Republic of Korea
- CONTACT Sung Un Huh Department of Biology, Kunsan National University, Gunsan54150, Republic of Korea
| |
Collapse
|
7
|
Crystal structure of the phosphorylated Arabidopsis MKK5 reveals activation mechanism of MAPK kinases. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1159-1170. [PMID: 35866601 PMCID: PMC9909325 DOI: 10.3724/abbs.2022089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved in eukaryotes, regulating various cellular processes. The MAPK kinases (MKKs) are dual specificity kinases, serving as convergence and divergence points of the tripartite MAPK cascades. Here, we investigate the biochemical characteristics and three-dimensional structure of MKK5 in Arabidopsis (AtMKK5). The recombinant full-length AtMKK5 is phosphorylated and can activate its physiological substrate AtMPK6. There is a conserved kinase interacting motif (KIM) at the N-terminus of AtMKK5, indispensable for specific recognition of AtMPK6. The kinase domain of AtMKK5 adopts active conformation, of which the extended activation segment is stabilized by the phosphorylated Ser221 and Thr215 residues. In line with sequence divergence from other MKKs, the αD and αK helices are missing in AtMKK5, suggesting that the AtMKK5 may adopt distinct modes of upstream kinase/substrate binding. Our data shed lights on the molecular mechanisms of MKK activation and substrate recognition, which may help design specific inhibitors targeting human and plant MKKs.
Collapse
|
8
|
Ganie SA, Bhat JA, Devoto A. The influence of endophytes on rice fitness under environmental stresses. PLANT MOLECULAR BIOLOGY 2022; 109:447-467. [PMID: 34859329 PMCID: PMC9213282 DOI: 10.1007/s11103-021-01219-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Endophytes are crucial for the promotion of rice growth and stress tolerance and can be used to increase rice crop yield. Endophytes can thus be exploited in biotechnology and genetic engineering as eco-friendly and cost-effective means for the development of high-yielding and stress-tolerant rice plants. Rice (Oryza sativa) crop is continuously subjected to biotic and abiotic stresses, compromising growth and consequently yield. The situation is exacerbated by climate change impacting on ecosystems and biodiversity. Genetic engineering has been used to develop stress-tolerant rice, alongside physical and chemical methods to mitigate the effect of these stresses. However, the success of these strategies has been hindered by short-lived field success and public concern on adverse effects associated. The limited success in the field of stress-tolerant cultivars developed through breeding or transgenic approaches is due to the complex nature of stress tolerance as well as to the resistance breakdown caused by accelerated evolution of pathogens. It is therefore necessary to develop novel and acceptable strategies to enhance rice stress tolerance and durable resistance and consequently improve yield. In the last decade, plant growth promoting (PGP) microbes, especially endophytes, have drawn the attention of agricultural scientists worldwide, due to their ability to mitigate environmental stresses in crops, without causing adverse effects. Increasing evidence indicates that endophytes effectively confer fitness benefits also to rice under biotic and abiotic stress conditions. Endophyte-produced metabolites can control the expression of stress-responsive genes and improve the physiological performance and growth of rice plants. This review highlights the current evidence available for PGP microbe-promoted tolerance of rice to abiotic stresses such as salinity and drought and to biotic ones, with special emphasis on endophytes. Associated molecular mechanisms are illustrated, and prospects for sustainable rice production also in the light of the impending climate change, discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
9
|
Influence of radio-grain priming on growth, antioxidant capacity, and yield of barley plants. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00724. [PMID: 35686017 PMCID: PMC9171454 DOI: 10.1016/j.btre.2022.e00724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
Abstract
The study aimed to examine the influence of different doses (0, 5, 10, and 20 Gray) of gamma radiation on growth, yield traits, and biochemical constituents of barley plants. The low doses (5 and 10 Gy) significantly improved the growth and yield of barley crop. Surprisingly, a higher dose (20 Gy) increased shoot growth and tillers number. Photosynthetic pigments were increased markedly at low doses (5 Gy) whereas decreased at high one. Gamma radiation enhanced total phenols, total flavonoids, total amino acids, antioxidant enzymes and H2O2. In addition, the protein profile showed varies in response depending on the applied dose. Conversely, gamma rays resulted in lower total sugars and proline than the corresponding control values. Ultimately, the modified antioxidant potential, protein pattern, and metabolic changes of barley exhibited the effectiveness of low doses of gamma irradiation in improving growth, and yield of barley plants.
Collapse
|
10
|
Li Y, Liu K, Tong G, Xi C, Liu J, Zhao H, Wang Y, Ren D, Han S. MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:413-428. [PMID: 34499162 DOI: 10.1093/jxb/erab415] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/09/2021] [Indexed: 05/24/2023]
Abstract
Ethylene response factor (ERF) Group VII members generally function in regulating plant growth and development, abiotic stress responses, and plant immunity in Arabidopsis; however, the details of the regulatory mechanism by which Group VII ERFs mediate plant immune responses remain elusive. Here, we characterized one such member, ERF72, as a positive regulator that mediates resistance to the necrotrophic pathogen Botrytis cinerea. Compared with the wild-type (WT), the erf72 mutant showed lower camalexin concentration and was more susceptible to B. cinerea, while complementation of ERF72 in erf72 rescued the susceptibility phenotype. Moreover, overexpression of ERF72 in the WT promoted camalexin biosynthesis and increased resistance to B. cinerea. We identified the camalexin-biosynthesis genes PAD3 and CYP71A13 and the transcription factor WRKY33 as target genes of ERF72. We also determined that MPK3 and MPK6 phosphorylated ERF72 at Ser151 and improved its transactivation activity, resulting in increased camalexin concentration and increased resistance to B. cinerea. Thus, ERF72 acts in plant immunity to coordinate camalexin biosynthesis both directly by regulating the expression of biosynthetic genes and indirectly by targeting WRKK33.
Collapse
Affiliation(s)
- Yihao Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Kun Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ganlu Tong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Hu Y, Cheng Y, Yu X, Liu J, Yang L, Gao Y, Ke G, Zhou M, Mu B, Xiao S, Wang Y, Wen YQ. Overexpression of two CDPKs from wild Chinese grapevine enhances powdery mildew resistance in Vitis vinifera and Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:2029-2046. [PMID: 33595857 DOI: 10.1111/nph.17285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play vital roles in metabolic regulations and stimuli responses in plants. However, little is known about their function in grapevine. Here, we report that VpCDPK9 and VpCDPK13, two paralogous CDPKs from Vitis pseudoreticulata accession Baihe-35-1, appear to positively regulate powdery mildew resistance. The transcription of them in leaves of 'Baihe-35-1' were differentially induced upon powdery mildew infection. Overexpression of VpCDPK9-YFP or VpCDPK13-YFP in the V. vinifera susceptible cultivar Thompson Seedless resulted in enhanced resistance to powdery mildew (YFP, yellow fluorescent protein). This might be due to elevation of SA and ethylene production, and excess accumulation of H2 O2 and callose in penetrated epidermal cells and/or the mesophyll cells underneath. Ectopic expression of VpCDPK9-YFP in Arabidopsis resulted in varied degrees of reduced stature, pre-mature senescence and enhanced powdery mildew resistance. However, these phenotypes were abolished in VpCDPK9-YFP transgenic lines impaired in SA signaling (pad4sid2) or ethylene signaling (ein2). Moreover, both of VpCDPK9 and VpCDPK13 were found to interact with and potentially phosphorylate VpMAPK3, VpMAPK6, VpACS1 and VpACS2 in vivo (ACS, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase; MAPK, mitogen-activated protein kinase). These results suggest that VpCDPK9 and VpCDPK13 contribute to powdery mildew resistance via positively regulating SA and ethylene signaling in grapevine.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Yuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Xuena Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Lushan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Yurong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Guihua Ke
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Min Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Bo Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD, 20850, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| |
Collapse
|
12
|
Cao Y, Zhang Y, Chen Y, Yu N, Liaqat S, Wu W, Chen D, Cheng S, Wei X, Cao L, Zhang Y, Liu Q. OsPG1 Encodes a Polygalacturonase that Determines Cell Wall Architecture and Affects Resistance to Bacterial Blight Pathogen in Rice. RICE (NEW YORK, N.Y.) 2021; 14:36. [PMID: 33881659 PMCID: PMC8060378 DOI: 10.1186/s12284-021-00478-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant cell walls are the main physical barrier encountered by pathogens colonizing plant tissues. Alteration of cell wall integrity (CWI) can activate specific defenses by impairing proteins involved in cell wall biosynthesis, degradation and remodeling, or cell wall damage due to biotic or abiotic stress. Polygalacturonase (PG) depolymerize pectin by hydrolysis, thereby altering pectin composition and structures and activating cell wall defense. Although many studies of CWI have been reported, the mechanism of how PGs regulate cell wall immune response is not well understood. RESULTS Necrosis appeared in leaf tips at the tillering stage, finally resulting in 3-5 cm of dark brown necrotic tissue. ltn-212 showed obvious cell death and accumulation of H2O2 in leaf tips. The defense responses were activated in ltn-212 to resist bacterial blight pathogen of rice. Map based cloning revealed that a single base substitution (G-A) in the first intron caused incorrect splicing of OsPG1, resulting in a necrotic phenotype. OsPG1 is constitutively expressed in all organs, and the wild-type phenotype was restored in complementation individuals and knockout of wild-type lines resulted in necrosis as in ltn-212. Transmission electron microscopy showed that thicknesses of cell walls were significantly reduced and cell size and shape were significantly diminished in ltn-212. CONCLUSION These results demonstrate that OsPG1 encodes a PG in response to the leaf tip necrosis phenotype of ltn-212. Loss-of-function mutation of ltn-212 destroyed CWI, resulting in spontaneous cell death and an auto-activated defense response including reactive oxygen species (ROS) burst and pathogenesis-related (PR) gene expression, as well as enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). These findings promote our understanding of the CWI mediated defense response.
Collapse
Affiliation(s)
- Yongrun Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yuyu Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Shah Liaqat
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| |
Collapse
|
13
|
Zhang Z, He Y, Li L, Zhang X, Xu X, Shi Y, Wu JL. Characterization of a novel allele encoding pheophorbide a oxygenase in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1864606. [PMID: 33369525 PMCID: PMC7889113 DOI: 10.1080/15592324.2020.1864606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
We identified a rapid cell death 2 (rcd2) mutant from an indica cultivar Zhongjian100 mutant bank. The red-brown lesions appeared firstly on young seedling leaves, then gradually merged and the leaves completely withered at the late tillering stage. rcd2 displayed apparent cell death at/around the lesions, accumulation of superoxide anion (O2-) and disturbed ROS scavenging system, impaired photosynthetic capacity with significantly reduced chlorophyll content. The lesion formation was controlled by a single recessive nuclear gene and induced by natural light as well as mechanical wounding. A single base mutation (A1726T) at the 6th exon of OsMH_03G0040800 resulted in I576F substitution in the encoding protein, pheophorbide a oxygenase (PAO). Functional complementation could rescue the mutant phenotype and PAO-knockout lines exhibited the similar phenotype to rcd2. The activity of PAO decreased significantly while the content of PAO substrate, pheophorbide a, increased apparently in rcd2. The expression of chlorophyll synthesis/degradation-related genes and the contents of metabolic intermediates were largely changed. Furthermore, the level of chlorophyllide a, the product of chlorophyllase, increased significantly, indicating chlorophyllase might play a role in chlorophyll degradation in rice. Our results suggested that the I576F substitution disrupted PAO function, leading to O2- accumulation and chlorophyll degradation breakdown in rice.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
14
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
15
|
Mosadegh H, Trivellini A, Lucchesini M, Ferrante A, Maggini R, Vernieri P, Sodi AM. UV-B Physiological Changes Under Conditions of Distress and Eustress in Sweet Basil. PLANTS (BASEL, SWITZERLAND) 2019; 8:E396. [PMID: 31590329 PMCID: PMC6843199 DOI: 10.3390/plants8100396] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
UV-B radiation has been previously reported to induce protective or deleterious effects on plants depending on the UV-B irradiation doses. To elucidate how these contrasting events are physiologically coordinated, we exposed sweet basil plants to two UV-B doses: low (8.5 kJ m-2 day-1, 30 min exposure) and high (68 kJ m-2 day-1, 4 h exposure), with the plants given both doses once continuously in a single day. Physiological tests during and after both UV-B exposures were performed by comparing the stress-induced damage and adverse effects on photosynthetic activity, the concentration and composition of photosynthetic and non-photosynthetic pigments, and stress-related hormones biosynthesis in basil plants. Our results showed that upon receiving a high UV-B dose, a severe inactivation of oxygen evolving complex (OEC) activity at the PSII donor side and irreversible PSII photodamage caused primarily by limitation of the acceptor side occurred, which overloaded protective mechanisms and finally led to the death of the plants. In contrast, low UV-B levels did not induce any signs of UV-B stress injuries. The OEC partial limitation and the inactivation of the electron transport chain allowed the activation of photoprotective mechanisms, avoiding irreversible damage to PSII. Overall results indicate the importance of a specific response mechanisms regulating photoprotection vs irreversible photoinhibition in basil that were modulated depending on the UV-B doses.
Collapse
Affiliation(s)
- Haana Mosadegh
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pz. Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pz. Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Mariella Lucchesini
- Department of Agriculture, Food and Environment, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, I-20133 Milano, Italy.
| | - Rita Maggini
- Department of Agriculture, Food and Environment, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Anna Mensuali Sodi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pz. Martiri della Libertà 33, 56127 Pisa, Italy.
| |
Collapse
|
16
|
Liu H, Hao N, Jia Y, Liu X, Ni X, Wang M, Liu W. The ethylene receptor regulates Typha angustifolia leaf aerenchyma morphogenesis and cell fate. PLANTA 2019; 250:381-390. [PMID: 31062160 DOI: 10.1007/s00425-019-03177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/26/2019] [Indexed: 05/14/2023]
Abstract
Ethylene receptor is crucial for PCD and aerenchyma formation in Typha angustifolia leaves. Not only does it receive and deliver the ethylene signal, but it probably can determine the cell fate during aerenchyma morphogenesis, which is due to the receptor expression quantity. Aquatic plant oxygen delivery relies on aerenchyma, which is formed by a programmed cell death (PCD) procedure. However, cells in the outer edge of the aerenchyma (palisade cells and septum cells) remain intact, and the mechanism is unclear. Here, we offer a hypothesis: cells that have a higher content of ethylene receptors do not undergo PCD. In this study, we investigated the leaf aerenchyma of the aquatic plant Typha angustifolia. Ethephon and pyrazinamide (PZA, an inhibitor of ACC oxidase) were used to confirm that ethylene is an essential hormone for PCD of leaf aerenchyma cells in T. angustifolia. That the ethylene receptor was an indispensable factor in this PCD was confirmed by 1-MCP (an inhibitor of the ethylene receptor) treatment. Although PCD can be avoided by blocking the ethylene receptor, excessive ethylene receptors also protect cells from PCD. TaETR1, TaETR2 and TaEIN4 in the T. angustifolia leaf were detected by immunofluorescence (IF) using polyclonal antibodies. The result showed that the content of ethylene receptors in PCD-unsusceptible cells was 4-14 times higher than that one in PCD-susceptible cells, suggesting that PCD-susceptible cells undergo the PCD programme, while PCD-unsusceptible cells do not due to the content difference in the ethylene receptor in different cells. A higher level of ethylene receptor content makes the cells insensitive to ethylene, thereby avoiding cell death and degradation.
Collapse
Affiliation(s)
- Huidong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Nan Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Yuhuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xingqian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Xilu Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, 750004, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China
| | - Wenzhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, Xi'an, 710069, China.
| |
Collapse
|
17
|
Bak A, Patton MF, Perilla-Henao LM, Aegerter BJ, Casteel CL. Ethylene signaling mediates potyvirus spread by aphid vectors. Oecologia 2019; 190:139-148. [DOI: 10.1007/s00442-019-04405-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
|
18
|
Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1387. [PMID: 30349547 PMCID: PMC6187979 DOI: 10.3389/fpls.2018.01387] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/31/2018] [Indexed: 05/02/2023]
Abstract
Mitogen-activated protein kinase (MAPK) modules play key roles in the transduction of environmental and developmental signals through phosphorylation of downstream signaling targets, including other kinases, enzymes, cytoskeletal proteins or transcription factors, in all eukaryotic cells. A typical MAPK cascade consists of at least three sequentially acting serine/threonine kinases, a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK) and finally, the MAP kinase (MAPK) itself, with each phosphorylating, and hence activating, the next kinase in the cascade. Recent advances in our understanding of hormone signaling pathways have led to the discovery of new regulatory systems. In particular, this research has revealed the emerging role of crosstalk between the protein components of various signaling pathways and the involvement of this crosstalk in multiple cellular processes. Here we provide an overview of current models and mechanisms of hormone signaling with a special emphasis on the role of MAPKs in cell signaling networks. One-sentence summary: In this review we highlight the mechanisms of crosstalk between MAPK cascades and plant hormone signaling pathways and summarize recent findings on MAPK regulation and function in various cellular processes.
Collapse
Affiliation(s)
- Przemysław Jagodzik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Tajdel-Zielinska
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agata Ciesla
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Marczak
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agnieszka Ludwikow
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Agnieszka Ludwikow,
| |
Collapse
|
19
|
Chang Y, Yang H, Ren D, Li Y. Activation of ZmMKK10, a maize mitogen-activated protein kinase kinase, induces ethylene-dependent cell death. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:129-137. [PMID: 28969793 DOI: 10.1016/j.plantsci.2017.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 05/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development and stress responses. Here, we report that ZmMKK10, a maize MAP kinase kinase, positively regulates cell death. Sequence comparison to Arabidopsis MKKs has led to ZmMKK10 being classified as a group D MKK. Kinase activity analysis of recombinant ZmMKK10 showed that the Mg2+ ion was required for its kinase activity. Transient expression of ZmMKK10WT or ZmMKK10DD (the active form of ZmMKK10) in maize mesophyll protoplast significantly increased the cell death rate. Inducible expression of ZmMKK10WT or ZmMKK10DD in Arabidopsis transgenic plants caused rapid HR-like cell death, whereas induction of ZmMKK10KR (the inactive form of ZmMKK10) expression in transgenic plants did not yield the same phenotype. Genetic and pharmacological analysis revealed that ZmMKK10-induced cell death in transgenic plants requires the activation of Arabidopsis MPK3 and MPK6 and that it partially depended on ethylene biosynthesis. ZmMPK3 and ZmMPK7, the orthologues of Arabidopsis MPK3 and MPK6, interacted with ZmMKK10 in yeast and ZmMKK10 phosphorylated them both in vitro. Our results demonstrate that ZmMKK10 induces cell death in an ethylene-dependent manner. Furthermore, ZmMPK3 and ZmMPK7 may be the downstream MAPKs in this process.
Collapse
Affiliation(s)
- Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Zhou S, Chen Q, Sun Y, Li Y. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1512-1530. [PMID: 28337773 DOI: 10.1111/pce.12950] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 05/23/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes - DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen-activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress-induced MT depolymerization, and the PTP-MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.
Collapse
Affiliation(s)
- Sa Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yingzhang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
21
|
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 2016; 11:192-204. [PMID: 27984790 PMCID: PMC5157795 DOI: 10.1016/j.redox.2016.12.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant response to various biotic and abiotic stresses. It has been observed that not only can ROS induce MAPK activation, but also that disturbing MAPK cascades can modulate ROS production and responses. This review will discuss the potential mechanisms by which ROS may activate and/or regulate MAPK cascades in plants. The role of MAPK cascades and ROS signaling in regulating gene expression, stomatal function, and programmed cell death (PCD) is also discussed. In addition, the relationship between Rboh-dependent ROS production and MAPK activation in PAMP-triggered immunity will be reviewed.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China
| |
Collapse
|
22
|
Guan C, Ji J, Li X, Jin C, Wang G. LcMKK, a MAPK kinase from Lycium chinense, confers cadmium tolerance in transgenic tobacco by transcriptional upregulation of ethylene responsive transcription factor gene. J Genet 2016; 95:875-885. [PMID: 27994186 DOI: 10.1007/s12041-016-0710-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cadmium (Cd) is a highly toxic element to plants. Ethylene is an important phytohormone in the regulation of plant growth, development and stress response. Mitogen-activated protein kinase (MAPK) activation has been observed in plants exposed to Cd stress and was suggested to be involved in ethylene biosynthesis. We hypothesized that there may be a link between MAPK cascades and ethylene signalling in Cd-stressed plants. To test this hypothesis, the expression of LcMKK, LchERF and LcGSH1 genes, endogenous ethylene accumulation, GSH content and Cd concentration in Lycium chinense with or without Cd stress treatment were studied. Our results showed that LcMKK gene expression can be induced by the treatment of Cd in L. chinense. The transgenic tobacco expressing 35S::LcMKK showed greater tolerance to Cd stress and enhanced expression of NtERF and NtGSH1 genes, indicating that LcMKK is associated with the enhanced expression level of ERF and GSH synthesis-related genes in tobacco. We also found that endogenous ethylene and GSH content can be induced by Cd stress in L. chinense, and inhibited by cotreatment with PD98059, an inhibitor of MAPK kinase. Evidences presented here suggest that under Cd stress, GSH accumulation occurred at least partially by enhanced LcMKK gene expression and the ethylene signal transduction pathways might be involved in this accumulation.
Collapse
Affiliation(s)
- Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | | | | | | | | |
Collapse
|
23
|
Helliwell EE, Wang Q, Yang Y. Ethylene Biosynthesis and Signaling Is Required for Rice Immune Response and Basal Resistance Against Magnaporthe oryzae Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:831-843. [PMID: 27671120 DOI: 10.1094/mpmi-06-16-0121-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent studies have suggested that ethylene enhances host resistance to fungal pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Among the six 1-aminocyclopropane-1-carboxylic acid synthase genes in rice, OsACS1 and OsACS2 are induced within 24 h of inoculation by M. oryzae. This induction occurs simultaneously with an increase in ethylene production that is noticeable 12 h postinoculation. The purpose of this study was to examine the dynamics of ethylene production and signaling in wild type and RNA interference-mediated suppression lines deficient in ethylene production (acs2) or signaling (eil1) after challenge with M. oryzae as well as fungal cell-wall elicitors. Ethylene-insensitive mutant lines show an attenuated basal defense response including lower basal expression of the genes encoding a chitin-binding receptor, pathogenesis-related (PR) proteins, and the enzymes involved in the synthesis of diterprenoid phytoalexins, a reduction on early hypersensitive response (HR)-like cell death, and reduced incidence of callose deposition. Ethylene-deficient mutants showed an intermediate phenotype, with a significant reduction in expression of defense-related genes and callose deposition, but only a slight reduction in HR-like cell death. As a result, all ethylene-insensitive mutants show increased susceptibility to M. oryzae, whereas the ethylene-deficient lines show a slight but less significant increase in disease severity. These results show that ethylene signaling and, to some extent, ethylene production are required for rice basal resistance against the blast fungus Magnaporthe oryzae.
Collapse
Affiliation(s)
- Emily E Helliwell
- Department of Plant Pathology and Environmental Microbiology, and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Qin Wang
- Department of Plant Pathology and Environmental Microbiology, and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
24
|
Li Y, Chang Y, Zhao C, Yang H, Ren D. Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:724-36. [PMID: 26822341 DOI: 10.1111/jipb.12465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
Leaf senescence is the final leaf developmental process that is regulated by both intracellular factors and environmental conditions. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to play important roles in regulating leaf senescence; however, the component(s) downstream of the MAPK cascades in regulating leaf senescence are not fully understood. Here we showed that the transcriptions of ZmMEK1, ZmSIMK1, and ZmMPK3 were induced during dark-induced maize leaf senescence. Furthermore, in-gel kinase analysis revealed the 42 kDa MAPK was activated. ZmMEK1 interacted with ZmSIMK1 in yeast and maize mesophyll protoplasts and ZmSIMK1 was activated by ZmMEK1 in vitro. Expression of a dominant negative mutant of ZmMEK1 in Arabidopsis transgenic plants induced salicylic acid (SA) accumulation and SA-dependent leaf senescence. ZmMEK1 interacted with Arabidopsis MPK4 in yeast and activated MPK4 in vitro. SA treatment accelerated dark-induced maize leaf senescence. Moreover, blockage of MAPK signaling increased endogenous SA accumulation in maize leaves. These findings suggest that ZmMEK1-ZmSIMK1 cascade and its modulating SA levels play important roles in regulating leaf senescence.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chongchong Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Wang B, Qin X, Wu J, Deng H, Li Y, Yang H, Chen Z, Liu G, Ren D. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity. Sci Rep 2016; 6:25646. [PMID: 27160427 PMCID: PMC4861982 DOI: 10.1038/srep25646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/20/2016] [Indexed: 12/02/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6F364L and MPK6F368L mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinghua Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Juan Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongying Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoqin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Wang GQ, Wei PC, Tan F, Yu M, Zhang XY, Chen QJ, Wang XC. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:863. [PMID: 27379143 PMCID: PMC4911407 DOI: 10.3389/fpls.2016.00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/01/2016] [Indexed: 05/20/2023]
Abstract
Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway.
Collapse
Affiliation(s)
- Gao-Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Peng-Cheng Wei
- Rice Research Institution, AnHui Academy of Agricultural SciencesHefei, China
| | - Feng Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Man Yu
- Department of Food and Biological Technology, College of Food Science and Nutritional Engineering, China Agricultural UniversityBeijing, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Xue-Chen Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing, China
- *Correspondence: Xue-Chen Wang,
| |
Collapse
|
27
|
Ye L, Li L, Wang L, Wang S, Li S, Du J, Zhang S, Shou H. MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:953. [PMID: 26579185 PMCID: PMC4630569 DOI: 10.3389/fpls.2015.00953] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is an essential micronutrient that participates in various biological processes important for plant growth. Ethylene production induced by Fe deficiency plays important roles in plant tolerance to stress induced by Fe deficiency. However, the activation and regulatory mechanisms of 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) genes in this response are not clear. In this study, we demonstrated that Fe deficiency increased the abundance of ACS2, ACS6, ACS7, and ACS11 transcripts in both leaves and roots as well as the abundance of ACS8 transcripts in leaves and ACS9 transcripts in roots. Furthermore, we investigated the role of mitogen-activated protein kinase 3 and 6 (MPK3/MPK6)-regulated ACS2/6 activation in Fe deficiency-induced ethylene production. Our results showed that MPK3/MPK6 transcript abundance and MPK3/MPK6 phosphorylation are elevated under conditions of Fe deficiency. Furthermore, mpk3 and mpk6 mutants show a lesser induction of ethylene production under Fe deficiency and a greater sensitivity to Fe deficiency. Finally, in mpk3, mpk6, and acs2 mutants under conditions of Fe deficiency, induction of transcript expression of the Fe-deficiency response genes FRO2, IRT1, and FIT is partially compromised. Taken together, our results suggest that the MPK3/MPK6 and ACS2 are part of the Fe starvation-induced ethylene production signaling pathway.
Collapse
Affiliation(s)
- Lingxiao Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Lin Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Lu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
| | - Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Sen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Juan Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
28
|
Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA. Role of ethylene in responses of plants to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:927. [PMID: 26579172 PMCID: PMC4626634 DOI: 10.3389/fpls.2015.00927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.
Collapse
Affiliation(s)
- M. I. R. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Mehar Fatma
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Asim Masood
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | | | - Noushina Iqbal
- Department of Botany, Jamia Hamdard University New Delhi, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilan, Italy
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
- *Correspondence: Nafees A. Khan,
| |
Collapse
|
29
|
Identification of a novel mitogen-activated protein kinase kinase gene (MKK2) in the oilseed rape Brassica campestris. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Lei L, Li Y, Wang Q, Xu J, Chen Y, Yang H, Ren D. Activation of MKK9-MPK3/MPK6 enhances phosphate acquisition in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2014; 203:1146-1160. [PMID: 24865627 DOI: 10.1111/nph.12872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/29/2014] [Indexed: 05/04/2023]
Abstract
Despite the abundance of phosphorus in soil, very little is available as phosphate (Pi) for plants. Plants often experience low Pi (LP) stress. Intensive studies have been conducted to reveal the mechanism used by plants to deal with LP; however, Pi sensing and signal transduction pathways are not fully understood. Using in-gel kinase assays, we determined the activities of MPK3 and MPK6 in Arabidopsis thaliana seedlings under both LP and Pi-sufficient (Murashige and Skoog, MS) conditions. Using MKK9 mutant transgenic and crossed mutants, we analyzed the functions of MPK3 and MPK6 in regulating Pi responses of seedlings. The regulation of Pi responses by downstream components of MKK9-MPK3/MPK6 was also screened. LP treatment activated MPK3 and MPK6. Under both LP and MS conditions, mpk3 and mpk6 seedlings took up and accumulated less Pi than the wild-type; activation of MKK9-MPK3/MPK6 in transgenic seedlings induced the transcription of Pi acquisition-related genes and enhanced Pi uptake and accumulation, whereas its activation suppressed the transcription of anthocyanin biosynthetic genes and anthocyanin accumulation; WRKY75 was downstream of MKK9-MPK3/MPK6 when regulating the accumulation of Pi and anthocyanin, and the transcription of Pi acquisition-related and anthocyanin biosynthetic genes. These results suggest that the MKK9-MPK3/MPK6 cascade is part of the Pi signaling pathway in plants.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qian Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yifang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Meng Y, Ma N, Zhang Q, You Q, Li N, Ali Khan M, Liu X, Wu L, Su Z, Gao J. Precise spatio-temporal modulation of ACC synthase by MPK6 cascade mediates the response of rose flowers to rehydration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:941-50. [PMID: 24942184 DOI: 10.1111/tpj.12594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 05/18/2023]
Abstract
Drought is a major abiotic stress that affects the development and growth of most plants, and limits crop yield worldwide. Although the response of plants to drought has been well documented, much less is known about how plants respond to the water recovery process, namely rehydration. Here, we describe the spatio-temporal response of plant reproductive organs to rehydration using rose flowers as an experimental system. We found that rehydration triggered rapid and transient ethylene production in the gynoecia. This ethylene burst serves as a signal to ensure water recovery in flowers, and promotes flower opening by influencing the expression of a set of rehydration-responsive genes. An in-gel kinase assay suggested that the rehydration-induced ethylene burst resulted from transient accumulation of RhACS1/2 proteins in gynoecia. Meanwhile, RhMPK6, a rose homolog of Arabidopsis thaliana MPK6, is rapidly activated by rehydration within 0.5 h. Furthermore, RhMPK6 was able to phosphorylate RhACS1 but not RhACS2 in vitro. Application of the kinase inhibitor K252a suppressed RhACS1 accumulation and rehydration-induced ethylene production in gynoecia, and the protein phosphatase inhibitor okadaic acid had the opposite effect, confirming that accumulation of RhACS1 was phosphorylation-dependent. Finally, silencing of RhMPK6 significantly reduced ethylene production in gynoecia when flowers were subjected to rehydration. Taken together, our results suggest that temporal- and spatial-specific activation of an RhMPK6-RhACS1 cascade is responsible for rehydration-induced ethylene production in gynoecia, and that the resulting ethylene-mediated signaling pathway is a key factor in flower rehydration.
Collapse
Affiliation(s)
- Yonglu Meng
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lazar A, Coll A, Dobnik D, Baebler Š, Bedina-Zavec A, Žel J, Gruden K. Involvement of potato (Solanum tuberosum L.) MKK6 in response to potato virus Y. PLoS One 2014; 9:e104553. [PMID: 25111695 PMCID: PMC4128675 DOI: 10.1371/journal.pone.0104553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades have crucial roles in the regulation of plant development and in plant responses to stress. Plant recognition of pathogen-associated molecular patterns or pathogen-derived effector proteins has been shown to trigger activation of several MAPKs. This then controls defence responses, including synthesis and/or signalling of defence hormones and activation of defence related genes. The MAPK cascade genes are highly complex and interconnected, and thus the precise signalling mechanisms in specific plant–pathogen interactions are still not known. Here we investigated the MAPK signalling network involved in immune responses of potato (Solanum tuberosum L.) to Potato virus Y, an important potato pathogen worldwide. Sequence analysis was performed to identify the complete MAPK kinase (MKK) family in potato, and to identify those regulated in the hypersensitive resistance response to Potato virus Y infection. Arabidopsis has 10 MKK family members, of which we identified five in potato and tomato (Solanum lycopersicum L.), and eight in Nicotiana benthamiana. Among these, StMKK6 is the most strongly regulated gene in response to Potato virus Y. The salicylic acid treatment revealed that StMKK6 is regulated by the hormone that is in agreement with the salicylic acid-regulated domains found in the StMKK6 promoter. The involvement of StMKK6 in potato defence response was confirmed by localisation studies, where StMKK6 accumulated strongly only in Potato-virus-Y-infected plants, and predominantly in the cell nucleus. Using a yeast two-hybrid method, we identified three StMKK6 targets downstream in the MAPK cascade: StMAPK4_2, StMAPK6 and StMAPK13. These data together provide further insight into the StMKK6 signalling module and its involvement in plant defence.
Collapse
Affiliation(s)
- Ana Lazar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- * E-mail:
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
33
|
Sun Y, Wang C, Yang B, Wu F, Hao X, Liang W, Niu F, Yan J, Zhang H, Wang B, Deyholos MK, Jiang YQ. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2171-88. [PMID: 24604738 PMCID: PMC3991747 DOI: 10.1093/jxb/eru092] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
- * These authors contributed equally to this work
| | - Chen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
- * These authors contributed equally to this work
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
- * These authors contributed equally to this work
| | - Feifei Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xueyu Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wanwan Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fangfang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jingli Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hanfeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Boya Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Canada
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
34
|
Li Y, Zhang L, Lu W, Wang X, Wu CA, Guo X. Overexpression of cotton GhMKK4 enhances disease susceptibility and affects abscisic acid, gibberellin and hydrogen peroxide signalling in transgenic Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2014; 15:94-108. [PMID: 23980654 PMCID: PMC6638823 DOI: 10.1111/mpp.12067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in plant development, stress responses and hormonal signal transduction. MAPK kinases (MAPKKs), as the key nodes in these cascades, link MAPKs and MAPKK kinases (MAPKKKs). In this study, GhMKK4, a novel group C MAPKK gene from cotton (Gossypium hirsutum), was isolated and identified. Its expression can be induced by various stresses and signalling molecules. The overexpression of GhMKK4 in Nicotiana benthamiana enhanced its susceptibility to bacterial and fungal pathogens, but had no significant effects on salt or drought tolerance. Notably, the overexpressing plants showed increased sensitivity to abscisic acid (ABA) and gibberellin A3 (GA3), and ABA and gibberellin (GA) signalling were affected on infection with Ralstonia solanacearum bacteria. Furthermore, the overexpressing plants showed more reactive oxygen species (ROS) accumulation and stronger inhibition of catalase (CAT), a ROS-scavenging enzyme, than control plants after salicylic acid (SA) treatment. Interestingly, two genes encoding ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC), the key enzymes in polyamine synthesis, exhibited reduced R. solanacearum-induced expression in overexpressing plants. These findings broaden our knowledge about the functions of MAPKKs in diverse signalling pathways and the negative regulation of disease resistance in the cotton crop.
Collapse
Affiliation(s)
- Yuzhen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | | | | | | | | | | |
Collapse
|
35
|
Smékalová V, Doskočilová A, Komis G, Samaj J. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 2013; 32:2-11. [PMID: 23911976 DOI: 10.1016/j.biotechadv.2013.07.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/04/2023]
Abstract
The crosstalk between second messengers, hormones and mitogen-activated protein kinases (MAPKs) in plant signalling systems facilitates adaptation and survival in the face of diverse environmental stresses. This review focuses on the transduction of second messenger and hormone signals by MAPK modules in plant abiotic stress responses. We discuss how this crosstalk regulates gene expression (e.g. by controlling transcription factor activity) and other cellular and physiological responses to enable adaptation and/or resistance to abiotic stresses.
Collapse
Affiliation(s)
- Veronika Smékalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Anna Doskočilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
36
|
Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL. Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2779-91. [PMID: 23658427 PMCID: PMC3697954 DOI: 10.1093/jxb/ert123] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The RING-type E3 ligase, Keep on Going (KEG), is required for early seedling establishment in Arabidopsis thaliana. Post-germination, KEG negatively regulates abscisic acid (ABA) signalling by targeting Abscisic Acid Insensitive 5 (ABI5) for ubiquitination and subsequent degradation. Previous reports suggest that the role of KEG during early seedling development is not limited to regulation of ABI5 abundance. Using a yeast two-hybrid screen, this study identified Calcineurin B-like Interacting Protein Kinase (CIPK) 26 as a KEG-interacting protein. In vitro pull-down and in planta bimolecular fluorescence complementation assays confirmed the interactions between CIPK26 and KEG. In planta experiments demonstrated that CIPK26 was ubiquitinated and degraded via the 26S proteasome. It was also found that turnover of CIPK26 was increased when KEG protein levels were elevated, suggesting that the RING-type E3 ligase is involved in targeting CIPK26 for degradation. CIPK26 was found to interact with the ABA signalling components ABI1, ABI2, and ABI5. In addition, CIPK26 was capable of phosphorylating ABI5 in vitro. Consistent with a role in ABA signalling, overexpression of CIPK26 increased the sensitivity of germinating seeds to the inhibitory effects of ABA. The data presented in this report suggest that KEG mediates the proteasomal degradation of CIPK26 and that CIPK26 is part of the ABA signalling network.
Collapse
|
37
|
Nameth B, Dinka SJ, Chatfield SP, Morris A, English J, Lewis D, Oro R, Raizada MN. The shoot regeneration capacity of excised Arabidopsis cotyledons is established during the initial hours after injury and is modulated by a complex genetic network of light signalling. PLANT, CELL & ENVIRONMENT 2013; 36:68-86. [PMID: 22681544 DOI: 10.1111/j.1365-3040.2012.02554.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Excised plant tissues (explants) can regenerate new shoot apical meristems in vitro, but regeneration rates can be inexplicably variable. Light affects rates of shoot regeneration, but the underlying mechanisms are poorly understood. Here, excised Arabidopsis cotyledons were dark-light shifted to define the timing of explant light sensitivity. Mutants and pharmacological agents were employed to uncover underlying physiological and genetic mechanisms. Unexpectedly, explants were most light sensitive during the initial hours post-excision with respect to shoot regeneration. Only ∼100 µmol m(-2 ) s(-1) of fluorescent light was sufficient to induce reactive oxygen species (ROS) accumulation in new explants. By 48 h post-excision, induction of ROS, or quenching of ROS by xanthophylls, increased or decreased shoot regeneration, respectively. Phytochrome A-mediated signalling suppressed light inhibition of regeneration. Early exposure to blue/UV-A wavelengths inhibited regeneration, involving photoreceptor CRY1. Downstream transcription factor HY5 mediated explant photoprotection, perhaps by promoting anthocyanin accumulation, a pigment also induced by cytokinin. Surprisingly, early light inhibition of shoot regeneration was dependent on polar auxin transport. Early exposure to ethylene stimulated dark-treated explants to regenerate, but inhibited light-treated explants. We propose that variability in long-term shoot regeneration may arise within the initial hours post-excision, from inadvertent, variable exposure of explants to light, modulated by hormones.
Collapse
Affiliation(s)
- Blair Nameth
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kumar KRR, Kirti PB. Novel role for a serine/arginine-rich splicing factor, AdRSZ21 in plant defense and HR-like cell death. PLANT MOLECULAR BIOLOGY 2012; 80:461-76. [PMID: 22941522 DOI: 10.1007/s11103-012-9960-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/23/2012] [Indexed: 05/10/2023]
Abstract
A splicing factor gene belonging to the serine/arginine (SR)-rich protein family was cloned from Arachis diogoi, a wild relative of peanut in a study on differential gene expression and was designated as AdRSZ21. AdRSZ21 exhibits a RNA recognition motif (RRM), a CCHC type zinc finger domain (Zinc Knuckle, ZnK) and a C-terminal RS domain that is rich in arginine and serine. Multiple sequence alignment of AdRSZ21 with putative orthologs from diverse taxa including lower plants and monocots showed that the RRM and ZnK domains are evolutionarily conserved. Phylogenetic studies revealed that AdRSZ21 belongs to the RSZ subfamily and is closely related to the Arabidopsis ortholog AtRSZ22. Transient constitutive and conditional heterologous expression of AdRSZ21 resulted in HR-like cell death in tobacco leaves. The presence of a functional RRM domain, but not ZnK domain was essential for AdRSZ21 induced HR-like cell death phenotype. On the other hand, expression of AdRSZ21 with mutated ZnK domain lead to accelerated cell death. The cell death induced by AdRSZ21 was found to be associated with specific upregulation of patatin-like protein gene and other defense related gene transcripts suggesting a role for AdRSZ21 in plant defense and HR-like cell death.
Collapse
|
39
|
Li Z, Peng J, Wen X, Guo H. Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:526-39. [PMID: 22709441 DOI: 10.1111/j.1744-7909.2012.01136.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant leaf senescence has been recognized as the last phase of plant development, a highly ordered process regulated by genes known as senescence associated genes (SAGs). However, the function of most of SAGs in regulating leaf senescence as well as regulators of those functionally known SAGs are still unclear. We have previously developed a curated database of genes potentially associated with leaf senescence, the Leaf Senescence Database (LSD). In this study, we built gene networks to identify common regulators of leaf senescence in Arabidopsis thaliana using promoting or delaying senescence genes in LSD. Our results demonstrated that plant hormones cytokinin, auxin, nitric oxide as well as small molecules, such as Ca(2+), delay leaf senescence. By contrast, ethylene, ABA, SA and JA as well as small molecules, such as oxygen, promote leaf senescence, altogether supporting the idea that phytohormones play a critical role in regulating leaf senescence. Functional analysis of candidate SAGs in LSD revealed that a WRKY transcription factor WRKY75 and a Cys2/His2-type transcription factor AZF2 are positive regulators of leaf senescence and loss-of-function of WRKY75 or AZF2 delayed leaf senescence. We also found that silencing of a protein phosphatase, AtMKP2, promoted early senescence. Collectively, LSD can serve as a comprehensive resource for systematic study of the molecular mechanism of leaf senescence as well as offer candidate genes for functional analyses.
Collapse
Affiliation(s)
- Zhonghai Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | | | | | | |
Collapse
|
40
|
Tsai AYL, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:809-21. [PMID: 22026387 DOI: 10.1111/j.1365-313x.2011.04832.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Snf1 (sucrose non-fermenting-1)/AMPK (AMP-activated protein kinase)/SnRK1 (Snf1-related protein kinase 1) kinases act as sensors of energy status in eukaryotes. Despite the important role of these kinases in regulation of cellular responses to metabolic stress, only a few SnRK1 substrates have been identified. Using yeast two-hybrid screens, we isolated AKIN10 as an interactor of the B3-domain transcription factor FUSCA3 (FUS3), an essential regulator of seed maturation in Arabidopsis. Pull-down and bi-molecular fluorescence complementation (BiFC) assays confirm the interaction in vitro and in planta, respectively. In-gel kinase assays show that AKIN10 phosphorylates FUS3 and that the N-terminal domain of FUS3 is required for AKIN10 phosphorylation. Mutations of three serines (fus3(S55A/S56A/S57A) ) within a partial SnRK1 consensus sequence in the N-terminal region of FUS3 reduce greatly FUS3 phosphorylation by AKIN10, which indicates that these serines are the predominant AKIN10 target sites. In a cell-free system, AKIN10 positively regulates FUS3 stability, as overexpression of AKIN10 delayed the degradation of the recombinant FUS3. Plants over-expressing AKIN10 show delayed seed germination, vegetative growth and flowering time, indicating that AKIN10 antagonizes the embryonic-to-vegetative and vegetative-to-reproductive phase transitions. Furthermore, overexpression of AKIN10 alters cotyledon, silique and floral organ development, suggesting that AKIN10 regulates lateral organ development. Genetic interaction studies show that the fus3-3 mutation partially rescues the phase transition and organ development defects caused by AKIN10 overexpression. Taken together, these findings indicate that FUS3 and AKIN10 interact physically and share overlapping pathways to regulate developmental phase transitions and organogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Allen Yi-Lun Tsai
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
41
|
Elmore JM, Liu J, Smith B, Phinney B, Coaker G. Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling. Mol Cell Proteomics 2012; 11:M111.014555. [PMID: 22215637 DOI: 10.1074/mcp.m111.014555] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plant plasma membrane is a crucial mediator of the interaction between plants and microbes. Understanding how the plasma membrane proteome responds to diverse immune signaling events will lead to a greater understanding of plant immunity and uncover novel targets for crop improvement. Here we report the results from a large scale quantitative proteomics study of plasma membrane-enriched fractions upon activation of the Arabidopsis thaliana immune receptor RPS2. More than 2300 proteins were identified in total, with 1353 proteins reproducibly identified across multiple replications. Label-free spectral counting was employed to quantify the relative protein abundance between different treatment samples. Over 20% of up-regulated proteins have known roles in plant immune responses. Significantly changing proteins include those involved in calcium and lipid signaling, membrane transport, primary and secondary metabolism, protein phosphorylation, redox homeostasis, and vesicle trafficking. A subset of differentially regulated proteins was independently validated during bacterial infection. This study presents the largest quantitative proteomics data set of plant immunity to date and provides a framework for understanding global plasma membrane proteome dynamics during plant immune responses.
Collapse
|
42
|
Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:1291-303. [PMID: 21477122 DOI: 10.1111/j.1365-3040.2011.02329.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are signalling modules that transduce extracellular signalling to a range of cellular responses. Plant MAPK cascades have been implicated in development and stress response. In this study, we isolated a novel group C MAPKK gene, ZmMKK4, from maize. Northern blotting analysis revealed that the ZmMKK4 transcript expression was up-regulated by cold, high salt and exogenous H(2)O(2,) but down-regulated by exogenous abscisic acid (ABA). Over-expression of ZmMKK4 in Arabidopsis conferred tolerance to cold and salt stresses by increased germination rate, lateral root numbers, plant survival rate, chlorophyll, proline and soluble sugar contents, and antioxidant enzyme [peroxidase (POD), catalase (CAT)] activities compared with control plants. Furthermore, ZmMKK4 enhanced a 37 kDa kinase activity after cold and salt stresses. RT-PCR analysis revealed that the transcript levels of stress-responsive transcription factors and functional genes were higher in ZmMKK4-over-expressing plants than in control plants. In addition, ZmMKK4 protein is localized in the nucleus. Taken together, these results indicate that ZmMKK4 is a positive regulator of salt and cold tolerance in plants.
Collapse
Affiliation(s)
- Xiangpei Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kong X, Li D. Hydrogen peroxide is not involved in HrpN from Erwinia amylovora-induced hypersensitive cell death in maize leaves. PLANT CELL REPORTS 2011; 30:1273-9. [PMID: 21344189 DOI: 10.1007/s00299-011-1038-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/11/2011] [Accepted: 02/09/2011] [Indexed: 05/21/2023]
Abstract
Harpin elicits rapid and localized programmed cell death in plants, also known as the hypersensitive response (HR). Here we report that HrpN from Erwinia amylovora led to rapid cell death in maize leaves within 24 h and also induced the expression of systemic acquired resistance genes, such as ZmPR1 and ZmPR5. Surprisingly, the results of DAB staining showed that there was no H(2)O(2) accumulation in maize leaves during the HR process, and semi-quantitative RT-PCR revealed that there was also no difference in the expression of the ZmRboh genes. These results suggest that HrpN-induced cell death may be independent of H(2)O(2) accumulation in maize leaves.
Collapse
Affiliation(s)
- Xiangpei Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | | |
Collapse
|
44
|
Lumbreras V, Vilela B, Irar S, Solé M, Capellades M, Valls M, Coca M, Pagès M. MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:1017-30. [PMID: 20626661 DOI: 10.1111/j.1365-313x.2010.04297.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have important functions in plant stress responses and development and are key players in reactive oxygen species (ROS) signalling and in innate immunity. In Arabidopsis, the transmission of ROS and pathogen signalling by MAPKs involves the coordinated activation of MPK6 and MPK3; however, the specificity of their negative regulation by phosphatases is not fully known. Here, we present genetic analyses showing that MAPK phosphatase 2 (MKP2) regulates oxidative stress and pathogen defence responses and functionally interacts with MPK3 and MPK6. We show that plants lacking a functional MKP2 gene exhibit delayed wilting symptoms in response to Ralstonia solanacearum and, by contrast, acceleration of disease progression during Botrytis cinerea infection, suggesting that this phosphatase plays differential functions in biotrophic versus necrotrophic pathogen-induced responses. MKP2 function appears to be linked to MPK3 and MPK6 regulation, as indicated by BiFC experiments showing that MKP2 associates with MPK3 and MPK6 in vivo and that in response to fungal elicitors MKP2 exerts differential affinity versus both kinases. We also found that MKP2 interacts with MPK6 in HR-like responses triggered by fungal elicitors, suggesting that MPK3 and MPK6 are subject to differential regulation by MKP2 in this process. We propose that MKP2 is a key regulator of MPK3 and MPK6 networks controlling both abiotic and specific pathogen responses in plants.
Collapse
Affiliation(s)
- Victoria Lumbreras
- Departamento de Genética Molecular, CRAG (CSIC-IRTA-UAB), 18-26 Jordi Girona, 08034 Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Popescu SC, Popescu GV, Snyder M, Dinesh-Kumar SP. Integrated analysis of co-expressed MAP kinase substrates in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2009; 4:524-7. [PMID: 19816141 PMCID: PMC2688301 DOI: 10.4161/psb.4.6.8576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
MAP kinase (MAPK) signal transduction cascades are conserved eukaryotic pathways that modulate stress responses and developmental processes. In a recent report we have identified novel Arabidopsis MAPKK/MAPK/Substrate signaling pathways using microarrays containing 2,158 unique Arabidopsis proteins. Subsequently, several WRKY and TGA targets phosphorylated by MAPKs were verified in planta. We have also reported that specific MAPKK/MAPK modules expressed in Nicotiana benthamiana induced a cell death phenotype related to the immune response. We have generated a MAPK phosphorylation network based on our protein microarray experimental data. Here we further analyze our network by integrating phosphorylation and gene expression information to identify biologically relevant signaling modules. We have identified 108 phosphorylation events that occur among 96 annotated genes with highly similar pairwise expression profiles. Our analysis brings a new perspective on MAPK signaling by revealing new relationships between components of signaling pathways.
Collapse
|
46
|
Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 2008; 283:26996-7006. [PMID: 18693252 DOI: 10.1074/jbc.m801392200] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development, and responses to various environmental stimuli. We demonstrate that MKK9, an MKK, is an upstream activator of the MPKs MPK3 and MPK6 both in vitro and in planta. Expression of active MKK9 protein in transgenic plants induces the synthesis of ethylene and camalexin through the activation of the endogenous MPK3 and MPK6 kinases. As a consequence, transcription of multiple genes responsible for ethylene biosynthesis, ethylene responses, and camalexin biosynthesis is coordinately up-regulated. The activation of MKK9 inhibits hypocotyl elongation in the etiolated seedlings. MKK9-mediated effects on hypocotyl elongation were blocked by the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine, and ethylene receptor antagonist, Ag(+). Expression of active MKK9 protein enhances the sensitivity of transgenic seedlings to salt stress, whereas loss of MKK9 activity reduces salt sensitivity indicating a role for MKK9 in the salt stress response. The results reported here reveal that the MKK9-MPK3/MPK6 cascade participates in the regulation of the biosynthesis of ethylene and camalexin and may be an important axis in the stress responses of Arabidopsis.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 2008; 413:217-26. [PMID: 18570633 DOI: 10.1042/bj20080625] [Citation(s) in RCA: 468] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many changes in environmental conditions and hormones are mediated by MAPK (mitogen-activated protein kinase) cascades in all eukaryotes, including plants. Studies of MAPK pathways in genetic model organisms are especially informative in revealing the molecular mechanisms by means of which MAPK cascades are controlled and modulate cellular processes. The present review highlights recent insights into MAPK-based signalling in Arabidopsis thaliana (thale cress), revealing the complexity and future challenges to understanding signal-transduction networks on a global scale.
Collapse
|