1
|
Wu M, Wang S, Chen X, Shen L, Ding J, Jiang H. Single-cell transcriptome analysis reveals cellular reprogramming and changes of immune cell subsets following tetramethylpyrazine treatment in LPS-induced acute lung injury. PeerJ 2025; 13:e18772. [PMID: 39822976 PMCID: PMC11737342 DOI: 10.7717/peerj.18772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025] Open
Abstract
Background Acute lung injury (ALI) is a disordered pulmonary disease characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen and diffuse alveolar infiltrates. Despite increased research into ALI, current clinical treatments lack effectiveness. Tetramethylpyrazine (TMP) has shown potential in ALI treatment, and understanding its effects on the pulmonary microenvironment and its underlying mechanisms is imperative. Methods We established a mouse model of lipopolysaccharide (LPS)-induced ALI and performed single cell RNA sequencing (scRNA-seq). Bioinformatic analyses of the immune, epithelial and endothelial cells were then performed to explore the dynamic changes of the lung tissue microenvironment. We also analyzed the effects of TMP on the cell subtypes, differential gene expression and potential regulation of transcriptional factors involved. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to identify the effects of TMP on immune inflammatory response. Results We found that TMP efficiently protected against LPS-induced acute lung injury. Results of scRNA-seq showed that the cells were divided into seven major cell clusters, including immune cells, fibroblasts, endothelial cells and epithelial cells. Neither dexamethasone (Dex) nor TMP treatment showed any significant protective effects in these clusters. However, TMP treatment in the LPS-induced ALI model significantly increased follicular helper T cells and reduced CD8+ naive T cells, Vcan-positive monocytes and Siva-positive NK cells. In addition, TMP treatment increased the number of basal epithelial cells and lymphatic endothelial cells (LECs), indicating its protective effects on these cell types. Scenic analysis suggested that TMP likely mitigates LPS-induced injury in epithelial and endothelial cells by promoting FOSL1 in basal epithelial cells and JunB in LECs. Conclusions Our findings suggest that TMP appears to alleviate LPS-induced lung injury by regulating the immune response, promoting epithelial cell survival and boosting the antioxidant potential of endothelial cells. This study highlights the potential therapeutic use of TMP in the management of ALI.
Collapse
Affiliation(s)
- Mingyan Wu
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanmei Wang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolan Chen
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Shen
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jurong Ding
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbin Jiang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Dupas A, Goetz JG, Osmani N. Extravasation of immune and tumor cells from an endothelial perspective. J Cell Sci 2024; 137:jcs262066. [PMID: 39530179 DOI: 10.1242/jcs.262066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Crossing the vascular endothelium is a necessary stage for circulating cells aiming to reach distant organs. Leukocyte passage through the endothelium, known as transmigration, is a multistep process during which immune cells adhere to the vascular wall, migrate and crawl along the endothelium until they reach their exit site. Similarly, circulating tumor cells (CTCs), which originate from the primary tumor or reseed from early metastatic sites, disseminate using the blood circulation and also must cross the endothelial barrier to set new colonies in distant organs. CTCs are thought to mimic arrest and extravasation utilized by leukocytes; however, their extravasation also requires processes that, from an endothelial perspective, are specific to cancer cells. Although leukocyte extravasation relies on maintaining endothelial impermeability, it appears that cancer cells can indoctrinate endothelial cells into promoting their extravasation independently of their normal functions. In this Review, we summarize the common and divergent mechanisms of endothelial responses during extravasation of leukocytes (in inflammation) and CTCs (in metastasis), and highlight how these might be leveraged in the development of anti-metastatic treatments.
Collapse
Affiliation(s)
- Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Jacky G Goetz
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
3
|
Wick KD, Ware LB, Matthay MA. Acute respiratory distress syndrome. BMJ 2024; 387:e076612. [PMID: 39467606 DOI: 10.1136/bmj-2023-076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The understanding of acute respiratory distress syndrome (ARDS) has evolved greatly since it was first described in a 1967 case series, with several subsequent updates to the definition of the syndrome. Basic science advances and clinical trials have provided insight into the mechanisms of lung injury in ARDS and led to reduced mortality through comprehensive critical care interventions. This review summarizes the current understanding of the epidemiology, pathophysiology, and management of ARDS. Key highlights include a recommended new global definition of ARDS and updated guidelines for managing ARDS on a backbone of established interventions such as low tidal volume ventilation, prone positioning, and a conservative fluid strategy. Future priorities for investigation of ARDS are also highlighted.
Collapse
Affiliation(s)
- Katherine D Wick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Stegmeyer RI, Holstein K, Spring K, Timmerman I, Xia M, Stasch M, Möller T, Nottebaum AF, Vestweber D. Csk controls leukocyte extravasation via local regulation of Src family kinases and cortactin signaling. Front Immunol 2024; 15:1480152. [PMID: 39530094 PMCID: PMC11550946 DOI: 10.3389/fimmu.2024.1480152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
C-terminal Src kinase (Csk) targets Src family kinases (SFKs) and thereby inactivates them. We have previously shown that Csk binds to phosphorylated tyrosine 685 of VE-cadherin, an adhesion molecule of major importance for the regulation of endothelial junctions. This tyrosine residue is an SFK target, and its mutation (VE-cadherin-Y685F) inhibits the induction of vascular permeability in various inflammation models. Nevertheless, surprisingly, it increases leukocyte extravasation. Here, we investigated whether endothelial Csk is involved in these effects. We found that the deficiency of Csk in endothelial cells augments SFK activation and the phosphorylation of VE-cadherin-Y685 but had no net effect on vascular leak formation. In contrast, the lack of endothelial Csk enhanced leukocyte adhesion and transmigration in vitro and in vivo. Furthermore, the silencing of Csk increased tyrosine phosphorylation of the SFK substrate cortactin. Importantly, the effects of Csk silencing on the increase in SFK activation, cortactin phosphorylation, and neutrophil diapedesis were all dependent on Y685 of VE-cadherin. Deletion of cortactin, in turn, erased the supporting effect of Csk silencing on leukocyte transmigration. We have previously shown that leukocyte transmigration is regulated by endothelial cortactin in an ICAM-1-dependent manner. In line with this, blocking of ICAM-1 erased the supporting effect of Csk silencing on leukocyte transmigration. Collectively, our results establish a negative feedback loop that depends on the phosphorylation of VE-cadherin-Y685, which recruits Csk, which in turn dampens the activation of SFK and cortactin and thereby the clustering of ICAM-1 and the extravasation of neutrophils.
Collapse
Affiliation(s)
- Rebekka I. Stegmeyer
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Katrin Holstein
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kathleen Spring
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ilse Timmerman
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Min Xia
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Malte Stasch
- BioOptic Service, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Tanja Möller
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Astrid F. Nottebaum
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
5
|
Wilkens M, Holtermann L, Stahl AK, Stegmeyer RI, Nottebaum AF, Vestweber D. Ubiquitination of VE-cadherin regulates inflammation-induced vascular permeability in vivo. EMBO Rep 2024; 25:4013-4032. [PMID: 39112792 PMCID: PMC11387630 DOI: 10.1038/s44319-024-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
VE-cadherin is a major component of the cell adhesion machinery which provides integrity and plasticity of the barrier function of endothelial junctions. Here, we analyze whether ubiquitination of VE-cadherin is involved in the regulation of the endothelial barrier in inflammation in vivo. We show that histamine and thrombin stimulate ubiquitination of VE-cadherin in HUVEC, which is completely blocked if the two lysine residues K626 and K633 are replaced by arginine. Similarly, these mutations block histamine-induced endocytosis of VE-cadherin. We describe two knock-in mouse lines with endogenous VE-cadherin being replaced by either a VE-cadherin K626/633R or a VE-cadherin KallR mutant, where all seven lysine residues are mutated. Mutant mice are viable, healthy and fertile with normal expression levels of junctional VE-cadherin. Histamine- or LPS-induced vascular permeability in the skin or lung of both of these mutant mice are clearly and similarly reduced in comparison to WT mice. Additionally, we detect a role of K626/633 for lysosomal targeting. Collectively, our findings identify ubiquitination of VE-cadherin as important for the induction of vascular permeability in the inflamed skin and lung.
Collapse
Affiliation(s)
- Markus Wilkens
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Leonie Holtermann
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Ann-Kathrin Stahl
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | | | - Astrid F Nottebaum
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany.
| |
Collapse
|
6
|
Hoffmann H, Wartenberg M, Vorlova S, Karl-Schöller F, Kallius M, Reinhardt O, Öztürk A, Schuhmair LS, Burkhardt V, Gätzner S, Scheld D, Nandigama R, Zernecke A, Herterich S, Ergün S, Rosenwald A, Henke E. Normalization of Snai1-mediated vessel dysfunction increases drug response in cancer. Oncogene 2024; 43:2661-2676. [PMID: 39095583 PMCID: PMC11347376 DOI: 10.1038/s41388-024-03113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/10/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Blood vessels in tumors are often dysfunctional. This impairs the delivery of therapeutic agents to and distribution among the cancer cells. Subsequently, treatment efficacy is reduced, and dose escalation can increase adverse effects on non-malignant tissues. The dysfunctional vessel phenotypes are attributed to aberrant pro-angiogenic signaling, and anti-angiogenic agents can ameliorate traits of vessel dysfunctionality. However, they simultaneously reduce vessel density and thereby impede drug delivery and distribution. Exploring possibilities to improve vessel functionality without compromising vessel density in the tumor microenvironment, we evaluated transcription factors (TFs) involved in epithelial-mesenchymal transition (EMT) as potential targets. Based on similarities between EMT and angiogenic activation of endothelial cells, we hypothesized that these TFs, Snai1 in particular, might serve as key regulators of vessel dysfunctionality. In vitro, experiments demonstrated that Snai1 (similarly Slug and Twist1) regulates endothelial permeability, permissiveness for tumor cell transmigration, and tip/stalk cell formation. Endothelial-specific, heterozygous knock-down of Snai1 in mice improved vascular quality in implanted tumors. This resulted in better oxygenation and reduced metastasis. Notably, the tumors in Snai1KD mice responded significantly better to chemotherapeutics as drugs were transported into the tumors at strongly increased rates and more homogeneously distributed. Thus, we demonstrate that restoring vessel homeostasis without affecting vessel density is feasible in malignant tumors. Combining such vessel re-engineering with anti-cancer drugs allows for strategic treatment approaches that reduce treatment toxicity on non-malignant tissues.
Collapse
Affiliation(s)
- Helene Hoffmann
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
- Graduate School of Life Science, Universität Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Martin Wartenberg
- Institute of Pathology, Universität Würzburg, and Comprehensive Cancer Center Mainfranken (CCCMF), Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
- Institute of Tissue Medicine and Pathology (ITMP), Universität Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Sandra Vorlova
- Institute of Experimental Biomedicine II, Universitätsklinikum Würzburg, Josef-Schneider-Strasse 2/D16, 97082, Würzburg, Germany
| | - Franziska Karl-Schöller
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Matthias Kallius
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
- Graduate School of Life Science, Universität Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Oliver Reinhardt
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Asli Öztürk
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Leah S Schuhmair
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Verena Burkhardt
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Sabine Gätzner
- Chair Tissue Engineering and Regenerative Medicine (TERM), Universitätsklinikum Würzburg, Roentgenring 11, 97070, Würzburg, Germany
| | - Daniela Scheld
- Zentrallabor, Universitätsklinikum Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine II, Universitätsklinikum Würzburg, Josef-Schneider-Strasse 2/D16, 97082, Würzburg, Germany
| | - Sabine Herterich
- Zentrallabor, Universitätsklinikum Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg, and Comprehensive Cancer Center Mainfranken (CCCMF), Josef-Schneider-Strasse 2, 97082, Würzburg, Germany
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Universität Würzburg, Koellikerstrasse 6, 97070, Würzburg, Germany.
- Graduate School of Life Science, Universität Würzburg, Josef-Schneider-Strasse 2, 97082, Würzburg, Germany.
| |
Collapse
|
7
|
Xing J, Wang Y, Peng A, Li J, Niu X, Zhang K. The role of actin cytoskeleton CFL1 and ADF/cofilin superfamily in inflammatory response. Front Mol Biosci 2024; 11:1408287. [PMID: 39114368 PMCID: PMC11303188 DOI: 10.3389/fmolb.2024.1408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Actin remodeling proteins are important in immune diseases and regulate cell cytoskeletal responses. These responses play a pivotal role in maintaining the delicate balance of biological events, protecting against acute or chronic inflammation in a range of diseases. Cofilin (CFL) and actin depolymerization factor (ADF) are potent actin-binding proteins that cut and depolymerize actin filaments to generate actin cytoskeleton dynamics. Although the molecular mechanism by which actin induces actin cytoskeletal reconstitution has been studied for decades, the regulation of actin in the inflammatory process has only recently become apparent. In this paper, the functions of the actin cytoskeleton and ADF/cofilin superfamily members are briefly introduced, and then focus on the role of CFL1 in inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Taiyuan Central Hospital, Dong San Dao Xiang, Taiyuan, China
| |
Collapse
|
8
|
Xia M, Stegmeyer RI, Shirakura K, Butz S, Thiriot A, von Andrian UH, Vestweber D. Conditions that promote transcellular neutrophil migration in vivo. Sci Rep 2024; 14:14471. [PMID: 38914623 PMCID: PMC11196655 DOI: 10.1038/s41598-024-65173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Circulating leukocytes enter tissue either through endothelial junctions (paracellular) or via a pore through the body of endothelial cells (transcellular). We have previously shown that genetically replacing VE-cadherin with a VE-cadherin-α-catenin (VEC-αC) fusion construct-which binds constitutively to actin-obstructs junctions, and blocks leukocyte extravasation in lung, skin and postcapillary venules of cremaster muscle. However, neutrophil recruitment into the inflamed peritoneal cavity was unimpaired. Investigating reasons for this, here, we visualized neutrophil diapedesis by 3D intravital video microscopy in the cremaster muscle and omentum, the major site of neutrophil recruitment into the peritoneal cavity. We found that 80% of neutrophil-extravasation occurred through HEVs in the omentum, which was unimpaired by VEC-αC. In addition, in larger venules (60-85 µm) of both tissues, less than 15% of neutrophils extravasated transcellularly in WT mice. However, in VEC-α-C mice, transcellular diapedesis increased severalfold in the omentum, but not in the cremaster. In line with this, omental venules expressed higher levels of ICAM-1 and atypical chemokine receptor 1. Furthermore, only in the omentum, VEC-αC expression caused reduced elongation of venular endothelium in flow-direction, suggesting different biomechanical properties. Collectively, VEC-αC does not inhibit paracellular transmigration in all types of venules and can modulate the diapedesis route.
Collapse
Affiliation(s)
- Min Xia
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Rebekka I Stegmeyer
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Keisuke Shirakura
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Stefan Butz
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany
| | - Aude Thiriot
- Department of Immunology and Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology and Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.
| |
Collapse
|
9
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Burg N, Malpass R, Alex L, Tran M, Englebrecht E, Kuo A, Pannelini T, Minett M, Athukorala K, Worgall T, Faust HJ, Goodman S, Mehta B, Brenner M, Vestweber D, Wei K, Blobel C, Hla T, Salmon JE. Endothelial cell sphingosine 1-phosphate receptor 1 restrains VE-cadherin cleavage and attenuates experimental inflammatory arthritis. JCI Insight 2024; 9:e171467. [PMID: 38855867 PMCID: PMC11382883 DOI: 10.1172/jci.insight.171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.
Collapse
Affiliation(s)
- Nathalie Burg
- Hospital for Special Surgery, New York, New York, USA
| | - Ryan Malpass
- Hospital for Special Surgery, New York, New York, USA
| | - Linda Alex
- Hospital for Special Surgery, New York, New York, USA
| | - Miles Tran
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Englebrecht
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Tilla Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Heather J. Faust
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Goodman
- Hospital for Special Surgery, New York, New York, USA
| | - Bella Mehta
- Hospital for Special Surgery, New York, New York, USA
| | - Michael Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carl Blobel
- Hospital for Special Surgery, New York, New York, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
11
|
Akamine T, Terabayashi T, Sasaki T, Hayashi R, Abe I, Hirayama F, Nureki SI, Ikawa M, Miyata H, Tokunaga A, Kobayashi T, Hanada K, Thumkeo D, Narumiya S, Ishizaki T. Conditional deficiency of Rho-associated kinases disrupts endothelial cell junctions and impairs respiratory function in adult mice. FEBS Open Bio 2024; 14:906-921. [PMID: 38604990 PMCID: PMC11148122 DOI: 10.1002/2211-5463.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Ras homology (Rho) family of GTPases serves various functions, including promotion of cell migration, adhesion, and transcription, through activation of effector molecule targets. One such pair of effectors, the Rho-associated coiled-coil kinases (ROCK1 and ROCK2), induce reorganization of actin cytoskeleton and focal adhesion through substrate phosphorylation. Studies on ROCK knockout mice have confirmed that ROCK proteins are essential for embryonic development, but their physiological functions in adult mice remain unknown. In this study, we aimed to examine the roles of ROCK1 and ROCK2 proteins in normal adult mice. Tamoxifen (TAM)-inducible ROCK1 and ROCK2 single and double knockout mice (ROCK1flox/flox and/or ROCK2flox/flox;Ubc-CreERT2) were generated and administered a 5-day course of TAM. No deaths occurred in either of the single knockout strains, whereas all of the ROCK1/ROCK2 double conditional knockout mice (DcKO) had died by Day 11 following the TAM course. DcKO mice exhibited increased lung tissue vascular permeability, thickening of alveolar walls, and a decrease in percutaneous oxygen saturation compared with noninducible ROCK1/ROCK2 double-floxed control mice. On Day 3 post-TAM, there was a decrease in phalloidin staining in the lungs in DcKO mice. On Day 5 post-TAM, immunohistochemical analysis also revealed reduced staining for vascular endothelial (VE)-cadherin, β-catenin, and p120-catenin at cell-cell contact sites in vascular endothelial cells in DcKO mice. Additionally, VE-cadherin/β-catenin complexes were decreased in DcKO mice, indicating that ROCK proteins play a crucial role in maintaining lung function by regulating cell-cell adhesion.
Collapse
Affiliation(s)
- Takahiro Akamine
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takako Sasaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Riku Hayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ichitaro Abe
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu, Japan
| | - Fumihiro Hirayama
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shin-Ichi Nureki
- Department of Respiratory Medicine and Infectious Diseases, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Suita, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Suita, Japan
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Eiheiji-cho, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
12
|
Kanber M, Umerah O, Brindley S, Zhang X, Brown JM, Reynolds L, Beltran-Huarac J. Magneto-Mechanical Actuation Induces Endothelial Permeability. ACS Biomater Sci Eng 2023; 9:6902-6914. [PMID: 38014849 PMCID: PMC10716818 DOI: 10.1021/acsbiomaterials.3c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Cancer treatment is one of the major health problems that burden our society. According to the American Cancer Society, over 1.9 million new cancer cases and ∼0.6 million deaths from cancer are expected in the US in 2023. Therapeutic targeting is considered to be the gold standard in cancer treatment. However, when a tumor grows beyond a critical size, its vascular system differentiates abnormally and erratically, creating a heterogeneous endothelial barrier that further restricts drug delivery into tumors. While several methods exist, these prompt tumor migration and the appearance of new metastatic sites. Herein, we propose an innovative method based on magneto-mechanical actuation (MMA) to induce endothelial permeability. This method employs FDA-approved PEGylated superparamagnetic iron oxide nanoparticles (PEG-SPIONs) and alternating nonheating magnetic fields. MMA lies in the translation of magnetic forces into mechanical agitation. As a proof of concept, we developed a 2D cell culture model based on human umbilical vein endothelial cells (HUVEC), which were incubated with PEG-SPIONs and then exposed to different magnetic doses. After adjusting the particle concentration, incubation times, and parameters (amplitude, frequency, and exposure time) of the magnetic field generator, we induced actin filament remodeling and subsequent vascular endothelial-cadherin junction disruption. This led to transient gaps in cell monolayers, through which fluorescein isothiocyanate-dextran was translocated. We observed no cell viability reduction for 3 h of particle incubation up to a concentration of 100 μg/mL in the presence and absence of magnetic fields. For optimal permeability studies, the magnetic field parameters were adjusted to 100 mT, 65 Hz, and 30 min in a pulse mode with 5 min OFF intervals. We found that the endothelial permeability reached the highest value (33%) when 2 h postmagnetic field treatment was used. To explain these findings, a magneto-mechanical transduced stress mechanism mediated by intracellular forces was proposed. This method can open new avenues for targeted drug delivery into anatomic regions within the body for a broad range of disease interventions.
Collapse
Affiliation(s)
- Mohammad Kanber
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| | - Obum Umerah
- Brody
School of Medicine, East Carolina University, Greenville, North Carolina 27858, United States
| | - Stephen Brindley
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Xuanyi Zhang
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jared M. Brown
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Lew Reynolds
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Juan Beltran-Huarac
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
13
|
Mutgan AC, Jandl K, Radic N, Valzano F, Kolb D, Hoffmann J, Foris V, Wilhelm J, Boehm PM, Hoetzenecker K, Olschewski A, Olschewski H, Heinemann A, Wygrecka M, Marsh LM, Kwapiszewska G. Pentastatin, a matrikine of the collagen IVα5, is a novel endogenous mediator of pulmonary endothelial dysfunction. Am J Physiol Cell Physiol 2023; 325:C1294-C1312. [PMID: 37694286 PMCID: PMC11550886 DOI: 10.1152/ajpcell.00391.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to β1-integrin subunit clustering and Rho/ROCK activation. Blockage of the β1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the β1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nemanja Radic
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Dagmar Kolb
- Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Vasile Foris
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jochen Wilhelm
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| | - Panja M Boehm
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Malgorzata Wygrecka
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
- Center for Infection and Genomics of the Lung, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Leigh M Marsh
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
14
|
Tiruppathi C, Wang DM, Ansari MO, Bano S, Tsukasaki Y, Mukhopadhyay A, Joshi JC, Loch C, Niessen HWM, Malik AB. Ubiquitin ligase CHFR mediated degradation of VE-cadherin through ubiquitylation disrupts endothelial adherens junctions. Nat Commun 2023; 14:6582. [PMID: 37852964 PMCID: PMC10584835 DOI: 10.1038/s41467-023-42225-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Vascular endothelial cadherin (VE-cadherin) expressed at endothelial adherens junctions (AJs) is vital for vascular integrity and endothelial homeostasis. Here we identify the requirement of the ubiquitin E3-ligase CHFR as a key mechanism of ubiquitylation-dependent degradation of VE-cadherin. CHFR was essential for disrupting the endothelium through control of the VE-cadherin protein expression at AJs. We observe augmented expression of VE-cadherin in endothelial cell (EC)-restricted Chfr knockout (ChfrΔEC) mice. We also observe abrogation of LPS-induced degradation of VE-cadherin in ChfrΔEC mice, suggesting the pathophysiological relevance of CHFR in regulating the endothelial junctional barrier in inflammation. Lung endothelial barrier breakdown, inflammatory neutrophil extravasation, and mortality induced by LPS were all suppressed in ChfrΔEC mice. We find that the transcription factor FoxO1 is a key upstream regulator of CHFR expression. These findings demonstrate the requisite role of the endothelial cell-expressed E3-ligase CHFR in regulating the expression of VE-cadherin, and thereby endothelial junctional barrier integrity.
Collapse
Affiliation(s)
- Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Dong-Mei Wang
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Mohammad Owais Ansari
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shabana Bano
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jagdish C Joshi
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and The Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Fu T, Sullivan DP, Gonzalez AM, Haynes ME, Dalal PJ, Rutledge NS, Tierney AL, Yescas JA, Weber EW, Muller WA. Mechanotransduction via endothelial adhesion molecule CD31 initiates transmigration and reveals a role for VEGFR2 in diapedesis. Immunity 2023; 56:2311-2324.e6. [PMID: 37643615 PMCID: PMC11670454 DOI: 10.1016/j.immuni.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.
Collapse
Affiliation(s)
- Tao Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annette M Gonzalez
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maureen E Haynes
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prarthana J Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nakisha S Rutledge
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abigail L Tierney
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia A Yescas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Shirakura K, Baluk P, Nottebaum AF, Ipe U, Peters KG, McDonald DM, Vestweber D. Shear stress control of vascular leaks and atheromas through Tie2 activation by VE-PTP sequestration. EMBO Mol Med 2023; 15:e16128. [PMID: 36740996 PMCID: PMC10086590 DOI: 10.15252/emmm.202216128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) influences endothelial barrier function by regulating the activation of tyrosine kinase receptor Tie2. We determined whether this action is linked to the development of atherosclerosis by examining the influence of arterial shear stress on VE-PTP, Tie2 activation, plasma leakage, and atherogenesis. We found that exposure to high average shear stress led to downstream polarization and endocytosis of VE-PTP accompanied by Tie2 activation at cell junctions. In aortic regions with disturbed flow, VE-PTP was not redistributed away from Tie2. Endothelial cells exposed to high shear stress had greater Tie2 activation and less macromolecular permeability than regions with disturbed flow. Deleting endothelial VE-PTP in VE-PTPiECKO mice increased Tie2 activation and reduced plasma leakage in atheroprone regions. ApoE-/- mice bred with VE-PTPiECKO mice had less plasma leakage and fewer atheromas on a high-fat diet. Pharmacologic inhibition of VE-PTP by AKB-9785 had similar anti-atherogenic effects. Together, the findings identify VE-PTP as a novel target for suppression of atherosclerosis.
Collapse
Affiliation(s)
| | - Peter Baluk
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
| | | | - Ute Ipe
- Max Planck Institute for Molecular BiomedicineMünsterGermany
| | | | - Donald M McDonald
- Cardiovascular Research Institute, UCSF Helen Diller Family Comprehensive Cancer Center, and Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
| | | |
Collapse
|
17
|
Abstract
The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Pulmonology, Amsterdam University Medical Center, the Netherlands (J.A.)
| | - Coert Margadant
- Department of Medical Oncology, Amsterdam University Medical Center, the NetherlandsInstitute of Biology, Leiden University, the Netherlands (C.M.)
| |
Collapse
|
18
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
19
|
Jin Y, Ding Y, Richards M, Kaakinen M, Giese W, Baumann E, Szymborska A, Rosa A, Nordling S, Schimmel L, Akmeriç EB, Pena A, Nwadozi E, Jamalpour M, Holstein K, Sáinz-Jaspeado M, Bernabeu MO, Welsh M, Gordon E, Franco CA, Vestweber D, Eklund L, Gerhardt H, Claesson-Welsh L. Tyrosine-protein kinase Yes controls endothelial junctional plasticity and barrier integrity by regulating VE-cadherin phosphorylation and endocytosis. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1156-1173. [PMID: 37936984 PMCID: PMC7615285 DOI: 10.1038/s44161-022-00172-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/25/2022] [Indexed: 11/09/2023]
Abstract
Vascular endothelial (VE)-cadherin in endothelial adherens junctions is an essential component of the vascular barrier, critical for tissue homeostasis and implicated in diseases such as cancer and retinopathies. Inhibitors of Src cytoplasmic tyrosine kinase have been applied to suppress VE-cadherin tyrosine phosphorylation and prevent excessive leakage, edema and high interstitial pressure. Here we show that the Src-related Yes tyrosine kinase, rather than Src, is localized at endothelial cell (EC) junctions where it becomes activated in a flow-dependent manner. EC-specific Yes1 deletion suppresses VE-cadherin phosphorylation and arrests VE-cadherin at EC junctions. This is accompanied by loss of EC collective migration and exaggerated agonist-induced macromolecular leakage. Overexpression of Yes1 causes ectopic VE-cadherin phosphorylation, while vascular leakage is unaffected. In contrast, in EC-specific Src-deficiency, VE-cadherin internalization is maintained, and leakage is suppressed. In conclusion, Yes-mediated phosphorylation regulates constitutive VE-cadherin turnover, thereby maintaining endothelial junction plasticity and vascular integrity.
Collapse
Affiliation(s)
- Yi Jin
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Yindi Ding
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Mark Richards
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Mika Kaakinen
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Wolfgang Giese
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Elisabeth Baumann
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – Universitatsmedizin Berlin, Berlin, Germany
| | - Anna Szymborska
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - André Rosa
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Sofia Nordling
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Lilian Schimmel
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology, The University of Queensland, Brisbane QLD, Australia
| | - Emir Bora Akmeriç
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – Universitatsmedizin Berlin, Berlin, Germany
| | - Andreia Pena
- Instituto de Medicina Molecular - Joao lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Emmanuel Nwadozi
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Maria Jamalpour
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katrin Holstein
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Miguel Sáinz-Jaspeado
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, UK
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Emma Gordon
- Institute for Molecular Bioscience, Division of Cell and Developmental Biology, The University of Queensland, Brisbane QLD, Australia
| | - Claudio A. Franco
- Instituto de Medicina Molecular - Joao lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Portugal
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Lauri Eklund
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Charité – Universitatsmedizin Berlin, Berlin, Germany
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck, Beijer and SciLifeLab Laboratory, Uppsala, Sweden
| |
Collapse
|
20
|
Sung DC, Chen M, Dominguez MH, Mahadevan A, Chen X, Yang J, Gao S, Ren AA, Tang AT, Mericko P, Patton R, Lee M, Jannaway M, Nottebaum A, Vestweber D, Scallan JP, Kahn ML. Sinusoidal and lymphatic vessel growth is controlled by reciprocal VEGF-C-CDH5 inhibition. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1006-1021. [PMID: 36910472 PMCID: PMC9997205 DOI: 10.1038/s44161-022-00147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022]
Abstract
Sinusoids are specialized, low pressure blood vessels in the liver, bone marrow, and spleen required for definitive hematopoiesis. Unlike other blood endothelial cells (ECs), sinusoidal ECs express high levels of VEGFR3. VEGFR3 and its ligand VEGF-C are known to support lymphatic growth, but their function in sinusoidal vessels is unknown. In this study, we define a reciprocal VEGF-C/VEGFR3-CDH5 (VE-cadherin) signaling axis that controls growth of both sinusoidal and lymphatic vessels. Loss of VEGF-C or VEGFR3 resulted in cutaneous edema, reduced fetal liver size, and bloodless bone marrow due to impaired lymphatic and sinusoidal vessel growth. Mice with membrane-retained VE-cadherin conferred identical lymphatic and sinusoidal defects, suggesting that VE-cadherin opposes VEGF-C/VEGFR3 signaling. In developing mice, loss of VE-cadherin rescued defects in sinusoidal and lymphatic growth caused by loss of VEGFR3 but not loss of VEGF-C, findings explained by potentiated VEGF-C/VEGFR2 signaling in VEGFR3-deficient lymphatic ECs. Mechanistically, VEGF-C/VEGFR3 signaling induces VE-cadherin endocytosis and loss of function via SRC-mediated phosphorylation, while VE-cadherin prevents VEGFR3 endocytosis required for optimal receptor signaling. These findings establish an essential role for VEGF-C/VEGFR3 signaling during sinusoidal vascular growth, identify VE-cadherin as a powerful negative regulator of VEGF-C signaling that acts through both VEGFR3 and VEGFR2 receptors, and suggest that negative regulation of VE-cadherin is required for effective VEGF-C/VEGFR3 signaling during growth of sinusoidal and lymphatic vessels. Manipulation of this reciprocal negative regulatory mechanism, e.g. by reducing VE-cadherin function, may be used to stimulate therapeutic sinusoidal or lymphatic vessel growth.
Collapse
Affiliation(s)
- Derek C. Sung
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mei Chen
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin H. Dominguez
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aparna Mahadevan
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowen Chen
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jisheng Yang
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Siqi Gao
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aileen A. Ren
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alan T. Tang
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patricia Mericko
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raiyah Patton
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle Lee
- University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Astrid Nottebaum
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Mark L. Kahn
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Kubra KT, Akhter MS, Saini Y, Kousoulas KG, Barabutis N. Activating transcription factor 6 protects against endothelial barrier dysfunction. Cell Signal 2022; 99:110432. [PMID: 35933031 PMCID: PMC10413362 DOI: 10.1016/j.cellsig.2022.110432] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endothelial hyperpermeability is associated with sepsis and acute respiratory distress syndrome (ARDS). The identification of molecular pathways involved in barrier dysfunction; may reveal promising therapeutic targets to combat ARDS. Unfolded protein response (UPR) is a highly conserved molecular pathway, which ameliorates endoplasmic reticulum stress. The present work focuses on the effects of ATF6, which is a UPR sensor, in lipopolysaccharides (LPS)-induced endothelial hyperpermeability. METHODS The in vitro effects of AA147 and Ceapin-A7 in LPS-induced endothelial barrier dysfunction were investigated in bovine pulmonary artery endothelial cells (BPAEC). Small interfering (si) RNA was utilized to "silence" ATF6, and electric cell-substrate impedance sensing (ECIS) measured transendothelial resistance. Fluorescein isothiocyanate (FITC)-dextran assay was utilized to assess paracellular permeability. Protein expression levels were evaluated with Western blotting, and cell viability with MTT assay. RESULTS We demonstrated that AA147 prevents LPS-induced barrier disruption by counteracting Cofilin and myosin light chain 2 (MLC2) activation, as well as VE-Cadherin phosphorylation. Moreover, this ATF6 inducer opposed LPS-triggered decrease in transendothelial resistance (TEER), as well as LPS-induced paracellular hyperpermeability. On the other hand, ATF6 suppression due to Ceapin-A7 or small interfering RNA exerted the opposite effects, and potentiated LPS-induced endothelial barrier disruption. Moderate concentrations of both ATF6 modulators did not affect cell viability. CONCLUSIONS ATF6 activation protects against endothelial barrier function, suggesting that this UPR sensor may serve as a therapeutic target for sepsis and ARDS.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Yogesh Saini
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
22
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
23
|
Brabenec L, Müller M, Hellenthal KE, Karsten OS, Pryvalov H, Otto M, Holthenrich A, Matos ALL, Weiss R, Kintrup S, Hessler M, Dell'Aquila A, Thomas K, Naß J, Margraf A, Nottebaum AF, Rossaint J, Zarbock A, Vestweber D, Gerke V, Wagner NM. Targeting Procalcitonin Protects Vascular Barrier Integrity. Am J Respir Crit Care Med 2022; 206:488-500. [PMID: 35699655 DOI: 10.1164/rccm.202201-0054oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Capillary leakage frequently occurs during sepsis and after major surgery and is associated with microvascular dysfunction and adverse outcome. Procalcitonin is a well-established biomarker in inflammation without known impact on vascular integrity. OBJECTIVE We determined how procalcitonin induces endothelial hyperpermeability and how targeting procalcitonin protects vascular barrier integrity. METHODS In a prospective observational clinical study, procalcitonin levels were assessed in 50 cardiac surgery patients and correlated to postoperative fluid and vasopressor requirements along with sublingual microvascular functionality. Effects of the procalcitonin signaling pathway on endothelial barrier and adherens junctional integrity were characterized in vitro and verified in mice. Inhibition of procalcitonin activation by dipeptidyl-peptidase 4 (DPP4) was evaluated in murine polymicrobial sepsis and clinically verified in cardiac surgery patients chronically taking the DPP4 inhibitor sitagliptin. MEASUREMENTS AND MAIN RESULTS Elevated postoperative procalcitonin levels identified patients with 2-fold increased fluid requirements (P<0.01), 1.8-fold higher vasopressor demand (P<0.05) and compromised microcirculation (reduction to 63.5±2.8% of perfused vessels, P<0.05). Procalcitonin induced 1.4-fold endothelial and 2.3-fold pulmonary capillary permeability (both P<0.001) by destabilizing VE-cadherin. Procalcitonin effects were dependent on activation by DPP4 and targeting the procalcitonin receptor or DPP4 during sepsis-induced hyperprocalcitonemia reduced capillary leakage by 54±10.1% and 60.4±6.9% (both P<0.01), respectively. Sitagliptin prior to cardiac surgery was associated with augmented microcirculation (74.1±1.7% vs. 68.6±1.9% perfused vessels in sitagliptin non-medicated patients, P<0.05) and 2.3-fold decreased fluid (P<0.05) and 1.8-fold reduced vasopressor demand postoperatively (P<0.05). CONCLUSION Targeting procalcitonin's action on the endothelium is a feasible means to preserve vascular integrity during systemic inflammation associated with hyperprocalcitonemia.
Collapse
Affiliation(s)
- Laura Brabenec
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Melanie Müller
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Katharina Em Hellenthal
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Ole S Karsten
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Heorhii Pryvalov
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Mandy Otto
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Anna Holthenrich
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | | | - Raphael Weiss
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Sebastian Kintrup
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Michael Hessler
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Angelo Dell'Aquila
- University Hospital Münster, Department of Cardiac and Thoracic Surgery, Münster, Germany
| | - Katharina Thomas
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Johannes Naß
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | - Andreas Margraf
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | | | - Jan Rossaint
- Universitätsklinikum Münster, 39069, Department of Anesthesiology, Intensive Care and Pain Medicine, Münster, Germany
| | - Alexander Zarbock
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | | | - Volker Gerke
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | - Nana-Maria Wagner
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany;
| |
Collapse
|
24
|
Yang K, Fan M, Wang X, Xu J, Wang Y, Gill PS, Ha T, Liu L, Hall JV, Williams DL, Li C. Lactate induces vascular permeability via disruption of VE-cadherin in endothelial cells during sepsis. SCIENCE ADVANCES 2022; 8:eabm8965. [PMID: 35476437 PMCID: PMC9045716 DOI: 10.1126/sciadv.abm8965] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Circulating lactate levels are a critical biomarker for sepsis and are positively correlated with sepsis-associated mortality. We investigated whether lactate plays a biological role in causing endothelial barrier dysfunction in sepsis. We showed that lactate causes vascular permeability and worsens organ dysfunction in CLP sepsis. Mechanistically, lactate induces ERK-dependent activation of calpain1/2 for VE-cadherin proteolytic cleavage, leading to the enhanced endocytosis of VE-cadherin in endothelial cells. In addition, we found that ERK2 interacts with VE-cadherin and stabilizes VE-cadherin complex in resting endothelial cells. Lactate-induced ERK2 phosphorylation promotes ERK2 disassociation from VE-cadherin. In vivo suppression of lactate production or genetic depletion of lactate receptor GPR81 mitigates vascular permeability and multiple organ injury and improves survival outcome in polymicrobial sepsis. Our study reveals that metabolic cross-talk between glycolysis-derived lactate and the endothelium plays a critical role in the pathophysiology of sepsis.
Collapse
Affiliation(s)
- Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jingjing Xu
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yana Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - P. Spencer Gill
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jennifer V. Hall
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
- Corresponding author.
| |
Collapse
|
25
|
Wang Y, Lin K, Zhang L, Lin Y, Yu H, Xu Y, Fu L, Pi L, Li J, Mai H, Wei B, Jiang Z, Che D, Gu X. The rs7404339 AA Genotype in CDH5 Contributes to Increased Risks of Kawasaki Disease and Coronary Artery Lesions in a Southern Chinese Child Population. Front Cardiovasc Med 2022; 9:760982. [PMID: 35571208 PMCID: PMC9095914 DOI: 10.3389/fcvm.2022.760982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Kawasaki disease (KD) is an acute, self-limited febrile illness of unknown cause. And it predominantly affects children <5 years and the main complication is coronary artery lesion (CAL). Studies demonstrated that vascular endothelial cells (VECs) played a very important role in the CAL of KD. VE-cad encoded by CDH5 may exert a relevant role in endothelial cell biology through controlling the cohesion of the intercellular junctions. The pathogenesis of KD remains unclear and genetic factors may increase susceptibility of KD. However, the relationship between CDH5 polymorphisms and KD susceptibility has not been reported before. The present study is aimed at investigating whether the rs7404339 polymorphism in CDH5 is associated with KD susceptibility and CAL in a southern Chinese child population. Methods and Results We recruited 1,335 patients with KD and 1,669 healthy children. Each participant had supplied 2 mL of fresh blood in the clinical biologic bank at our hospital for other studies. Multiplex PCR is used to assess the genotypes of rs7404339 polymorphism in CDH5. According to the results, we found significant correlated relationship between rs7404339 polymorphism in CDH5 and KD susceptibility [AA vs. GG: adjusted odds ratio (OR) = 1.43, 95% confidence interval (CI) = 1.00-2.05; p = 0.0493; recessive model: adjusted OR = 1.44, 95% CI = 1.01-2.06, P = 0.0431]. In further stratified analysis, we found that children younger than 60 months (adjusted OR = 1.46, 95% CI = 1.01-2.10; p = 0.0424) and male (adjusted OR = 1.70, 95% CI = 1.09-2.65; p = 0.0203) with the rs7404339 AA genotype in CDH5 had a higher risk of KD than carriers of the GA/GG genotype. Furthermore, stratification analysis revealed that patients with the rs7404339 AA genotype exhibited the significantly higher onset risk for CAL than carriers of the GA/GG genotype (adjusted age and gender odds ratio = 1.56, 95% CI = 1.01-2.41; P = 0.0433). Conclusion Our results showed that rs7404339 AA genotype in CDH5 is significant associated with KD susceptibility. And children younger than 60 months and male with the rs7404339 AA genotype had a higher risk of KD than carriers with the GA/GG genotype. Furthermore, patients with the rs7404339 AA genotype exhibited a significantly higher risk of CAL complication than carriers of the GA/GG genotype.
Collapse
Affiliation(s)
- Yishuai Wang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Kun Lin
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linyuan Zhang
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yueling Lin
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinqing Li
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wei
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyong Jiang
- Department of Blood Transfusion and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
26
|
Nitric oxide releasing nanoparticles reduce inflammation in a small animal model of ARDS. Pharmacotherapy 2022; 148:112705. [DOI: 10.1016/j.biopha.2022.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
|
27
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
28
|
Duong CN, Brückner R, Schmitt M, Nottebaum AF, Braun LJ, Meyer Zu Brickwedde M, Ipe U, Vom Bruch H, Schöler HR, Trapani G, Trappmann B, Ebrahimkutty MP, Huveneers S, de Rooij J, Ishiyama N, Ikura M, Vestweber D. Force-induced changes of α-catenin conformation stabilize vascular junctions independently of vinculin. J Cell Sci 2021; 134:273834. [PMID: 34851405 PMCID: PMC8729784 DOI: 10.1242/jcs.259012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Cadherin-mediated cell adhesion requires anchoring via the β-catenin–α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin–α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin–α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin–α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin–α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin. Summary: There are novel antibody epitopes at the actin-binding domain of α-catenin that correlate with high affinity binding and are exposed in junction-stabilizing VE-cadherin–α-catenin fusion proteins.
Collapse
Affiliation(s)
- Cao Nguyen Duong
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Randy Brückner
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Martina Schmitt
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Astrid F Nottebaum
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Laura J Braun
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Marika Meyer Zu Brickwedde
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Ute Ipe
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Hermann Vom Bruch
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Giuseppe Trapani
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Mirsana P Ebrahimkutty
- Institute of Medical Physics and Biophysics, University of Muenster, Muenster 48149, Germany
| | - Stephan Huveneers
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan de Rooij
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| |
Collapse
|
29
|
Sisto M, Ribatti D, Lisi S. Cadherin Signaling in Cancer and Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413358. [PMID: 34948155 PMCID: PMC8704376 DOI: 10.3390/ijms222413358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cadherins mediate cell–cell adhesion through a dynamic process that is strongly dependent on the cellular context and signaling. Cadherin regulation reflects the interplay between fundamental cellular processes, including morphogenesis, proliferation, programmed cell death, surface organization of receptors, cytoskeletal organization, and cell trafficking. The variety of molecular mechanisms and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of clarifying the functions mediated by these versatile proteins. Altered cadherins expression is closely connected with tumorigenesis, epithelial–mesenchymal transition (EMT)-dependent fibrosis, and autoimmunity. We review the current understanding of how cadherins contribute to human health and disease, considering the mechanisms of cadherin involvement in diseases progression, as well as the clinical significance of cadherins as therapeutic targets.
Collapse
|
30
|
HIV-1 Tat and Heparan Sulfate Proteoglycans Orchestrate the Setup of in Cis and in Trans Cell-Surface Interactions Functional to Lymphocyte Trans-Endothelial Migration. Molecules 2021; 26:molecules26247488. [PMID: 34946571 PMCID: PMC8705413 DOI: 10.3390/molecules26247488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.
Collapse
|
31
|
Kluza E, Beldman TJ, Shami A, Scholl ER, Malinova TS, Grootemaat AE, van der Wel NN, Gonçalves I, Huveneers S, Mulder WJM, Lutgens E. Diverse ultrastructural landscape of atherosclerotic endothelium. Atherosclerosis 2021; 339:35-45. [PMID: 34847419 DOI: 10.1016/j.atherosclerosis.2021.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS The endothelium plays a major role in atherosclerosis, yet the endothelial plaque surface is a largely uncharted territory. Here we hypothesize that atherosclerosis-driven remodeling of the endothelium is a dynamic process, involving both damaging and regenerative mechanisms. METHODS Using scanning electron microscopy (SEM) and immuno-SEM, we studied endothelial junction ultrastructure, endothelial openings and immune cell-endothelium interactions in eight apoe-/- mice and two human carotid plaques. RESULTS The surface of early mouse plaques (n = 11) displayed a broad range of morphological alterations, including junctional disruptions and large transcellular endothelial pores with the average diameter between 0.6 and 3 μm. The shoulder region of advanced atherosclerotic lesions (n = 7) had a more aggravated morphology with 8 μm-size paracellular openings at two-fold higher density. In contrast, the central apical surface of advanced plaques, i.e., the plaque body (n = 7), displayed endothelial normalization, as shown by a significantly higher frequency of intact endothelial junctions and a lower incidence of paracellular pores. This normalized endothelial phenotype correlated with low immune cell density (only 5 cells/mm2). The human carotid plaque surface (n = 2) displayed both well-organized and disrupted endothelium with similar features as described above. In addition, they were accompanied by extensive thrombotic areas. CONCLUSIONS Our study unveils the spectrum of endothelial abnormalities associated with the development of atherosclerosis. These were highly abundant in early lesions and in the shoulder region of advanced plaques, while normalized at the advanced plaque's body. Similar endothelial features were observed in human atherosclerotic plaques, underlining the versatility of endothelial transformations in atherosclerosis.
Collapse
Affiliation(s)
- Ewelina Kluza
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Thijs J Beldman
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Edwin R Scholl
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Tsveta S Malinova
- Vascular Microenvironment and Integrity, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden; Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Stephan Huveneers
- Vascular Microenvironment and Integrity, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands
| | - Willem J M Mulder
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam, 1105, AZ, the Netherlands; Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, 80336, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
32
|
CCL4 induces inflammatory signalling and barrier disruption in the neurovascular endothelium. Brain Behav Immun Health 2021; 18:100370. [PMID: 34755124 PMCID: PMC8560974 DOI: 10.1016/j.bbih.2021.100370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background During neuroinflammation many chemokines alter the function of the blood-brain barrier (BBB) that regulates the entry of macromolecules and immune cells into the brain. As the milieu of the brain is altered, biochemical and structural changes contribute to the pathogenesis of neuroinflammation and may impact on neurogenesis. The chemokine CCL4, previously known as MIP-1β, is upregulated in a wide variety of central nervous system disorders, including multiple sclerosis, where it is thought to play a key role in the neuroinflammatory process. However, the effect of CCL4 on BBB endothelial cells (ECs) is unknown. Materials and methods Expression and distribution of CCR5, phosphorylated p38, F-actin, zonula occludens-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin) were analysed in the human BBB EC line hCMEC/D3 by Western blot and/or immunofluorescence in the presence and absence of CCL4. Barrier modulation in response to CCL4 using hCMEC/D3 monolayers was assessed by measuring molecular flux of 70 kDa RITC-dextran and transendothelial lymphocyte migration. Permeability changes in response to CCL4 in vivo were measured by an occlusion technique in pial microvessels of Wistar rats and by fluorescein angiography in mouse retinae. Results CCR5, the receptor for CCL4, was expressed in hCMEC/D3 cells. CCL4 stimulation led to phosphorylation of p38 and the formation of actin stress fibres, both indicative of intracellular chemokine signalling. The distribution of junctional proteins was also altered in response to CCL4: junctional ZO-1 was reduced by circa 60% within 60 min. In addition, surface VE-cadherin was redistributed through internalisation. Consistent with these changes, CCL4 induced hyperpermeability in vitro and in vivo and increased transmigration of lymphocytes across monolayers of hCMEC/D3 cells. Conclusion These results show that CCL4 can modify BBB function and may contribute to disease pathogenesis. The chemokine CCL4 induced phosphorylation of P38 in an in vitro model of the blood-brain barrier (BBB). CCL4 treatment resulted in reduction of plasma membrane VE-cadherin and junctional ZO-1. CCL4 induced neurovascular barrier breakdown in vitro and in vivo.
Collapse
|
33
|
Malik M, Yang Y, Fathi P, Mahler GJ, Esch MB. Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS). Front Cell Dev Biol 2021; 9:721338. [PMID: 34568333 PMCID: PMC8459628 DOI: 10.3389/fcell.2021.721338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Identification and approval of new drugs for use in patients requires extensive preclinical studies and clinical trials. Preclinical studies rely on in vitro experiments and animal models of human diseases. The transferability of drug toxicity and efficacy estimates to humans from animal models is being called into question. Subsequent clinical studies often reveal lower than expected efficacy and higher drug toxicity in humans than that seen in animal models. Microphysiological systems (MPS), sometimes called organ or human-on-chip models, present a potential alternative to animal-based models used for drug toxicity screening. This review discusses multi-organ MPS that can be used to model diseases and test the efficacy and safety of drug candidates. The translation of an in vivo environment to an in vitro system requires physiologically relevant organ scaling, vascular dimensions, and appropriate flow rates. Even small changes in those parameters can alter the outcome of experiments conducted with MPS. With many MPS devices being developed, we have outlined some established standards for designing MPS devices and described techniques to validate the devices. A physiologically realistic mimic of the human body can help determine the dose response and toxicity effects of a new drug candidate with higher predictive power.
Collapse
Affiliation(s)
- Mridu Malik
- Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yang Yang
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
- Department of Chemical Engineering, University of Maryland, College Park, College Park, MD, United States
| | - Parinaz Fathi
- Department of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mandy B. Esch
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| |
Collapse
|
34
|
New mechanism-based approaches to treating and evaluating the vasculopathy of scleroderma. Curr Opin Rheumatol 2021; 33:471-479. [PMID: 34402454 DOI: 10.1097/bor.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Utilizing recent insight into the vasculopathy of scleroderma (SSc), the review will highlight new opportunities for evaluating and treating the disease by promoting stabilization and protection of the microvasculature. RECENT FINDINGS Endothelial junctional signaling initiated by vascular endothelial-cadherin (VE-cadherin) and Tie2 receptors, which are fundamental to promoting vascular health and stability, are disrupted in SSc. This would be expected to not only diminish their protective activity, but also increase pathological processes that are normally restrained by these signaling mediators, resulting in pathological changes in vascular function and structure. Indeed, key features of SSc vasculopathy, from the earliest signs of edema and puffy fingers to pathological disruption of hemodynamics, nutritional blood flow, capillary structure and angiogenesis are all consistent with this altered endothelial signaling. It also likely contributes to further progression of the disease including tissue fibrosis, and organ and tissue injury. SUMMARY Restoring protective endothelial junctional signaling should combat the vasculopathy of SSc and prevent further deterioration in vascular and organ function. Indeed, this type of targeted approach has achieved remarkable results in preclinical models for other diseases. Furthermore, tracking this endothelial junctional signaling, for example by assessing vascular permeability, should facilitate insight into disease progression and its response to therapy.
Collapse
|
35
|
Cordes S, Mokhtari Z, Bartosova M, Mertlitz S, Riesner K, Shi Y, Mengwasser J, Kalupa M, McGeary A, Schleifenbaum J, Schrezenmeier J, Bullinger L, Diaz-Ricart M, Palomo M, Carrreras E, Beutel G, Schmitt CP, Beilhack A, Penack O. Endothelial damage and dysfunction in acute graft-versus-host disease. Haematologica 2021; 106:2147-2160. [PMID: 32675225 PMCID: PMC8327719 DOI: 10.3324/haematol.2020.253716] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Clinical studies suggested that endothelial dysfunction and damage could be involved in the development and severity of acute graft-versus-host disease (aGVHD). Accordingly, we found increased percentage of apoptotic Casp3+ blood vessels in duodenal and colonic mucosa biopsies of patients with severe aGVHD. In murine experimental aGVHD, we detected severe microstructural endothelial damage and reduced endothelial pericyte coverage accompanied by reduced expression of endothelial tight junction proteins leading to increased endothelial leakage in aGVHD target organs. During intestinal aGVHD, colonic vasculature structurally changed, reflected by increased vessel branching and vessel diameter. Because recent data demonstrated an association of endothelium-related factors and steroid refractory aGVHD (SR-aGVHD), we analyzed human biopsies and murine tissues from SR-aGVHD. We found extensive tissue damage but low levels of alloreactive T cell infiltration in target organs, providing the rationale for T-cell independent SR-aGVHD treatment strategies. Consequently, we tested the endothelium-protective PDE5 inhibitor sildenafil, which reduced apoptosis and improved metabolic activity of endothelial cells in vitro. Accordingly, sildenafil treatment improved survival and reduced target organ damage during experimental SR-aGVHD. Our results demonstrate extensive damage, structural changes, and dysfunction of the vasculature during aGVHD. Therapeutic intervention by endothelium-protecting agents is an attractive approach for SR-aGVHD complementing current anti-inflammatory treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Shi
- Charité Universitätsmedizin Berlin
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sanwal R, Joshi K, Ditmans M, Tsai SSH, Lee WL. Ultrasound and Microbubbles for Targeted Drug Delivery to the Lung Endothelium in ARDS: Cellular Mechanisms and Therapeutic Opportunities. Biomedicines 2021; 9:biomedicines9070803. [PMID: 34356867 PMCID: PMC8301318 DOI: 10.3390/biomedicines9070803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by increased permeability of the alveolar–capillary membrane, a thin barrier composed of adjacent monolayers of alveolar epithelial and lung microvascular endothelial cells. This results in pulmonary edema and severe hypoxemia and is a common cause of death after both viral (e.g., SARS-CoV-2) and bacterial pneumonia. The involvement of the lung in ARDS is notoriously heterogeneous, with consolidated and edematous lung abutting aerated, less injured regions. This makes treatment difficult, as most therapeutic approaches preferentially affect the normal lung regions or are distributed indiscriminately to other organs. In this review, we describe the use of thoracic ultrasound and microbubbles (USMB) to deliver therapeutic cargo (drugs, genes) preferentially to severely injured areas of the lung and in particular to the lung endothelium. While USMB has been explored in other organs, it has been under-appreciated in the treatment of lung injury since ultrasound energy is scattered by air. However, this limitation can be harnessed to direct therapy specifically to severely injured lungs. We explore the cellular mechanisms governing USMB and describe various permutations of cargo administration. Lastly, we discuss both the challenges and potential opportunities presented by USMB in the lung as a tool for both therapy and research.
Collapse
Affiliation(s)
- Rajiv Sanwal
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kushal Joshi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
| | - Mihails Ditmans
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Scott S. H. Tsai
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
| | - Warren L. Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +416-864-6060 (ext. 77655)
| |
Collapse
|
37
|
OvCa-Chip microsystem recreates vascular endothelium-mediated platelet extravasation in ovarian cancer. Blood Adv 2021; 4:3329-3342. [PMID: 32717032 DOI: 10.1182/bloodadvances.2020001632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
In ovarian cancer, platelet extravasation into the tumor and resulting metastasis is thought to be regulated mostly by the vascular endothelium. Because it is difficult to dissect complex underlying events in murine models, organ-on-a-chip methodology is applied to model vascular and platelet functions in ovarian cancer. This system (OvCa-Chip) consists of microfluidic chambers that are lined by human ovarian tumor cells interfaced with a 3-dimensional endothelialized lumen. Subsequent perfusion with human platelets within the device's vascular endothelial compartment under microvascular shear conditions for 5 days uncovered organ-to-molecular-level contributions of the endothelium to triggering platelet extravasation into tumors. Further, analysis of effluents available from the device's individual tumor and endothelial chambers revealed temporal dynamics of vascular disintegration caused by cancer cells, a differential increase in cytokine expression, and an alteration of barrier maintenance genes in endothelial cells. These events, when analyzed within the device over time, made the vascular tissue leaky and promoted platelet extravasation. Atorvastatin treatment of the endothelial cells within the OvCa-Chip revealed improved endothelial barrier function, reduction in inflammatory cytokines and, eventually, arrest of platelet extravasation. These data were validated through corresponding observations in patient-derived tumor samples. The OvCa-Chip provides a novel in vitro dissectible platform to model the mechanisms of the cancer-vascular-hematology nexus and the analyses of potential therapeutics.
Collapse
|
38
|
Arif N, Zinnhardt M, Nyamay’Antu A, Teber D, Brückner R, Schaefer K, Li Y, Trappmann B, Grashoff C, Vestweber D. PECAM-1 supports leukocyte diapedesis by tension-dependent dephosphorylation of VE-cadherin. EMBO J 2021; 40:e106113. [PMID: 33604918 PMCID: PMC8090850 DOI: 10.15252/embj.2020106113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 01/21/2023] Open
Abstract
Leukocyte extravasation is an essential step during the immune response and requires the destabilization of endothelial junctions. We have shown previously that this process depends in vivo on the dephosphorylation of VE-cadherin-Y731. Here, we reveal the underlying mechanism. Leukocyte-induced stimulation of PECAM-1 triggers dissociation of the phosphatase SHP2 which then directly targets VE-cadherin-Y731. The binding site of PECAM-1 for SHP2 is needed for VE-cadherin dephosphorylation and subsequent endocytosis. Importantly, the contribution of PECAM-1 to leukocyte diapedesis in vitro and in vivo was strictly dependent on the presence of Y731 of VE-cadherin. In addition to SHP2, dephosphorylation of Y731 required Ca2+ -signaling, non-muscle myosin II activation, and endothelial cell tension. Since we found that β-catenin/plakoglobin mask VE-cadherin-Y731 and leukocyte docking to endothelial cells exert force on the VE-cadherin-catenin complex, we propose that leukocytes destabilize junctions by PECAM-1-SHP2-triggered dephosphorylation of VE-cadherin-Y731 which becomes accessible by actomyosin-mediated mechanical force exerted on the VE-cadherin-catenin complex.
Collapse
Affiliation(s)
- Nida Arif
- Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Maren Zinnhardt
- Max Planck Institute for Molecular BiomedicineMünsterGermany
| | | | - Denise Teber
- Max Planck Institute for Molecular BiomedicineMünsterGermany
| | - Randy Brückner
- Max Planck Institute for Molecular BiomedicineMünsterGermany
| | | | - Yu‐Tung Li
- Max Planck Institute for Molecular BiomedicineMünsterGermany
| | | | - Carsten Grashoff
- Institute for Molecular Cell BiologyUniversity of MünsterMünsterGermany
| | | |
Collapse
|
39
|
Tan X, Petri B, DeVinney R, Jenne CN, Chaconas G. The Lyme disease spirochete can hijack the host immune system for extravasation from the microvasculature. Mol Microbiol 2021; 116:498-515. [PMID: 33891779 DOI: 10.1111/mmi.14728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Lyme disease is the most common tick-transmitted disease in the northern hemisphere and is caused by the spirochete Borrelia burgdorferi and related Borrelia species. The constellation of symptoms attributable to this malady results from vascular dissemination of B. burgdorferi throughout the body to invade various tissue types. However, little is known about the mechanism by which the spirochetes can breach the blood vessel wall to reach distant tissues. We have studied this process by direct observation of spirochetes in the microvasculature of living mice using multi-laser spinning-disk intravital microscopy. Our results show that in our experimental system, instead of phagocytizing B. burgdorferi, host neutrophils are involved in the production of specific cytokines that activate the endothelium and potentiate B. burgdorferi escape into the surrounding tissue. Spirochete escape is not induced by paracellular permeability and appears to occur via a transcellular pathway. Neutrophil repurposing to promote bacterial extravasation represents a new and innovative pathogenic strategy.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Björn Petri
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Rebekah DeVinney
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Grönloh MLB, Arts JJG, van Buul JD. Neutrophil transendothelial migration hotspots - mechanisms and implications. J Cell Sci 2021; 134:134/7/jcs255653. [PMID: 33795378 DOI: 10.1242/jcs.255653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During inflammation, leukocytes circulating in the blood stream exit the vasculature in a process called leukocyte transendothelial migration (TEM). The current paradigm of this process comprises several well-established steps, including rolling, adhesion, crawling, diapedesis and sub-endothelial crawling. Nowadays, the role of the endothelium in transmigration is increasingly appreciated. It has been established that leukocyte exit sites on the endothelium and in the pericyte layer are in fact not random but instead may be specifically recognized by migrating leukocytes. Here, we review the concept of transmigration hotspots, specific sites in the endothelial and pericyte layer where most transmigration events take place. Chemokine cues, adhesion molecules and membrane protrusions as well as physical factors, such as endothelial junction stability, substrate stiffness, the presence of pericytes and basement membrane composition, may all contribute to local hotspot formation to facilitate leukocytes exiting the vasculature. In this Review, we discuss the biological relevance of such hotspots and put forward multiple mechanisms and factors that determine a functional TEM hotspot.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands .,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
41
|
Schwartz AB, Campos OA, Criado-Hidalgo E, Chien S, del Álamo JC, Lasheras JC, Yeh YT. Elucidating the Biomechanics of Leukocyte Transendothelial Migration by Quantitative Imaging. Front Cell Dev Biol 2021; 9:635263. [PMID: 33855018 PMCID: PMC8039384 DOI: 10.3389/fcell.2021.635263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
Leukocyte transendothelial migration is crucial for innate immunity and inflammation. Upon tissue damage or infection, leukocytes exit blood vessels by adhering to and probing vascular endothelial cells (VECs), breaching endothelial cell-cell junctions, and transmigrating across the endothelium. Transendothelial migration is a critical rate-limiting step in this process. Thus, leukocytes must quickly identify the most efficient route through VEC monolayers to facilitate a prompt innate immune response. Biomechanics play a decisive role in transendothelial migration, which involves intimate physical contact and force transmission between the leukocytes and the VECs. While quantifying these forces is still challenging, recent advances in imaging, microfabrication, and computation now make it possible to study how cellular forces regulate VEC monolayer integrity, enable efficient pathfinding, and drive leukocyte transmigration. Here we review these recent advances, paying particular attention to leukocyte adhesion to the VEC monolayer, leukocyte probing of endothelial barrier gaps, and transmigration itself. To offer a practical perspective, we will discuss the current views on how biomechanics govern these processes and the force microscopy technologies that have enabled their quantitative analysis, thus contributing to an improved understanding of leukocyte migration in inflammatory diseases.
Collapse
Affiliation(s)
- Amy B. Schwartz
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Obed A. Campos
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Ernesto Criado-Hidalgo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
Sluiter TJ, van Buul JD, Huveneers S, Quax PHA, de Vries MR. Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis. Biomedicines 2021; 9:328. [PMID: 33804952 PMCID: PMC8063931 DOI: 10.3390/biomedicines9040328] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to extravasate and despite the variety in the specific mechanisms utilized by different leukocytes to cross different vascular beds, there is a general principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or transcellular route. In atherosclerosis, the barrier function of the endothelium is impaired leading to uncontrolled leukocyte extravasation and vascular leakage. This is also observed in the neovessels that grow into the atherosclerotic plaque leading to intraplaque hemorrhage and plaque destabilization. This review focuses on the vascular endothelial barrier function and the interaction between endothelial cells and leukocytes during transmigration. We will discuss the role of endothelial dysfunction, transendothelial migration of leukocytes and plaque angiogenesis in atherosclerosis.
Collapse
Affiliation(s)
- Thijs J. Sluiter
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jaap D. van Buul
- Sanquin Research and Landsteiner Laboratory, Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Paul H. A. Quax
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Margreet R. de Vries
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
43
|
Cai A, Chatziantoniou C, Calmont A. Vascular Permeability: Regulation Pathways and Role in Kidney Diseases. Nephron Clin Pract 2021; 145:297-310. [PMID: 33744890 DOI: 10.1159/000514314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular permeability (VP) is a fundamental aspect of vascular biology. A growing number of studies have revealed that many signalling pathways govern VP in both physiological and pathophysiological conditions. Furthermore, emerging evidence identifies VP alteration as a pivotal pathogenic factor in acute kidney injury, chronic kidney disease, diabetic kidney disease, and other proteinuric diseases. Therefore, perceiving the connections between these pathways and the aetiology of kidney disease is an important task as such knowledge may trigger the development of novel therapeutic or preventive medical approaches. In this regard, the discussion summarizing VP-regulating pathways and associating them with kidney diseases is highly warranted. SUMMARY Major pathways of VP regulation comprise angiogenic factors including vascular endothelial growth factor/VEGFR, angiopoietin/Tie, and class 3 semaphorin/neuropilin and inflammatory factors including histamine, platelet-activating factor, and leukocyte extravasation. These pathways mainly act on vascular endothelial cadherin to modulate adherens junctions of endothelial cells (ECs), thereby augmenting VP via the paracellular pathway. Elevated VP in diverse kidney diseases involves EC apoptosis, imbalanced regulatory factors, and many other pathophysiological events, which in turn exacerbates renal structural and functional disorders. Measures improving VP effectively ameliorate the diseased kidney in terms of tissue injury, endothelial dysfunction, kidney function, and long-term prognosis. Key Messages: (1) Angiogenic factors, inflammatory factors, and adhesion molecules represent major pathways that regulate VP. (2) Vascular hyperpermeability links various pathophysiological processes and plays detrimental roles in multiple kidney diseases.
Collapse
Affiliation(s)
- Anxiang Cai
- Unité mixte Inserm - Sorbonne Université, UMR_S1155, Tenon Hospital, Paris, France,
| | | | - Amélie Calmont
- Unité mixte Inserm - Sorbonne Université, UMR_S1155, Tenon Hospital, Paris, France
| |
Collapse
|
44
|
Ring S, Inaba Y, Da M, Bopp T, Grabbe S, Enk A, Mahnke K. Regulatory T Cells Prevent Neutrophilic Infiltration of Skin during Contact Hypersensitivity Reactions by Strengthening the Endothelial Barrier. J Invest Dermatol 2021; 141:2006-2017. [PMID: 33675787 DOI: 10.1016/j.jid.2021.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The healing phase of contact hypersensitivity reactions is critically dependent on regulatory T cells (Tregs), but even the early inflammatory phase, that is, 6-24 hours after induction of a contact hypersensitivity reaction, is susceptible to Treg-mediated suppression. To investigate the underlying mechanisms, we injected Tregs before the challenge and analyzed the skin-infiltrating cells as early as 6 hours later. Early on, we found mainly neutrophils in the challenged skin, but only a few T cells. This influx of neutrophils was blocked by the injection of Tregs, indicating that they were able to prevent the first wave of leukocytes, which are responsible for starting an immune reaction. As an underlying mechanism, we identified that Tregs can tighten endothelial junctions by inducing intracellular cAMP, leading to protein kinase A-RhoA‒dependent signaling. This eventually reorganizes endothelial junction proteins, such as Notch3, Nectin 2, Filamin B, and VE-cadherin, all of which contribute to the tightening of the endothelial barrier. In summary, Tregs prevent the leakage of proinflammatory cells from and into the tissue, which establishes a mechanism to downregulate immune reactions.
Collapse
Affiliation(s)
- Sabine Ring
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Yutaka Inaba
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Meihong Da
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Enk
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
45
|
Su K, Wang J, Lv Y, Tian M, Zhao YY, Minshall RD, Hu G. YAP expression in endothelial cells prevents ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2021; 320:L568-L582. [PMID: 33565367 PMCID: PMC8238153 DOI: 10.1152/ajplung.00472.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ventilator-induced lung injury is associated with an increase in mortality in patients with respiratory dysfunction, although mechanical ventilation is an essential intervention implemented in the intensive care unit. Intrinsic molecular mechanisms for minimizing lung inflammatory injury during mechanical ventilation remain poorly defined. We hypothesize that Yes-associated protein (YAP) expression in endothelial cells protects the lung against ventilator-induced injury. Wild-type and endothelial-specific YAP-deficient mice were subjected to a low (7 mL/kg) or high (21 mL/kg) tidal volume (VT) ventilation for 4 h. Infiltration of inflammatory cells into the lung, vascular permeability, lung histopathology, and the levels of inflammatory cytokines were measured. Here, we showed that mechanical ventilation with high VT upregulated YAP protein expression in pulmonary endothelial cells. Endothelial-specific YAP knockout mice following high VT ventilation exhibited increased neutrophil counts and protein content in bronchoalveolar lavage fluid, Evans blue leakage, and histological lung injury compared with wild-type littermate controls. Deletion of YAP in endothelial cells exaggerated vascular endothelial (VE)-cadherin phosphorylation, downregulation of vascular endothelial protein tyrosine phosphatase (VE-PTP), and dissociation of VE-cadherin and catenins following mechanical ventilation. Importantly, exogenous expression of wild-type VE-PTP in the pulmonary vasculature rescued YAP ablation-induced increases in neutrophil counts and protein content in bronchoalveolar lavage fluid, vascular leakage, and histological lung injury as well as VE-cadherin phosphorylation and dissociation from catenins following ventilation. These data demonstrate that YAP expression in endothelial cells suppresses lung inflammatory response and edema formation by modulating VE-PTP-mediated VE-cadherin phosphorylation and thus plays a protective role in ventilator-induced lung injury.
Collapse
Affiliation(s)
- Kai Su
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois.,Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianguo Wang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois.,Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yang Lv
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
| | - Ming Tian
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Division of Critical Care, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois.,Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois.,Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois
| |
Collapse
|
46
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
47
|
Roberts J, Pritchard AL, Treweeke AT, Rossi AG, Brace N, Cahill P, MacRury SM, Wei J, Megson IL. Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Front Cardiovasc Med 2021; 7:629933. [PMID: 33614744 PMCID: PMC7886785 DOI: 10.3389/fcvm.2020.629933] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
Meta-analyses have indicated that individuals with type 1 or type 2 diabetes are at increased risk of suffering a severe form of COVID-19 and have a higher mortality rate than the non-diabetic population. Patients with diabetes have chronic, low-level systemic inflammation, which results in global cellular dysfunction underlying the wide variety of symptoms associated with the disease, including an increased risk of respiratory infection. While the increased severity of COVID-19 amongst patients with diabetes is not yet fully understood, the common features associated with both diseases are dysregulated immune and inflammatory responses. An additional key player in COVID-19 is the enzyme, angiotensin-converting enzyme 2 (ACE2), which is essential for adhesion and uptake of virus into cells prior to replication. Changes to the expression of ACE2 in diabetes have been documented, but they vary across different organs and the importance of such changes on COVID-19 severity are still under investigation. This review will examine and summarise existing data on how immune and inflammatory processes interplay with the pathogenesis of COVID-19, with a particular focus on the impacts that diabetes, endothelial dysfunction and the expression dynamics of ACE2 have on the disease severity.
Collapse
Affiliation(s)
- Jacob Roberts
- Institute for Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Antonia L. Pritchard
- Institute for Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Andrew T. Treweeke
- Institute for Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Adriano G. Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicole Brace
- Institute for Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Paul Cahill
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Sandra M. MacRury
- Institute for Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Jun Wei
- Institute for Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Ian L. Megson
- Institute for Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| |
Collapse
|
48
|
Luo Y, Yu M, Li P, Huang L, Wu J, Kong M, Li Y, Wu Z, Kang Z, Yi L, Yang Z. The Expression and Role of microRNA-133a in Plasma of Patients with Kawasaki Disease. Immunol Invest 2021; 51:826-838. [PMID: 33501869 DOI: 10.1080/08820139.2021.1877302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Kawasaki disease (KD)), also known as mucocutaneous lymph node syndrome (MCLS), is an autoimmune and systemic vasculitis syndrome. Its etiology and pathogenesis are still unclear. microRNAs (miRNA), a novel class of small non-coding RNAs, regulate the expression of multiple protein-encoding genes at the post-transcriptional level. We intend to study the change of miRNA-133a in the plasma of patients with KD, explore the role of miRNA-133a on HUVEC and define the pathogenesis of vascular dysfunction in KD. miRNA-133a expression and the mRNA and protein expression of protein phosphatase 2 catalytic subunit alpha (PPP2CA) were assessed by RT-qPCR and Western blot, respectively. The PPP2CA mRNA 3'UTR was predicted to be the potential target of miRNA-133a by using the miRNA databases and verified by the luciferase assay. The plasmids of miRNA-133a mimics and inhibitors were transfected into HUVEC cells. The plasma soluble vascular endothelial cadherin (sVE-cadherin, the excised extracellular part of VE-cadherin) levels were investigated by ELISA. The results suggested that miRNA-133a was increased by 3.8 times in the acute KD group and by 2.7 times in the convalescent KD group compared with the control group (both P = .000). PPP2CA is the target gene of miRNA-133a and its expression was inhibited by miRNA-133a acting on PPP2CA mRNA 3'UTR (P = .013). The plasma sVE-cadherin levels in the acute KD groups were increased compared with the control group (P = .024). The ROC curve analysis showed that the expression of miRNA-133a segregate acute KD patients from convalescent KD patients and healthy children. Our results suggest that miRNA-133a might be a new biomarker for KD.
Collapse
Affiliation(s)
- Yeping Luo
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Meng Yu
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengzhu Li
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Medical Experiments, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiping Wu
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Min Kong
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Li
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiang Wu
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijuan Kang
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Yi
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuocheng Yang
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Morsing SKH, Rademakers T, Brouns SLN, van Stalborch AMD, Donners MMPC, van Buul JD. ADAM10-Mediated Cleavage of ICAM-1 Is Involved in Neutrophil Transendothelial Migration. Cells 2021; 10:cells10020232. [PMID: 33504031 PMCID: PMC7911467 DOI: 10.3390/cells10020232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
To efficiently cross the endothelial barrier during inflammation, neutrophils first firmly adhere to the endothelial surface using the endothelial adhesion molecule ICAM-1. Upon actual transmigration, the release from ICAM-1 is required. While Integrin LFA1/Mac1 de-activation is one described mechanism that leads to this, direct cleavage of ICAM-1 from the endothelium represents a second option. We found that a disintegrin and metalloprotease 10 (ADAM10) cleaves the extracellular domain of ICAM-1 from the endothelial surface. Silencing or inhibiting endothelial ADAM10 impaired the efficiency of neutrophils to cross the endothelium, suggesting that neutrophils use endothelial ADAM10 to dissociate from ICAM-1. Indeed, when measuring transmigration kinetics, neutrophils took almost twice as much time to finish the diapedesis step when ADAM10 was silenced. Importantly, we found increased levels of ICAM-1 on the transmigrating neutrophils when crossing an endothelial monolayer where such increased levels were not detected when neutrophils crossed bare filters. Using ICAM-1-GFP-expressing endothelial cells, we show that ICAM-1 presence on the neutrophils can also occur by membrane transfer from the endothelium to the neutrophil. Based on these findings, we conclude that endothelial ADAM10 contributes in part to neutrophil transendothelial migration by cleaving ICAM-1, thereby supporting the release of neutrophils from the endothelium during the final diapedesis step.
Collapse
Affiliation(s)
- Sofia K. H. Morsing
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Timo Rademakers
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Sanne L. N. Brouns
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Anne-Marieke D. van Stalborch
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
| | - Marjo M. P. C. Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Correspondence: (M.M.P.C.D.); (J.D.v.B.); Tel.: +31-43-3877167 (M.M.P.C.D.); +31-20-5121219 (J.D.v.B.); Fax: +31-20-5123310 (J.D.v.B.)
| | - Jaap D. van Buul
- Molecular Cell Biology Lab, Department Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (S.K.H.M.); (T.R.); (S.L.N.B.); (A.-M.D.v.S.)
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1066 CX Amsterdam, The Netherlands
- Correspondence: (M.M.P.C.D.); (J.D.v.B.); Tel.: +31-43-3877167 (M.M.P.C.D.); +31-20-5121219 (J.D.v.B.); Fax: +31-20-5123310 (J.D.v.B.)
| |
Collapse
|
50
|
Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med 2020; 27:314-331. [PMID: 33309601 DOI: 10.1016/j.molmed.2020.11.006] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Leakage from blood vessels into tissues is governed by mechanisms that control endothelial barrier function to maintain homeostasis. Dysregulated endothelial permeability contributes to many conditions and can influence disease morbidity and treatment. Diverse approaches used to study endothelial permeability have yielded a wealth of valuable insights. Yet, ongoing questions, technical challenges, and unresolved controversies relating to the mechanisms and relative contributions of barrier regulation, transendothelial sieving, and transport of fluid, solutes, and particulates complicate interpretations in the context of vascular physiology and pathophysiology. Here, we describe recent in vivo findings and other advances in understanding endothelial barrier function with the goal of identifying and reconciling controversies over cellular and molecular processes that regulate the vascular barrier in health and disease.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.
| | - Elisabetta Dejana
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Donald M McDonald
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|