1
|
Kwiatkowska KM, Anticoli S, Salvioli S, Calzari L, Gentilini D, Albano C, Di Prinzio RR, Zaffina S, Carsetti R, Ruggieri A, Garagnani P. B Cells Isolated from Individuals Who Do Not Respond to the HBV Vaccine Are Characterized by Higher DNA Methylation-Estimated Aging Compared to Responders. Vaccines (Basel) 2024; 12:880. [PMID: 39204006 PMCID: PMC11360008 DOI: 10.3390/vaccines12080880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Healthcare workers (HCWs) are a high-risk group for hepatitis B virus (HBV) infection. Notably, about 5-10% of the general population does not respond to the HBV vaccination. In this study, we aimed to investigate DNA methylation (DNAm) in order to estimate the biological age of B cells from HCW of both sexes, either responder (R) or non-responder (NR), to HBV vaccination. We used genome-wide DNA methylation data to calculate a set of biomarkers in B cells collected from 41 Rs and 30 NRs between 22 and 62 years old. Unresponsiveness to HBV vaccination was associated with accelerated epigenetic aging (DNAmAge, AltumAge, DunedinPoAm) and was accompanied by epigenetic drift. Female non-responders had higher estimates of telomere length and lower CRP inflammation risk score when compared to responders. Overall, epigenetic differences between responders and non-responders were more evident in females than males. In this study we demonstrated that several methylation DNAm-based clocks and biomarkers are associated with an increased risk of non-response to HBV vaccination, particularly in females. Based on these results, we propose that accelerated epigenetic age could contribute to vaccine unresponsiveness. These insights may help improve the evaluation of the effectiveness of vaccination strategies, especially among HCWs and vulnerable patients.
Collapse
Affiliation(s)
| | - Simona Anticoli
- Istituto Superiore di Sanità, Center for Gender Specific Medicine, 00161 Rome, Italy; (S.A.); (A.R.)
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (L.C.)
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (L.C.)
- Department of Brain and Behavioral Sciences, Università di Pavia, 27100 Pavia, Italy
| | - Christian Albano
- Immunology Research Area, B Cell Unit, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (R.C.)
| | - Reparata Rosa Di Prinzio
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (S.Z.)
| | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (S.Z.)
| | - Rita Carsetti
- Immunology Research Area, B Cell Unit, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy (R.C.)
| | - Anna Ruggieri
- Istituto Superiore di Sanità, Center for Gender Specific Medicine, 00161 Rome, Italy; (S.A.); (A.R.)
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Bello N, Hudu SA, Alshrari AS, Imam MU, Jimoh AO. Overview of Hepatitis B Vaccine Non-Response and Associated B Cell Amnesia: A Scoping Review. Pathogens 2024; 13:554. [PMID: 39057781 PMCID: PMC11279426 DOI: 10.3390/pathogens13070554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The advent of the hepatitis B vaccine has achieved tremendous success in eradicating and reducing the burden of hepatitis B infection, which is the main culprit for hepatocellular carcinoma-one of the most fatal malignancies globally. Response to the vaccine is achieved in about 90-95% of healthy individuals and up to only 50% in immunocompromised patients. This review aimed to provide an overview of hepatitis B vaccine non-response, the mechanisms involved, B cell amnesia, and strategies to overcome it. METHODS Databases, including Google Scholar, PubMed, Scopus, Cochrane, and ClinicalTrials.org, were used to search and retrieve articles using keywords on hepatitis B vaccine non-response and B cell amnesia. The PRISMA guideline was followed in identifying studies, screening, selection, and reporting of findings. RESULTS A total of 133 studies on hepatitis B vaccine non-response, mechanisms, and prevention/management strategies were included in the review after screening and final selection. Factors responsible for hepatitis B vaccine non-response were found to include genetic, immunological factors, and B cell amnesia in healthy individuals. The genetic factors were sex, HLA haplotypes, and genetic polymorphisms in immune response markers (cytokines). Non-response was common in conditions of immunodeficiency, such as renal failure, haemodialysis, celiac disease, inflammatory bowel disease, hepatitis C co-infection, and latent hepatitis B infection. Others included diabetes mellitus and HIV infection. The mechanisms involved were impaired immune response by suppression of response (T helper cells) or induced suppression of response (through regulatory B and T cells). DISCUSSION A comprehensive and careful understanding of the patient factors and the nature of the vaccine contributes to developing effective preventive measures. These include revaccination or booster dose, vaccine administration through the intradermal route, and the use of adjuvants in the vaccine.
Collapse
Affiliation(s)
- Nura Bello
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840232, Nigeria;
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria 810107, Nigeria
| | - Shuaibu A. Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840232, Nigeria
| | - Ahmed S. Alshrari
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, Northern Border University, Arar 91431, Saudi Arabia;
| | - Mustapha U. Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto 840232, Nigeria;
| | - Abdulgafar O. Jimoh
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto 840232, Nigeria;
| |
Collapse
|
3
|
Laganà A, Visalli G, Di Pietro A, Facciolà A. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clin Exp Vaccine Res 2024; 13:105-120. [PMID: 38752004 PMCID: PMC11091437 DOI: 10.7774/cevr.2024.13.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche S.P.A., Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Al-Eitan LN, ElMotasem MFM, Khair IY, Alahmad SZ. Vaccinomics: Paving the Way for Personalized Immunization. Curr Pharm Des 2024; 30:1031-1047. [PMID: 38898820 DOI: 10.2174/0113816128280417231204085137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 06/21/2024]
Abstract
Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of "isolate-inactivateinject", which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Moh'd Fahmi Munib ElMotasem
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
5
|
Zhang B, Han H, Zhao X, Li AN, Wang Y, Yuan W, Yang Z, Li MD. An HBV susceptibility variant of KNG1 modulates the therapeutic effects of interferons α and λ1 in HBV infection by promoting MAVS lysosomal degradation. EBioMedicine 2023; 94:104694. [PMID: 37442062 PMCID: PMC10435766 DOI: 10.1016/j.ebiom.2023.104694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is one of the main causes of hepatocellular carcinoma (HCC). The relationship between HBV infection and the host genome as well as their underlying mechanisms remain largely unknown. METHODS In this study, we performed a whole-genome exon sequencing analysis of 300 sib-pairs of Chinese HBV-infected families with the goal of identifying variants and genes involved in HBV infection. A site-direct mutant plasmid was used to investigate the function of SNP rs76438938 in KNG1. The functional and mechanical studies of KNG1 were conducted with in vitro liver cell lines and a hydrodynamic injection model in vivo. The impact of KNG1 on HBV infection therapy was determined in hepatocytes treated with IFN-α/λ1. FINDINGS Our whole-exon association study of 300 families with hepatitis B infection found that SNP rs76438938 in KNG1 significantly increased the risk for HBV infection, and the rs76438938-T allele was found to promote HBV replication by increasing the stability of KNG1 mRNA. By competitively binding HSP90A with MAVS, KNG1 can inhibit the expression of types I and III IFNs by promoting MAVS lysosomal degradation. Such suppression of IFN expression and promotion of HBV replication by Kng1 were further demonstrated with an animal model in vivo. Lastly, we showed that the rs76438938-C allele can improve the therapeutic effect of IFN-α and -λ1 in HBV infection. INTERPRETATION This study identified a SNP, rs76438938, in a newly discovered host gene, KNG1, for its involvement in HBV infection and treatment effect through modulating the cellular antiviral process. FUNDING This study was supported in part by the Independent Task of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases of the First Affiliated Hospital of Zhejiang University, the China Precision Medicine Initiative (2016YFC0906300), and the Research Center for Air Pollution and Health of Zhejiang University.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Andria N Li
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Berry A, Kapelus D, Singh P, Groome M, de Assis Rosa D. ABO blood types, but not Secretor or Lewis blood types, influence strength of antibody response to Hepatitis B vaccine in Black South African children. Vaccine 2023:S0264-410X(23)00465-6. [PMID: 37169653 DOI: 10.1016/j.vaccine.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/24/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Subunit vaccines for the Hepatitis B virus (HBV) have greatly reduced the prevalence of infection and morbidity through HBV-related liver cirrhosis and cancer. However, strength of immune response to vaccination varies considerably. While it is known that ABO blood types may influence HBV infection risk, the role of ABO and related blood types in strength of immune response to HBV vaccine has not been investigated. We examined 16 polymorphisms in the ABO, FUT2, and FUT3 genes and their related phenotypes for associations with strength of antibody response to HBV vaccine in Black South African infants. Anti-HBc and anti-HBs antibody levels were measured by CMIA assay 1-3 months after the last dose of HBV vaccine. Prior infection occurred in 8/207 individuals (3.86%) who were removed from further study. Of the remaining 199 individuals, 83.4% individuals were strong responders (anti-HBs ≥ 100 mIU/ml, median 973 mIU/ml), another 15.6% were weak responders (anti-HBs < 100 mIU/ml, median 50 mIU/ml) and 1% were non-responders (anti-HBs < 10 mIU/ml). The frequency of weak responders to HBV vaccine was not significantly affected by sex, birthweight, use of an additional booster dose of vaccine or cohort of origin. We characterised patterns of genetic variation present at the ABO, FUT2 and FUT3 loci by use of MassArray genotyping and used these data to predict ABO, Secretor and Lewis phenotypes. We observed significant association of ABO blood type with strength of antibody response to HBV vaccine in a Black South African cohort (p = 0.002). In particular, presence of rs8176747G and expression of B antigen (whether in B blood type or AB blood type) was associated with decreased antibody response to HBV vaccine. Secretor and Lewis blood types were not associated with antibody response to HBV vaccine. This work increases our understanding of the impact that host genetic variation may have on vaccine immunogenicity.
Collapse
Affiliation(s)
- Adam Berry
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Jhb, South Africa
| | - Daniel Kapelus
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Jhb, South Africa
| | - Payal Singh
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Jhb, South Africa
| | - Michelle Groome
- Vaccines and Infectious Diseases Analytics (VIDA) Research Unit, SA Medical Research Council and University of the Witwatersrand, Jhb, South Africa; National Institute for Communicable Diseases, Jhb, South Africa
| | - Debra de Assis Rosa
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Jhb, South Africa.
| |
Collapse
|
7
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
8
|
Di Lello FA, Martínez AP, Flichman DM. Insights into induction of the immune response by the hepatitis B vaccine. World J Gastroenterol 2022; 28:4249-4262. [PMID: 36159002 PMCID: PMC9453777 DOI: 10.3748/wjg.v28.i31.4249] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
After more than four decades of hepatitis B virus (HBV) vaccine implementation, its safety and efficacy in preventing HBV infection have been proven and several milestones have been achieved. Most countries have included HBV immunization schedules in their health policies and progress has been made regarding universalization of the first HBV vaccine dose at birth. All of these actions have significantly contributed to reducing both the incidence of HBV infection and its related complications. However, there are still many drawbacks to overcome. The main concerns are the deficient coverage rate of the dose at birth and the large adult population that has not been reached timely by universal immunization. Additionally, the current most widely used second-generation vaccines do not induce protective immunity in 5% to 10% of the population, particularly in people over 40-years-old, obese (body mass index > 25 kg/m2), heavy smokers, and patients undergoing dialysis or infection with human immunodeficiency virus. Recently developed and approved novel vaccine formulations using more potent adjuvants or multiple antigens have shown better performance, particularly in difficult settings. These advances re-launch the expectations of achieving the World Health Organization’s objective of completing hepatitis control by 2030.
Collapse
Affiliation(s)
- Federico Alejandro Di Lello
- Microbiology, Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires C1113AAD, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1425FQB, Argentina
| | - Alfredo Pedro Martínez
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno “CEMIC”, Buenos Aires C1431FWO, Argentina
| | - Diego Martín Flichman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1425FQB, Argentina
- Microbiology, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
9
|
Colucci M, De Santis E, Totti B, Miroballo M, Tamiro F, Rossi G, Piepoli A, De Vincentis G, Greco A, Mangia A, Cianci R, Di Mauro L, Miscio G, Giambra V. Associations between Allelic Variants of the Human IgH 3' Regulatory Region 1 and the Immune Response to BNT162b2 mRNA Vaccine. Vaccines (Basel) 2021; 9:1207. [PMID: 34696315 PMCID: PMC8540755 DOI: 10.3390/vaccines9101207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023] Open
Abstract
The escalation of Coronavirus disease 2019 (COVID-19) has required the development of safe and effective vaccines against the severe acute respiratory syndrome coronavirus 2-associated (SARS-CoV-2), which is the causative agent of the disease. Here, we determined the levels of antibodies, antigen-specific B cells, against a recombinant GFP-tagged SARS-CoV-2 spike (S) protein and total T and NK cell subsets in subjects up to 20 days after the injection of the BNT162b2 (Pfizer-BioNTech) vaccine using a combined approach of serological and flow cytometry analyses. In former COVID-19 patients and highly responsive individuals, a significant increase of antibody production was detected, simultaneous with an expansion of antigen-specific B cell response and the total number of NK-T cells. Additionally, through a genetic screening of a specific polymorphic region internal to the 3' regulatory region 1 (3'RR1) of human immunoglobulin constant-gene (IgH) locus, we identified different single-nucleotide polymorphic (SNP) variants associated with either highly or lowly responsive subjects. Taken together, these results suggest that favorable genetic backgrounds and immune profiles support the progression of an effective response to BNT162b2 vaccination.
Collapse
Affiliation(s)
- Mattia Colucci
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.C.); (E.D.S.); (B.T.); (M.M.); (F.T.)
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.C.); (E.D.S.); (B.T.); (M.M.); (F.T.)
| | - Beatrice Totti
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.C.); (E.D.S.); (B.T.); (M.M.); (F.T.)
| | - Mattia Miroballo
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.C.); (E.D.S.); (B.T.); (M.M.); (F.T.)
| | - Francesco Tamiro
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.C.); (E.D.S.); (B.T.); (M.M.); (F.T.)
| | - Giovanni Rossi
- Department of Hematology and Stem Cell Transplant Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Ada Piepoli
- Hospital Health Department, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.P.); (G.D.V.)
| | - Gabriella De Vincentis
- Hospital Health Department, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.P.); (G.D.V.)
| | - Antonio Greco
- Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Alessandra Mangia
- Liver Unit, Department of Medical Sciences, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Rossella Cianci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy;
| | - Lazzaro Di Mauro
- Clinical Laboratory Analysis and Transfusional Medicine, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (L.D.M.); (G.M.)
| | - Giuseppe Miscio
- Clinical Laboratory Analysis and Transfusional Medicine, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (L.D.M.); (G.M.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.C.); (E.D.S.); (B.T.); (M.M.); (F.T.)
| |
Collapse
|
10
|
Van Tilbeurgh M, Lemdani K, Beignon AS, Chapon C, Tchitchek N, Cheraitia L, Marcos Lopez E, Pascal Q, Le Grand R, Maisonnasse P, Manet C. Predictive Markers of Immunogenicity and Efficacy for Human Vaccines. Vaccines (Basel) 2021; 9:579. [PMID: 34205932 PMCID: PMC8226531 DOI: 10.3390/vaccines9060579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines represent one of the major advances of modern medicine. Despite the many successes of vaccination, continuous efforts to design new vaccines are needed to fight "old" pandemics, such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing immunity, however assessing vaccine efficacy is still challenging and underscores the need for a better understanding of immune protective responses. Identifying reliable predictive markers of immunogenicity can help to select and develop promising vaccine candidates during early preclinical studies and can lead to improved, personalized, vaccination strategies. A systems biology approach is increasingly being adopted to address these major challenges using multiple high-dimensional technologies combined with in silico models. Although the goal is to develop predictive models of vaccine efficacy in humans, applying this approach to animal models empowers basic and translational vaccine research. In this review, we provide an overview of vaccine immune signatures in preclinical models, as well as in target human populations. We also discuss high-throughput technologies used to probe vaccine-induced responses, along with data analysis and computational methodologies applied to the predictive modeling of vaccine efficacy.
Collapse
Affiliation(s)
- Matthieu Van Tilbeurgh
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Katia Lemdani
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Anne-Sophie Beignon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Nicolas Tchitchek
- Unité de Recherche i3, Inserm UMR-S 959, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France;
| | - Lina Cheraitia
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Ernesto Marcos Lopez
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Quentin Pascal
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Pauline Maisonnasse
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Caroline Manet
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| |
Collapse
|
11
|
Seremba E, Ocama P, Ssekitoleko R, Mayanja-Kizza H, Adams SV, Orem J, Katabira E, Reynolds SJ, Nabatanzi R, Casper C, Phipps W. Immune response to the hepatitis B vaccine among HIV-infected adults in Uganda. Vaccine 2021; 39:1265-1271. [PMID: 33516601 DOI: 10.1016/j.vaccine.2021.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/09/2020] [Accepted: 01/16/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Co-infection with hepatitis B virus (HBV) and human immunodeficiency virus (HIV) is common in sub-Saharan Africa (SSA) and can rapidly progress to cirrhosis and hepatocellular carcinoma. Recent data demonstrate ongoing HBV transmission among HIV-infected adults in SSA, suggesting that complications of HIV/HBV co-infection could be prevented with HBV vaccination. Because HBV vaccine efficacy is poorly understood among HIV-infected persons in SSA, we sought to characterize the humoral response to the HBV vaccine in HIV-seropositive Ugandan adults. METHODS We enrolled HIV-infected adults in Kampala, Uganda without serologic evidence of prior HBV infection. Three HBV vaccine doses were administered at 0, 1 and 6 months. Anti-HBs levels were measured 4 weeks after the third vaccine dose. "Response" to vaccination was defined as anti-HBs levels ≥ 10 IU/L and "high response" as ≥ 100 IU/L. Regression analysis was used to determine predictors of response. RESULTS Of 251 HIV-positive adults screened, 132 (53%) had no prior HBV infection or immunity and were enrolled. Most participants were women [89 (67%)]; median (IQR) age was 32 years (27-41), and 68 (52%) had received antiretroviral therapy (ART) for > 3 months. Median (IQR) CD4 count was 426 (261-583), and 64 (94%) of the 68 receiving ART had undetectable plasma HIV RNA. Overall, 117 (92%) participants seroconverted to the vaccine (anti-HBs ≥ 10 IU/L), with 109 (86%) participants having high-level response (anti-HBs ≥ 100 IU/L). In multivariate analysis, only baseline CD4 > 200 cells/mm3 was associated with response [OR = 6.97 (1.34-34.71), p = 0.02] and high-level response [OR = 4.25 (1.15-15.69)], p = 0.03]. CONCLUSION HBV vaccination was effective in eliciting a protective humoral response, particularly among those with higher CD4 counts. Half of the screened patients did not have immunity to HBV infection, suggesting a large at-risk population for HBV infection among HIV-positive adults in Uganda. Our findings support including HBV vaccination as part of routine care among HIV-positive adults.
Collapse
Affiliation(s)
- E Seremba
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.
| | - P Ocama
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - R Ssekitoleko
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - H Mayanja-Kizza
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - S V Adams
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - J Orem
- Uganda Cancer Institute, Kampala, Uganda
| | - E Katabira
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - S J Reynolds
- Johns Hopkins University School of Medicine, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - R Nabatanzi
- School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - C Casper
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Infectious Disease Research Institute Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - W Phipps
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Omersel J, Karas Kuželički N. Vaccinomics and Adversomics in the Era of Precision Medicine: A Review Based on HBV, MMR, HPV, and COVID-19 Vaccines. J Clin Med 2020; 9:E3561. [PMID: 33167413 PMCID: PMC7694388 DOI: 10.3390/jcm9113561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Precision medicine approaches based on pharmacogenomics are now being successfully implemented to enable physicians to predict more efficient treatments and prevention strategies for a given disease based on the genetic background of the patient. This approach has already been proposed for vaccines, but research is lagging behind the needs of society, and precision medicine is far from being implemented here. While vaccinomics concerns the effectiveness of vaccines, adversomics concerns their side effects. This area has great potential to address public concerns about vaccine safety and to promote increased public confidence, higher vaccination rates, and fewer serious adverse events in genetically predisposed individuals. The aim here is to explore the contemporary scientific literature related to the vaccinomic and adversomic aspects of the three most-controversial vaccines: those against hepatitis B, against measles, mumps, and rubella, and against human Papilloma virus. We provide detailed information on the genes that encode human leukocyte antigen, cytokines and their receptors, and transcription factors and regulators associated with the efficacy and safety of the Hepatitis B and Measles, Mumps and Rubella virus vaccines. We also investigate the future prospects of vaccinomics and adversomics of a COVID-19 vaccine, which might represent the fastest development of a vaccine ever.
Collapse
Affiliation(s)
| | - Nataša Karas Kuželički
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
13
|
Yoda T, Katsuyama H. Analysis of antibody-negative medical students after hepatitis B vaccination in Japan. Hum Vaccin Immunother 2020; 17:852-856. [PMID: 32755433 PMCID: PMC7993232 DOI: 10.1080/21645515.2020.1788309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis B virus (HBV) vaccination is recommended for health-care professionals because of their frequent contact with blood. At one medical school, new students undergo HBV antibody tests upon admission, and antibody-negative individuals receive the HBV vaccine. We aimed to characterize individuals who remained antibody negative after HBV vaccination. Between 2009 and 2017, we enrolled 1064 first-year students from a medical school where their HBV antibody test and vaccination records remained. We analyzed data regarding the hepatitis B surface antibody (anti-HBs) test record during admission, vaccination record for antibody-negative participants, anti-HBs test result after completing the three vaccination doses, drug name of the vaccine used, sex, body mass index (BMI), and age. We calculated the yearly percentage of antibody-negative individuals and analyzed the characteristics of vaccine-refractory cases by logistic regression analysis. Of the 1064 participants, 999 were initially antibody negative. They were vaccinated with HBV thrice and tested for antibodies after vaccination. The average age of participants was 20.1 y, with 677 males. Although the type of vaccine has been changed since 2016, the average rate of refractoriness from 2009 to 2015 was 6.9% per year and 18.6% after 2016. Logistic regression analyses showed that sex (male vs. female; OR, 1.787), BMI (OR. 1.171), and vaccine type (genotype A vs. genotype C: OR, 3.144) were significant factors associated with antibody-negative individuals. Vaccine type differences altered the proportion of antibody-refractory individuals, with no association with age. The data on vaccine refractoriness will be continuously analyzed in the future while considering other factors.
Collapse
Affiliation(s)
- Takeshi Yoda
- Department of Public Health, Kawasaki Medical School, Kurashiki, Japan.,Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | | |
Collapse
|
14
|
O'Connor D, Png E, Khor CC, Snape MD, Hill AVS, van der Klis F, Hoggart C, Levin M, Hibberd ML, Pollard AJ. Common Genetic Variations Associated with the Persistence of Immunity following Childhood Immunization. Cell Rep 2020; 27:3241-3253.e4. [PMID: 31189108 DOI: 10.1016/j.celrep.2019.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/25/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
Vaccines have revolutionized public health, preventing millions of deaths each year, particularly in childhood. Yet, there is considerable variability in the magnitude and persistence of vaccine-induced immunity. Maintenance of specific antibody is essential for continuity of vaccine-induced serological protection. We conducted a genome-wide association study into the persistence of immunity to three childhood vaccines: capsular group C meningococcal (MenC), Haemophilus influenzae type b, and tetanus toxoid (TT) vaccines. We detail associations between variants in a locus containing a family of signal-regulatory proteins and the persistence MenC immunity. We postulate a regulatory role for the lead SNP, with supporting epigenetic and expression quantitative trait loci data. Furthermore, we define associations between SNPs in the human leukocyte antigen (HLA) locus and the persistence of TT-specific immunity. Moreover, we describe four classical HLA alleles, HLA DRB1∗0301, HLA DQB1∗0201, HLA DQB1∗0602, and HLA DRB1∗1501, associated with TT-specific immunity, independent of the lead SNP association.
Collapse
Affiliation(s)
- Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Eileen Png
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Matthew D Snape
- Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Adrian V S Hill
- NIHR Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Fiona van der Klis
- Centre for Infectious Disease Control Netherlands, RIVM, Bilthoven, the Netherlands
| | - Clive Hoggart
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Michael Levin
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
15
|
Chambuso RS, Rebello G, Kaambo E. Personalized Human Papillomavirus Vaccination for Persistence of Immunity for Cervical Cancer Prevention: A Critical Review With Experts' Opinions. Front Oncol 2020; 10:548. [PMID: 32391264 PMCID: PMC7191065 DOI: 10.3389/fonc.2020.00548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
The development of cervical cancer has been shown to involve both viral and host factors. The host factors are those that determine the specific response to human papillomavirus (HPV) infection by the patient's immune system. The immune responses to vaccines have been shown to be influenced by polymorphisms in genes involved in innate and adaptive immunity. The specific genetic variants that may influence the immune responses to HPV vaccine which may contribute to persistence of immunity (POI) have not been widely studied yet. In order to address the question as to “is it right to vaccinate all children, and all with equal dose?” we have critically examined the knowledge of common immunogenetic and immunogenomic variations that may influence the HPV vaccine POI across various populations. We have also identified a number of specific research questions that need to be addressed in future research into host molecular genetic variations and HPV vaccine POI in order to afford life-long protection against the development of cervical cancer. This work informs future insights for improved HPV vaccine designs based on common host molecular genetic variations.
Collapse
Affiliation(s)
- Ramadhani Salum Chambuso
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,MRC Unit for Genomic and Precision Medicine, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - George Rebello
- MRC Unit for Genomic and Precision Medicine, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Evelyn Kaambo
- Department of Biochemistry and Medical Microbiology, School of Medicine, University of Namibia, Windhoek, Namibia.,Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Ren W, Ren J, Wu Z, Shen L, Shan H, Dai X, Li J, Liu Y, Qiu Y, Yao J, Li L. Long-term persistence of anti-HBs after hepatitis B vaccination among adults: 8-year results. Hum Vaccin Immunother 2020; 16:687-692. [PMID: 31526223 DOI: 10.1080/21645515.2019.1666612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The long-term persistence of hepatitis B surface antibody (anti-HBs) after hepatitis B vaccination among adults was not known clearly. This study aimed to assess the immunogenicity and persistence of antibodies 8 years after hepatitis B immunization with different vaccination schedules among adults who tested negative for hepatitis B surface antigen (HBsAg), anti-HBs, and hepatitis B core antibody (anti-HBc). A total of 771 participants who received the full vaccination course (three doses) and also had a blood sample taken 1 month after the first vaccination were recruited. Of these, 529 were excluded due to the missing data of anti-HBs 8 years after the first vaccination. Vaccinations were carried out at 0-1-3, 0-1-6 and 0-1-12 month vaccination schedules, and 104, 45, and 93 participants were included, respectively. The positive seroprotection rate was 85.9% 1 month after the third vaccination, and 58.3% 8 years later (χ2 = 54.52, P < .001), while the geometric mean titer (GMT) of anti-HBs was 158.49 mIU/mL [95% confidence interval (CI): 131.83-190.55)] and 15.14 mIU/mL (95% CI: 10.96-20.42) after 1 month and 8 years, respectively. Compared with the standard 0-1-6 month vaccination schedule, the positive seroprotection rate and the GMT of the 0-1-3 month vaccination schedule had no difference. The long-term immune effect of the 0-1-3 month vaccination schedule was better than that of the 0-1-12 month vaccination schedule. No correlation was found between the GMT of anti-HBs 1 month and 8 years later.
Collapse
Affiliation(s)
- Wen Ren
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Ren
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zikang Wu
- Department of Immunology, Zhejiang Provincial Center for Disease Control and prevention, Hangzhou, Zhejiang, China
| | - Lingzhi Shen
- Department of Immunology, Zhejiang Provincial Center for Disease Control and prevention, Hangzhou, Zhejiang, China
| | - Huan Shan
- Department of Quality Management, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xuewei Dai
- Department of Information, Jingdezhen Center for Disease Control and prevention, Jingdezhen, Jiangxi, China
| | - Jing Li
- Department of Quality Management, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Ying Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Qiu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yao
- Department of Immunology, Zhejiang Provincial Center for Disease Control and prevention, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Zhang Z, Wang C, Liu Z, Zou G, Li J, Lu M. Host Genetic Determinants of Hepatitis B Virus Infection. Front Genet 2019; 10:696. [PMID: 31475028 PMCID: PMC6702792 DOI: 10.3389/fgene.2019.00696] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is still a major health problem worldwide. Recently, a great number of genetic studies based on single nucleotide polymorphisms (SNPs) and genome-wide association studies have been performed to search for host determinants of the development of chronic HBV infection, clinical outcomes, therapeutic efficacy, and responses to hepatitis B vaccines, with a focus on human leukocyte antigens (HLA), cytokine genes, and toll-like receptors. In addition to SNPs, gene insertions/deletions and copy number variants are associated with infection. However, conflicting results have been obtained. In the present review, we summarize the current state of research on host genetic factors and chronic HBV infection, its clinical type, therapies, and hepatitis B vaccine responses and classify published results according to their reliability. The potential roles of host genetic determinants of chronic HBV infection identified in these studies and their clinical significance are discussed. In particular, HLAs were relevant for HBV infection and pathogenesis. Finally, we highlight the need for additional studies with large sample sizes, well-matched study designs, appropriate statistical methods, and validation in multiple populations to improve the treatment of HBV infection.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Changtai Wang
- Department of Infectious Diseases, the Affiliated Anqing Hospital of Anhui Medical University, Anqing, China
| | - Zhongping Liu
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guizhou Zou
- Department of Infectious Diseases, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- College of Pharmacy, Anhui Medical University, Hefei, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Abstract
There is substantial variation between individuals in the immune response to vaccination. In this review, we provide an overview of the plethora of studies that have investigated factors that influence humoral and cellular vaccine responses in humans. These include intrinsic host factors (such as age, sex, genetics, and comorbidities), perinatal factors (such as gestational age, birth weight, feeding method, and maternal factors), and extrinsic factors (such as preexisting immunity, microbiota, infections, and antibiotics). Further, environmental factors (such as geographic location, season, family size, and toxins), behavioral factors (such as smoking, alcohol consumption, exercise, and sleep), and nutritional factors (such as body mass index, micronutrients, and enteropathy) also influence how individuals respond to vaccines. Moreover, vaccine factors (such as vaccine type, product, adjuvant, and dose) and administration factors (schedule, site, route, time of vaccination, and coadministered vaccines and other drugs) are also important. An understanding of all these factors and their impacts in the design of vaccine studies and decisions on vaccination schedules offers ways to improve vaccine immunogenicity and efficacy.
Collapse
|
19
|
Lee LY, Chan SM, Ong C, M Aw M, Wong F, Saw S, Lee GH, Thoon KC, Phua KB. Comparing monovalent and combination hepatitis B vaccine outcomes in children delivered by mothers with chronic hepatitis B. J Paediatr Child Health 2019; 55:327-332. [PMID: 30161273 DOI: 10.1111/jpc.14194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/06/2018] [Accepted: 07/08/2018] [Indexed: 12/19/2022]
Abstract
AIM We compared the vaccine effectiveness of monovalent and combination hepatitis B vaccine regimens in infants born to chronic hepatitis B carrier mothers. METHODS An observational cohort of neonates was recruited over 78 months from two public hospital maternity units in Singapore. We enrolled term infants, born to chronic hepatitis B surface antigen-positive mothers regardless of their hepatitis Be antigen status, who completed the hepatitis B virus (HBV) vaccination programme in Singapore. Infants born to mothers on antiviral therapy, or with concurrent hepatitis C or human immunodeficiency virus infection were excluded. All infants received hepatitis B immunoglobulin at birth. One group received three doses of monovalent hepatitis B vaccine (0, 1, 6 months) (regimen A). The other group received two doses of monovalent vaccine, followed by one dose combination vaccine DTaP-IPV-Hib-HBV (0, 1, 6 months) (regimen B). Vaccine effectiveness was determined by immunoprophylaxis failure leading to HBV vertical transmission. Immunogenicity was assessed by hepatitis B surface antibody (anti-HBs) levels at 9 months of age. RESULTS Total of 177 term neonates received regimen A and 115 received regimen B. Immunoprophylaxis failure rate was low, 2.3 and 2.6% (P = 1.00) in regimen A and B, respectively. Mean anti-HBs titres were similar at 643 ± 374 and 561 ± 396 IU/L (P = 0.08) for regimen A and B, respectively. CONCLUSION Hepatitis B vaccine regimens using monovalent or combination vaccine for the third dose showed similarly high vaccine effectiveness and low immunoprophylaxis failure rate in term infants born to chronic hepatitis B carrier mothers.
Collapse
Affiliation(s)
- Le Y Lee
- Department of Neonatology, National University Health System, Singapore.,Department of Paediatrics, National University of Singapore, Singapore
| | - Si M Chan
- Department of Paediatrics, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Christina Ong
- Department of Paediatrics, KK Women and Children's Hospital, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Marion M Aw
- Department of Paediatrics, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Franco Wong
- Jurong Polyclinic, National Healthcare Group Polyclinics, Singapore.,Jurong Polyclinic, National University Polyclinics, Singapore
| | - Sharon Saw
- Department of Laboratory Medicine, National University Health System, Singapore
| | - Guan H Lee
- Department of Medicine, National University Health System, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Koh C Thoon
- Department of Paediatrics, KK Women and Children's Hospital, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Kong B Phua
- Department of Paediatrics, KK Women and Children's Hospital, Singapore.,Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
20
|
Wyatt L, Permar SR, Ortiz E, Berky A, Woods CW, Amouou GF, Itell H, Hsu-Kim H, Pan W. Mercury Exposure and Poor Nutritional Status Reduce Response to Six Expanded Program on Immunization Vaccines in Children: An Observational Cohort Study of Communities Affected by Gold Mining in the Peruvian Amazon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040638. [PMID: 30795575 PMCID: PMC6406457 DOI: 10.3390/ijerph16040638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 01/02/2023]
Abstract
Background: Poor nutritional status combined with mercury exposure can generate adverse child health outcomes. Diet is a mediator of mercury exposure and evidence suggests that nutritional status modifies aspects of mercury toxicity. However, health impacts beyond the nervous system are poorly understood. This study evaluates antibody responses to six vaccines from the expanded program on immunization (EPI), including hepatitis B, Haemophilus influenzae type B, measles, pertussis, tetanus, and diphtheria in children with variable hair mercury and malnutrition indicators. Methods: An observational cohort study (n = 98) was conducted in native and non-native communities in Madre de Dios, Peru, a region with elevated mercury exposure from artisanal and small-scale gold mining. Adaptive immune responses in young (3–48 months) and older children (4–8 year olds) were evaluated by vaccine type (live attenuated, protein subunits, toxoids) to account for differences in response by antigen, and measured by total IgG concentration and antibody (IgG) concentrations of each EPI vaccine. Mercury was measured from hair samples and malnutrition determined using anthropometry and hemoglobin levels in blood. Generalized linear mixed models were used to evaluate associations with each antibody type. Results: Changes in child antibodies and protection levels were associated with malnutrition indicators, mercury exposure, and their interaction. Malnutrition was associated with decreased measles and diphtheria-specific IgG. A one-unit decrease in hemoglobin was associated with a 0.17 IU/mL (95% CI: 0.04–0.30) decline in measles-specific IgG in younger children and 2.56 (95% CI: 1.01–6.25) higher odds of being unprotected against diphtheria in older children. Associations between mercury exposure and immune responses were also dependent on child age. In younger children, one-unit increase in log10 child hair mercury content was associated with 0.68 IU/mL (95% CI: 0.18–1.17) higher pertussis and 0.79 IU/mL (95% CI: 0.18–1.70) higher diphtheria-specific IgG levels. In older children, child hair mercury content exceeding 1.2 µg/g was associated with 73.7 higher odds (95% CI: 2.7–1984.3) of being a non-responder against measles and hair mercury content exceeding 2.0 µg/g with 0.32 IU/mL (95% CI: 0.10–0.69) lower measles-specific antibodies. Log10 hair mercury significantly interacted with weight-for-height z-score, indicating a multiplicative effect of higher mercury and lower nutrition on measles response. Specifically, among older children with poor nutrition (WHZ = −1), log10 measles antibody is reduced from 1.40 to 0.43 for low (<1.2 µg/g) vs. high mercury exposure, whereas for children with good nutritional status (WHZ = 1), log10 measles antibody is minimally changed for low vs. high mercury exposure (0.72 vs. 0.81, respectively). Conclusions: Child immune response to EPI vaccines may be attenuated in regions with elevated mercury exposure risk and exacerbated by concurrent malnutrition.
Collapse
Affiliation(s)
- Lauren Wyatt
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA.
| | - Sallie Robey Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ernesto Ortiz
- Global Health Institute, Duke University, Durham, NC 27710, USA.
| | - Axel Berky
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA.
| | - Christopher W Woods
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | - Hannah Itell
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27710, USA.
| | - William Pan
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA.
- Global Health Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: A review. Vaccine 2017; 36:5350-5357. [PMID: 28774561 PMCID: PMC5792371 DOI: 10.1016/j.vaccine.2017.07.062] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
At the current time, the field of vaccinology remains empirical in many respects. Vaccine development, vaccine immunogenicity, and vaccine efficacy have, for the most part, historically been driven by an empiric “isolate-inactivate-inject” paradigm. In turn, a population-level public health paradigm of “the same dose for everyone for every disease” model has been the normative thinking in regard to prevention of vaccine-preventable infectious diseases. In addition, up until recently, no vaccines had been designed specifically to overcome the immunosenescence of aging, consistent with a post-WWII mentality of developing vaccines and vaccine programs for children. It is now recognized that the current lack of knowledge concerning how immune responses to vaccines are generated is a critical barrier to understanding poor vaccine responses in the elderly and in immunoimmaturity, discovery of new correlates of vaccine immunogenicity (vaccine response biomarkers), and a directed approach to new vaccine development. The new fields of vaccinomics and adversomics provide models that permit global profiling of the innate, humoral, and cellular immune responses integrated at a systems biology level. This has advanced the science beyond that of reductionist scientific approaches by revealing novel interactions between and within the immune system and other biological systems (beyond transcriptional level), which are critical to developing “downstream” adaptive humoral and cellular responses to infectious pathogens and vaccines. Others have applied systems level approaches to the study of antibody responses (a.k.a. “systems serology”), [1] high-dimensional cell subset immunophenotyping through CyTOF, [2,3] and vaccine induced metabolic changes [4]. In turn, this knowledge is being utilized to better understand the following: identifying who is at risk for which infections; the level of risk that exists regarding poor immunogenicity and/or serious adverse events; and the type or dose of vaccine needed to fully protect an individual. In toto, such approaches allow for a personalized approach to the practice of vaccinology, analogous to the substantial inroads that individualized medicine is playing in other fields of human health and medicine. Herein we briefly review the field of vaccinomics, adversomics, and personalized vaccinology.
Collapse
Affiliation(s)
- G A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - I G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - R B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Liu X, Zhang L, Wu XP, Zhu XL, Pan LP, Li T, Yan BY, Xu AQ, Li H, Liu Y. Polymorphisms in IRG1 gene associated with immune responses to hepatitis B vaccination in a Chinese Han population and function to restrain the HBV life cycle. J Med Virol 2017; 89:1215-1223. [PMID: 28004399 DOI: 10.1002/jmv.24756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022]
Abstract
Vaccination against the hepatitis B virus (HBV) is extensively used as an effective method to prevent HBV infection. However, nearly 10% of healthy adults fail to produce a protective level of antibodies against the hepatitis B vaccine, and multiple genetic variants are known to affect the immune response to the hepatitis B vaccine. The aim of the present study was to investigate the association between polymorphisms in immunoresponsive gene 1 (IRG1) gene and the immune response to hepatitis B vaccination in a Chinese Han population. Four single nucleotide polymorphisms (SNPs) located in the IRG1 gene were genotyped in 1230 high-responders and 451 non-responders to hepatitis B vaccination. The SNPs rs17470171 and rs17385627 were associated with the immune response to hepatitis B vaccination (P = 0.014 and 0.029, respectively). In addition, the haplotypes G-A-A-A (rs614171-rs17470171-rs9530614-rs17385627, P = 0.0042, OR = 0.68) and A-A (rs17470171-rs17385627, P = 0.0065, OR = 0.72) exerted a protective role in the immune response to hepatitis B vaccination. Allele 'A' of rs17470171 and allele 'A' of rs17385627 show higher levels of expression for the IRG1 gene compared with allele 'C' of rs17470171 and allele 'T' of rs17385627 as demonstrated by luciferase reporter and overexpression assays. In addition, we observed that IRG1 inhibited the HBV life cycle and that IRG1 rs17385627 allele 'A' was more effective than rs17385627 allele 'T' at eliminating HBV in HepG2.2.15 cells. These findings suggest that polymorphisms in the IRG1 gene are associated with the immune response to hepatitis B vaccination. The antiviral effect of IRG1 was confirmed using HBV infection cell models.
Collapse
Affiliation(s)
- Xing Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiao-Pan Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xi-Lin Zhu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li-Ping Pan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bing-Yu Yan
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ai-Qiang Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Hui Li
- Department of Epidemiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ying Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Akgöllü E, Bilgin R, Akkız H, Ülger Y, Kaya BY, Karaoğullarından Ü, Arslan YK. Association between chronic hepatitis B virus infection and HLA-DP gene polymorphisms in the Turkish population. Virus Res 2017; 232:6-12. [PMID: 28119119 DOI: 10.1016/j.virusres.2017.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022]
Abstract
AIM Hepatitis B virus (HBV) affects approximately 360 million people worldwide. 10-15% of patients with chronic HBV develop liver cirrhosis (LC), liver failure and hepatocellular carcinoma (HCC). Chronic HBV infection or HBV clearance is influenced by both viral and host factors. In genome-wide association studies (GWAS), the human leukocyte antigen (HLA) gene polymorphisms rs3077 and rs9277535 were identified to be associated with chronic hepatitis B. HLA genes have been linked to immune response to infectious agents. Genetic variants in HLA genes influence HLA mRNA expression which might also affect antigen presentation. We evaluated the association between HLA gene polymorphisms and the risk for persistent HBV infection. METHODS In the current study, HLA gene polymorphisms were investigated in a case-control study of 294 chronic HBV patients and 234 persons with HBV natural clearance by using a real-time polymerase chain reaction (RT-PCR). RESULTS The results showed that rs9277535 allele frequency is associated with HBV infection in the Turkish subjects examined (P=0.048). However, no association was found for rs3077. Additionally, the AG haplotype block showed a protective effect against the risk of persistent HBV infection (for the rs3077A/rs9277535G, OR=0.52; 95% 0.34-0.80, P=0.003). CONCLUSIONS Our results, for the first time, demonstrate that HLA-DPB1 gene rs9277535A allele has a major effect on the risk of persistent HBV infection. We suggest that further independent studies are necessary to clarify the association of these polymorphisms with persistence or natural clearance of HBV infection in Caucasian populations.
Collapse
Affiliation(s)
- Ersin Akgöllü
- Çukurova University, Faculty of Medicine, Department of Gastroenterology, Adana, Turkey.
| | - Ramazan Bilgin
- Department of Chemistry, Arts and Science Faculty, Çukurova University, Adana, Turkey.
| | - Hikmet Akkız
- Çukurova University, Faculty of Medicine, Department of Gastroenterology, Adana, Turkey.
| | - Yakup Ülger
- Çukurova University, Faculty of Medicine, Department of Gastroenterology, Adana, Turkey.
| | - Berrin Yalınbaş Kaya
- Çukurova University, Faculty of Medicine, Department of Gastroenterology, Adana, Turkey.
| | - Ümit Karaoğullarından
- Çukurova University, Faculty of Medicine, Department of Gastroenterology, Adana, Turkey.
| | - Yusuf Kemal Arslan
- Çukurova University, Faculty of Medicine, Department of Biostatistics, Adana, Turkey.
| |
Collapse
|
24
|
Blackburn TE, Santiago T, Burrows PD. FCRLA-A Resident Endoplasmic Reticulum Protein that Associates with Multiple Immunoglobulin Isotypes in B Lineage Cells. Curr Top Microbiol Immunol 2017; 408:47-65. [PMID: 28879521 DOI: 10.1007/82_2017_40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
FCRLA is homologous to receptors for the Fc portion of IgG (FcγR) and is located in the same region of human chromosome one, but has several unusual and unique features. It is a soluble resident ER protein retained in this organelle by unknown mechanisms involving the N-terminal domain, a disordered domain with three Cys residues in close proximity in the human protein. Unlike the FcγRs, FCRLA is not glycosylated and has no transmembrane region. FCRLA is included in this CTMI volume on IgM-binding proteins because it binds IgM in the ER, but quite surprisingly, given the isotype-restricted ligand specificity of the other FcRs, it also binds all other Ig isotypes so far tested, IgG and IgA. In the case of IgM, there is even preferential binding of the secretory and not the transmembrane form. Among B cells, FCRLA is most highly expressed in the germinal center and shows little expression in plasma cells. Based on these observations, we propose that one human FCRLA function is to stop GC B cells from secreting IgM, which would act as a decoy receptor, thus preventing the B cells from capturing antigen, processing it, and presenting the antigen-derived peptides to T follicular helper cells. Without help from these T cells, there would be limited B cell isotype switching, proliferation, and differentiation. On the other hand, FCRLA is downregulated in plasma cells, where IgM secretion is an essential function. FCRLA may also act as a chaperone involved by unknown mechanisms in the proper assembly of Ig molecules of all isotypes.
Collapse
Affiliation(s)
- Tessa E Blackburn
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
John M, Gaudieri S, Mallal S. Immunogenetics and Vaccination. HUMAN VACCINES 2017. [DOI: 10.1016/b978-0-12-802302-0.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Lusida MI, Juniastuti, Yano Y. Current hepatitis B virus infection situation in Indonesia and its genetic diversity. World J Gastroenterol 2016; 22:7264-7274. [PMID: 27621573 PMCID: PMC4997646 DOI: 10.3748/wjg.v22.i32.7264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/27/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Indonesia has a moderate to high endemicity of hepatitis B virus (HBV) infection. The risk for chronic HBV infection is highest among those infected during infancy. Since 1997, hepatitis B (HepB) vaccination of newborns has been fully integrated into the National Immunization Program. Although HBV infection has been reduced by the universal newborn HepB immunization program, it continues to occur in Indonesia. The low birth dose coverage and the presence of vaccine escape mutants might contribute to this endemicity among children. Although limited information is available for an analysis of occult HBV infection (OBI), several variations and substitutions in the pre-S/S region have been detected in Indonesian HBV strains. Additionally, persistent infection and disease progression of chronic hepatitis B are related to not only viral factors but also the host genome. Indonesia is one of the most ethnically heterogeneous nations, with Javanese and Sundanese as the two highest ethnic groups. This multi-ethnicity makes genomic research in Indonesia difficult. In this article, we focused on and reviewed the following aspects: the current hepatitis B immunization program and its efficacy, OBI, HBV infection among high-risk patients, such as hemodialysis patients, and research regarding the host genome in Indonesia.
Collapse
|
27
|
Association of HLA-DP variants with the responsiveness to Hepatitis B virus vaccination in Korean Infants. Vaccine 2016; 34:2602-7. [PMID: 27083422 DOI: 10.1016/j.vaccine.2016.03.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/15/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
Abstract
Recently, HLA-DP single nucleotide polymorphisms (SNPs) have been reported to be related to responsiveness to hepatitis B virus (HBV) vaccination. The aim of this study was to investigate associations between HLA-DP SNPs and responsiveness to HBV vaccine in Korean infants. A total of 290 healthy Korean infants who were registered to Seoul Metropolitan Public Cord Blood Bank during the period of February 2007 to December 2011 were enrolled. Anti-HBs antibody level was analyzed after three doses of HBV vaccination. Genotyping of HLA-DPA1 SNPs (rs3077 and rs3830066) and HLA-DPB1 SNPs (rs7770370, rs7770501, rs3128961, and rs9277535) were performed by PCR-sequencing. HLA-A, -B, and -DRB1 genotyping was also performed by PCR-sequence-specific oligonucleotide probe kits. HLA-DPB1 SNPs (rs7770370, rs7770501, rs3128961, and rs9277535) were associated with HBV vaccine response. Allele frequencies of rs7770370 A, rs7770501 C, rs3128961 G, and rs9277535 A were significantly higher in responders than in non-responders (all p<0.01). Anti-HBs antibody levels were different according to genotypes of DPB1 rs7770370, rs7770501, rs3128961, and rs9277535 (all p<0.01). In multivariate analysis, HLA-DPB1 rs7770370 AA genotype was significantly associated with HBV vaccine response (relative risk, RR=2.5, p=0.033) and high-titer vaccine response (RR=2.7, p<0.001). In conclusion, HLA-DPB1 SNPs were significantly associated with responses to HBV vaccination in Korean infants.
Collapse
|
28
|
Yao J, Ren W, Chen Y, Jiang Z, Shen L, Shan H, Dai X, Li J, Liu Y, Qiu Y, Ren J. Responses to hepatitis B vaccine in isolated anti-HBc positive adults. Hum Vaccin Immunother 2016; 12:1847-51. [PMID: 27065099 DOI: 10.1080/21645515.2016.1139256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Immune responses of isolated anti-HBc subjects are not well characterized in populations in China. This study aimed to evaluate immune responses to hepatitis B vaccination in isolated anti-HBc positive subjects. A cohort of 608 subjects were selected and separated into isolated anti-HBc (negative for HBsAg and anti-HBs, positive for anti-HBc) and control (negative for HBsAg, anti-HBs, and anti-HBc) groups, who were matched by age and sex. All subjects received 3 doses of hepatitis B vaccine (20μg) at months 0, 1, and 3, followed by testing for serological responses 1 month after the third vaccination. The positive seroprotection rate and geometric mean titer (GMT) for hepatitis B surface antibody (anti-HBs) of isolated anti-HBc subjects were significantly lower than those in the control group(86.2% vs.92.1%, P = 0.02; 47.26 vs.97.81 mIU/mL, P < 0.001). When stratified by age, positive seroprotection rate in the isolated anti-HBc group were 92%, 88.5% and 79.4% in the 20-34, 35-49, and 50-60 y old subgroups, respectively (χ2 = 5.919, P = 0.04). Additionally, the GMT level for anti-HBs in the isolated anti-HBc group for different age subgroups were 104.43, 47.87 and 31.79 mIU/mL respectively (χ2 = 19.44, P < 0.001). The GMT level for anti-HBc before vaccination were negatively correlated with GMT for anti-HBs after 3 doses of hepatitis B vaccine (r = -0.165, P < 0.001). In conclusion, isolated anti-HBc positive subjects can achieve good immune responses after hepatitis B vaccination, and the positive seroprotection rate and GMT level for anti-HBs were lower than the control group. Better responses could be observed in young adults, and significant negative correlations were found between GMT of anti-HBc before vaccination and GMT of anti-HBs after vaccination.
Collapse
Affiliation(s)
- Jun Yao
- a Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou , Zhejiang , China
| | - Wen Ren
- b General Practice Department , the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Yongdi Chen
- a Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou , Zhejiang , China
| | - Zhenggang Jiang
- a Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou , Zhejiang , China
| | - Lingzhi Shen
- a Zhejiang Provincial Center for Disease Control and Prevention , Hangzhou , Zhejiang , China
| | - Huan Shan
- c Zhejiang Provincial Hospital , Hangzhou , Zhejiang , China
| | - Xuewei Dai
- d Jingdezhen Center for Disease Control and Prevention , Jingdezhen , Jiangxi , China
| | - Jing Li
- c Zhejiang Provincial Hospital , Hangzhou , Zhejiang , China
| | - Ying Liu
- b General Practice Department , the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Yan Qiu
- b General Practice Department , the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| | - Jingjing Ren
- b General Practice Department , the First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou , Zhejiang , China
| |
Collapse
|
29
|
Poland GA, Whitaker JA, Poland CM, Ovsyannikova IG, Kennedy RB. Vaccinology in the third millennium: scientific and social challenges. Curr Opin Virol 2016; 17:116-125. [PMID: 27039875 PMCID: PMC4902778 DOI: 10.1016/j.coviro.2016.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022]
Abstract
The epidemiology of deaths due to vaccine-preventable diseases has been significantly and positively altered through the use of vaccines. Despite this, significant challenges remain in vaccine development and use in the third millennium. Both new (Ebola, Chikungunya, Zika, and West Nile) and re-emerging diseases (measles, mumps, and influenza) require the development of new or next-generation vaccines. The global aging of the population, and accumulating numbers of immunocompromised persons, will require new vaccine and adjuvant development to protect large segments of the population. After vaccine development, significant challenges remain globally in the cost and efficient use and acceptance of vaccines by the public. This article raises issues in these two areas and suggests a way forward that will benefit current and future generations.
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jennifer A Whitaker
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Caroline M Poland
- Taylor University Counseling Center, Taylor University, Upland, IN 46989, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Mentzer AJ, O'Connor D, Pollard AJ, Hill AVS. Searching for the human genetic factors standing in the way of universally effective vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0341. [PMID: 25964463 DOI: 10.1098/rstb.2014.0341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| |
Collapse
|
31
|
Impaired Antigen-Specific Immune Response to Vaccines in Children with Antibody Production Defects. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:875-82. [PMID: 26018535 DOI: 10.1128/cvi.00148-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
The impaired synthesis of antigen-specific antibodies, which is indispensable for an adaptive immune response to infections, is a fundamental pathomechanism that leads to clinical manifestations in children with antibody production defects. The aim of this study was to evaluate the synthesis of antigen-specific antibodies following immunization in relation to peripheral blood B cell subsets in young children with hypogammaglobulinemia. Twenty-two children, aged from 8 to 61 months, with a deficiency in one or more major immunoglobulin classes participated in the study. Postvaccination antibodies against tetanus and diphtheria toxoids, the surface antigen of the hepatitis B virus, and the capsular Haemophilus influenzae type b polysaccharide antigen were assessed along with an immunophenotypic evaluation of peripheral blood B lymph cell maturation. A deficiency of antibodies against the tetanus toxoid was assessed in 73% of cases and that against the diphtheria toxoid was assessed in 68% of cases, whereas a deficiency of antibodies against the surface antigen of the hepatitis B virus was revealed in 59% of the children included in the study. A defective response to immunization with a conjugate vaccine with the Haemophilus influenzae type b polysaccharide antigen was demonstrated in 55% of hypogammaglobulinemic patients. Increased proportions of transitional B lymph cells and an accumulation of plasmablasts accompanied antibody deficiencies. The defective response to vaccine protein and polysaccharide antigens is a predominating disorder of humoral immunity in children with hypogammaglobulinemia and may result from a dysfunctional state of the cellular elements of the immune system.
Collapse
|
32
|
S100A9: A Potential Biomarker for the Progression of Non-Alcoholic Fatty Liver Disease and the Diagnosis of Non-Alcoholic Steatohepatitis. PLoS One 2015; 10:e0127352. [PMID: 25993652 PMCID: PMC4437778 DOI: 10.1371/journal.pone.0127352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/14/2015] [Indexed: 01/01/2023] Open
Abstract
Non-alcoholic fatty liver (NAFL) has the potential to progress to non-alcoholic steatohepatitis (NASH) or to promote type 2 diabetes mellitus (T2DM). However, NASH and T2DM do not always develop coordinately. Additionally, there are no definite noninvasive methods for NASH diagnosis currently. We established rat models of NAFL, NASH, and NAFL + T2DM to recapitulate different phenotypes associated with non-alcoholic fatty liver disease (NAFLD) and its progression. Histologic features of rat livers were scored according to criteria established by the Nonalcoholic Steatohepatitis Clinical Research Network. Microarray was performed to assess gene expression changes in rat livers. We find that gene expression of s100a9 was higher in NAFL group compared with control, and was increased in NASH groups and decreased in NAFL + T2DM group compared with NAFL. In contrast, srebf1, tbx21, and gimap4 only showed limited discriminating abilities in different groups. There is a significant positive correlation between serum levels of S100A9 and NAFLD Activity Score (NAS), the severity of hepatic steatosis, and lobular inflammation (r = 0.80, 0.64 and 0.86, P < 0.001). These findings suggest that S100A9 may be extremely useful in the diagnosis of NASH (AUROC: 0.947, CI: 0.845-1.049). Additionally, serum S100A9 levels displayed a strong correlation with ALT, AST and TBil (r = 0.81, 0.89 and 0.91, P < 0.001) but a weak correlation with FBG, HOMA-IR, TG, and TC (r = -0.41, -0.40, 0.47 and 0.49, P < 0.05). Conclusions: The results we provide here suggest that S100A9 may be useful as a biomarker for the hepatic and metabolic progression of NAFLD and the non-invasive diagnosis of NASH.
Collapse
|
33
|
Newport MJ. The genetic regulation of infant immune responses to vaccination. Front Immunol 2015; 6:18. [PMID: 25699041 PMCID: PMC4313718 DOI: 10.3389/fimmu.2015.00018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/09/2015] [Indexed: 12/16/2022] Open
Abstract
A number of factors are recognized to influence immune responses to vaccinations including age, gender, the dose, and quality of the antigen used, the number of doses given, the route of administration, and the nutritional status of the recipient. Additionally, several immunogenetic studies have identified associations between polymorphisms in genes encoding immune response proteins, both innate and adaptive, and variation in responses to vaccines. Variants in the genes encoding Toll-like receptors, HLA molecules, cytokines, and cytokine receptors have associated with heterogeneity of responses to a wide range of vaccines including measles, hepatitis B, influenza A, BCG, Haemophilus influenzae type b, and certain Neisseria meningitidis serotypes, amongst others. However, the vast majority of these studies have been conducted in older children and adults and there are very few data available from studies conducted in infants. This paper reviews the evidence to date that host genes influencing vaccines responses in these older population and identifies a large gap in our understanding of the genetic regulation of responses in early life. Given the high mortality from infection in early life and the challenges of developing vaccines that generate effective immune responses in the context of the developing immune system further research on infant populations is required.
Collapse
Affiliation(s)
- Melanie J. Newport
- Division of Clinical Medicine, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
34
|
Tong HV, Thomas Bock C, Velavan TP. Genetic insights on host and hepatitis B virus in liver diseases. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:65-75. [PMID: 25475418 DOI: 10.1016/j.mrrev.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 02/08/2023]
|
35
|
Garman L, Vineyard AJ, Crowe SR, Harley JB, Spooner CE, Collins LC, Nelson MR, Engler RJM, James JA. Humoral responses to independent vaccinations are correlated in healthy boosted adults. Vaccine 2014; 32:5624-31. [PMID: 25140930 PMCID: PMC4323156 DOI: 10.1016/j.vaccine.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/11/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults. METHODS Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses. RESULTS Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001). CONCLUSIONS Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections.
Collapse
Affiliation(s)
- Lori Garman
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104, USA
| | - Amanda J Vineyard
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA
| | - Sherry R Crowe
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | | | - Limone C Collins
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Michael R Nelson
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Renata J M Engler
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Judith A James
- Oklahoma Medical Research Foundation, Department of Arthritis and Clinical Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104, USA; Oklahoma University Health Science Center, Departments of Medicine and Pathology, Oklahoma City, OK 73104, USA.
| |
Collapse
|
36
|
Ovsyannikova IG, Pankratz VS, Salk HM, Kennedy RB, Poland GA. HLA alleles associated with the adaptive immune response to smallpox vaccine: a replication study. Hum Genet 2014; 133:1083-92. [PMID: 24880604 PMCID: PMC4127812 DOI: 10.1007/s00439-014-1449-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
We previously reported HLA allelic associations with vaccinia virus (VACV)-induced adaptive immune responses in a cohort of healthy individuals (n = 1,071 subjects) after a single dose of the licensed smallpox (Dryvax) vaccine. This study demonstrated that specific HLA alleles were significantly associated with VACV-induced neutralizing antibody (NA) titers (HLA-B*13:02, *38:02, *44:03, *48:01, and HLA-DQB1*03:02, *06:04) and cytokine (HLA-DRB1*01:03, *03:01, *10:01, *13:01, *15:01) immune responses. We undertook an independent study of 1,053 healthy individuals and examined associations between HLA alleles and measures of adaptive immunity after a single dose of Dryvax-derived ACAM2000 vaccine to evaluate previously discovered HLA allelic associations from the Dryvax study and determine if these associations are replicated with ACAM2000. Females had significantly higher NA titers than male subjects in both study cohorts [median ID50 discovery cohort 159 (93, 256) vs. 125 (75, 186), p < 0.001; replication cohort 144 (82, 204) vs. 110 (61, 189), p = 0.024]. The association between the DQB1*03:02 allele (median ID50 discovery cohort 152, p = 0.015; replication cohort 134, p = 0.010) and higher NA titers was replicated. Two HLA associations of comparable magnitudes were consistently found between DRB1*04:03 and DRB1*08:01 alleles and IFN-γ ELISPOT responses. The association between the DRB1*15:01 allele with IFN-γ secretion was also replicated (median pg/mL discovery cohort 182, p = 0.052; replication cohort 203, p = 0.014). Our results suggest that smallpox vaccine-induced adaptive immune responses are significantly influenced by HLA gene polymorphisms. These data provide information for functional studies and design of novel candidate smallpox vaccines.
Collapse
Affiliation(s)
- Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA
| | - V. Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Hannah M. Salk
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Osthoff M, Irungu E, Ngure K, Mugo N, Thomas KK, Baeten JM, Eisen DP. Mannose-binding lectin and ficolin-2 do not influence humoral immune response to hepatitis B vaccine. Vaccine 2014; 32:4772-7. [PMID: 25024112 PMCID: PMC4374143 DOI: 10.1016/j.vaccine.2014.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/17/2014] [Accepted: 06/06/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Host genetics appear to be an important factor in the failure to generate a protective immune response after hepatitis B (HBV) vaccination. Mannose-binding lectin (MBL) and ficolin-2 (FCN2), two pattern recognition receptors of the lectin pathway of complement, influence the clinical outcome of HBV, and MBL deficiency has been shown to augment the humoral response to HBV vaccination in several experimental models. Here, we investigated the association of MBL and FCN2 with the humoral response to HBV vaccination in a candidate gene and functional study. PATIENTS AND METHODS A post hoc analysis of a prospective, interventional HBV vaccination study among human immunodeficiency virus type 1 (HIV-1) uninfected individuals in Kenya was conducted. Serum levels and polymorphisms of MBL and FCN2 were analysed in relation to the immune response to HBV vaccination. RESULTS Protective hepatitis B surface antibody levels (≥ 10 mI U/mL) were evident in 251/293 (85.7%) individuals. Median MBL and FCN2 levels were similar in responders vs. non-responders with a weak trend towards lower median MBL levels in non-responders (1.0 vs. 1.6μg/mL, p=0.1). Similarly, there was no difference in four MBL and six FCN2 polymorphisms analysed in the two groups with the exception of an increased frequency of a homozygous MBL codon 57 mutation in non-responders (4 (9.5%) vs. 8 (3.2%), p=0.05) corresponding to lower MBL levels. Results were similar after adjusting for age and sex. CONCLUSIONS Our study does not support a prominent role of the lectin pathway of complement in general and MBL and FCN2 in particular in the humoral immune response to HBV vaccination in African adults.
Collapse
Affiliation(s)
- Michael Osthoff
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | | | - Kenneth Ngure
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Nelly Mugo
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Jared M Baeten
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Damon P Eisen
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Sundqvist E, Buck D, Warnke C, Albrecht E, Gieger C, Khademi M, Lima Bomfim I, Fogdell-Hahn A, Link J, Alfredsson L, Søndergaard HB, Hillert J, Oturai AB, Hemme B, Kockum I, Olsson T. JC polyomavirus infection is strongly controlled by human leucocyte antigen class II variants. PLoS Pathog 2014; 10:e1004084. [PMID: 24763718 PMCID: PMC3999271 DOI: 10.1371/journal.ppat.1004084] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/03/2014] [Indexed: 01/27/2023] Open
Abstract
JC polyomavirus (JCV) carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML) which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50–60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA), instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP) kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10−15) and controls (OR = 0.53, p = 2×10−5). In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006), and controls (OR = 2.69, p = 1×10−5). The German dataset confirmed these findings (OR = 0.54, p = 1×10−4 and OR = 1.58, p = 0.03 respectively for these haplotypes). HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and lays the ground for risk stratification for PML and development of therapy and prevention. JC virus infection can lead to progressive multifocal leukoencephalopathy in individuals with a compromised immune system, such as during HIV infections or when treated with immunosuppressive or immunomodulating therapies. Progressive multifocal leukoencephalopathy is a rare but potentially fatal disease characterized by progressive damage of the brain white matter at multiple locations. It is therefore of importance to understand the host genetic control of response to JC virus in order to identify patients that can be treated with immunomodulating therapies, common treatments for autoimmune diseases, without increased risk for progressive multifocal leukoencephalopathy. This may also lead to development of preventative or curative anti-JC virus therapies. We here identify genetic variants being associated with JC virus antibody development; a negative association with the human leucocyte antigen DRB1*15-DQA1*01:02-DQB1*06:02 haplotype and a positive association with the DRB1*13-DQA1*01:03-DQB1*06:03 haplotype among controls and patients with multiple sclerosis from Scandinavia. We confirmed the associations in patients with multiple sclerosis from Germany. These associations between JC virus antibody response and human leucocyte antigens imply that CD4+ T cells are crucial in the immune defence and lay the ground for development of therapy and prevention.
Collapse
Affiliation(s)
- Emilie Sundqvist
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dorothea Buck
- Department of Neurology, Technische Universität München, Munich, Germany
| | - Clemens Warnke
- The Multiple Sclerosis Research Group, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Izaura Lima Bomfim
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Fogdell-Hahn
- The Multiple Sclerosis Research Group, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Link
- The Multiple Sclerosis Research Group, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jan Hillert
- The Multiple Sclerosis Research Group, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Annette B. Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bernhard Hemme
- Department of Neurology, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ingrid Kockum
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Yang C, Pan L, Zhang L, Wu X, Zhu X, Yan B, Xu A, Li H, Liu Y. BTNL2 associated with the immune response to hepatitis B vaccination in a Chinese Han population. J Med Virol 2014; 86:1105-12. [DOI: 10.1002/jmv.23934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 01/27/2023]
Affiliation(s)
- Chao Yang
- National Laboratory of Medical Molecular Biology; Institute of Basic Medical Science; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Liping Pan
- National Laboratory of Medical Molecular Biology; Institute of Basic Medical Science; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Li Zhang
- Shangdong Center for Disease Control and Prevention; Jinan China
| | - Xiaopan Wu
- National Laboratory of Medical Molecular Biology; Institute of Basic Medical Science; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Xilin Zhu
- National Laboratory of Medical Molecular Biology; Institute of Basic Medical Science; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Bingyu Yan
- Shangdong Center for Disease Control and Prevention; Jinan China
| | - Aiqiang Xu
- Shangdong Center for Disease Control and Prevention; Jinan China
| | - Hui Li
- Department of Epidemiology; Institute of Basic Medical Science; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Ying Liu
- National Laboratory of Medical Molecular Biology; Institute of Basic Medical Science; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| |
Collapse
|
40
|
Posteraro B, Pastorino R, Di Giannantonio P, Ianuale C, Amore R, Ricciardi W, Boccia S. The link between genetic variation and variability in vaccine responses: Systematic review and meta-analyses. Vaccine 2014; 32:1661-9. [DOI: 10.1016/j.vaccine.2014.01.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 12/23/2013] [Accepted: 01/24/2014] [Indexed: 01/11/2023]
|
41
|
Pan L, Zhang L, Zhang W, Wu X, Li Y, Yan B, Zhu X, Liu X, Yang C, Xu J, Zhou G, Xu A, Li H, Liu Y. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. Hum Mol Genet 2013; 23:2210-9. [PMID: 24282030 DOI: 10.1093/hmg/ddt586] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vaccination against hepatitis B virus is an effective and routine practice that can prevent infection. However, 5-10% of healthy adults fail to produce protective levels of antibody against the hepatitis B vaccination. It has been reported that host genetic variants might affect the immune response to hepatitis B vaccination. Here, we reported a genome-wide association study in a Chinese Han population consisting of 108 primary high-responders and 77 booster non-responders to hepatitis B vaccination using the Illumina HumanOmniExpress Beadchip. We identified 21 SNPs at 6p21.32 were significantly associated with non-response to booster hepatitis B vaccination (P-value <1 × 10(-6)). The most significant SNP in the region was rs477515, located ∼12 kb upstream of the HLA-DRB1 gene. Its P-value (4.81 × 10(-8)) exceeded the Bonferroni-corrected genome-wide significance threshold. Four tagging SNPs (rs477515, rs28366298, rs3763316 and rs13204672) that capture genetic information of these 21 SNPs were validated in three additional Chinese Han populations, consisting of 1336 primary high-responders and 420 primary non-responders. The four SNPs continued to show significant associations with non-response to hepatitis B vaccination (P-combined = 3.98 × 10(-13)- 1.42 × 10(-8)). Further analysis showed that the rs477515 was independently associated with non-response to hepatitis B vaccination with correction for other three SNPs in our GWAS and the known hepatitis B vaccine immunity associated SNP in previous GWAS. Our findings suggest that the rs477515 was an independent marker associated with non-response to hepatitis B vaccination and HLA-DR region might be a critical susceptibility locus of hepatitis B vaccine-induced immunity.
Collapse
Affiliation(s)
- Liping Pan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu X, Wang S, Yu Y, Zhang J, Sun Z, Yan Y, Zhou J. Subcellular proteomic analysis of human host cells infected with H3N2 swine influenza virus. Proteomics 2013; 13:3309-26. [PMID: 24115376 DOI: 10.1002/pmic.201300180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022]
Abstract
Cross-species transmissions of swine influenza viruses (SIVs) raise great public health concerns. In this study, subcellular proteomic profiles of human A549 cells inoculated with H3N2 subtype SIV were used to characterize dynamic cellular responses to infection. By 2DE and MS, 27 differentially expressed (13 upregulated, 14 downregulated) cytoplasmic proteins and 20 differentially expressed (13 upregulated, 7 downregulated) nuclear proteins were identified. Gene ontology analysis suggested that these differentially expressed proteins were mainly involved in cell death, stress response, lipid metabolism, cell signaling, and RNA PTMs. Moreover, 25 corresponding genes of the differentially expressed proteins were quantitated by real time RT-PCR to examine the transcriptional profiles between mock- and virus-infected A549 cells. Western blot analysis confirmed that changes in abundance of identified cellular proteins heterogeneous nuclear ribonucleoprotein (hnRNP) U, hnRNP C, ALDH1A1, tryptophanyl-tRNA synthetase, IFI35, and HSPB1 in H3N2 SIV-infected cells were consistent with results of 2DE analysis. By confocal microscopy, nucleus-to-cytoplasm translocation of hnRNP C and colocalization between the viral nonstructural protein 1 and hnRNP C as well as N-myc (and STAT) interactor were observed upon infection. Ingenuity Pathway Analysis revealed that cellular proteins altered during infection were grouped mainly into NFκB and interferon signaling networks. Collectively, these identified subcellular constituents provide an important framework for understanding host/SIV interactions and underlying mechanisms of SIV cross-species infection and pathogenesis.
Collapse
Affiliation(s)
- Xiaopeng Wu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
43
|
Le Fevre AK, Taylor S, Malek NH, Horn D, Carr CW, Abdul-Rahman OA, O'Donnell S, Burgess T, Shaw M, Gecz J, Bain N, Fagan K, Hunter MF. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet A 2013; 161A:3166-75. [PMID: 24214399 DOI: 10.1002/ajmg.a.36174] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/15/2013] [Indexed: 12/19/2022]
Abstract
Mutations in FOXP1, located at 3p13, have been reported in patients with global developmental delay (GDD), intellectual disability (ID), and speech defects. Mutations in FOXP2, located at 7q31, are well known to cause developmental speech and language disorders, particularly developmental verbal dyspraxia (DVD). FOXP2 has been shown to work co-operatively with FOXP1 in mouse development. An overlap in FOXP1 and FOXP2 expression, both in the songbird and human fetal brain, has suggested that FOXP1 may also have a role in speech and language disorders. We report on a male child with a 0.19 MB intragenic deletion that is predicted to result in haploinsufficiency of FOXP1. Review of our patient and others reported in the literature reveals an emerging phenotype of GDD/ID with moderate to severe speech delay where expressive speech is most severely affected. DVD appears not to be a distinct feature in this group. Facial features include a broad forehead, downslanting palpebral fissures, a short nose with broad tip, relative or true macrocephaly, a frontal hair upsweep and prominent digit pads. Autistic traits and other behavioral problems are likely to be associated with haploinsufficiency of FOXP1. Congenital malformations may be associated.
Collapse
Affiliation(s)
- Anna K Le Fevre
- Hunter Genetics, Newcastle, NSW, Australia; John Hunter Children's Hospital, Newcastle, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Xiong Y, Chen S, Chen R, Lin W, Ni J. Association between microRNA polymorphisms and humoral immunity to hepatitis B vaccine. Hum Vaccin Immunother 2013; 9:1673-8. [PMID: 23807362 DOI: 10.4161/hv.24938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To investigate whether selected single nucleotide polymorphisms (SNPs) in miR-146a, miR-196a2, miR-27a, miR-26a-1, miR-124 and miR-149 genes are associated with immune response to hepatitis B vaccine. The genotype and allele frequencies of SNPs were compared between the non-responders (n=77) and responders (n=207). The associations of the genotypes with antibody levels were assessed in the responders. Significant associations were observed between SNPs in miR-146a and miR-26a-1 genes and non-response to hepatitis B vaccine (p<0.05). In addition, SNPs in miR-146a and miR-27a genes were associated with variations in levels of antibodies to hepatitis B antigen. Thus, specific SNPs in microRNAs (miRNAs) genes may affect status of the hepatitis B vaccine induced protective humoral immune response. They also suggest that the three miRNAs play a role in modulating antibody responses to hepatitis B vaccine.
Collapse
Affiliation(s)
- Yongzhen Xiong
- School Clinic; Guangdong Medical College; Dongguan, P.R. China
| | | | | | | | | |
Collapse
|
45
|
Trück J, O’Connor D, Darton TC, John TM, Snape MD, Pollard AJ. Genetic material should be routinely collected in clinical vaccine trials – High consent rates can be achieved across all age groups. Vaccine 2013; 31:2744-8. [DOI: 10.1016/j.vaccine.2013.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 02/04/2013] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
|
46
|
Perng GC, Chokephaibulkit K. Immunologic hypo- or non-responder in natural dengue virus infection. J Biomed Sci 2013; 20:34. [PMID: 23725050 PMCID: PMC3680176 DOI: 10.1186/1423-0127-20-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2013] [Indexed: 01/17/2023] Open
Abstract
Serologically defined primary dengue virus infection and/or subsequent homologous serotype infection is known to be associated with less severe disease as compared with secondary subsequent heterologous serotype infection. In geographical locales of high dengue endemicity, almost all individuals in the population are infected at some point in time and should therefore are at high risk of secondary infection. Interestingly, dengue viremia in healthy blood donors whose sera apparently lack detectable levels of specific antibody to dengue viral antigens has been reported. The incidence rate of potential immunologic hypo- or non-responders following natural primary dengue virus infection in dengue endemic regions, who do become immune responders only after repeated exposure, has not been described. These are the patients who may be diagnosed as primary infection in the subsequent infection, but actually are secondary infection. This concept has important implications with regards to the hypothesis of immunological enhancement of dengue pathogenesis, which has largely been advanced based on empirical observations and/or from in vitro experimental assays. The fact that dengue naïve travelers can suffer from severe dengue upon primary exposure while visiting dengue endemic countries underscores one of the major problems in explaining the role of immune enhancement in the pathogenesis of severe dengue virus infection. This evidence suggests that the mechanism(s) leading to severe dengue may not be associated with pre-existing enhancing antibody. Consequently, we propose a new paradigm for dengue virus infection classification. These include a) patients with naïve primary infection, b) those that are serologically defined primary in dengue endemic zones and c) those who are serologically defined secondary dengue virus infection. We submit that clarity with regards to such definitions may help facilitate the delineation of the potential mechanisms of severe dengue virus infection.
Collapse
Affiliation(s)
- Guey Chuen Perng
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan, 70101, Taiwan.
| | | |
Collapse
|
47
|
Cui W, Sun CM, Deng BC, Liu P. Association of polymorphisms in the interleukin-4 gene with response to hepatitis B vaccine and susceptibility to hepatitis B virus infection: a meta-analysis. Gene 2013; 525:35-40. [PMID: 23651591 DOI: 10.1016/j.gene.2013.04.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/29/2013] [Accepted: 04/22/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of this meta-analysis is to evaluate the associations between functional polymorphisms in the interleukin-4 (IL4) gene and individuals' responses to hepatitis B vaccine and their susceptibility to hepatitis B virus (HBV) infection. METHODS A literature search on articles published before December 1st, 2012 was conducted in PubMed, Embase, Web of Science and China BioMedicine (CBM) databases. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Statistical analyses were performed using the STATA 12.0 software. RESULTS Eight studies were eligible for inclusion in this meta-analysis, including five cross-sectional studies on individual's response to hepatitis B vaccine and three case-control studies on HBV infection risk. The meta-analysis results showed that the T allele of rs2243250, the T allele of rs2070874, and the C allele of rs2227284 in IL4 gene were associated with high responses to hepatitis B vaccine. Further subgroup analysis by ethnicity showed that there was a significant association between IL4 genetic polymorphisms and an individual's responses to hepatitis B vaccine among Asian populations, but similar association was not found among Caucasian populations. However, there was no evidence indicating a correlation between IL4 genetic polymorphism and susceptibility to HBV infection. CONCLUSION Our current meta-analysis suggests that rs2243250, rs2070874 and rs2227284 polymorphisms in IL4 gene may play an important role in determining the response to hepatitis B vaccine, especially among Asian populations. However, further studies are still needed to evaluate the associations between IL4 genetic polymorphisms and HBV infection risk.
Collapse
Affiliation(s)
- Wei Cui
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Liaoning, Shenyang 110001, China.
| | | | | | | |
Collapse
|
48
|
Yan K, Cai W, Cao F, Sun H, Chen S, Xu R, Wei X, Shi X, Yan W. Genetic effects have a dominant role on poor responses to infant vaccination to hepatitis B virus. J Hum Genet 2013; 58:293-7. [DOI: 10.1038/jhg.2013.18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Jiang L, Xu J, Ni J, Gao X, Zhu Z, Dong D, Wang X, Shi C, Tao X, Dong W, Gao Y. A functional insertion/deletion polymorphism in the proximal promoter of CD3G is associated with susceptibility for hepatocellular carcinoma in Chinese population. DNA Cell Biol 2012; 31:1480-5. [PMID: 22731821 DOI: 10.1089/dna.2012.1706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most common primary malignancy of the liver with a worldwide increasing incidence. Although the risk factors for HCC are well characterized, the molecular mechanisms responsible for malignant transformation of hepatocytes are not well understood. In this study, a case-control study including 291 HCC patients and 294 healthy controls was conducted to investigate the association between HCC susceptibility and with a 4-bp insertion/deletion polymorphism (rs66465034) in the proximal promoter of CD3G. Logistic regression analysis showed that the heterozygote and the homozygote 4-bp ins/ins confer a significantly increased risk of HCC after controlling for other covariates (adjusted odds ratio [OR]=1.51, 95% confidence interval [C.I.] 1.01-2.27, p=0.040; OR=1.71, 95% C.I. 1.07-2.89, p=0.025, respectively). Carriage of the 4-bp insertion allele was associated with a greatly increased risk of developing the disease (OR=1.30, 95% C.I. 1.02-1.64, p=0.027). Moreover, hepatitis B virus (HBV) stratification analysis showed that the differences between cases and controls were more obvious in HBV-positive than in the HBV-negative population, suggesting a possible role of this polymorphism in the immune regulation during HBV infection. Further, luciferase-based transient transfection assays revealed that rs66465034 can affect promoter activity of CD3G, indicating its possible functional significance. Our data suggested that common genetic polymorphisms in CD3G may influence HCC risk in Chinese population. Considering the relative small sample size, replication in other populations with larger sample size and further functional analysis are required for fully understanding the roles of CD3G polymorphisms in predisposition for HCC.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, Jiangsu, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
CD3Z genetic polymorphism in immune response to hepatitis B vaccination in two independent Chinese populations. PLoS One 2012; 7:e35303. [PMID: 22536368 PMCID: PMC3329423 DOI: 10.1371/journal.pone.0035303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/12/2012] [Indexed: 12/16/2022] Open
Abstract
Vaccination against hepatitis B virus is an effective and routine practice that can prevent infection. However, vaccine-induced immunity to hepatitis B varies among individuals. CD4+ T helper cells, which play an important role in both cellular and humoral immunity, are involved in the immune response elicited by vaccination. Polymorphisms in the genes involved in stimulating the activation and proliferation of CD4+ T helper cells may influence the immune response to hepatitis B vaccination. In the first stage of the present study, a total of 111 single nucleotide polymorphisms (SNPs) in 17 genes were analyzed, using the iPLEX MassARRAY system, among 214 high responders and 107 low responders to hepatitis B vaccination. Three SNPs (rs12133337 and rs10918706 in CD3Z, rs10912564 in OX40L) were associated significantly with the immune response to hepatitis B vaccination (P = 0.008, 0.041, and 0.019, respectively). The three SNPs were analyzed further with the TaqMan-MGB or TaqMan-BHQ probe-based real-time polymerase chain reaction in another independent population, which included 1090 high responders and 636 low responders. The minor allele ‘C’ of rs12133337 continued to show an association with a lower response to hepatitis B vaccination (P = 0.033, odds radio = 1.28, 95% confidence interval = 1.01–1.61). Furthermore, in the stratified analysis for both the first and second populations, the association of the minor allele ‘C’ of rs12133337 with a lower response to hepatitis B vaccination was more prominent after individuals who were overweight or obese (body mass index ≥25 kg/m2) were excluded (1st stage: P = 0.003, 2nd stage: P = 0.002, P-combined = 9.47e-5). These findings suggest that the rs12133337 polymorphism in the CD3Z gene might affect the immune response to hepatitis B vaccination, and that a lower BMI might increase the contribution of the polymorphism to immunity to hepatitis B vaccination.
Collapse
|