1
|
Banu VS, Mohan U, Kumari R, Kumar P, Singh AK, Siddiqui MH, Alamri S, Siddiqui MW, Singh DR. Insights into the physiology, biochemistry and ecological significance of the red seaweed Tricleocarpa fragilis in the Andaman Sea. BMC PLANT BIOLOGY 2024; 24:765. [PMID: 39123105 PMCID: PMC11316327 DOI: 10.1186/s12870-024-05452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
The present study focused on the physiological and biochemical aspects of Tricleocarpa fragilis, red seaweed belonging to the phylum Rhodophyta, along the South Andaman coast, with particular attention given to its symbiotic relationships with associated flora and fauna. The physicochemical parameters of the seawater at the sampling station, such as its temperature, pH, and salinity, were meticulously analyzed to determine the optimal harvesting period for T. fragilis. Seaweeds attach to rocks, dead corals, and shells in shallow areas exposed to moderate wave action because of its habitat preferences. Temporal variations in biomass production were estimated, revealing the highest peak in March, which was correlated with optimal seawater conditions, including a temperature of 34 ± 1.1 °C, a pH of 8 ± 0.1, and a salinity of 32 ± 0.8 psu. GC‒MS analysis revealed n-hexadecanoic acid as the dominant compound among the 36 peaks, with major bioactive compounds identified as fatty acids, diterpenes, phenolic compounds, and hydrocarbons. This research not only enhances our understanding of ecological dynamics but also provides valuable insights into the intricate biochemical processes of T. fragilis. The established antimicrobial potential and characterization of bioactive compounds from T. fragilis lay a foundation for possible applications in the pharmaceutical industry and other industries.
Collapse
Affiliation(s)
- V Shajeeda Banu
- Bihar Agricultural University, Sabour, Bihar, 813210, India.
| | - Udit Mohan
- Pondicherry University, Port Blair Campus, Brookshabad, 744101, India
| | - Rima Kumari
- Bihar Agricultural University, Sabour, Bihar, 813210, India
| | - Pankaj Kumar
- Bihar Agricultural University, Sabour, Bihar, 813210, India
| | - A K Singh
- Bihar Agricultural University, Sabour, Bihar, 813210, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - D R Singh
- Bihar Agricultural University, Sabour, Bihar, 813210, India
| |
Collapse
|
2
|
Ramsis T, Refat M Selim HM, Elseedy H, Fayed EA. The role of current synthetic and possible plant and marine phytochemical compounds in the treatment of acne. RSC Adv 2024; 14:24287-24321. [PMID: 39104563 PMCID: PMC11298783 DOI: 10.1039/d4ra03865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Acne is a long-standing skin condition characterized by plugged hair follicles due to the accumulation of dead skin cells, sebum, and Propionibacterium acnes (P. acnes) bacteria, causing inflammation, and the formation of pimples or lesions. Acne was recognized in the ancient times by the ancient Egyptians, Greeks, and Romans. Since ancient times, folk medicine from different cultures have comprised herbal and natural products for the treatment of acne. Current acne medications include antibiotics, keratolytics, corticosteroids, in addition to hormonal therapy for women. However, these conventional drugs can cause some serious side effects. And therefore, seeking new safe treatment options from natural sources is essential. Plants can be a potential source of medicinal phytochemicals which can be pharmacologically active as antibacterial, antioxidant, anti-inflammatory, keratolytic and sebum-reducing. Organic acids, obtained from natural sources, are commonly used as keratolytics in dermatology and cosmetology. Most of the promising phytochemicals in acne treatment belong to terpenes, terpenoids, flavonoids, alkaloids, phenolic compounds, saponins, tannins, and essential oils. These can be extracted from leaves, bark, roots, rhizomes, seeds, and fruits of plants and may be incorporated in different dosage forms to facilitate their penetration through the skin. Additionally, medicinal compounds from marine sources can also contribute to acne treatment. This review will discuss the pathogenesis, types and consequences of acne, side effects of conventional treatment, current possible treatment options from natural sources obtained from research and folk medicine and possible applied dosage forms.
Collapse
Affiliation(s)
- Triveena Ramsis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University - Kantara Branch Ismailia 41636 Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University P.O. Box 71666 Riyadh 11597 Saudi Arabia
- Microbiology and Immunology Department, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 35527 Egypt
| | - Howida Elseedy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo Egypt
| | - Eman A Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt +20 201221330523
| |
Collapse
|
3
|
Lee MK, Jeong HH, Kim MJ, Seo JS, Hwang JY, Jung WK, Moon KM, Lee I, Lee B. The Beneficial Roles of Sargassum spp. in Skin Disorders. J Med Food 2024; 27:359-368. [PMID: 38526569 DOI: 10.1089/jmf.2023.k.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
As the body's largest organ, the skin is located at the internal and external environment interface, serving as a line of defense against various harmful stressors. Recently, marine-derived physiologically active ingredients have attracted considerable attention in the cosmeceutical industry due to their beneficial effects on skin health. Sargassum, a genus of brown macroalgae, has traditionally been consumed as food and medicine in several countries and is rich in bioactive compounds such as meroterpenoids, sulfated polysaccharides, fucoidan, fucoxanthin, flavonoids, and terpenoids. Sargassum spp. have various beneficial effects on skin disorders. They help with atopic dermatitis by improving skin barrier protection and reducing inflammation. Several species show potential in treating acne by inhibiting bacterial growth and reducing inflammation. Some species, such as Sargassum horneri, demonstrate antiallergic effects by modulating mast cell activity. Certain Sargassum species exhibit anticancer activity by inhibiting tumor growth and promoting apoptosis, and some species help with wound healing by promoting angiogenesis and reducing oxidative stress. Overall, Sargassum spp. demonstrate potential for treating and managing various skin conditions. Therefore, the bioactive compounds of Sargassum spp. may be natural ingredients with a wide range of functional properties for preventing and treating skin disorders. The present review focused on the various biological effects of Sargassum extracts and derived compounds on skin disorders.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Hyeon Hak Jeong
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Myeong-Jin Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Jae Seong Seo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Ji Young Hwang
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Won-Kyo Jung
- Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Korea
| | - Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Incheol Lee
- Department of Ocean Engineering, Pukyong National University, Busan, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| |
Collapse
|
4
|
Cai H, Wen H, Li J, Lu L, Zhao W, Jiang X, Bai R. Small-molecule agents for treating skin diseases. Eur J Med Chem 2024; 268:116269. [PMID: 38422702 DOI: 10.1016/j.ejmech.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Skin diseases are a class of common and frequently occurring diseases that significantly impact daily lives. Currently, the limited effective therapeutic drugs are far from meeting the clinical needs; most drugs typically only provide symptomatic relief rather than a cure. Developing small-molecule drugs with improved efficacy holds paramount importance for treating skin diseases. This review aimed to systematically introduce the pathogenesis of common skin diseases in daily life, list related drugs applied in the clinic, and summarize the clinical research status of candidate drugs and the latest research progress of candidate compounds in the drug discovery stage. Also, it statistically analyzed the number of publications and global attention trends for the involved skin diseases. This review might provide practical information for researchers engaged in dermatological drugs and further increase research attention to this disease area.
Collapse
Affiliation(s)
- Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenxuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
5
|
Costa JP, Custódio L, Reis CP. Exploring the Potential of Using Marine-Derived Ingredients: From the Extraction to Cutting-Edge Cosmetics. Mar Drugs 2023; 21:620. [PMID: 38132941 PMCID: PMC10744737 DOI: 10.3390/md21120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The growing understanding and knowledge of the potential of marine species, as well as the application of "blue biotechnology" have been motivating new innovative solutions in cosmetics. It is widely noted that that marine species are important sources of compounds with several biological activities that are yet to be discovered. This review explores various biological properties of marine-derived molecules and briefly outlines the main extraction methods. Alongside these, it is well known the legislative and normative framework of cosmetics is increasingly being developed. In this research segment, there is a growing concern with sustainability. In this sense, "blue biotechnology", together with the use of invasive species or marine waste products to obtain new active ingredients, haven been emerging as innovative and sustainable solutions for the future's cosmetics industry. This review also examines the regulatory framework and focus on the recent advancements in "blue biotechnology" and its relevance to the sustainable development of innovative cosmetics.
Collapse
Affiliation(s)
- João Pedro Costa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, Ed. 7, 8005-139 Faro, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Ko SC, Kim JY, Lee JM, Yim MJ, Kim HS, Oh GW, Kim CH, Kang N, Heo SJ, Baek K, Lee DS. Angiotensin I-Converting Enzyme (ACE) Inhibition and Molecular Docking Study of Meroterpenoids Isolated from Brown Alga, Sargassum macrocarpum. Int J Mol Sci 2023; 24:11065. [PMID: 37446242 PMCID: PMC10341620 DOI: 10.3390/ijms241311065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Angiotensin I-converting enzyme (ACE) is an important blood pressure regulator. In this study, we aimed to investigate the ACE-inhibitory effects of meroterpenoids isolated from the brown alga, Sargassum macrocarpum, and the molecular mechanisms underlying ACE inhibition. Four fractions of S. macrocarpum were prepared using hexane, chloroform, ethyl acetate, and water as solvents and analyzed for their potential ACE-inhibitory effects. The chloroform fraction showed the strongest ACE-inhibitory effect, with an IC50 value of 0.18 mg/mL. Three meroterpenoids, sargachromenol, 7-methyl sargachromenol, and sargaquinoic acid, were isolated from the chloroform fraction. Meroterpenoids isolated from S. macrocarpum had IC50 values of 0.44, 0.37, and 0.14 mM. The molecular docking study revealed that the ACE-inhibitory effect of the isolated meroterpenoids was mainly attributed to Zn-ion, hydrogen bonds, pi-anion, and pi-alkyl interactions between the meroterpenoids and ACE. These results suggest that S. macrocarpum could be a potential raw material for manufacturing antihypertensive nutraceutical ingredients.
Collapse
Affiliation(s)
- Seok-Chun Ko
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Chul Hwan Kim
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Nalae Kang
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (S.-J.H.)
| | - Soo-Jin Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (S.-J.H.)
| | - Kyunghwa Baek
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (S.-C.K.); (J.M.L.); (M.-J.Y.); (H.-S.K.); (G.-W.O.); (C.H.K.); (K.B.)
| |
Collapse
|
7
|
Shinoda S, Tozawa Y, Kurimoto SI, Shigemori H, Sekiguchi M. Three new meroterpenoids from Sargassum macrocarpum and their inhibitory activity against amyloid β aggregation. J Nat Med 2023; 77:508-515. [PMID: 36933089 DOI: 10.1007/s11418-023-01693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
Amyloid β (Aβ) is thought to be involved in the pathogenesis of Alzheimer's disease (AD). Aβ aggregation in the brain is considered the cause of AD. Therefore, inhibiting Aβ aggregation and degrading existing Aβ aggregates is a promising approach for the treatment and prevention of the disease. In searching for inhibitors of Aβ42 aggregation, we found that meroterpenoids isolated from Sargassum macrocarpum possess potent inhibitory activities. Therefore, we searched for active compounds from this brown alga and isolated 16 meroterpenoids, which contain three new compounds. The structures of these new compounds were elucidated using two-dimensional nuclear magnetic resonance techniques. Thioflavin-T assay and transmission electron microscopy were used to reveal the inhibitory activity of these compounds against Aβ42 aggregation. All the isolated meroterpenoids were found to be active, and compounds with a hydroquinone structure tended to have stronger activity than those with a quinone structure.
Collapse
Affiliation(s)
- Seiya Shinoda
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Yuta Tozawa
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shin-Ichiro Kurimoto
- School of Pharmacy, Showa University, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hideyuki Shigemori
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Mitsuhiro Sekiguchi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
8
|
Augustyniak A, McMahon H. Effect of Marine-Derived Saccharides on Human Skin Fibroblasts and Dermal Papilla Cells. Mar Drugs 2023; 21:330. [PMID: 37367655 DOI: 10.3390/md21060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The skin is the largest organ of the human body, composed of a diverse range of cell types, non-cellular components, and an extracellular matrix. With aging, molecules that are part of the extracellular matrix undergo qualitative and quantitative changes and the effects, such as a loss of skin firmness or wrinkles, can be visible. The changes caused by the aging process do not only affect the surface of the skin, but also extend to skin appendages such as hair follicles. In the present study, the ability of marine-derived saccharides, L-fucose and chondroitin sulphate disaccharide, to support skin and hair health and minimize the effects of intrinsic and extrinsic aging was investigated. The potential of the tested samples to prevent adverse changes in the skin and hair through stimulation of natural processes, cellular proliferation, and production of extracellular matrix components collagen, elastin, or glycosaminoglycans was investigated. The tested compounds, L-fucose and chondroitin sulphate disaccharide, supported skin and hair health, especially in terms of anti-aging effects. The obtained results indicate that both ingredients support and promote the proliferation of dermal fibroblasts and dermal papilla cells, provide cells with a supply of sulphated disaccharide GAG building blocks, increase ECM molecule production (collagen and elastin) by HDFa, and support the growth phase of the hair cycle (anagen).
Collapse
Affiliation(s)
- Aleksandra Augustyniak
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry, Clash, V92CX88 Tralee, Co. Kerry, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University-Kerry, Clash, V92CX88 Tralee, Co. Kerry, Ireland
| |
Collapse
|
9
|
Marine Natural Products as Innovative Cosmetic Ingredients. Mar Drugs 2023; 21:md21030170. [PMID: 36976219 PMCID: PMC10054431 DOI: 10.3390/md21030170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Over the course of the last 20 years, numerous studies have identified the benefits of an array of marine natural ingredients for cosmetic purposes, as they present unique characteristics not found in terrestrial organisms. Consequently, several marine-based ingredients and bioactive compounds are under development, used or considered for skin care and cosmetics. Despite the multitude of cosmetics based on marine sources, only a small proportion of their full potential has been exploited. Many cosmetic industries have turned their attention to the sea to obtain innovative marine-derived compounds for cosmetics, but further research is needed to determine and elucidate the benefits. This review gathers information on the main biological targets for cosmetic ingredients, different classes of marine natural products of interest for cosmetic applications, and the organisms from which such products can be sourced. Although organisms from different phyla present different and varied bioactivities, the algae phylum seems to be the most promising for cosmetic applications, presenting compounds of many classes. In fact, some of these compounds present higher bioactivities than their commercialized counterparts, demonstrating the potential presented by marine-derived compounds for cosmetic applications (i.e., Mycosporine-like amino acids and terpenoids’ antioxidant activity). This review also summarizes the major challenges and opportunities faced by marine-derived cosmetic ingredients to successfully reach the market. As a future perspective, we consider that fruitful cooperation among academics and cosmetic industries could lead to a more sustainable market through responsible sourcing of ingredients, implementing ecological manufacturing processes, and experimenting with inventive recycling and reuse programs.
Collapse
|
10
|
Afzal S, Yadav AK, Poonia AK, Choure K, Yadav AN, Pandey A. Antimicrobial therapeutics isolated from algal source: retrospect and prospect. Biologia (Bratisl) 2023; 78:291-305. [PMID: 36159744 PMCID: PMC9486765 DOI: 10.1007/s11756-022-01207-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023]
Abstract
In the last few decades, attention on new natural antimicrobial compounds has arisen due to a change in consumer preferences and the increase in the number of resistant microorganisms. Algae are defined as photosynthetic organisms that demonstrate a wide range of adaptability to adverse environmental conditions like temperature extremes, photo-oxidation, high or low salinity, and osmotic stress. Algae are primarily known to produce large amounts of secondary metabolite against various kinds of pathogenic microbes. Among these algae, micro and microalgae of river, lake, and algae of oceanic origin have been reported to have antimicrobial activity against the bacteria and fungi of pathogenic nature. Various polar and non- polar extracts of micro- and macro algae have been used for the suppression of these pathogenic fungi. Apart from these, certain algal derivatives have also been isolated from these having antibacterial and antifungal potential. Among the bioactive molecules of algae, polysaccharides, sulphated polysaccharides, phyco-cyanobilins polyphenols, lectins, proteins lutein, vitamin E, B12 and K1, peptides, polyunsaturated fatty acids and pigments can be highlighted. In the present review, we will discuss the biological activity of these derived compounds as antifungal/ antibacterial agents and their most promising applications. A brief outline is also given for the prospects of these isolated phytochemicals and using algae as therapeutic in the dietary form. We have also tried to answer whether alga-derived metabolites can serve as potential therapeutics for the treatment of SARS-CoV-2 like viral infections too.
Collapse
Affiliation(s)
- Shadma Afzal
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Alok Kumar Yadav
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Anuj Kumar Poonia
- University Institute of Biotechnology , Chandigarh University, Chandigarh, Punjab India
| | - Kamlesh Choure
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| | - Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib Sirmour, HP India
| | - Ashutosh Pandey
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| |
Collapse
|
11
|
Chaieb K, Kouidhi B, Hosawi SB, Baothman OA, Zamzami MA, Altayeb HN. Computational screening of natural compounds as putative quorum sensing inhibitors targeting drug resistance bacteria: Molecular docking and molecular dynamics simulations. Comput Biol Med 2022; 145:105517. [DOI: 10.1016/j.compbiomed.2022.105517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022]
|
12
|
An Overview of the Alternative Use of Seaweeds to Produce Safe and Sustainable Bio-Packaging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In modern times, seaweeds have become widely involved in several biotechnological applications due to the variety of their constituent bioactive compounds. The consumption of seaweeds dates to ancient times; however, only from the last few decades of research can we explain the mechanisms of action and the potential of seaweed-derived bioactive compounds, which has led to their involvement in food, cosmetic, pharmaceutical, and nutraceutical industries. Macroalgae-derived bioactive compounds are of great importance as their properties enable them to be ideal candidates for the production of sustainable “green” packaging. Diverse studies demonstrate that seaweed polysaccharides (e.g., alginates and carrageenans) not only provide health benefits, but also contribute to the production of biopolymeric film and biodegradable packaging. The dispersion of plastics and microplastics in the oceans provoke serious environmental issues that influence ecosystems and aquatic organisms. Thus, the sustainable use of seaweed-derived biopolymers is now crucial to replace plasticizers with biodegradable materials, and thus preserve the environment. The present review aims to provide an overview on the potential of seaweeds in the production of bioplastics which might be involved in food or pharmaceutical packaging.
Collapse
|
13
|
Mitigating the negative impacts of marine invasive species – Sargassum muticum - a key seaweed for skincare products development. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Bioactive Compounds from Microalgae Spirulina platensis as Antibacterial Candidates Against Pathogen Bacteria. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.2.41-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial infection by bacteria has caused severe health problems worldwide. Treatment with antibiotics as the current solution has several drawbacks and triggers the phenomenon of bacterial resistance. Therefore, there is an urgency to look for a natural antimicrobial that is safer and has fewer side effects. One of the most promising antibacterial agents is Spirulina platensis. This research was conducted to evaluate the antibacterial activity of microalgae S. platensis against Propionibacterium acne, Staphylococcus epidermidis, and Enterobacter aerogenes and identify compounds from the active fraction of microalgae. Biomass was extracted with ethanol 96% using the reflux method then partitioned with immiscible solvents such as hexane, ethyl acetate, and water. Partial purification was carried out by chromatography techniques such as thin-layer chromatography and column chromatography. The compounds of active fractions were identified by GC-MS analysis. The result showed that ethyl acetate extract had vigorous antibacterial activity against all tested bacteria. The highest activity (14.4 ± 0.63 mm and 16.9 ± 1.48 mm) was achieved against P. acne; followed by S. epidermidis (13.05± 0.14 mm and 13.15 ± 0.0 mm), and E. aerogenes (11.7 ± 2.05 mm and 12.6 ± 1.90 mm), at concentrations 20,000 ppm and 30,000 ppm, respectively. The results indicated that the extract is more sensitive to Gram-positive bacteria (P. acne and S. epidermidis) than Gram-negative bacteria (E. aerogenes). Purification of the extract resulted in fraction 2 and fraction 6 as the most potential fractions for further analysis and identification. Based on the antibacterial activity, inhibition zones of fractions are wider than extracts. It could be assumed that the purification process enhances the activity of a sample. GC-MS analysis revealed that the dominant compounds of fractions 2 and 6 were bis (2-ethylhexyl) phthalate (67.76%) and 1,2-Benzendicarboxilic acid, bis (2-ethylhexyl) ester (50,88%), respectively. This result indicated that the ethyl acetate fraction of the microalgae S. platensis has the potential as a natural antibacterial.
Collapse
|
15
|
Ta GH, Weng CF, Leong MK. In silico Prediction of Skin Sensitization: Quo vadis? Front Pharmacol 2021; 12:655771. [PMID: 34017255 PMCID: PMC8129647 DOI: 10.3389/fphar.2021.655771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Skin direct contact with chemical or physical substances is predisposed to allergic contact dermatitis (ACD), producing various allergic reactions, namely rash, blister, or itchy, in the contacted skin area. ACD can be triggered by various extremely complicated adverse outcome pathways (AOPs) remains to be causal for biosafety warrant. As such, commercial products such as ointments or cosmetics can fulfill the topically safe requirements in animal and non-animal models including allergy. Europe, nevertheless, has banned animal tests for the safety evaluations of cosmetic ingredients since 2013, followed by other countries. A variety of non-animal in vitro tests addressing different key events of the AOP, the direct peptide reactivity assay (DPRA), KeratinoSens™, LuSens and human cell line activation test h-CLAT and U-SENS™ have been developed and were adopted in OECD test guideline to identify the skin sensitizers. Other methods, such as the SENS-IS are not yet fully validated and regulatorily accepted. A broad spectrum of in silico models, alternatively, to predict skin sensitization have emerged based on various animal and non-animal data using assorted modeling schemes. In this article, we extensively summarize a number of skin sensitization predictive models that can be used in the biopharmaceutics and cosmeceuticals industries as well as their future perspectives, and the underlined challenges are also discussed.
Collapse
Affiliation(s)
- Giang Huong Ta
- Department of Chemistry, National Dong Hwa University, Shoufeng, Taiwan
| | - Ching-Feng Weng
- Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
16
|
Cabral EM, Oliveira M, Mondala JRM, Curtin J, Tiwari BK, Garcia-Vaquero M. Antimicrobials from Seaweeds for Food Applications. Mar Drugs 2021; 19:md19040211. [PMID: 33920329 PMCID: PMC8070350 DOI: 10.3390/md19040211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The exponential growth of emerging multidrug-resistant microorganisms, including foodborne pathogens affecting the shelf-life and quality of foods, has recently increased the needs of the food industry to search for novel, natural and eco-friendly antimicrobial agents. Macroalgae are a bio-diverse group distributed worldwide, known to produce multiple compounds of diverse chemical nature, different to those produced by terrestrial plants. These novel compounds have shown promising health benefits when incorporated into foods, including antimicrobial properties. This review aims to provide an overview of the general methods and novel compounds with antimicrobial properties recently isolated and characterized from macroalgae, emphasizing the molecular pathways of their antimicrobial mechanisms of action. The current scientific evidence on the use of macroalgae or macroalgal extracts to increase the shelf-life of foods and prevent the development of foodborne pathogens in real food products and their influence on the sensory attributes of multiple foods (i.e., meat, dairy, beverages, fish and bakery products) will also be discussed, together with the main challenges and future trends of the use of marine natural products as antimicrobials.
Collapse
Affiliation(s)
- Eduarda M. Cabral
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Márcia Oliveira
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, 24071 León, Spain;
| | - Julie R. M. Mondala
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - James Curtin
- School of Food Science & Environmental Health, College of Sciences & Health, Technological University Dublin-City Campus, 7 Dublin, Ireland; (J.R.M.M.); (J.C.)
| | - Brijesh K. Tiwari
- Teagasc, Food Research Centre, Ashtown, 15 Dublin, Ireland; (E.M.C.); (B.K.T.)
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, 4 Dublin, Ireland
- Correspondence:
| |
Collapse
|
17
|
Muzychka L, Voronkina A, Kovalchuk V, Smolii OB, Wysokowski M, Petrenko I, Youssef DTA, Ehrlich I, Ehrlich H. Marine biomimetics: bromotyrosines loaded chitinous skeleton as source of antibacterial agents. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:15. [PMID: 33424135 PMCID: PMC7776313 DOI: 10.1007/s00339-020-04167-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
UNLABELLED The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties. Traditionally, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were based on the use of organic solvents only. Alternatively, we have used in this work a biomimetic water-based approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. This allowed us to isolate 3,5-dibromoquinolacetic acid from an aqueous extract of the dried demosponge Aplysina aerophoba and compare its antimicrobial activity with the same compound obtained by the chemical synthesis. Both synthetic and natural compounds have shown antimicrobial properties against clinical strains of Staphylococcus aureus, Enterococcus faecalis and Propionibacterium acnes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00339-020-04167-0.
Collapse
Affiliation(s)
- Liubov Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Oleg B. Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522 Egypt
| | | | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
18
|
Niwa H, Kurimoto SI, Kubota T, Sekiguchi M. Macrocarquinoids A-C, new meroterpenoids from Sargassum macrocarpum. J Nat Med 2021; 75:194-200. [PMID: 32974814 DOI: 10.1007/s11418-020-01449-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/13/2020] [Indexed: 01/11/2023]
Abstract
The production and accumulation of advanced glycation end products (AGEs) have been implicated in diabetes and diabetic complication. This study was conducted as a search for an AGE inhibitor from brown alga, Sargassum macrocarpum. Separation and purification were performed using AGEs inhibitory activity as an index, yielding isolation of 11 meroterpenoids, of which 3 were new compounds: macrocarquinoids A (1), B (6), and C (9). Their structures were elucidated using NMR spectral analysis with 2D techniques. All tested compounds showed AGEs inhibitory activity. Particularly, macrocarquinoid C (9) possessed the strongest activity (IC50: 1.0 mM) of isolated compounds. This activity was stronger than that of aminoguanidine (positive control).
Collapse
Affiliation(s)
- Hiromi Niwa
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | | | - Takaaki Kubota
- Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Mitsuhiro Sekiguchi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
19
|
Tiwari U, Ganesan NG, Junnarkar J, Rangarajan V. Toward the formulation of bio-cosmetic nanoemulsions: from plant-derived to microbial-derived ingredients. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1847664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Utkarsh Tiwari
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Neela Gayathri Ganesan
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Jui Junnarkar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa, India
| |
Collapse
|
20
|
Fournière M, Latire T, Souak D, Feuilloley MGJ, Bedoux G. Staphylococcus epidermidis and Cutibacterium acnes: Two Major Sentinels of Skin Microbiota and the Influence of Cosmetics. Microorganisms 2020; 8:E1752. [PMID: 33171837 PMCID: PMC7695133 DOI: 10.3390/microorganisms8111752] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dermatological and cosmetics fields have recently started to focus on the human skin microbiome and microbiota, since the skin microbiota is involved in the health and dysbiosis of the skin ecosystem. Amongst the skin microorganisms, Staphylococcus epidermidis and Cutibacterium acnes, both commensal bacteria, appear as skin microbiota sentinels. These sentinels have a key role in the skin ecosystem since they protect and prevent microbiota disequilibrium by fighting pathogens and participate in skin homeostasis through the production of beneficial bacterial metabolites. These bacteria adapt to changing skin microenvironments and can shift to being opportunistic pathogens, forming biofilms, and thus are involved in common skin dysbiosis, such as acne or atopic dermatitis. The current evaluation methods for cosmetic active ingredient development are discussed targeting these two sentinels with their assets and limits. After identification of these objectives, research of the active cosmetic ingredients and products that maintain and promote these commensal metabolisms, or reduce their pathogenic forms, are now the new challenges of the skincare industry in correlation with the constant development of adapted evaluation methods.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Djouhar Souak
- Laboratoire de Microbiologie Signaux et Microenvironment LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironment LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
| |
Collapse
|
21
|
Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY. Algae Metabolites in Cosmeceutical: An Overview of Current Applications and Challenges. Mar Drugs 2020; 18:E323. [PMID: 32575468 PMCID: PMC7344841 DOI: 10.3390/md18060323] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
Collapse
Affiliation(s)
- Krishnapriya Thiyagarasaiyar
- Department of Biological Sciences, School of Science & Technology, Sunway University, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| | - Bey-Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China;
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Science & Technology, Sunway University, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| |
Collapse
|
22
|
Alves A, Sousa E, Kijjoa A, Pinto M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020; 25:molecules25112536. [PMID: 32486036 PMCID: PMC7321322 DOI: 10.3390/molecules25112536] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The cosmetic industry is among the fastest growing industries in the last decade. As the beauty concepts have been revolutionized, many terms have been coined to accompany the innovation of this industry, since the beauty products are not just confined to those that are applied to protect and enhance the appearance of the human body. Consequently, the terms such as cosmeceuticals and nutricosmetics have emerged to give a notion of the health benefits of the products that create the beauty from inside to outside. In the past years, natural products-based cosmeceuticals have gained a huge amount of attention not only from researchers but also from the public due to the general belief that they are harmless. Notably, in recent years, the demand for cosmeceuticals from the marine resources has been exponentially on the rise due to their unique chemical and biological properties that are not found in terrestrial resources. Therefore, the present review addresses the importance of marine-derived compounds, stressing new chemical entities with cosmeceutical potential from the marine natural resources and their mechanisms of action by which these compounds exert on the body functions as well as their related health benefits. Marine environments are the most important reservoir of biodiversity that provide biologically active substances whose potential is still to be discovered for application as pharmaceuticals, nutraceuticals, and cosmeceuticals. Marine organisms are not only an important renewable source of valuable bulk compounds used in cosmetic industry such as agar and carrageenan, which are used as gelling and thickening agents to increase the viscosity of cosmetic formulations, but also of small molecules such as ectoine (to promote skin hydration), trichodin A (to prevent product alteration caused by microbial contamination), and mytiloxanthin (as a coloring agent). Marine-derived molecules can also function as active ingredients, being the main compounds that determine the function of cosmeceuticals such as anti-tyrosinase (kojic acid), antiacne (sargafuran), whitening (chrysophanol), UV protection (scytonemin, mycosporine-like amino acids (MAAs)), antioxidants, and anti-wrinkle (astaxanthin and PUFAs).
Collapse
Affiliation(s)
- Ana Alves
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| |
Collapse
|
23
|
Rushdi MI, Abdel-Rahman IAM, Saber H, Attia EZ, Abdelraheem WM, Madkour HA, Hassan HM, Elmaidomy AH, Abdelmohsen UR. Pharmacological and natural products diversity of the brown algae genus Sargassum. RSC Adv 2020; 10:24951-24972. [PMID: 35517468 PMCID: PMC9055232 DOI: 10.1039/d0ra03576a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
Sargassum (F. Sargassaceae) is an important seaweed excessively distributed in tropical and subtropical regions.
Collapse
Affiliation(s)
- Mohammed I. Rushdi
- Department of Pharmacognosy
- Faculty of Pharmacy
- South Valley University
- Qena
- Egypt
| | | | - Hani Saber
- Department of Botany and Microbiology
- Faculty of Science
- South Valley University
- Qena
- Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy
- Faculty of Pharmacy
- Minia University
- 61519 Minia
- Egypt
| | - Wedad M. Abdelraheem
- Department of Medical Microbiology and Immunology
- Faculty of Medicine
- Minia University
- 61519 Minia
- Egypt
| | - Hashem A. Madkour
- Department of Marine and Environmental Geology
- National Institute of Oceanography and Fisheries
- 84511 Hurghada
- Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy
- Faculty of Pharmacy
- Beni-Suef University
- Beni-Suef
- Egypt
| | | |
Collapse
|
24
|
Leandro A, Pereira L, Gonçalves AMM. Diverse Applications of Marine Macroalgae. Mar Drugs 2019; 18:md18010017. [PMID: 31878264 PMCID: PMC7024196 DOI: 10.3390/md18010017] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 01/21/2023] Open
Abstract
The aim of this paper is to review the multiplicity of the current uses of marine macroalgae. Seaweeds are already used in many products and for different purposes, from food products to medicine. They are a natural resource that can provide a number of compounds with beneficial bioactivities like antioxidant, anti-inflammatory, anti-aging effects, among others. Despite studies directed in prospecting for their properties and the commodities already marketed, they could, surely, be even more researched and sustainably explored.
Collapse
Affiliation(s)
- Adriana Leandro
- MARE (Marine and Environmental Sciences Centre), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Leonel Pereira
- MARE (Marine and Environmental Sciences Centre), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana M. M. Gonçalves
- MARE (Marine and Environmental Sciences Centre), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-239-240-700 (ext. 262-286)
| |
Collapse
|
25
|
Gupta PL, Rajput M, Oza T, Trivedi U, Sanghvi G. Eminence of Microbial Products in Cosmetic Industry. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:267-278. [PMID: 31214881 PMCID: PMC6646485 DOI: 10.1007/s13659-019-0215-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/13/2019] [Indexed: 05/21/2023]
Abstract
Cosmetology is the developing branch of science, having direct impact on the society. The cosmetic sector is interested in finding novel biological alternatives which can enhance the product attributes as well as it can substitute chemical compounds. Many of the compounds are having biological origin and are acquire from bacteria, fungi, and algae. A range of biological compounds, like bio-surfactant, vitamins, antioxidants, pigments, enzymes, peptides have promising features and beneficial properties. Moreover, these products can be produced commercially with ease. The review will encompass the importance and use of microbial compounds for new cosmetic formulations as well as products associated with it.
Collapse
Affiliation(s)
| | | | - Tejas Oza
- Department of Microbiology, Marwadi University, Rajkot, 360001, India
| | | | - Gaurav Sanghvi
- Department of Microbiology, Marwadi University, Rajkot, 360001, India.
| |
Collapse
|
26
|
Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. COSMETICS 2018. [DOI: 10.3390/cosmetics5040068] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Riverine, estuarine, and coastal populations have always used algae in the development of home remedies that were then used to treat diverse health problems. The empirical knowledge of various generations originated these applications, and their mechanism of action is, in most cases, unknown, that is, few more scientific studies would have been described beyond simple collection and ethnographic recording. Nevertheless, recent investigations, carried out with the purpose of analyzing the components and causes that alter the functioning and the balance of our organism, are already giving their first results. Water, and especially sea water is considered as essential to life on our planet. It sings all the substances necessary and conducive to the development of the living being (minerals, catalysts, vitamins, amino acids, etc.). Oceans cover over 70% of Earth, being home to up to 90% of the organisms in the planet. Many rich resources and unique environments are provided by the ocean. Additionally, bioactive compounds that multiple marine organisms have a great potential to produce can be used as nutraceuticals, pharmaceuticals, and cosmeceuticals. Both primary and secondary metabolites are produced by algae. The first ones are directly implicated in development, normal growth, or reproduction conditions to perform physiological functions. Stress conditions, like temperature changes, salinity, environmental pollutants, or UV radiation exposure cause the performance of secondary metabolites. In algae, proteins, polysaccharides, fatty acids, and amino acids are primary metabolites and phenolic compounds, pigments, vitamins, sterols, and other bioactive agents, all produced in algae tissues, are secondary metabolites. These algal active constituents have direct relevance in cosmetics.
Collapse
|
27
|
Zerrifi SEA, El Khalloufi F, Oudra B, Vasconcelos V. Seaweed Bioactive Compounds against Pathogens and Microalgae: Potential Uses on Pharmacology and Harmful Algae Bloom Control. Mar Drugs 2018; 16:E55. [PMID: 29425153 PMCID: PMC5852483 DOI: 10.3390/md16020055] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are found globally due to their adaptation to various environments. The occurrence of cyanobacterial blooms is not a new phenomenon. The bloom-forming and toxin-producing species have been a persistent nuisance all over the world over the last decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. To control cyanobacterial blooms, various strategies, including physical, chemical, and biological methods have been proposed. Nevertheless, the use of those strategies is usually not effective. The isolation of natural compounds from many aquatic and terrestrial plants and seaweeds has become an alternative approach for controlling harmful algae in aquatic systems. Seaweeds have received attention from scientists because of their bioactive compounds with antibacterial, antifungal, anti-microalgae, and antioxidant properties. The undesirable effects of cyanobacteria proliferations and potential control methods are here reviewed, focusing on the use of potent bioactive compounds, isolated from seaweeds, against microalgae and cyanobacteria growth.
Collapse
Affiliation(s)
- Soukaina El Amrani Zerrifi
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco.
| | - Fatima El Khalloufi
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco.
- Polydisciplinary Faculty of Khouribga (FPK), University Hassan 1, BP. 145, Khouribga 25000, Morocco.
| | - Brahim Oudra
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco.
| | - Vitor Vasconcelos
- Departament of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
28
|
Wang HMD, Li XC, Lee DJ, Chang JS. Potential biomedical applications of marine algae. BIORESOURCE TECHNOLOGY 2017; 244:1407-1415. [PMID: 28697977 DOI: 10.1016/j.biortech.2017.05.198] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 05/02/2023]
Abstract
Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area.
Collapse
Affiliation(s)
- Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Xiao-Chun Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
29
|
Hussain E, Wang LJ, Jiang B, Riaz S, Butt GY, Shi DY. A review of the components of brown seaweeds as potential candidates in cancer therapy. RSC Adv 2016. [DOI: 10.1039/c5ra23995h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brown seaweeds have opened new opportunities for the development of novel anticancer agents due to their diverse structural composition and mode of action.
Collapse
Affiliation(s)
- Ejaz Hussain
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences (CAS)
- Qingdao 266071
- China
| | - Li-Jun Wang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences (CAS)
- Qingdao 266071
- China
| | - Bo Jiang
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences (CAS)
- Qingdao 266071
- China
| | - Saba Riaz
- Phycology Lab
- Department of Botany
- Government College University
- Lahore
- Pakistan
| | | | - Da-Yong Shi
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences (CAS)
- Qingdao 266071
- China
| |
Collapse
|
30
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
31
|
Sibi G. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment. J Adv Pharm Technol Res 2015; 6:7-12. [PMID: 25709963 PMCID: PMC4330611 DOI: 10.4103/2231-4040.150364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5'- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC) values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME) were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31%) and Chlorella protothecoides (58.9%). Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml). FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused by the pathogen could be reduced by the inhibiting the production of ROS and inflammatory mediators TNF-α and exposes new frontiers on the antiacne activities of Chlorella lipid extracts.
Collapse
Affiliation(s)
- G Sibi
- Department of Biotechnology, Indian Academy Degree College, Centre for Research and Post Graduate Studies, Bengaluru, Karnataka, India
| |
Collapse
|
32
|
Affiliation(s)
- Se-Kwon Kim
- Marine Biochemistry & Molecular Biology Laboratory; Department of Chemistry; Pukyong National University; Busan South Korea
- Marine Bioprocess Research Center; Pukyong National University; Busan South Korea
| |
Collapse
|
33
|
Wang B, Wang L, Li Y, Liu Y. Heterocyclic terpenes: linear furano- and pyrroloterpenoids. RSC Adv 2014. [DOI: 10.1039/c3ra48040b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review of furano- and pyrroloterpenoids covers the literature, 180 articles in all, published from January 2006 to December 2013.
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou, China
- Shenzhen Shajing Affiliated Hospital of Guangzhou Medical University
| | - Lishu Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou, China
- Jilin Provincial Academy of Chinese Medicine Sciences
| | - Yinglei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou, China
- Jilin Provincial Academy of Chinese Medicine Sciences
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou, China
| |
Collapse
|
34
|
Manzoor Z, Mathema VB, Chae D, Yoo ES, Kang HK, Hyun JW, Lee NH, Ko MH, Koh YS. Extracts of the seaweed Sargassum macrocarpum inhibit the CpG-induced inflammatory response by attenuating the NF-κB pathway. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-014-0041-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 2013; 11:2510-73. [PMID: 23880931 PMCID: PMC3736438 DOI: 10.3390/md11072510] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022] Open
Abstract
The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-630-515-6951; Fax: +1-630-971-6414
| | - Abimael D. Rodríguez
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, USA; E-Mail:
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, I-80131 Napoli, Italy; E-Mail:
| | | |
Collapse
|
36
|
Katsuta R, Aoki K, Yajima A, Nukada T. Synthesis of the core framework of the proposed structure of sargafuran. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Liu L, Heinrich M, Myers S, Dworjanyn SA. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:591-619. [PMID: 22683660 DOI: 10.1016/j.jep.2012.05.046] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/18/2012] [Accepted: 05/25/2012] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For nearly 2000 years Sargassum spp., a brown seaweed, has been used in Traditional Chinese Medicine (TCM) to treat a variety of diseases including thyroid disease (e.g. goitre). AIMS OF THE REVIEW To assess the scientific evidence for therapeutic claims made for Sargassum spp. in TCM and to identify future research needs. BACKGROUND AND METHODS A systematic search for the use of Sargassum in classical TCM books was conducted and linked to a search for modern phytochemical and pharmacological data on Sargassum spp. retrieved from PubMed, Web of Knowledge, SciFinder Scholar and CNKI (in Chinese). RESULTS AND DISCUSSION The therapeutic effects of Sargassum spp. are scientifically plausible and may be explained partially by key in vivo and in vitro pharmacological activities of Sargassum, such as anticancer, anti-inflammatory, antibacterial and antiviral activities. Although the mechanism of actions is still not clear, the pharmacological activities could be mainly attributed to the major biologically active metabolites, meroterpenoids, phlorotanins and fucoidans. The contribution of iodine in Sargassum for treating thyroid related diseases seem to have been over estimated. CONCLUSIONS The bioactive compounds in Sargassum spp. appear to play a role as immunomodulators and could be useful in the treatment of thyroid related diseases such as Hashimoto's thyroiditis. Further research is required to determine both the preventative and therapeutic role of Sargassum spp. in thyroid health.
Collapse
Affiliation(s)
- Lei Liu
- Southern Cross Plant Science, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | | | | | | |
Collapse
|
38
|
Treyvaud Amiguet V, Jewell LE, Mao H, Sharma M, Hudson JB, Durst T, Allard M, Rochefort G, Arnason JT. Antibacterial properties of a glycolipid-rich extract and active principle from Nunavik collections of the macroalgae Fucus evanescens C. Agardh (Fucaceae). Can J Microbiol 2011; 57:745-9. [PMID: 21859295 DOI: 10.1139/w11-065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the antibacterial activity of glycolipid-rich extracts of the brown macroalga Fucus evanescens in cell culture. Accessions were collected on the Arctic coast of Ungava Bay, Nunavik, Quebec. The crude ethyl acetate extract of these accessions showed strong antibacterial activity (≥4 log(10) cfu) against Hemophilus influenzae , Legionella pneumophila , Propionibacterium acnes (ATCC and clinical isolate), and Streptococcus pyogenes at 100 µg/mL. This algal extract inhibited by 3 log(10) Clostridium difficile and methicillin-resistant Staphylococcus aureus , whereas Bacillus cereus , Escherichia coli , Klebsiella pneumoniae , and Pseudomonas aeruginosa were not significantly affected. Further investigations of the activity of a glycolipid-rich fraction, extracted with dichloromethane, against Propionibacterium acnes showed an MIC(100) of 50 µg/mL, with an inhibition of more than 99% at only 7.8 µg/mL. The main active compound, a β-d-galactosyl O-linked glycolipid, was synthesized for the bioassay and showed an MIC(100) of 50 µg/mL but lost its activity more quickly with only 50% of inhibition at 12.5 µg/mL. Therefore, the semipurified F. evanescens extract could be a good choice for future research into the development of alternative treatments for acne therapy.
Collapse
|
39
|
|
40
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|