1
|
Dickie BR, Jin T, Wang P, Hinz R, Harris W, Boutin H, Parker GJ, Parkes LM, Matthews JC. Quantitative kinetic modelling and mapping of cerebral glucose transport and metabolism using glucoCESL MRI. J Cereb Blood Flow Metab 2022; 42:2066-2079. [PMID: 35748031 PMCID: PMC9580170 DOI: 10.1177/0271678x221108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemical-exchange spin-lock (CESL) MRI can map regional uptake and utilisation of glucose in the brain at high spatial resolution (i.e sub 0.2 mm3 voxels). We propose two quantitative kinetic models to describe glucose-induced changes in tissue R1ρ and apply them to glucoCESL MRI data acquired in tumour-bearing and healthy rats. When assuming glucose transport is saturable, the maximal transport capacity (Tmax) measured in normal tissue was 3.2 ± 0.6 µmol/min/mL, the half saturation constant (Kt) was 8.8 ± 2.2 mM, the metabolic rate of glucose consumption (MRglc) was 0.21 ± 0.13 µmol/min/mL, and the cerebral blood volume (vb) was 0.006 ± 0.005 mL/mL. Values in tumour were: Tmax = 7.1 ± 2.7 µmol/min/mL, Kt = 14 ± 1.7 mM, MRglc = 0.22 ± 0.09 µmol/min/mL, vb = 0.030 ± 0.035 mL/mL. Tmax and Kt were significantly higher in tumour tissue than normal tissue (p = 0.006 and p = 0.011, respectively). When assuming glucose uptake also occurs via free diffusion, the free diffusion rate (kd) was 0.061 ± 0.017 mL/min/mL in normal tissue and 0.12 ± 0.042 mL/min/mL in tumour. These parameter estimates agree well with literature values obtained using other approaches (e.g. NMR spectroscopy).
Collapse
Affiliation(s)
- Ben R Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rainer Hinz
- Division of Informatics, Imaging, and Data Science, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - William Harris
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Geoff Jm Parker
- Bioxydyn Limited, Manchester, UK.,Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of Neuroinflammation, University College London, London, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Julian C Matthews
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
2
|
Miller CO, Gantert LT, Previs SF, Chen Y, Anderson KD, Thomas JM, Sanacora G, Uslaner JM, Rothman DL, Mason GF. A Novel Biomarker of Neuronal Glutamate Metabolism in Nonhuman Primates Using Localized 1H-Magnetic Resonance Spectroscopy: Development and Effects of BNC375, an α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:598-606. [PMID: 33309567 PMCID: PMC8005500 DOI: 10.1016/j.bpsc.2020.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 06/03/2023]
Abstract
BACKGROUND The development of treatments for cognitive deficits associated with central nervous system disorders is currently a significant medical need. Despite the great need for such therapeutics, a significant challenge in the drug development process is the paucity of robust biomarkers to assess target modulation and guide clinical decisions. We developed a novel, translatable biomarker of neuronal glutamate metabolism, the 13C-glutamate+glutamine (Glx) H3:H4 labeling ratio, in nonhuman primates using localized 1H-magnetic resonance spectroscopy combined with 13C-glucose infusions. METHODS We began with numerical simulations in an established model of brain glutamate metabolism, showing that the 13C-Glx H3:H4 ratio should be a sensitive biomarker of neuronal tricarboxylic acid cycle activity, a key measure of overall neuronal metabolism. We showed that this biomarker can be measured reliably using a standard 1H-magnetic resonance spectroscopy method (point-resolved spectroscopy sequence/echo time = 20 ms), obviating the need for specialized hardware and pulse sequences typically used with 13C-magnetic resonance spectroscopy, thus improving overall clinical translatability. Finally, we used this biomarker in 8 male rhesus macaques before and after administration of the compound BNC375, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor that enhances glutamate signaling ex vivo and elicits procognitive effects in preclinical species. RESULTS The 13C-Glx H3:H4 ratios in the monkeys showed that BNC375 increases neuronal metabolism in nonhuman primates in vivo, detectable on an individual basis. CONCLUSIONS This study demonstrates that the ratio of 13C-Glx H3:H4 labeling is a biomarker that may provide an objective readout of compounds affecting glutamatergic neurotransmission and could improve decision making for the development of therapeutic agents.
Collapse
Affiliation(s)
- Corin O Miller
- Department of Translational Imaging Biomarkers, Merck & Co., Kenilworth, New Jersey.
| | - Liza T Gantert
- Department of Translational Imaging Biomarkers, Merck & Co., Kenilworth, New Jersey
| | | | - Ying Chen
- Department of Chemistry, Merck & Co., Kenilworth, New Jersey
| | - Kenneth D Anderson
- Department of Pharmacology, Pharmacokinetics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey
| | - Justina M Thomas
- Department of Pharmacology, Pharmacokinetics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jason M Uslaner
- Department of Neuroscience, Merck & Co., Kenilworth, New Jersey
| | - Douglas L Rothman
- Department of Diagnostic Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering Yale University School of Medicine, New Haven, Connecticut
| | - Graeme F Mason
- Department of Diagnostic Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
Tuttle RR, Daly RE, Rithner CD, Reynolds MM. Monitoring a MOF Catalyzed Reaction Directly in Blood Plasma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52006-52013. [PMID: 34280308 DOI: 10.1021/acsami.1c08917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we establish a method to quantitatively monitor a metal-organic framework (MOF)-catalyzed, biomedically relevant reaction directly in blood plasma, specifically, the generation of nitric oxide (NO) from the endogenous substrate S-nitrosoglutathione (GSNO) catalyzed by H3[(Cu4Cl)3-(BTTri)8] (CuBTTri). The reaction monitoring method uses UV-vis and 1H NMR spectroscopies along with a nitric oxide analyzer (NOA) to yield the reaction stoichiometry and catalytic rate for GSNO to NO conversion catalyzed by CuBTTri in blood plasma. The results show 100% loss of GSNO within 16 h and production of 1 equiv. of glutathione disulfide (GSSG) per 2 equiv. of GSNO. Only 78 ± 10% recovery of NO(g) was observed, indicating that blood plasma can scavenge the generated NO before it can escape the reaction vessel. Significantly, to best apply and understand reaction systems with biomedical importance, such as NO release catalyzed by CuBTTri, methods to study the reaction directly in biological solvents must be developed.
Collapse
|
4
|
Cherix A, Donati G, Lizarbe B, Lanz B, Poitry-Yamate C, Lei H, Gruetter R. Excitatory/inhibitory neuronal metabolic balance in mouse hippocampus upon infusion of [U- 13C 6]glucose. J Cereb Blood Flow Metab 2021; 41:282-297. [PMID: 32151224 PMCID: PMC8370000 DOI: 10.1177/0271678x20910535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hippocampus plays a critical role in linking brain energetics and behavior typically associated to stress exposure. In this study, we aimed to simultaneously assess excitatory and inhibitory neuronal metabolism in mouse hippocampus in vivo by applying 18FDG-PET and indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) at 14.1 T upon infusion of uniformly 13C-labeled glucose ([U-13C6]Glc). Improving the spectral fitting by taking into account variable decoupling efficiencies of [U-13C6]Glc and refining the compartmentalized model by including two γ-aminobutyric acid (GABA) pools permit us to evaluate the relative contributions of glutamatergic and GABAergic metabolism to total hippocampal neuroenergetics. We report that GABAergic activity accounts for ∼13% of total neurotransmission (VNT) and ∼27% of total neuronal TCA cycle (VTCA) in mouse hippocampus suggesting a higher VTCA/VNT ratio for inhibitory neurons compared to excitatory neurons. Finally, our results provide new strategies and tools for bringing forward the developments and applications of 13C-MRS in specific brain regions of small animals.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume Donati
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Blanca Lizarbe
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Instituto de Investigaciones Biomedicas "Alberto Sols", CSIC-UAM, Madrid, Spain
| | - Bernard Lanz
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Sir Peter Mansfield Imaging Centre (SPMIC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Carole Poitry-Yamate
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Wilson DF, Matschinsky FM. Cerebrovascular Blood Flow Design and Regulation; Vulnerability in Aging Brain. Front Physiol 2020; 11:584891. [PMID: 33178048 PMCID: PMC7596697 DOI: 10.3389/fphys.2020.584891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Nutrient delivery to the brain presents a unique challenge because the tissue functions as a computer system with in the order of 200,000 neurons/mm3. Penetrating arterioles bud from surface arteries of the brain and penetrate downward through the cortex. Capillary networks spread from penetrating arterioles through the surrounding tissue. Each penetrating arteriole forms a vascular unit, with little sharing of flow among vascular units (collateral flow). Unlike cells in other tissues, neurons have to be operationally isolated, interacting with other neurons through specific electrical connections. Neuronal activation typically involves only a few of the cells within a vascular unit, but the local increase in nutrient consumption is substantial. The metabolic response to activation is transmitted to the feeding arteriole through the endothelium of neighboring capillaries and alters calcium permeability of smooth muscle in the wall resulting in modulation of flow through the entire vascular unit. Many age and trauma related brain pathologies can be traced to vascular malfunction. This includes: 1. Physical damage such as in traumatic injury with imposed shear stress as soft tissue moves relative to the skull. Lack of collateral flow among vascular units results in death of the cells in that vascular unit and loss of brain tissue. 2. Age dependent changes lead to progressive increase in vascular resistance and decrease in tissue levels of oxygen and glucose. Chronic hypoxia/hypoglycemia compromises tissue energy metabolism and related regulatory processes. This alters stem cell proliferation and differentiation, undermines vascular integrity, and suppresses critical repair mechanisms such as oligodendrocyte generation and maturation. Reduced structural integrity results in local regions of acute hypoxia and microbleeds, while failure of oligodendrocytes to fully mature leads to poor axonal myelination and defective neuronal function. Understanding and treating age related pathologies, particularly in brain, requires better knowledge of why and how vasculature changes with age. That knowledge will, hopefully, make possible drugs/methods for protecting vascular function, substantially alleviating the negative health and cognitive deficits associated with growing old.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Abstract
Hepatic glycogen synthesis plays a critical role in maintaining normal glucose homeostasis; however, the rate-controlling step regulating this process is unknown. Applying metabolic control analysis in vivo, we show that the regulation of insulin-stimulated hepatic glycogen synthesis under both normal and pathophysiological conditions of fatty liver-associated hepatic insulin resistance is controlled at the glucokinase (GCK) step through GCK translocation. Multiple insulin-regulated enzymes participate in hepatic glycogen synthesis, and the rate-controlling step responsible for insulin stimulation of glycogen synthesis is unknown. We demonstrate that glucokinase (GCK)-mediated glucose phosphorylation is the rate-controlling step in insulin-stimulated hepatic glycogen synthesis in vivo, by use of the somatostatin pancreatic clamp technique using [13C6]glucose with metabolic control analysis (MCA) in three rat models: 1) regular chow (RC)-fed male rats (control), 2) high fat diet (HFD)-fed rats, and 3) RC-fed rats with portal vein glucose delivery at a glucose infusion rate matched to the control. During hyperinsulinemia, hyperglycemia dose-dependently increased hepatic glycogen synthesis. At similar levels of hyperinsulinemia and hyperglycemia, HFD-fed rats exhibited a decrease and portal delivery rats exhibited an increase in hepatic glycogen synthesis via the direct pathway compared with controls. However, the strong correlation between liver glucose-6-phosphate concentration and net hepatic glycogen synthetic rate was nearly identical in these three groups, suggesting that the main difference between models is the activation of GCK. MCA yielded a high control coefficient for GCK in all three groups. We confirmed these findings in studies of hepatic GCK knockdown using an antisense oligonucleotide. Reduced liver glycogen synthesis in lipid-induced hepatic insulin resistance and increased glycogen synthesis during portal glucose infusion were explained by concordant changes in translocation of GCK. Taken together, these data indicate that the rate of insulin-stimulated hepatic glycogen synthesis is controlled chiefly through GCK translocation.
Collapse
|
7
|
Hwang JJ, Jiang L, Sanchez Rangel E, Fan X, Ding Y, Lam W, Leventhal J, Dai F, Rothman DL, Mason GF, Sherwin RS. Glycemic Variability and Brain Glucose Levels in Type 1 Diabetes. Diabetes 2019; 68:163-171. [PMID: 30327383 PMCID: PMC6302539 DOI: 10.2337/db18-0722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
The impact of glycemic variability on brain glucose transport kinetics among individuals with type 1 diabetes mellitus (T1DM) remains unclear. Fourteen individuals with T1DM (age 35 ± 4 years; BMI 26.0 ± 1.4 kg/m2; HbA1c 7.6 ± 0.3) and nine healthy control participants (age 32 ± 4; BMI 23.1 ± 0.8; HbA1c 5.0 ± 0.1) wore a continuous glucose monitor (Dexcom) to measure hypoglycemia, hyperglycemia, and glycemic variability for 5 days followed by 1H MRS scanning in the occipital lobe to measure the change in intracerebral glucose levels during a 2-h glucose clamp (target glucose concentration 220 mg/dL). Hyperglycemic clamps were also performed in a rat model of T1DM to assess regional differences in brain glucose transport and metabolism. Despite a similar change in plasma glucose levels during the hyperglycemic clamp, individuals with T1DM had significantly smaller increments in intracerebral glucose levels (P = 0.0002). Moreover, among individuals with T1DM, the change in brain glucose correlated positively with the lability index (r = 0.67, P = 0.006). Consistent with findings in humans, streptozotocin-treated rats had lower brain glucose levels in the cortex, hippocampus, and striatum compared with control rats. These findings that glycemic variability is associated with brain glucose levels highlight the need for future studies to investigate the impact of glycemic variability on brain glucose kinetics.
Collapse
Affiliation(s)
- Janice J Hwang
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Lihong Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | | | - Xiaoning Fan
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Yuyan Ding
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | - Wai Lam
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| | | | - Feng Dai
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Robert S Sherwin
- Section of Endocrinology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
8
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
9
|
Wu D, Xu J, Lei J, Mclane M, van Zijl PC, Burd I. Dynamic glucose enhanced MRI of the placenta in a mouse model of intrauterine inflammation. Placenta 2018; 69:86-91. [PMID: 30213490 DOI: 10.1016/j.placenta.2018.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We investigated the feasibility of dynamic glucose enhanced (DGE) MRI in accessing placental function in a mouse model of intrauterine inflammatory injury (IUI). DGE uses the glucose chemical exchange saturation transfer (glucoCEST) effect to reflect infused d-glucose. METHODS IUI was induced in pregnant CD1 mice by intrauterine injection of lipopolysaccharide (LPS) on embryonic day 17. In vivo MRI was performed on an 11.7 T scanner at 6 h s after injury, and glucoCEST effect was measured using an on-resonance variable delay multi-pulse (onVDMP) technique. onVDMP acquisition was repeated over a period of 25 min, and d-glucose was infused 5 min after the start. The time-resolved glucoCEST signals were characterized using the normalized signal difference (ΔSN) between onVDMP-labeled and nonlabeled images. RESULTS ΔSN in the PBS-exposed placentae (n = 6) showed an initial drop between 1 and 3 min after infusion, followed by a positive peak between 5 and 20 min, the time period expected to be associated with the process of glucose uptake and transport. In the LPS-exposed placentae (n = 10), the positive peak was reduced or even absent, and the corresponding area-under-the-curve (AUC) was significantly lower than that in the controls. Particularly, the AUC maps suggested prominent group differences in the fetal side of the placenta. We also found that glucose transporter 1 in the LPS-exposed placentae did not respond to maternal glucose challenge. DISCUSSION DGE-MRI is useful for evaluating placental functions related to glucose utilization. The technique uses a non-toxic biodegradable agent (d-glucose) and thus has a potential for rapid translation to human studies of placental disorders.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Mclane
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Saba K, Rajnala N, Veeraiah P, Tiwari V, Rana RK, Lakhotia SC, Patel AB. Energetics of Excitatory and Inhibitory Neurotransmission in Aluminum Chloride Model of Alzheimer's Disease: Reversal of Behavioral and Metabolic Deficits by Rasa Sindoor. Front Mol Neurosci 2017; 10:323. [PMID: 29089867 PMCID: PMC5651029 DOI: 10.3389/fnmol.2017.00323] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by progressive loss of cognitive functions and memory. Excessive intake of aluminum chloride in drinking water is associated with amyloid plaques and neurofibrillary tangles in the brain, which are the hallmark of AD. We have evaluated brain energy metabolism in aluminum chloride (AlCl3) mouse model of AD. In addition, effectiveness of Rasa Sindoor (RS), a formulation used in Indian Ayurvedic medicine, for alleviation of symptoms of AD was evaluated. Mice were administered AlCl3 (40 mg/kg) intraperitoneally once a day for 60 days. The memory of mice was measured using Morris Water Maze test. The 13C labeling of brain amino acids was measured ex vivo in tissue extracts using 1H-[13C]-NMR spectroscopy with timed infusion of [1,6-13C2]glucose. The 13C turnover of brain amino acids was analyzed using a three-compartment metabolic model to derive the neurotransmitter cycling and TCA cycle rates associated with glutamatergic and GABAergic pathways. Exposure of AlCl3 led to reduction in memory of mice. The glutamatergic and GABAergic neurotransmitter cycling and glucose oxidation were found to be reduced in the cerebral cortex, hippocampus, and striatum following chronic AlCl3 treatment. The perturbation in metabolic rates was highest in the cerebral cortex. However, reduction in metabolic fluxes was higher in hippocampus and striatum following one month post AlCl3 treatment. Most interestingly, oral administration of RS (2 g/kg) restored memory as well as the energetics of neurotransmission in mice exposed to AlCl3. These data suggest therapeutic potential of RS to manage cognitive functions and memory in preclinical AD.
Collapse
Affiliation(s)
- Kamal Saba
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Habsiguda, India
| | - Niharika Rajnala
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Habsiguda, India
| | - Pandichelvam Veeraiah
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Habsiguda, India
| | - Vivek Tiwari
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Habsiguda, India
| | - Rohit K Rana
- CSIR-Indian Institute of Chemical Technology, Tarnaka, India
| | - Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Anant B Patel
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Habsiguda, India
| |
Collapse
|
11
|
Xie WQ, Gong YX, Yu KX. Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography. J Chromatogr A 2017; 1520:143-146. [DOI: 10.1016/j.chroma.2017.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/02/2017] [Accepted: 09/06/2017] [Indexed: 11/26/2022]
|
12
|
Lai M, Gruetter R, Lanz B. Progress towards in vivo brain 13C-MRS in mice: Metabolic flux analysis in small tissue volumes. Anal Biochem 2017; 529:229-244. [PMID: 28119064 DOI: 10.1016/j.ab.2017.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 01/08/2023]
Abstract
The combination of dynamic 13C MRS data under infusion of 13C-labelled substrates and compartmental models of cerebral metabolism enabled in vivo measurement of metabolic fluxes with a quantitative and distinct determination of cellular-specific activities. The non-invasive nature and the chemical specificity of the 13C dynamic data obtained in those tracer experiments makes it an attractive approach offering unique insights into cerebral metabolism. Genetically engineered mice present a wealth of disease models particularly interesting for the neuroscience community. Nevertheless, in vivo13C NMR studies of the mouse brain are only recently appearing in the field due to the numerous challenges linked to the small mouse brain volume and the difficulty to follow the mouse physiological parameters within the NMR system during the infusion experiment. This review will present the progresses in the quest for a higher in vivo13C signal-to-noise ratio up to the present state of the art techniques, which made it feasible to assess glucose metabolism in different regions of the mouse brain. We describe how experimental results were integrated into suitable compartmental models and how a deep understanding of cerebral metabolism depends on the reliable detection of 13C in the different molecules and carbon positions.
Collapse
Affiliation(s)
- Marta Lai
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Radiology, University of Geneva, 1205 Geneva, Switzerland; Department of Radiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bernard Lanz
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Wei W, Song Y, Fan X, Zhang S, Wang L, Xu S, Wang M, Cai X. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials. NANOTECHNOLOGY 2016; 27:114001. [PMID: 26871752 DOI: 10.1088/0957-4484/27/11/114001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.
Collapse
Affiliation(s)
- Wenjing Wei
- State Key Laboratory of Transducer Technology, Institute of Electronics Chinese Academy of Sciences, Beijing 100190, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Compartmental Analysis of Metabolism by 13C Magnetic Resonance Spectroscopy. BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metab 2013; 33:1270-8. [PMID: 23673434 PMCID: PMC3734779 DOI: 10.1038/jcbfm.2013.79] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 01/09/2023]
Abstract
2-Deoxy-D-glucose (2DG) is a known surrogate molecule that is useful for inferring glucose uptake and metabolism. Although (13)C-labeled 2DG can be detected by nuclear magnetic resonance (NMR), its low sensitivity for detection prohibits imaging to be performed. Using chemical exchange saturation transfer (CEST) as a signal-amplification mechanism, 2DG and the phosphorylated 2DG-6-phosphate (2DG6P) can be indirectly detected in (1)H magnetic resonance imaging (MRI). We showed that the CEST signal changed with 2DG concentration, and was reduced by suppressing cerebral metabolism with increased general anesthetic. The signal changes were not affected by cerebral or plasma pH, and were not correlated with altered cerebral blood flow as demonstrated by hypercapnia; neither were they related to the extracellular glucose amounts as compared with injection of D- and L-glucose. In vivo (31)P NMR revealed similar changes in 2DG6P concentration, suggesting that the CEST signal reflected the rate of glucose assimilation. This method provides a new way to use widely available MRI techniques to image deoxyglucose/glucose uptake and metabolism in vivo without the need for isotopic labeling of the molecules.
Collapse
|
16
|
Simultaneous measurement of glucose blood-brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS. J Cereb Blood Flow Metab 2012; 32:1778-87. [PMID: 22714049 PMCID: PMC3434624 DOI: 10.1038/jcbfm.2012.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral glucose consumption and glucose transport across the blood-brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMR(glc)) and glucose transport constants (K(T): half-saturation constant; T(max): maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMR(glc), K(T), and T(max) via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo (1)H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMR(glc), T(max), and K(T) were determined to be 0.44 ± 0.17 μmol/g per minute, 1.35 ± 0.47 μmol/g per minute, and 13.4 ± 6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMR(glc) and T(max) are more reliable than that of K(T). The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application.
Collapse
|
17
|
The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 2012; 61:342-62. [DOI: 10.1016/j.neuroimage.2011.12.038] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/15/2011] [Indexed: 12/13/2022] Open
|
18
|
Duarte JMN, Gruetter R. Characterization of cerebral glucose dynamics in vivo with a four-state conformational model of transport at the blood-brain barrier. J Neurochem 2012; 121:396-406. [DOI: 10.1111/j.1471-4159.2012.07688.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Duarte JMN, Morgenthaler FD, Lei H, Poitry-Yamate C, Gruetter R. Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model. FRONTIERS IN NEUROENERGETICS 2009; 1:6. [PMID: 20027232 PMCID: PMC2795468 DOI: 10.3389/neuro.14.006.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/11/2009] [Indexed: 11/13/2022]
Abstract
Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.
Collapse
Affiliation(s)
- João M N Duarte
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
20
|
van Eijsden P, Behar KL, Mason GF, Braun KPJ, de Graaf RA. In vivo neurochemical profiling of rat brain by 1H-[13C] NMR spectroscopy: cerebral energetics and glutamatergic/GABAergic neurotransmission. J Neurochem 2009; 112:24-33. [PMID: 19818103 DOI: 10.1111/j.1471-4159.2009.06428.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The quantification of excitatory and inhibitory neurotransmission and the associated energy metabolism is crucial for a proper understanding of brain function. Although the detection of glutamatergic neurotransmission in vivo by (13)C NMR spectroscopy is now relatively routine, the detection of GABAergic neurotransmission in vivo has remained elusive because of the low GABA concentration and spectral overlap. Using (1)H-[(13)C] NMR spectroscopy at high magnetic field in combination with robust spectral modeling and the use of different substrates, [U-(13)C(6)]-glucose and [2-(13)C]-acetate, it is shown that GABAergic, as well as glutamatergic neurotransmitter fluxes can be detected non-invasively in rat brain in vivo.
Collapse
Affiliation(s)
- Pieter van Eijsden
- Department of Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Jiang L, Herzog RI, Mason GF, de Graaf RA, Rothman DL, Sherwin RS, Behar KL. Recurrent antecedent hypoglycemia alters neuronal oxidative metabolism in vivo. Diabetes 2009; 58:1266-74. [PMID: 19276443 PMCID: PMC2682668 DOI: 10.2337/db08-1664] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The objective of this study was to characterize the changes in brain metabolism caused by antecedent recurrent hypoglycemia under euglycemic and hypoglycemic conditions in a rat model and to test the hypothesis that recurrent hypoglycemia changes the brain's capacity to utilize different energy substrates. RESEARCH DESIGN AND METHODS Rats exposed to recurrent insulin-induced hypoglycemia for 3 days (3dRH rats) and untreated controls were subject to the following protocols: [2-(13)C]acetate infusion under euglycemic conditions (n = 8), [1-(13)C]glucose and unlabeled acetate coinfusion under euglycemic conditions (n = 8), and [2-(13)C]acetate infusion during a hyperinsulinemic-hypoglycemic clamp (n = 8). In vivo nuclear magnetic resonance spectroscopy was used to monitor the rise of(13)C-labeling in brain metabolites for the calculation of brain metabolic fluxes using a neuron-astrocyte model. RESULTS At euglycemia, antecedent recurrent hypoglycemia increased whole-brain glucose metabolism by 43 +/- 4% (P < 0.01 vs. controls), largely due to higher glucose utilization in neurons. Although acetate metabolism remained the same, control and 3dRH animals showed a distinctly different response to acute hypoglycemia: controls decreased pyruvate dehydrogenase (PDH) flux in astrocytes by 64 +/- 20% (P = 0.01), whereas it increased by 37 +/- 3% in neurons (P = 0.01). The 3dRH animals decreased PDH flux in both compartments (-75 +/- 20% in astrocytes, P < 0.001, and -36 +/- 4% in neurons, P = 0.005). Thus, acute hypoglycemia reduced total brain tricarboxylic acid cycle activity in 3dRH animals (-37 +/- 4%, P = 0.001), but not in controls. CONCLUSIONS Our findings suggest that after antecedent hypoglycemia, glucose utilization is increased at euglycemia and decreased after acute hypoglycemia, which was not the case in controls. These findings may help to identify better methods of preserving brain function and reducing injury during acute hypoglycemia.
Collapse
Affiliation(s)
- Lihong Jiang
- Department of Diagnostic Radiology, Yale University School of Medicine, The Anlyan Center, New Haven, Connecticut, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Håberg AK, Qu H, Sonnewald U. Acute changes in intermediary metabolism in cerebellum and contralateral hemisphere following middle cerebral artery occlusion in rat. J Neurochem 2009; 109 Suppl 1:174-81. [DOI: 10.1111/j.1471-4159.2009.05940.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Nordström CH. Insulin, intracerebral glucose and bedside biochemical monitoring utilizing microdialysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:124. [PMID: 18423062 PMCID: PMC2447563 DOI: 10.1186/cc6826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following subarachnoid hemorrhage, hyperglycemia is strongly associated with complications and with impaired neurological recovery. Targeted insulin therapy for glycemic control might, on the contrary, have harmful effects by causing too low cerebral glucose levels. The study published by Schlenk and colleagues in the previous issue of Critical Care shows that insulin caused a significant decrease in the interstitial cerebral glucose concentration although the blood glucose level remained unaffected. Since several studies utilizing various analytical techniques have shown that cerebral blood flow and cerebral glucose uptake and metabolism are insulin-independent processes, the observation remains unexplained.
Collapse
|
24
|
Shestov AA, Valette J, Uğurbil K, Henry PG. On the reliability of (13)C metabolic modeling with two-compartment neuronal-glial models. J Neurosci Res 2008; 85:3294-303. [PMID: 17393498 DOI: 10.1002/jnr.21269] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabolic modeling of (13)C NMR spectroscopy ((13)C MRS) data using two-compartment neuronal-glial models enabled non-invasive measurements of the glutamate-glutamine cycle rate (V(NT)) in the brain in vivo. However, the reliability of such two-compartment metabolic modeling has not been examined thoroughly. This study uses Monte-Carlo simulations to investigate the reliability of metabolic modeling of (13)C positional enrichment time courses measured in brain amino acids such as glutamate and glutamine during [1-(13)C]- or [1,6-(13)C(2)]glucose infusion. Results show that the determination of V(NT) is not very precise under experimental conditions typical of in vivo NMR studies, whereas the neuronal TCA cycle rate V(TCA(N)) is determined with a much higher precision. Consistent with these results, simulated (13)C positional enrichment curves for glutamate and glutamine are much more sensitive to the value of V(TCA(N)) than to the value of V(NT). We conclude that the determination of the glutamate-glutamine cycle rate V(NT) using (13)C MRS is relatively unreliable when fitting (13)C positional enrichment curves obtained during [1-(13)C] or [1,6-(13)C(2)]glucose infusion. Further developments are needed to improve the determination of V(NT), for example using additional information from (13)C-(13)C isotopomers and/or using glial specific substrates such as [2-(13)C]acetate.
Collapse
Affiliation(s)
- Alexander A Shestov
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
25
|
Oltmanns KM, Melchert UH, Scholand-Engler HG, Howitz MC, Schultes B, Schweiger U, Hohagen F, Born J, Peters A, Pellerin L. Differential energetic response of brain vs. skeletal muscle upon glycemic variations in healthy humans. Am J Physiol Regul Integr Comp Physiol 2007; 294:R12-6. [PMID: 17977922 DOI: 10.1152/ajpregu.00093.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using (31)P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by (31)P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain (P = 0.013), while there was a similar trend in the hypopglycemic condition (P = 0.055). Skeletal muscle content remained constant in both conditions (P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to -4%) revealed clear divergent effects in both conditions (P < 0.05). These effects were reflected by PCr/Pi ratio (P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia (P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.
Collapse
Affiliation(s)
- Kerstin M Oltmanns
- Department of Psychiatry and Psychotherapy, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Choi JK, Dedeoglu A, Jenkins BG. Application of MRS to mouse models of neurodegenerative illness. NMR IN BIOMEDICINE 2007; 20:216-37. [PMID: 17451183 DOI: 10.1002/nbm.1145] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rapid development of transgenic mouse models of neurodegenerative diseases, in parallel with the rapidly expanding growth of MR techniques for assessing in vivo, non-invasive, neurochemistry, offers the potential to develop novel markers of disease progression and therapy. In this review we discuss the interpretation and utility of MRS for the study of these transgenic mouse and rodent models of neurodegenerative diseases such as Alzheimer's (AD), Huntington's (HD) and Parkinson's disease (PD). MRS studies can provide a wealth of information on various facets of in vivo neurochemistry, including neuronal health, gliosis, osmoregulation, energy metabolism, neuronal-glial cycling, and molecular synthesis rates. These data provide information on the etiology, natural history and therapy of these diseases. Mouse models enable longitudinal studies with useful time frames for evaluation of neuroprotection and therapeutic interventions using many of the potential MRS markers. In addition, the ability to manipulate the genome in these models allows better mechanistic understanding of the roles of the observable neurochemicals, such as N-acetylaspartate, in the brain. The argument is made that use of MRS, combined with correlative histology and other MRI techniques, will enable objective markers with which potential therapies can be followed in a quantitative fashion.
Collapse
Affiliation(s)
- Ji-Kyung Choi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
27
|
Xu S, Yang J, Shen J. In vivo 13C saturation transfer effect of the lactate dehydrogenase reaction. Magn Reson Med 2007; 57:258-64. [PMID: 17260357 DOI: 10.1002/mrm.21137] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lactate dehydrogenase (LDH, EC 1.1.1.27) catalyzes an exchange reaction between pyruvate and lactate. It is demonstrated here that this reaction is sufficiently fast to cause a significant magnetization (saturation) transfer effect when the 13C resonance of pyruvate is saturated by a continuous-wave (CW) RF pulse. Infusion of [2-(13)C]glucose was used to allow labeling of pyruvate C2 at 207.9 ppm to determine the pseudo first-order rate constant of the unidirectional lactate-->pyruvate flux in vivo. During systemic administration of GABAA receptor antagonist bicuculline, this pseudo first-order rate constant was determined to be 0.08+/-0.01 s-1 (mean+/-SD, N=4) in halothane-anesthetized adult rat brains. In 9L and C6 rat glioma models, the 13C saturation transfer effect of the LDH reaction was also detected in vivo. Our results demonstrate that the 13C magnetization transfer effect of the LDH reaction may be useful as a novel marker for utilizing noninvasive in vivo MRS to study many physiological and pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Su Xu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-1527, USA
| | | | | |
Collapse
|
28
|
Yang J, Shen J. Increased oxygen consumption in the somatosensory cortex of alpha-chloralose anesthetized rats during forepaw stimulation determined using MRS at 11.7 Tesla. Neuroimage 2006; 32:1317-25. [PMID: 16797191 DOI: 10.1016/j.neuroimage.2006.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 05/05/2006] [Accepted: 05/09/2006] [Indexed: 11/15/2022] Open
Abstract
The significance of changes in cerebral oxygen consumption in focally activated brain tissue is still controversial. Since the rate of cerebral oxygen consumption is tightly coupled to that of tricarboxylic acid cycle which can be measured from the turnover kinetics of [4-(13)C]glutamate using in vivo (1)H{(13)C} magnetic resonance spectroscopy, changes in tricarboxylic acid cycle flux rate were assessed in primary somatosensory cortex of alpha-chloralose anesthetized rats during electrical forepaw stimulation. With markedly improved (1)H{(13)C} magnetic resonance spectroscopy technique and the use of high magnetic field strength of 11.7 T accessible to the current study, [4-(13)C]glutamate at 2.35 ppm was spectrally resolved from overlapping resonances of [4-(13)C]glutamine at 2.46 ppm and [2-(13)C]GABA at 2.28 ppm as well as the more distal [3-(13)C]glutamate and [3-(13)C]glutamine. The results showed a significantly increased V(TCA) in focally activated primary somatosensory cortex during forepaw stimulation, corresponding to approximately 51 +/- 27% (n = 6, mean +/- SD) increase in cerebral oxygen consumption rate. Considering the high efficiency in producing adenosine triphosphate by oxidative metabolism of glucose, the results demonstrate that aerobic oxidative metabolism provides the majority of energy required for cerebral focal activation in alpha-chloralose anesthetized rats subjected to forepaw stimulation.
Collapse
Affiliation(s)
- Jehoon Yang
- Molecular Imaging Branch, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bldg. 10, Rm. 2D51A, 9000 Rockville Pike, Bethesda, MD 20892-1527, USA
| | | |
Collapse
|
29
|
Magnetic resonance spectroscopy of neurodegenerative illness. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
30
|
de Pasquale F, Testa C, Soldaini R, Casieri C, Podo F, De Luca F. Bayesian analysis of in vivo dynamic 13C-edited 1H images. Magn Reson Imaging 2005; 23:577-84. [PMID: 15919604 DOI: 10.1016/j.mri.2005.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 02/03/2005] [Indexed: 11/27/2022]
Abstract
We propose an application of a Bayesian methodology to dynamic MR images of protons J-coupled to 13C nuclei for monitoring the in vivo 13C-glucose uptake of mouse brain. The very low population of these protons and the random noise make the analysis of these images extremely difficult. The proposed method restores the images and provides an "activation" map of the mouse brain by means of a hypothesis testing procedure. The restoration step is performed in the Bayesian framework so that among the other advantages of a stochastic approach, it is possible to model spatial and temporal information about neighboring pixels. This leads to a restoration procedure able to reduce the noise level while preserving the information about the edges of signal areas. Based on the restored images, the testing procedure provides us with a reliable map of pixels characterized by the 13C-glucose uptake.
Collapse
Affiliation(s)
- Francesco de Pasquale
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Richeeche, I-00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Qutub AA, Hunt CA. Glucose transport to the brain: a systems model. ACTA ACUST UNITED AC 2005; 49:595-617. [PMID: 16269321 DOI: 10.1016/j.brainresrev.2005.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 03/02/2005] [Accepted: 03/09/2005] [Indexed: 02/07/2023]
Abstract
Glucose transport to the brain involves sophisticated interactions of solutes, transporters, enzymes, and cell signaling processes, within an intricate spatial architecture. The dynamics of the transport are influenced by the adaptive nature of the blood-brain barrier (BBB), the semi-impermeable membranes of brain capillaries. As both the gate and the gatekeeper between blood-borne nutrients and brain tissue, the BBB helps govern brain homeostasis. Glucose in the blood must cross the BBB's luminal and abluminal membranes to reach neural tissue. A robust representation of the glucose transport mechanism can highlight a target for brain therapeutic intervention, help characterize mechanisms behind several disease phenotypes, or suggest a new delivery route for drugs. The challenge for researchers is understanding the relationships between influential physiological variables in vivo, and using that knowledge to predict how alterations or interventions affect glucose transport. This paper reviews factors influencing glucose transport and approaches to representing blood-to-brain glucose transport including in vitro, in vivo, and kinetic models. Applications for different models are highlighted, while their limitations in answering arising questions about the human in vivo BBB lead to a discussion of an alternate approach. A developing complex systems simulation is introduced, initiating a single platform to represent the dynamics of glucose transport across the adapting human blood-brain barrier.
Collapse
Affiliation(s)
- Amina A Qutub
- Joint Graduate Group in Bioengineering, University of California, Berkeley and San Francisco, USA.
| | | |
Collapse
|
32
|
Abstract
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new glucose being brought in by stimulated blood flow and glucose transport over the blood-brain barrier. Glucose is shuttled over the barrier by the GLUT-1 transporter, which, like all transporter proteins, has a ceiling above which no further stimulation of the transport is possible. Blood-brain barrier glucose transport is generally accepted as a nonrate-limiting step but to prevent it from becoming rate-limiting under conditions of neuronal activation, it might be necessary for the transport parameters to be adapted to the increased glucose demand. It is proposed that the blood-brain barrier glucose transport parameters are dynamically adapted to the increased glucose needs of the neural tissue after activation according to a neurobarrier coupling scheme. This review presents neurobarrier coupling within the current knowledge on neurovascular and neurometabolic coupling, and considers arguments and evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
33
|
Mason GF, Rothman DL. Basic principles of metabolic modeling of NMR (13)C isotopic turnover to determine rates of brain metabolism in vivo. Metab Eng 2004; 6:75-84. [PMID: 14734257 DOI: 10.1016/j.ymben.2003.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic modeling is a necessary part of the analysis of isotopic labeling data that is being obtained in the brain and other organs. Here are explained the basic principles of metabolic modeling of isotopic labeling studies, particularly with regard to (13)C isotopic measurements performed in vivo. The basic elements needed to simulate isotopic flows are described, and how to combine them to perform modeling analyses is explained. Procedures to introduce and evaluate model constraints and simplifications are discussed. The basic principle of isotopomer analysis is explained, as are mechanics of least-squares fitting of simulations to data. Closely related to the fitting is the effect of data scatter, which is discussed in the context of the non-normal distributions of uncertainty that are often seen with (13)C labeling measurements in vivo. This article is meant to provide a general background for investigators to begin to apply metabolic modeling analysis to (13)C isotopic labeling studies performed in vivo.
Collapse
Affiliation(s)
- Graeme F Mason
- Department of Psychiatry, School of Medicine, Yale University, N-141 CAB-Magnetic Resonance Center, 300 Cedar Street, PO Box 208043, New Haven, CT 06520-8043, USA.
| | | |
Collapse
|
34
|
de Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL. Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci U S A 2004; 101:12700-5. [PMID: 15310848 PMCID: PMC515118 DOI: 10.1073/pnas.0405065101] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/18/2022] Open
Abstract
Multivolume (1)H-[(13)C] NMR spectroscopy in combination with i.v. [1,6-(13)C(2)]glucose infusion was used to detect regional glucose metabolism and glutamatergic neurotransmission in the halothane-anesthetized rat brain at 7 T. The regional information was decomposed into pure cerebral gray matter, white matter, and subcortical structures by means of tissue segmentation based on quantitative T(1) relaxation mapping. The (13)C turnover curves of [4-(13)C]glutamate, [4-(13)C]glutamine, and [3-(13)C]glutamate + glutamine were fitted with a two-compartment neuronal-astroglial metabolic model. The neuronal tricarboxylic acid cycle fluxes in cerebral gray matter, white matter, and subcortex were 0.79 +/- 0.15, 0.20 +/- 0.11, and 0.42 +/- 0.09 micromol/min per g, respectively. The glutamate-glutamine neurotransmitter cycle fluxes in cerebral gray matter, white matter, and subcortex were 0.31 +/- 0.07, 0.02 +/- 0.04, and 0.18 +/- 0.12 micromol/min per g, respectively. The exchange rate between the mitochondrial and cytosolic metabolite pools was fast relative to the neuronal tricarboxylic acid cycle flux for all cerebral tissue types.
Collapse
Affiliation(s)
- Robin A de Graaf
- Magnetic Resonance Research Center and Departments of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
35
|
McNay EC, Sherwin RS. From artificial cerebro-spinal fluid (aCSF) to artificial extracellular fluid (aECF): microdialysis perfusate composition effects on in vivo brain ECF glucose measurements. J Neurosci Methods 2004; 132:35-43. [PMID: 14687673 DOI: 10.1016/j.jneumeth.2003.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Microdialysis (mD) is the predominant technique for measurements of brain chemistry, especially when such measurements are made in awake animals. Relatively little attention has been paid, however, to the potential effect on such measurements of variation in the perfusate solution used. Here, we report that small variations in the ionic composition of microdialysis perfusate produced four-fold differences (0.53-2.18 mM) in the results obtained when measuring brain extracellular fluid (ECF) glucose. These changes may be linked to concomitant alterations of local neural activity caused by the perfusate composition. In addition to perfusate composition, probe type also proved to have a significant impact on microdialysis measurements. Further, we report the first direct microdialysis measurements of brain ECF ionic composition, showing significant differences from that of the cerebro-spinal fluid (CSF). Modifying the ionic composition of microdialysis perfusate based on these measurements resulted in a measured hippocampal ECF glucose level of 1.26 +/- .04 mM. Increased understanding of the impact of differences in the perfusate solutions used by different laboratories may provide a basis for reconciliation of apparently disparate microdialysis results within the literature.
Collapse
Affiliation(s)
- Ewan C McNay
- Department of Internal Medicine, Sections of Endocrinology and Neuroendocrinology, Yale School of Medicine, New Haven, CT 06520-8020, USA.
| | | |
Collapse
|
36
|
Chatziioannou A, Palaiologos G, Kolisis FN. Metabolic flux analysis as a tool for the elucidation of the metabolism of neurotransmitter glutamate. Metab Eng 2003; 5:201-10. [PMID: 12948754 DOI: 10.1016/s1096-7176(03)00029-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A flux analysis model for the metabolism of neurotransmitter glutamate is constructed, in order to study functional aspects of its metabolism. This work is based on the potassium [K(+)] evoked neurotransmitter glutamate released, as measured in a series of experiments of superfused rat or mouse brain preparations. These measurements are combined with data reported, concerning the metabolism of glutamate and its precursors, glutamine and glucose in rat cerebral cells in vivo. The proposed stoichiometry of the specific reaction network renders the model solvable. The classification procedure establishes that the measured fluxes are all balanceable and all non-measured fluxes can be calculated. The system is well posed with a condition number of 7.8536. The results emphasize the importance of phosphate activated glutaminase and aspartate aminotransferase in the metabolism of neurotransmitter glutamate. Reported data on the rate of the malate-aspartate shuttle, as well as the anaplerotic flux of the glial pyruvate carboxylase reaction are in agreement with the estimations calculated from the proposed model.
Collapse
Affiliation(s)
- Aristotle Chatziioannou
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | | | | |
Collapse
|
37
|
Hyder F, Brown P, Nixon TW, Behar KL. Mapping Cerebral Glutamate 13C Turnover and Oxygen Consumption by in Vivo NMR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 530:29-39. [PMID: 14562702 DOI: 10.1007/978-1-4615-0075-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Regional rates of 13C incorporation from glucose to glutamate were detected in anesthetized rat brain in vivo at 7T with high temporal and spatial resolution using NMR method ICED PEPSI (in vivo carbon edited detection with proton echo planar spectroscopic imaging). Time courses of regional glutamate 13C turnover were fitted by a metabolic model to obtain regional tri-carboxylic acid (TCA) cycle flux and cerebral metabolic rate of oxygen consumption (CMRO2) in each voxel (8 microL) of rat cortex. CMRO2 maps obtained for rats under either alpha-chloralose or morphine anesthesia revealed average cortical values of 1.5 +/- 0.2 (n = 3) and 3.2 +/- 0.3 (n = 4) mumol/g/min, respectively. These values of CMRO2 are in good agreement with previous cortical measurements with coarser spatial resolution. The heterogeneity within each map, which depicted predominantly gray and white matter differences, was significantly greater under morphine (higher cortical activity) than under-alpha-chloralose (lower cortical activity) anesthesia. The regional variations in the basal awake state, which are expected to be even greater, should be considered to avoid partial-volume artifacts in functional activation studies of awake subjects.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Magnetic Resonance Research Center, Departments of Diagnostic Radiology, Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
38
|
de Graaf RA, Brown PB, Mason GF, Rothman DL, Behar KL. Detection of [1,6-13C2]-glucose metabolism in rat brain by in vivo 1H-[13C]-NMR spectroscopy. Magn Reson Med 2003; 49:37-46. [PMID: 12509818 DOI: 10.1002/mrm.10348] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Localized, water-suppressed (1)H-[(13)C]-NMR spectroscopy was used to detect (13)C-label accumulation in cerebral metabolites following the intravenous infusion of [1,6-(13)C(2)]-glucose (Glc). The (1)H-[(13)C]-NMR method, based on adiabatic RF pulses, 3D image-selected in vivo spectroscopy (ISIS) localization, and optimal shimming, yielded high-quality (1)H-[(13)C]-NMR spectra with optimal NMR sensitivity. As a result, the (13)C labeling of [4-(13)C]-glutamate (Glu) and [4-(13)C]-glutamine (Gln) could be detected from relatively small volumes (100 microL) with a high temporal resolution. The formation of [n-(13)C]-Glu, [n-(13)C]-Gln (n = 2 or 3), [2-(13)C]-aspartate (Asp), [3-(13)C]-Asp, [3-(13)C]-alanine (Ala), and [3-(13)C]-lactate (Lac) was also observed to be reproducible. The (13)C-label incorporation curves of [4-(13)C]-Glu and [4-(13)C]-Gln provided direct information on metabolic pathways. Using a two-compartment metabolic model, the tricarboxylic acid (TCA) cycle flux was determined as 0.52 +/- 0.04 micromol/min/g, while the glutamatergic neurotransmitter flux equaled 0.25 +/- 0.05 micromol/min/g, in good correspondence with previously determined values.
Collapse
Affiliation(s)
- Robin A de Graaf
- Magnetic Resonance Center, Department of Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8043, USA.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorporation into amino acid neurotransmitters such as glutamate (Glu), GABA and aspartate can be measured providing information on Krebs cycle flux and oxidative metabolism. Given the compartmentation of key enzymes such as pyruvate carboxylase and glutamine synthetase, the detection of label incorporation into glutamine indicated that neuronal and glial metabolism can be measured in vivo. The purpose of this paper is to provide a critical overview of these recent advances into measuring compartmentation of brain energy metabolism using localized in vivo 13C NMR spectroscopy. The studies reviewed herein showed that anaplerosis is significant in brain, as is oxidative ATP generation in glia and the rate of glial glutamine synthesis attributed to the replenishment of the neuronal Glu pool and that brain glycogen metabolism is slow under resting conditions. This new modality promises to provide a new investigative tool to study aspects of normal and diseased brain hitherto unaccessible, such as the interplay between glutamatergic action, glucose and glycogen metabolism during brain activation, and the derangements thereof in patients with hepatic encephalopathy, neurodegenerative diseases and diabetes.
Collapse
Affiliation(s)
- Rolf Gruetter
- Department of Radiology, Center for MR Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
40
|
Kanamori K, Ross BD. The first in vivo observation of (13)C-(15)N coupling in mammalian brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 153:193-202. [PMID: 11740894 DOI: 10.1006/jmre.2001.2432] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
[5-(13)C,(15)N]Glutamine, with (1)J((13)C-(15)N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by (13)C MRS at 4.7 T. The brain [5-(13)C]glutamine peak consisted of the doublet from [5-(13)C,(15)N]glutamine and the center [5-(13)C,(14)N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-(13)C,(15)N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-(13)C,(15)N]glutamine was formed by glial uptake of released neurotransmitter [5-(13)C]glutamate and its reaction with (15)NH(3) catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively (13)C-enriched by intravenous [2,5-(13)C]glucose infusion to (13)C-label whole-brain glutamate C5, followed by [(12)C]glucose infusion to chase (13)C from the small and rapidly turning-over glial glutamate pool, leaving (13)C mainly in the neurotransmitter [5-(13)C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-(13)C,(15)N]glutamine arises from a coupling between (13)C of neuronal origin and (15)N of glial origin. Measurement of the rate of brain [5-(13)C,(15)N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.
Collapse
Affiliation(s)
- K Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, 660 South Fair Oaks Avenue, Pasadena, California 91105, USA.
| | | |
Collapse
|
41
|
Gruetter R, Seaquist ER, Ugurbil K. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 2001; 281:E100-12. [PMID: 11404227 DOI: 10.1152/ajpendo.2001.281.1.e100] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After administration of enriched [1-13C]glucose, the rate of 13C label incorporation into glutamate C4, C3, and C2, glutamine C4, C3, and C2, and aspartate C2 and C3 was simultaneously measured in six normal subjects by 13C NMR at 4 Tesla in 45-ml volumes encompassing the visual cortex. The resulting eight time courses were simultaneously fitted to a mathematical model. The rate of (neuronal) tricarboxylic acid cycle flux (V(PDH)), 0.57 +/- 0.06 micromol. g(-1). min(-1), was comparable to the exchange rate between (mitochondrial) 2-oxoglutarate and (cytosolic) glutamate (Vx), 0.57 +/- 0.19 micromol. g(-1). min(-1)), which may reflect to a large extent malate-aspartate shuttle activity. At rest, oxidative glucose consumption [CMR(Glc(ox))] was 0.41 +/- 0.03 miccromol. g(-1). min(-1), and (glial) pyruvate carboxylation (VPC) was 0.09 +/- 0.02 micromol. g(-1). min(-1). The flux through glutamine synthetase (Vsyn) was 0.26 +/- 0.06 micromol. g(-1). min(-1). A fraction of Vsyn was attributed to be from (neuronal) glutamate, and the corresponding rate of apparent glutamatergic neurotransmission (VNT) was 0.17 +/- 0.05 micromol. g(-1). min(-1). The ratio [VNT/CMR(Glcox)] was 0.41 +/- 0.14 and thus clearly different from a 1:1 stoichiometry, consistent with a significant fraction (approximately 90%) of ATP generated in astrocytes being oxidative. The study underlines the importance of assumptions made in modeling 13C labeling data in brain.
Collapse
Affiliation(s)
- R Gruetter
- Department of Radiology, Center for Magnetic Resonance Research and General Clinical Research Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
42
|
Choi IY, Lee SP, Kim SG, Gruetter R. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 2001; 21:653-63. [PMID: 11488534 DOI: 10.1097/00004647-200106000-00003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glucose is the major substrate that sustains normal brain function. When the brain glucose concentration approaches zero, glucose transport across the blood-brain barrier becomes rate limiting for metabolism during, for example, increased metabolic activity and hypoglycemia. Steady-state brain glucose concentrations in alpha-chloralose anesthetized rats were measured noninvasively as a function of plasma glucose. The relation between brain and plasma glucose was linear at 4.5 to 30 mmol/L plasma glucose, which is consistent with the reversible Michaelis-Menten model. When the model was fitted to the brain glucose measurements, the apparent Michaelis-Menten constant, Kt, was 3.3 +/- 1.0 mmol/L, and the ratio of the maximal transport rate relative to CMRglc, Tmax/CMRglc, was 2.7 +/- 0.1. This Kt is comparable to the authors' previous human data, suggesting that glucose transport kinetics in humans and rats are similar. Cerebral blood flow (CBF) was simultaneously assessed and constant above 2 mmol/L plasma glucose at 73 +/- 6 mL 100 g(-1) min(-1). Extrapolation of the reversible Michaelis-Menten model to hypoglycemia correctly predicted the plasma glucose concentration (2.1 +/- 0.6 mmol/L) at which brain glucose concentrations approached zero. At this point, CBF increased sharply by 57% +/- 22%, suggesting that brain glucose concentration is the signal that triggers defense mechanisms aimed at improving glucose delivery to the brain during hypoglycemia.
Collapse
Affiliation(s)
- I Y Choi
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
43
|
McNay EC, McCarty RC, Gold PE. Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem 2001; 75:325-37. [PMID: 11300738 DOI: 10.1006/nlme.2000.3976] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditional beliefs about two aspects of glucose regulation in the brain have been challenged by recent findings. First, the absolute level of glucose in the brain's extracellular fluid appears to be lower than previously thought. Second, the level of glucose in brain extracellular fluid is less stable than previously believed. In vivo brain microdialysis was used, according to the method of zero net flux, to determine the basal concentration of glucose in the extracellular fluid of the striatum in awake, freely moving rats for comparison with recent hippocampal measurements. In addition, extracellular glucose levels in both the hippocampus and the striatum were measured before, during, and after behavioral testing in a hippocampus-dependent spontaneous alternation task. In the striatum, the resting extracellular glucose level was 0.71 mM, approximately 70% of the concentration measured previously in the hippocampus. Consistent with past findings, the hippocampal extracellular glucose level decreased by up to 30 +/- 4% during testing; no decrease, and in fact a small increase (9 +/- 3%), was seen in the striatum. Blood glucose measurements obtained during the same testing procedure and following administration of systemic glucose at a dose known to enhance memory in this task revealed a dissociation in glucose level fluctuations between the blood and both striatal and hippocampal extracellular fluid. These findings suggest, first, that glucose is compartmentalized within the brain and, second, that one mechanism by which administration of glucose enhances memory performance is via provision of increased glucose supply from the blood specifically to those brain areas involved in mediating that performance.
Collapse
Affiliation(s)
- E C McNay
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
44
|
de Graaf RA, Pan JW, Telang F, Lee JH, Brown P, Novotny EJ, Hetherington HP, Rothman DL. Differentiation of glucose transport in human brain gray and white matter. J Cereb Blood Flow Metab 2001; 21:483-92. [PMID: 11333358 DOI: 10.1097/00004647-200105000-00002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Localized 1H nuclear magnetic resonance spectroscopy has been applied to determine human brain gray matter and white matter glucose transport kinetics by measuring the steady-state glucose concentration under normoglycemia and two levels of hyperglycemia. Nuclear magnetic resonance spectroscopic measurements were simultaneously performed on three 12-mL volumes, containing predominantly gray or white matter. The exact volume compositions were determined from quantitative T1 relaxation magnetic resonance images. The absolute brain glucose concentration as a function of the plasma glucose level was fitted with two kinetic transport models, based on standard (irreversible) or reversible Michaelis-Menten kinetics. The steady-state brain glucose levels were similar for cerebral gray and white matter, although the white matter levels were consistently 15% to 20% higher. The ratio of the maximum glucose transport rate, V(max), to the cerebral metabolic utilization rate of glucose, CMR(Glc), was 3.2 +/- 0.10 and 3.9 +/- 0.15 for gray matter and white matter using the standard transport model and 1.8 +/- 0.10 and 2.2 +/- 0.12 for gray matter and white matter using the reversible transport model. The Michaelis-Menten constant K(m) was 6.2 +/- 0.85 and 7.3 +/- 1.1 mmol/L for gray matter and white matter in the standard model and 1.1 +/- 0.66 and 1.7 +/- 0.88 mmol/L in the reversible model. Taking into account the threefold lower rate of CMR(Glc) in white matter, this finding suggests that blood--brain barrier glucose transport activity is lower by a similar amount in white matter. The regulation of glucose transport activity at the blood--brain barrier may be an important mechanism for maintaining glucose homeostasis throughout the cerebral cortex.
Collapse
Affiliation(s)
- R A de Graaf
- Department of Radiology, Yale University, School of Medicine, New Haven, Connecticut 06520-8043, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Morikawa S, Inubushi T. Fast (13)C-glucose metabolite mapping in rat brain using (1)H echo planar spectroscopic imaging technique at 2T. J Magn Reson Imaging 2001; 13:787-91. [PMID: 11329202 DOI: 10.1002/jmri.1109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For fast (13)C metabolite mapping in rat brains, (1)H-detected (13)C NMR spectroscopy using gradient-enhanced heteronuclear multiple-quantum coherence and (1)H echo planar spectroscopic imaging were combined. (13)C glucose and 3-/4-(13)C-Glu/Gln images of rat brain were successfully constructed with 35-minute temporal resolution under a 2T magnetic field. In the ischemic region of the suture middle cerebral artery occlusion model, glucose and Glu/Gln signals decreased and lactate signals appeared. J. Magn. Reson. Imaging 2001;13:787-791.
Collapse
Affiliation(s)
- S Morikawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan.
| | | |
Collapse
|
46
|
Rothman DL. Studies of metabolic compartmentation and glucose transport using in vivo MRS. NMR IN BIOMEDICINE 2001; 14:149-160. [PMID: 11320540 DOI: 10.1002/nbm.692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Organs consist of several types of cells with specialized functions. This cellular localization of function is often referred to as compartmentation. Due to the intrinsic low sensitivity of MR methods it is generally not possible in vivo to obtain images or spectra of single cells. Instead the MRS signal is the sum of the signal from millions of cells and multiple cell types. A major challenge in using MRS to study biological processes such as metabolism and transport is to devise measurements that provide cell-specific information from this mix. Fortunately nature has helped the MR scientist by in several cases nearly completely localizing metabolic pathways and their associated metabolites in specific cell types. The chemical specificity of MRS allows the concentrations and synthesis rates of these metabolites to be measured, providing information about the compartmentation of metabolism and function. In this review examples are presented from MRS studies of metabolic trafficking between neurons and astrocytes in the brain, brain glucose transport, and the role of muscle glucose transport in insulin resistance and diabetes. The concepts and approaches used in these studies are generally applicable for studying cellular metabolic compartmentation in a wide range of systems.
Collapse
Affiliation(s)
- D L Rothman
- Department of Diagnostic Radiology, Yale School of Medicine, CT 06520, USA.
| |
Collapse
|
47
|
Chen W, Zhu XH, Gruetter R, Seaquist ER, Adriany G, Ugurbil K. Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using (1)H-[(13)C] MRS and fMRI. Magn Reson Med 2001; 45:349-55. [PMID: 11241689 DOI: 10.1002/1522-2594(200103)45:3<349::aid-mrm1045>3.0.co;2-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The relationships between brain activity and accompanying hemodynamic and metabolic alterations, particularly between the cerebral metabolic rate of oxygen utilization (CMR(O2)) and cerebral blood flow (CBF), are not thoroughly established. CMR(O2) is closely coupled to the rate of tricarboxylic acid (TCA) cycle flux. In this study, the changes in glutamate labeling during (13)C labeled glucose administration were determined in the human brain as an index of alterations in neuronal TCA cycle turnover during increased neuronal activity. Two-volume (1)H-[(13)C] MR spectroscopy (MRS) of the visual cortex was combined with functional MRI (fMRI) at 4 Tesla. Hemifield visual stimulation was employed to obtain data simultaneously from activated and control regions located symmetrically in the two hemispheres of the brain. The results showed that the fractional change in the turnover rate of C4 carbon of glutamate was less than that of CBF during visual stimulation. The fractional changes in CMR(O2) (Delta CMR(O2)) induced by activation must be equal to or less than the fractional change in glutamate labeling kinetics. Therefore, the results impose an upper limit of approximately 30% for Delta CMR(O2) and demonstrate: 1) that fractional CBF increases exceed Delta CMR(O2) during elevated activity in the visual cortex, and 2) that such an unequal change would explain the observed positive blood oxygenation level dependent (BOLD) effect in fMRI. Magn Reson Med 45:349-355, 2001.
Collapse
Affiliation(s)
- W Chen
- Center for Magnetic Resonance Research, Radiology Department, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Sibson NR, Mason GF, Shen J, Cline GW, Herskovits AZ, Wall JE, Behar KL, Rothman DL, Shulman RG. In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during. J Neurochem 2001; 76:975-89. [PMID: 11181817 DOI: 10.1046/j.1471-4159.2001.00074.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aims of this study were twofold: (i) to determine quantitatively the contribution of glutamate/glutamine cycling to total astrocyte/neuron substrate trafficking for the replenishment of neurotransmitter glutamate; and (ii) to determine the relative contributions of anaplerotic flux and glutamate/glutamine cycling to total glutamine synthesis. In this work in vivo and in vitro (13)C NMR spectroscopy were used, with a [2-(13)C]glucose or [5-(13)C]glucose infusion, to determine the rates of glutamate/glutamine cycling, de novo glutamine synthesis via anaplerosis, and the neuronal and astrocytic tricarboxylic acid cycles in the rat cerebral cortex. The rate of glutamate/glutamine cycling measured in this study is compared with that determined from re-analysis of (13)C NMR data acquired during a [1-(13)C]glucose infusion. The excellent agreement between these rates supports the hypothesis that glutamate/glutamine cycling is a major metabolic flux ( approximately 0.20 micromol/min/g) in the cerebral cortex of anesthetized rats and the predominant pathway of astrocyte/neuron trafficking of neurotransmitter glutamate precursors. Under normoammonemic conditions anaplerosis was found to comprise 19-26% of the total glutamine synthesis, whilst this fraction increased significantly during hyperammonemia ( approximately 32%). These findings indicate that anaplerotic glutamine synthesis is coupled to nitrogen removal from the brain (ammonia detoxification) under hyperammonemic conditions.
Collapse
Affiliation(s)
- N R Sibson
- Departments of Molecular Biophysics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Novotny EJ, Ariyan C, Mason GF, O'Reilly J, Haddad GG, Behar KL. Differential increase in cerebral cortical glucose oxidative metabolism during rat postnatal development is greater in vivo than in vitro. Brain Res 2001; 888:193-202. [PMID: 11150475 DOI: 10.1016/s0006-8993(00)03051-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The steady-state rate of glucose oxidation through the mitochondrial TCA cycle (V(TCA)) was measured in acid extracts of 10- and 30-day-old cerebral cortex of rats receiving [1-13C]glucose intravenously and in neocortical slices superfused in vitro with the same isotope. TCA cycle flux was determined for each age group based on metabolic modeling analysis of the isotopic turnover of cortical glutamate and lactate. The sensitivity of the calculated rates to assumed parameters in the model were also assessed. Between 10 and 30 postnatal days, V(TCA) increased by 4.3-fold (from 0.46 to 2.0 micromol g(-1) min(-1)) in the cortex in vivo, whereas only a 2-fold (from 0.17 to 0.34 micromol g(-1) min(-1)) increase was observed in neocortical slices. The much greater increase in glucose oxidative metabolism of the cortex measured in vivo over that measured in vitro as the cortex matures suggests that function-related energy demands increase during development, a process that is deficient in the slice as a result of deafferentiation and other mechanisms.
Collapse
Affiliation(s)
- E J Novotny
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
50
|
Pfeuffer J, Tkác I, Gruetter R. Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. J Cereb Blood Flow Metab 2000; 20:736-46. [PMID: 10779018 DOI: 10.1097/00004647-200004000-00011] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To determine the distribution of cerebral glucose and lactate between the intracellular and the extracellular space of the rat brain in vivo, the diffusion characteristic of glucose and lactate was compared with that of metabolites known to be mainly intracellular (N-acetylaspartate, choline, creatine, glutamate, myo-inositol, and taurine) using a pulsed-field-gradient 1H nuclear magnetic resonance technique. The detection of a glucose signal at large diffusion weighting provided direct experimental evidence of intracellular glucose in the rat brain. At large diffusion weighting, the apparent diffusion coefficient (ADC) of glucose and lactate was similar to that of the intracellular metabolites such as N-acetylaspartate, creatine, and glutamate. At small diffusion weighting, the ADC of glucose and lactate was increased, which was explained by a decreased relative contribution of intracellular glucose to the total signal. The calculated extracellular volume fraction of glucose (0.19 +/- 0.05) and lactate (0.17 +/- 0.06) was consistent with a substantial fraction of glucose and lactate signals being intracellular. The findings were direct in vivo evidence that the largest concentration gradient of glucose is at the blood-brain barrier and that glucose is evenly distributed in the brain in vivo between the intracellular and extracellular space.
Collapse
Affiliation(s)
- J Pfeuffer
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|