1
|
Schary N, Edemir B, Todorov VT. A Possible Link between Cell Plasticity and Renin Expression in the Collecting Duct: A Narrative Review. Int J Mol Sci 2024; 25:9549. [PMID: 39273497 PMCID: PMC11395489 DOI: 10.3390/ijms25179549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin-angiotensin-aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS. The collecting duct is important for urine production and also for salt, water, and acid-base homeostasis. The critical functional role of the collecting duct is mediated by the principal and the intercalated cells and is regulated by different hormones like aldosterone and vasopressin. The collecting duct is not only a target for hormones but also a place of hormone production. It is accepted that renin is produced in the collecting duct at a low level. Several studies have described that the cells in the collecting duct exhibit plasticity properties because the ratio of principal to intercalated cells can change under specific circumstances. This narrative review focuses on two aspects of the collecting duct that remain somehow aside from mainstream research, namely the cell plasticity and the renin expression. We discuss the link between these collecting duct features, which we see as a promising area for future research given recent findings.
Collapse
Affiliation(s)
- Nicole Schary
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
| | - Bayram Edemir
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
- Department of Internal Medicine IV, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Vladimir T. Todorov
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Cheng YJG, Chen CC, Cheng CJ. Postnatal renal tubule development: roles of tubular flow and flux. Curr Opin Nephrol Hypertens 2024; 33:518-525. [PMID: 38913022 PMCID: PMC11290981 DOI: 10.1097/mnh.0000000000001007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW Postnatal renal tubule development is critical to adult kidney function. Several postnatal changes regulate the differentiation and proliferation of renal tubular cells. Here, we review the literature and our efforts on thick ascending limb (TAL) development in Bartter syndrome (BS). RECENT FINDINGS Glomerular filtrate quickly increases after birth, imposing fluid shear stress and circumferential stretch on immature renal tubules. Recent studies showed that kidney organoids under flow (superfusion) have better development of tubular structures and the expression of cilia and solute transporters. These effects are likely mediated by mechanosensors, such as cilia and the piezo1 channel. Improved renal oxygenation and sodium pump-dependent active transport can stimulate mitochondrial respiration and biogenesis. The functional coupling between transport and mitochondria ensures ATP supply for energy-demanding reactions in tubular cells, including cell cycle progression and proliferation. We recently discovered that postnatal renal medulla maturation and TAL elongation are impaired in Clc-k2-deficient BS mice. Primary cultured Clc-k2-deficient TAL cells have G1-S transition and proliferation delay. These developmental defects could be part of the early pathogenesis of BS and worsen the phenotype. SUMMARY Understanding how tubular flow and transepithelial ion fluxes regulate renal tubule development may improve the treatment of congenital renal tubulopathies.
Collapse
Affiliation(s)
- Yi-Jing G. Cheng
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
| | - Chien-Chou Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Jen Cheng
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
3
|
Mayayo-Vallverdú C, Gaitán-Peñas H, Armand-Ugon M, Muhaisen A, Prat E, Castellanos A, Elorza-Vidal X, de Heredia ML, Alonso-Gardón M, Pérez-Rius C, Vecino-Pérez M, Mallen A, Errasti-Murugarren E, Hueso M, Artuch R, Nunes V, Estévez R. Regulation of ClC-K/barttin by endocytosis influences distal convoluted tubule hyperplasia. J Physiol 2024; 602:4291-4307. [PMID: 39106251 DOI: 10.1113/jp286729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024] Open
Abstract
ClC-K/barttin channels are involved in the transepithelial transport of chloride in the kidney and inner ear. Their physiological role is crucial in humans because mutations in CLCNKB or BSND, encoding ClC-Kb and barttin, cause Bartter's syndrome types III and IV, respectively. In vitro experiments have shown that an amino acid change in a proline-tyrosine motif in the C-terminus of barttin stimulates ClC-K currents. The molecular mechanism of this enhancement and whether this potentiation has any in vivo relevance remains unknown. We performed electrophysiological and biochemical experiments in Xenopus oocytes and kidney cells co-expressing ClC-K and barttin constructs. We demonstrated that barttin possesses a YxxØ motif and, when mutated, increases ClC-K plasma membrane stability, resulting in larger currents. To address the impact of mutating this motif in kidney physiology, we generated a knock-in mouse. Comparing wild-type (WT) and knock-in mice under a standard diet, we could not observe any difference in ClC-K and barttin protein levels or localization, either in urinary or plasma parameters. However, under a high-sodium low-potassium diet, known to induce hyperplasia of distal convoluted tubules, knock-in mice exhibit reduced hyperplasia compared to WT mice. In summary, our in vitro and in vivo studies demonstrate that the previously identified PY motif is indeed an endocytic YxxØ motif in which mutations cause a gain of function of the channel. KEY POINTS: It is revealed by mutagenesis and functional experiments that a previously identified proline-tyrosine motif regulating ClC-K plasma membrane levels is indeed an endocytic YxxØ motif. Biochemical characterization of mutants in the YxxØ motif in Xenopus oocytes and human embryonic kidney cells indicates that mutants showed increased plasma membrane levels as a result of an increased stability, resulting in higher function of ClC-K channels. Mutation of this motif does not affect barttin protein expression and subcellular localization in vivo. Knock-in mice with a mutation in this motif, under conditions of a high-sodium low-potassium diet, exhibit less hyperplasia in the distal convoluted tubule than wild-type animals, indicating a gain of function of the channel in vivo.
Collapse
Affiliation(s)
- Clara Mayayo-Vallverdú
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory-IDIBELL, Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Héctor Gaitán-Peñas
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Genes, Disease and Therapy Program, Physiology and pathology of the functional relationship between glia and neurons-IDIBELL, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en red de enfermedades raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Armand-Ugon
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Genes, Disease and Therapy Program, Physiology and pathology of the functional relationship between glia and neurons-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ashraf Muhaisen
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Genes, Disease and Therapy Program, Physiology and pathology of the functional relationship between glia and neurons-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Esther Prat
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory-IDIBELL, Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aida Castellanos
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Genes, Disease and Therapy Program, Physiology and pathology of the functional relationship between glia and neurons-IDIBELL, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en red de enfermedades raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Xabier Elorza-Vidal
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Genes, Disease and Therapy Program, Physiology and pathology of the functional relationship between glia and neurons-IDIBELL, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en red de enfermedades raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel López de Heredia
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory-IDIBELL, Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación en red de enfermedades raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Alonso-Gardón
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Genes, Disease and Therapy Program, Physiology and pathology of the functional relationship between glia and neurons-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carla Pérez-Rius
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Genes, Disease and Therapy Program, Physiology and pathology of the functional relationship between glia and neurons-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Marta Vecino-Pérez
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory-IDIBELL, Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Adrián Mallen
- Department of Nephrology, Hospital Universitart Bellvitge and Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ekaitz Errasti-Murugarren
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory-IDIBELL, Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitart Bellvitge and Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Rafael Artuch
- Centro de Investigación en red de enfermedades raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Virginia Nunes
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory-IDIBELL, Genetics Section, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Centro de Investigación en red de enfermedades raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Estévez
- Physiology Unit, Department of Physiological Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Genes, Disease and Therapy Program, Physiology and pathology of the functional relationship between glia and neurons-IDIBELL, L'Hospitalet de Llobregat, Spain
- Centro de Investigación en red de enfermedades raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Cheng CJ, Nizar JM, Dai DF, Huang CL. Transport activity regulates mitochondrial bioenergetics and biogenesis in renal tubules. FASEB J 2024; 38:e23703. [PMID: 38805156 PMCID: PMC11147170 DOI: 10.1096/fj.202400358rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Renal tubules are featured with copious mitochondria and robust transport activity. Mutations in mitochondrial genes cause congenital renal tubulopathies, and changes in transport activity affect mitochondrial morphology, suggesting mitochondrial function and transport activity are tightly coupled. Current methods of using bulk kidney tissues or cultured cells to study mitochondrial bioenergetics are limited. Here, we optimized an extracellular flux analysis (EFA) to study mitochondrial respiration and energy metabolism using microdissected mouse renal tubule segments. EFA detects mitochondrial respiration and glycolysis by measuring oxygen consumption and extracellular acidification rates, respectively. We show that both measurements positively correlate with sample sizes of a few centimeter-length renal tubules. The thick ascending limbs (TALs) and distal convoluted tubules (DCTs) critically utilize glucose/pyruvate as energy substrates, whereas proximal tubules (PTs) are significantly much less so. Acute inhibition of TALs' transport activity by ouabain treatment reduces basal and ATP-linked mitochondrial respiration. Chronic inhibition of transport activity by 2-week furosemide treatment or deletion of with-no-lysine kinase 4 (Wnk4) decreases maximal mitochondrial capacity. In addition, chronic inhibition downregulates mitochondrial DNA mass and mitochondrial length/density in TALs and DCTs. Conversely, gain-of-function Wnk4 mutation increases maximal mitochondrial capacity and mitochondrial length/density without increasing mitochondrial DNA mass. In conclusion, EFA is a sensitive and reliable method to investigate mitochondrial functions in isolated renal tubules. Transport activity tightly regulates mitochondrial bioenergetics and biogenesis to meet the energy demand in renal tubules. The system allows future investigation into whether and how mitochondria contribute to tubular remodeling adapted to changes in transport activity.
Collapse
Affiliation(s)
- Chih-Jen Cheng
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jonathan M Nizar
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
| | - Dao-Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, U.S.A
| |
Collapse
|
5
|
Cheng CJ, Nizar JM, Dai DF, Huang CL. Transport activity regulates mitochondrial bioenergetics and biogenesis in renal tubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578838. [PMID: 38370657 PMCID: PMC10871199 DOI: 10.1101/2024.02.04.578838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Renal tubules are featured with copious mitochondria and robust transport activity. Mutations in mitochondrial genes cause congenital renal tubulopathies, and changes in transport activity affect mitochondrial morphology, suggesting mitochondrial function and transport activity are tightly coupled. Current methods of using bulk kidney tissues or cultured cells to study mitochondrial bioenergetics are limited. Here, we optimized an extracellular flux analysis (EFA) to study mitochondrial respiration and energy metabolism using microdissected mouse renal tubule segments. EFA detects mitochondrial respiration and glycolysis by measuring oxygen consumption and extracellular acidification rates, respectively. We show that both measurements positively correlate with sample sizes of a few centimeter-length renal tubules. The thick ascending limbs (TALs) and distal convoluted tubules (DCTs) predominantly utilize glucose/pyruvate as energy substrates, whereas proximal tubules (PTs) are significantly much less so. Acute inhibition of TALs' transport activity by ouabain treatment reduces basal and ATP-linked mitochondrial respiration. Chronic inhibition of transport activity by 2-week furosemide treatment or deletion of with-no-lysine kinase 4 (Wnk4) decreases maximal mitochondrial capacity. In addition, chronic inhibition downregulates mitochondrial DNA mass and mitochondrial length/density in TALs and DCTs. Conversely, gain-of-function Wnk4 mutation increases maximal mitochondrial capacity and mitochondrial length/density without increasing mitochondrial DNA mass. In conclusion, EFA is a sensitive and reliable method to investigate mitochondrial functions in isolated renal tubules. Transport activity tightly regulates mitochondrial bioenergetics and biogenesis to meet the energy demand in renal tubules. The system allows future investigation into whether and how mitochondria contribute to tubular remodeling adapted to changes in transport activity. Key points A positive correlation between salt reabsorption and oxygen consumption in mammalian kidneys hints at a potential interaction between transport activity and mitochondrial respiration in renal tubules.Renal tubules are heterogeneous in transport activity and mitochondrial metabolism, and traditional assays using bulk kidney tissues cannot provide segment-specific information.Here, we applied an extracellular flux analysis to investigate mitochondrial respiration and energy metabolism in isolated renal tubules. This assay is sensitive in detecting oxygen consumption and acid production in centimeter-length renal tubules and reliably recapitulates segment-specific metabolic features.Acute inhibition of transport activity reduces basal and ATP-linked mitochondrial respirations without changing maximal mitochondrial respiratory capacity. Chronic alterations of transport activity further adjust maximal mitochondrial respiratory capacity via regulating mitochondrial biogenesis or non-transcriptional mechanisms.Our findings support the concept that renal tubular cells finely adjust mitochondrial bioenergetics and biogenesis to match the new steady state of transport activity.
Collapse
|
6
|
Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease. Int J Mol Sci 2022; 24:ijms24010286. [PMID: 36613730 PMCID: PMC9820686 DOI: 10.3390/ijms24010286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is a common clinical disease with an increasing incidence, affecting 10 to 15% of the world's population. Hypertension is the most common and modifiable risk factor for preventing adverse cardiovascular outcomes in patients with CKD. A survey from developed countries shows that 47% of hypertensive patients over the age of 20 have uncontrolled blood pressure (BP), and the control rate is even lower in developing countries. CKD is both a common cause of uncontrolled hypertension and a risk factor for altered sequelae. In particular, studies have demonstrated that abnormal blood-pressure patterns in CKD patients, such as non-dipping-blood-pressure patterns, are associated with a significantly increased risk of cardiovascular (CV) disease. The distal convoluted tubule (DCT) is a region of the kidney, and although only 5-10% of the sodium (Na+) filtered by the glomerulus is reabsorbed by DCT, most studies agree that Na-Cl cotransporter (NCC) in human, rabbit, mouse, and rat kidneys is the most important route of sodium reabsorption across the DCT for maintaining the homeostasis of sodium. The regulation of NCC involves a large and complex network structure, including certain physiological factors, kinases, scaffold proteins, transporter phosphorylation, and other aspects. This regulation network includes various levels. Naturally, cross-talk between the components of this system must occur in order to relay the important signals to the transporter to play its role. Knowledge of the mechanisms regulating NCC activation is critical for understanding and treating hypertension and CKD. Previous studies from our laboratory have investigated the mechanisms through which NCC is activated in several different models. In the following sections, we review the literature on the mechanisms of NCC in relation to hypertension in CKD.
Collapse
|
7
|
Abstract
Magnesium (Mg2+) plays an essential role in many biological processes. Mg2+ deficiency is therefore associated with a wide range of clinical effects including muscle cramps, fatigue, seizures and arrhythmias. To maintain sufficient Mg2+ levels, (re)absorption of Mg2+ in the intestine and kidney is tightly regulated. Genetic defects that disturb Mg2+ uptake pathways, as well as drugs interfering with Mg2+ (re)absorption cause hypomagnesemia. The aim of this review is to provide an overview of the molecular mechanisms underlying genetic and drug-induced Mg2+ deficiencies. This leads to the identification of four main mechanisms that are affected by hypomagnesemia-causing mutations or drugs: luminal transient receptor potential melastatin type 6/7-mediated Mg2+ uptake, paracellular Mg2+ reabsorption in the thick ascending limb of Henle's loop, structural integrity of the distal convoluted tubule and Na+-dependent Mg2+ extrusion driven by the Na+/K+-ATPase. Our analysis demonstrates that genetic and drug-induced causes of hypomagnesemia share common molecular mechanisms. Targeting these shared pathways can lead to novel treatment options for patients with hypomagnesemia.
Collapse
|
8
|
Guessoum O, Zainab M, Sequeira‐Lopez MLS, Gomez RA. Proliferation does not contribute to murine models of renin cell recruitment. Acta Physiol (Oxf) 2020. [PMCID: PMC7583373 DOI: 10.1111/apha.13532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aim Renin cells are essential for regulation of blood pressure and fluid‐electrolyte homeostasis. During homeostatic threat, the number of renin cells in the kidney increases, a process termed as recruitment. It has been proposed that recruitment occurs by proliferation, yet no systematic studies have been performed. We sought to determine the extent to which proliferation contributes to the recruitment process. Methods Mice were subjected to recruitment before analysing the renin cells’ cell cycle. For acute threats, we subjected SV129 and C57Bl6 mice to a low sodium diet plus captopril. Tissue sections from treated mice were co‐stained for proliferation markers (Ki67, PCNA, pH3 and BrdU) and renin. Chronic recruitment was studied in deletion models of aldosterone synthase and angiotensinogen through co‐immunostaining and counting mitotic figures in periodic acid‐Schiff‐stained sections. Finally, RNA‐seq of renin cells isolated from recruited mice was performed to study mitotic signature. Results Mice subjected to low salt and captopril displayed increases in renin cell number (312 ± 40 in controls to 692 ± 85 in recruited animals, P<.0001), 10‐fold increases in renin mRNA and fourfold increases in circulating renin. Co‐staining these kidney sections for proliferation markers revealed negligible proliferation of renin cells (<2%), indistinguishable from control animals. Similarly, chronic models of recruitment—aldosterone synthase KO and angiotensinogen KO—had negligible proliferation. Additionally, the transcriptome of recruited renin cells revealed overall downregulation of mitotic pathways when compared to proliferative cell lines. Conclusion Acute and chronic physiological threats to homeostasis produced a distinct increase in renin‐synthesizing cells, but we found no evidence to suggest the involvement of proliferation.
Collapse
Affiliation(s)
- Omar Guessoum
- Department of Biology University of Virginia Charlottesville VA USA
- Department of Pediatrics University of Virginia Charlottesville VA USA
- Child Health Research Center University of Virginia Charlottesville VA USA
| | - Momna Zainab
- Department of Biology University of Virginia Charlottesville VA USA
- Child Health Research Center University of Virginia Charlottesville VA USA
| | - Maria Luisa S. Sequeira‐Lopez
- Department of Biology University of Virginia Charlottesville VA USA
- Department of Pediatrics University of Virginia Charlottesville VA USA
- Child Health Research Center University of Virginia Charlottesville VA USA
| | - R. Ariel Gomez
- Department of Biology University of Virginia Charlottesville VA USA
- Department of Pediatrics University of Virginia Charlottesville VA USA
- Child Health Research Center University of Virginia Charlottesville VA USA
| |
Collapse
|
9
|
Felker GM, Ellison DH, Mullens W, Cox ZL, Testani JM. Diuretic Therapy for Patients With Heart Failure. J Am Coll Cardiol 2020; 75:1178-1195. [DOI: 10.1016/j.jacc.2019.12.059] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
|
10
|
Tokonami N, Takata T, Beyeler J, Ehrbar I, Yoshifuji A, Christensen EI, Loffing J, Devuyst O, Olinger EG. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney Int 2018; 94:701-715. [DOI: 10.1016/j.kint.2018.04.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
|
11
|
Affiliation(s)
- David H. Ellison
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University and VA Portland Health Care System, Portland, OR
| | - G. Michael Felker
- Duke University School of Medicine and Duke Clinical Research Institute, Durham, NC
| |
Collapse
|
12
|
Tokonami N, Cheval L, Monnay I, Meurice G, Loffing J, Feraille E, Houillier P. Endothelin-1 mediates natriuresis but not polyuria during vitamin D-induced acute hypercalcaemia. J Physiol 2017; 595:2535-2550. [PMID: 28120456 DOI: 10.1113/jp273610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. ABSTRACT Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria.
Collapse
Affiliation(s)
- Natsuko Tokonami
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| | - Lydie Cheval
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| | - Isabelle Monnay
- University of Geneva, Department of Cell Physiology and Metabolism, Service of Nephrology University Medical Center, Geneva, Switzerland
| | - Guillaume Meurice
- Bioinformatic Core Facility, UMS AMMICA, INSERM US23, CNRS UMS3665, Gustave Roussy, Villejuif, France
| | | | - Eric Feraille
- University of Geneva, Department of Cell Physiology and Metabolism, Service of Nephrology University Medical Center, Geneva, Switzerland
| | - Pascal Houillier
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| |
Collapse
|
13
|
Eladl MA, M Elsaed W, Atef H, El-Sherbiny M. Ultrastructural changes and nestin expression accompanying compensatory renal growth after unilateral nephrectomy in adult rats. Int J Nephrol Renovasc Dis 2017; 10:61-76. [PMID: 28260940 PMCID: PMC5328132 DOI: 10.2147/ijnrd.s121473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Several renal disorders affect the glomerular podocytes. Compensatory structural and functional changes have been observed in animals that have undergone unilateral renal ablation. These changes occur as a pliant response to quench the increased functional demand to maintain homeostasis of fluid and solutes. Nestin is an intermediate filament protein present in the glomerular podocytes of the adult kidney and is linked with the maintenance of its foot process structure. Structural changes in the podocytes ultimately restructure the filtration barrier. Very few studies related to the ultrastructural and histopathologic changes of the podocytes are documented. The present study aimed to assess the histopathologic changes at the ultrastructural level in the adapted kidney at different time intervals following unilateral renal ablation in adult rats and its relation with nestin. Methods Forty-eight rats were divided into four groups (n=12 in each group). The animals of Group A were control naïve rats, while the group B, group C and group D animals underwent left unilateral nephrectomy and the remaining right kidney was removed on days 10, 20 and 30, respectively. Each group included four sham-operated rats, which were sacrificed at the same time as the naïve rats. Each nephrectomized sample was weighed and its sections were subjected to hematoxylin and eosin examination, transmission electron microscopic study as well as immunostaining using the intermediate filament protein nestin. Results No difference was found between the kidney sections from the control group and the sham-operated groups. A significant increase in the weight of the right kidneys was noted in groups B, C and D (P<0.001). The ultrastructural adaptive changes seen in the glomeruli of group B were subsequently reduced in groups C and D. This finding corresponded to a similar pattern of nestin expression in the podocytes, which showed significant increase in group B followed by reduced expression in groups C and D. Histopathologic and transmission electron microscopic evaluation of group B showed signs of kidney injury. On the other hand, group C animals showed markedly reduced renal adaptive changes and similar changes were also noted in group D. Conclusion Correlation between nestin expression and the ultrastructural changes confirms that nestin has a role in increasing the mechanical stability of the podocytes in order to enhance their morphologic changes in response to the tensile glomerular capillary wall. However, further studies investigating more remote ultrastructural changes and their relation with nestin expression are needed to confirm this relationship.
Collapse
Affiliation(s)
- Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, University of Sharjah, Sharjah, United Arab Emirates; Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wael M Elsaed
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Anatomy and Embryology Department, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Hoda Atef
- Department of Histology, University of Mansoura, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Hunter RW, Ivy JR, Flatman PW, Kenyon CJ, Craigie E, Mullins LJ, Bailey MA, Mullins JJ. Hypertrophy in the Distal Convoluted Tubule of an 11β-Hydroxysteroid Dehydrogenase Type 2 Knockout Model. J Am Soc Nephrol 2015; 26:1537-48. [PMID: 25349206 PMCID: PMC4483573 DOI: 10.1681/asn.2013060634] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/12/2014] [Indexed: 11/03/2022] Open
Abstract
Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11βHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids.
Collapse
Affiliation(s)
- Robert W Hunter
- British Heart Foundation Centre for Cardiovascular Science and
| | - Jessica R Ivy
- British Heart Foundation Centre for Cardiovascular Science and
| | - Peter W Flatman
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eilidh Craigie
- British Heart Foundation Centre for Cardiovascular Science and
| | - Linda J Mullins
- British Heart Foundation Centre for Cardiovascular Science and
| | | | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science and
| |
Collapse
|
15
|
Abstract
The distal convoluted tubule (DCT) is a short nephron segment, interposed between the macula densa and collecting duct. Even though it is short, it plays a key role in regulating extracellular fluid volume and electrolyte homeostasis. DCT cells are rich in mitochondria, and possess the highest density of Na+/K+-ATPase along the nephron, where it is expressed on the highly amplified basolateral membranes. DCT cells are largely water impermeable, and reabsorb sodium and chloride across the apical membrane via electroneurtral pathways. Prominent among this is the thiazide-sensitive sodium chloride cotransporter, target of widely used diuretic drugs. These cells also play a key role in magnesium reabsorption, which occurs predominantly, via a transient receptor potential channel (TRPM6). Human genetic diseases in which DCT function is perturbed have provided critical insights into the physiological role of the DCT, and how transport is regulated. These include Familial Hyperkalemic Hypertension, the salt-wasting diseases Gitelman syndrome and EAST syndrome, and hereditary hypomagnesemias. The DCT is also established as an important target for the hormones angiotensin II and aldosterone; it also appears to respond to sympathetic-nerve stimulation and changes in plasma potassium. Here, we discuss what is currently known about DCT physiology. Early studies that determined transport rates of ions by the DCT are described, as are the channels and transporters expressed along the DCT with the advent of molecular cloning. Regulation of expression and activity of these channels and transporters is also described; particular emphasis is placed on the contribution of genetic forms of DCT dysregulation to our understanding.
Collapse
Affiliation(s)
- James A McCormick
- Division of Nephrology & Hypertension, Oregon Health & Science University, & VA Medical Center, Portland, Oregon, United States
| | | |
Collapse
|
16
|
Rangarajan S, Sunil B, Fan C, Wang PX, Cutter G, Sanders PW, Curtis LM. Distinct populations of label-retaining cells in the adult kidney are defined temporally and exhibit divergent regional distributions. Am J Physiol Renal Physiol 2014; 307:F1274-82. [PMID: 25234315 DOI: 10.1152/ajprenal.00213.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA label-retention, or retention of a thymidine analog, is a characteristic of slow cycling cells and has been used to identify stem cells in several organ systems. Recent findings have demonstrated inconsistent localization of label-retaining cells (LRCs) in the kidney. Differences in the dose and timing of administration of deoxyuridine, the length of the chase period, and the species of animal used have made understanding the distinctions between these findings difficult. In the present studies, we utilized a dual loading scheme in the same animal to demonstrate that the cells labeled at different ages identified independent populations of LRC that distributed globally in an anti-parallel manner in the kidney. Loading with a DNA label in neonates identified LRC more often in the papilla, while administering the DNA label in adult mice identified LRC prominently in the cortex and the outer medulla. Furthermore, the tissue compartment distribution (epithelial-endothelial-interstitial) as well as the specific distribution within the nephron epithelia differed for these populations. These findings highlighted the complexity of the dynamics of cell proliferation in the kidney throughout the postnatal and adult period and call attention to the confusion associated with the term "label-retaining cells" for different timings of the loading and chase periods. This study indicated that the results of previous studies should be viewed as nonoverlapping and that further studies are needed to ascertain the role of each of these populations in the steady-state maintenance and injury recovery of the kidney.
Collapse
Affiliation(s)
- Sunil Rangarajan
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bhuvana Sunil
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunlan Fan
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pei-Xuan Wang
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul W Sanders
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Lisa M Curtis
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Veterans Affairs Medical Center, Birmingham, Alabama; and
| |
Collapse
|
17
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
18
|
Welsh-Bacic D, Nowik M, Kaissling B, Wagner CA. Proliferation of acid-secretory cells in the kidney during adaptive remodelling of the collecting duct. PLoS One 2011; 6:e25240. [PMID: 22039408 PMCID: PMC3200326 DOI: 10.1371/journal.pone.0025240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/29/2011] [Indexed: 01/07/2023] Open
Abstract
The renal collecting duct adapts to changes in acid-base metabolism by remodelling and altering the relative number of acid or alkali secreting cells, a phenomenon termed plasticity. Acid secretory A intercalated cells (A-IC) express apical H(+)-ATPases and basolateral bicarbonate exchanger AE1 whereas bicarbonate secretory B intercalated cells (B-IC) express basolateral (and apical) H(+)-ATPases and the apical bicarbonate exchanger pendrin. Intercalated cells were thought to be terminally differentiated and unable to proliferate. However, a recent report in mouse kidney suggested that intercalated cells may proliferate and that this process is in part dependent on GDF-15. Here we extend these observations to rat kidney and provide a detailed analysis of regional differences and demonstrate that differentiated A-IC proliferate massively during adaptation to systemic acidosis. We used markers of proliferation (PCNA, Ki67, BrdU incorporation) and cell-specific markers for A-IC (AE1) and B-IC (pendrin). Induction of remodelling in rats with metabolic acidosis (with NH(4)Cl for 12 hrs, 4 and 7 days) or treatment with acetazolamide for 10 days resulted in a larger fraction of AE1 positive cells in the cortical collecting duct. A large number of AE1 expressing A-IC was labelled with proliferative markers in the cortical and outer medullary collecting duct whereas no labeling was found in B-IC. In addition, chronic acidosis also increased the rate of proliferation of principal collecting duct cells. The fact that both NH(4)Cl as well as acetazolamide stimulated proliferation suggests that systemic but not urinary pH triggers this response. Thus, during chronic acidosis proliferation of AE1 containing acid-secretory cells occurs and may contribute to the remodelling of the collecting duct or replace A-IC due to a shortened life span under these conditions.
Collapse
Affiliation(s)
- Desa Welsh-Bacic
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marta Nowik
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Ellison DH, Loffing J. Thiazide effects and adverse effects: insights from molecular genetics. Hypertension 2009; 54:196-202. [PMID: 19564550 DOI: 10.1161/hypertensionaha.109.129171] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David H Ellison
- Division of Nephrology and Hypertension, Oregon Health & Science University, 3314 SW US Veterans Hospital Rd, Portland, OR 97239, USA.
| | | |
Collapse
|
20
|
Duong Van Huyen JP, Cheval L, Bloch-Faure M, Belair MF, Heudes D, Bruneval P, Doucet A. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J Am Soc Nephrol 2008; 19:1965-74. [PMID: 18650486 DOI: 10.1681/asn.2007070781] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although adult kidney cells are quiescent, enlargement of specific populations of epithelial cells occurs during repair and adaptive processes. A prerequisite to the development of regenerative therapeutics is to identify the mechanisms and factors that control the size of specific populations of renal cells. Unfortunately, in most cases, it is unknown whether the growth of cell populations results from transdifferentiation or proliferation and whether proliferating cells derive from epithelial cells or from circulating or resident progenitors. In this study, the mechanisms underlying the enlargement of the acid-secreting cell population in the mouse kidney collecting duct in response to metabolic acidosis was investigated. Acidosis led to two phases of proliferation that preferentially affected the acid-secreting cells of the outer medullary collecting duct. All proliferating cells displayed polarized expression of functional markers. The first phase of proliferation, which started within 24 h and peaked at day 3, was dependent on the overexpression of growth differentiation factor 15 (GDF15) and cyclin D1 and was abolished when phosphatidylinositol-3 kinase and mammalian target of rapamycin were inhibited. During this phase, cells mostly divided along the tubular axis, contributing to tubule lengthening. The second phase of proliferation was independent of GDF15 but was associated with induction of cyclin D3. During this phase, cells divided transversely. In summary, acid-secreting cells proliferate as the collecting duct adapts to metabolic acidosis, and GDF15 seems to be an important determinant of collecting duct lengthening.
Collapse
Affiliation(s)
- Jean Paul Duong Van Huyen
- UPMC University of Paris 06, Unité Mixte de Recherche Scientifique UMRS 872, and INSERM, UMRS 872, Paris France
| | | | | | | | | | | | | |
Collapse
|
21
|
Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Renal Physiol 2008; 294:F1373-80. [DOI: 10.1152/ajprenal.00613.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bartter's syndrome represents a group of hereditary salt- and water-losing renal tubulopathies caused by loss-of-function mutations in proteins mediating or regulating salt transport in the thick ascending limb (TAL) of Henle's loop. Mutations in the ROMK channel cause type II antenatal Bartter's syndrome that presents with maternal polyhydramnios and postnatal life-threatening volume depletion. We have developed a colony of Romk null mice showing a Bartter-like phenotype and with increased survival to adulthood, suggesting the activation of compensatory mechanisms. To test the hypothesis that upregulation of Na+-transporting proteins in segments distal to the TAL contributes to compensation, we studied expression of salt-transporting proteins in ROMK-deficient ( Romk−/−) mice. Plasma aldosterone was 40% higher and urinary PGE2 excretion was 1.5-fold higher in Romk−/− compared with wild-type littermates. Semiquantitative immunoblotting of kidney homogenates revealed decreased abundances of proximal tubule Na+/H+ exchanger (NHE3) and Na+-Pi cotransporter (NaPi-IIa) and TAL-specific Na+-K+-2Cl−-cotransporter (NKCC2/BSC1) in Romk−/− mice, while the distal convoluted tubule (DCT)-specific Na+-Cl− cotransporter (NCC/TSC) was markedly increased. The abundance of the α-,β-, and γ-subunits of the epithelial Na+ channel (ENaC) was slightly increased, although only differences for γ-ENaC reached statistical significance. Morphometry revealed a fourfold increase in the fractional volume of DCT but not of connecting tubule (CNT) and collecting duct (CCD). Consistently, CNT and CD of Romk−/− mice revealed no apparent increase in the luminal abundance of the ENaC compared with those of wild-type mice. These data suggest that the loss of ROMK-dependent Na+ absorption in the TAL is compensated predominately by upregulation of Na+ transport in downstream DCT cells. These adaptive changes in Romk−/− mice may help to limit renal Na+ loss, and thereby, contribute to survival of these mice.
Collapse
|
22
|
Wehrli P, Loffing-Cueni D, Kaissling B, Loffing J. Replication of segment-specific and intercalated cells in the mouse renal collecting system. Histochem Cell Biol 2006; 127:389-98. [PMID: 17186265 DOI: 10.1007/s00418-006-0261-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2006] [Indexed: 01/28/2023]
Abstract
The renal collecting system (CS) is composed of segment-specific (SS) and intercalated (IC) cells. The latter comprise at least two subtypes (type A and non-type A IC). The origin and maintenance of cellular heterogeneity in the CS is unclear. Among other hypotheses, it was proposed that one subtype of IC cells represents a stem cell population from which all cell types in the CS may arise. In the present study, we tested this stem cell hypothesis for the adult kidney by assessing DNA synthesis as a marker for cell replication. SS and IC cells were identified by their characteristic expressions of sodium- (epithelial sodium channel, Na-K-ATPase), water- (aquaporin-2) and acid/base- (H+ -ATPase, anion exchanger AE1) transporting proteins. Immunostaining for bromodeoxyuridine (BrdU) and for the proliferating cell nuclear antigen (PCNA) was used to reveal DNA synthesis in CS epithelium. BrdU- and PCNA-immunostaining as well as mitotic figures were seen in all subtypes of CS cells. Dividing cells retained the cell-type specific expression of marker molecules. Treatment of mice with bumetanide combined with a high oral salt intake, which increases the tubular salt load in the CS, profoundly increased the DNA-synthesis rate in SS and non-type A IC cells, but reduced it in type A IC cells. Thus, our data show that DNA synthesis and cell replication occur in each cell lineage of the CS and in differentiated cells. The replication rate in each cell type can be differently modulated by functional stimulation. Independent proliferation of each cell lineage might contribute to maintain the cellular heterogeneity of the CS of the adult kidney and may also add to the adaptation of the CS to altered functional requirements.
Collapse
Affiliation(s)
- Philipp Wehrli
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
23
|
Abstract
Kidneys are essential for acid-base homeostasis, especially when organisms cope with changes in acid or base dietary intake. Because collecting ducts constitute the final site for regulating urine acid-base balance, we undertook to identify the gene network involved in acid-base transport and regulation in the mouse outer medullary collecting duct (OMCD). For this purpose, we combined kidney functional studies and quantitative analysis of gene expression in OMCDs, by transcriptome and candidate gene approaches, during metabolic acidosis. Furthermore, to better delineate the set of genes concerned with acid-base disturbance, the OMCD transcriptome of acidotic mice was compared with that of both normal mice and mice undergoing an adaptative response through potassium depletion. Metabolic acidosis, achieved through an NH4Cl-supplemented diet for 3 days, not only induced acid secretion but also stimulated the aldosterone and vasopressin systems and triggered cell proliferation. Accordingly, metabolic acidosis increased the expression of genes involved in acid-base transport, sodium transport, water transport, and cell proliferation. In particular, >25 transcripts encoding proteins involved in urine acidification (subunits of H-ATPase, kidney anion exchanger, chloride channel Clcka, carbonic anhydrase-2, aldolase) were co-regulated during acidosis. These transcripts, which cooperate to achieve a similar function and are co-regulated during acidosis, constitute a functional unit that we propose to call a "regulon".
Collapse
Affiliation(s)
- Lydie Cheval
- Laboratoire de Physiologie et Génomique Rénales, Unité mixte de recherche 7134, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut Fédératif de Recherche 58, Paris cedex 6, France
| | | | | | | |
Collapse
|
24
|
Vallet M, Picard N, Loffing-Cueni D, Fysekidis M, Bloch-Faure M, Deschênes G, Breton S, Meneton P, Loffing J, Aronson PS, Chambrey R, Eladari D. Pendrin regulation in mouse kidney primarily is chloride-dependent. J Am Soc Nephrol 2006; 17:2153-63. [PMID: 16825334 DOI: 10.1681/asn.2005101054] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recent studies indicate that pendrin, an apical Cl-/HCO3- exchanger, mediates chloride reabsorption in the connecting tubule and the cortical collecting duct and therefore is involved in extracellular fluid volume regulation. The purpose of this study was to test whether pendrin is regulated in vivo primarily by factors that are associated with changes in renal chloride transport, by aldosterone, or by the combination of both determinants. For achievement of this goal, pendrin protein abundance was studied by semiquantitative immunoblotting in different mouse models with altered aldosterone secretion or tubular chloride transport, including NaCl loading, hydrochlorothiazide administration, NaCl co-transporter knockout mice, and mice with Liddle's mutation. The parallel regulation of the aldosterone-regulated epithelial sodium channel (ENaC) was examined as a control for biologic effects of aldosterone. Major changes in pendrin protein expression were found in experimental models that are associated with altered renal chloride transport, whereas no significant changes were detected in pendrin protein abundance in models with altered aldosterone secretion. Moreover, in response to hydrochlorothiazide administration, pendrin was downregulated despite a marked secondary hyperaldosteronism. In contrast, alpha-ENaC was markedly upregulated, and the molecular weight of a large fraction of gamma-ENaC subunits was shifted from 85 to 70 kD, consistent with previous results from rat models with elevated plasma aldosterone levels. These results suggest that factors that are associated with changes in distal chloride delivery govern pendrin expression in the connecting tubule and cortical collecting duct.
Collapse
Affiliation(s)
- Marion Vallet
- INSERM U652, IFR58, Institut des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim GH. Long-term adaptation of renal ion transporters to chronic diuretic treatment. Am J Nephrol 2004; 24:595-605. [PMID: 15564765 DOI: 10.1159/000082314] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/26/2004] [Indexed: 11/19/2022]
Abstract
Loop and thiazide diuretics are clinically useful to induce negative sodium balance. However, with chronic treatment, their effects tend to be blunted since the kidney adapts to diuretics. Molecular identification of the renal ion transporters has provided us with a new understanding of the mechanisms of intrarenal adaptation to diuretics at molecular levels. In the kidney, loop and thiazide diuretics are secreted from the proximal tubule via the organic anion transporter-1 (OAT1) and exert their diuretic action by binding to the Na-K-2Cl cotransporter type 2 (NKCC2) in the thick ascending limb and the Na-Cl cotransporter (NCC) in the distal convoluted tubule, respectively. Recent studies in animal models suggest that abundance of these ion transporters is affected by long-term diuretic administration. Downstream from the primary site of diuretic action, an increase in epithelial Na+ channel (ENaC) abundance is induced by chronic furosemide or hydrochlorothiazide treatment. This adaptation is consistent with previous reports showing cellular hypertrophy and increased Na+ absorption in distal tubular segments. The abundance of NKCC2 and NCC is increased by furosemide and hydrochlorothiazide, respectively. This compensatory upregulation suggests that either diuretic may activate the ion transporter within the primary site of action. In the proximal tubule, the abundance of OAT1 is increased by chronic treatment with furosemide or hydrochlorothiazide. This upregulation of OAT1 seems to be induced by substrate stimulation, lessening diuretic tolerance associated with long-term diuretic use.
Collapse
Affiliation(s)
- Gheun-Ho Kim
- Department of Internal Medicine and Institute of Biomedical Sciences, Hanyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Cheval L, Duong Van Huyen JP, Bruneval P, Verbavatz JM, Elalouf JM, Doucet A. Plasticity of mouse renal collecting duct in response to potassium depletion. Physiol Genomics 2004; 19:61-73. [PMID: 15238618 DOI: 10.1152/physiolgenomics.00055.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity of mouse renal collecting duct in response to potassium depletion. —Renal collecting ducts are the main sites for regulation of whole body potassium balance. Changes in dietary intake of potassium induce pleiotropic adaptations of collecting duct cells, which include alterations of ion and water transport properties along with an hypertrophic response. To study the pleiotropic adaptation of the outer medullary collecting duct (OMCD) to dietary potassium depletion, we combined functional studies of renal function (ion, water, and acid/base handling), analysis of OMCD hypertrophy (electron microscopy) and hyperplasia (PCNA labeling), and large scale analysis of gene expression (transcriptome analysis). The transcriptome of OMCD was compared in mice fed either a normal or a potassium-depleted diet for 3 days using serial analysis of gene expression (SAGE) adapted for downsized extracts. SAGE is based on the generation of transcript-specific tag libraries. Approximately 20,000 tags corresponding to 10,000 different molecular species were sequenced in each library. Among the 186 tags differentially expressed ( P < 0.05) between the two libraries, 120 were overexpressed and 66 were downregulated. The SAGE expression profile obtained in the control library was representative of different functional classes of proteins and of the two cell types (principal and α-intercalated cells) constituting the OMCD. Combined with gene expression analysis, results of functional and morphological studies allowed us to identify candidate genes for distinct physiological processes modified by potassium depletion: sodium, potassium, and water handling, hyperplasia and hypertrophy. Finally, comparison of mouse and human OMCD transcriptomes allowed us to address the question of the relevance of the mouse as a model for human physiology and pathophysiology.
Collapse
MESH Headings
- Acid-Base Equilibrium/genetics
- Acid-Base Equilibrium/physiology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Animals
- Body Weight
- Gene Expression Profiling
- Humans
- Hyperplasia/genetics
- Hyperplasia/pathology
- Hypertrophy/genetics
- Hypertrophy/pathology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/pathology
- Kidney Tubules, Collecting/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Organ Size
- Potassium Deficiency/blood
- Potassium Deficiency/genetics
- Potassium Deficiency/physiopathology
- Potassium Deficiency/urine
- Potassium, Dietary/administration & dosage
- Potassium, Dietary/pharmacology
- Proliferating Cell Nuclear Antigen/analysis
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Reproducibility of Results
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Lydie Cheval
- Laboratoire de Physiologie et Génomique Rénales, Unité Mixte de Recherche Centre National de la Recherche Scientifique/UPMC 7134, Paris, France
| | | | | | | | | | | |
Collapse
|
27
|
Masaki T, Foti R, Hill PA, Ikezumi Y, Atkins RC, Nikolic-Paterson DJ. Activation of the ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney Int 2003; 63:1256-64. [PMID: 12631342 DOI: 10.1046/j.1523-1755.2003.00874.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In vitro studies suggest that activation of the extracellular signal-regulated kinase (ERK) pathway plays a critical role in the proliferation of tubular epithelial and myofibroblast-like cells. However, little is known of ERK activation in individual cell types in normal or diseased kidney. The aims of this study were to (1) localize ERK activation within the kidney, and (2) examine the relationship between ERK activation and cell proliferation in the injured kidney. METHODS Unilateral ureteric obstruction (UUO) was induced in groups of six Wistar rats, which were killed at 30 minutes, 6 hours, and 1, 4, or 7 days after obstruction. Activation of ERK was identified using antibodies specific for the phosphorylated form of ERK (pERK) in Western blots and immunostaining. Proliferating cells were detected using bromodeoxyuridine (BrdU). RESULTS Western blotting showed abundant expression of the two ERK isoforms, ERK-1 and ERK-2, in normal rat kidney. Low levels of activated ERK (pERK-2> pERK-1) were detected in normal rat kidney by Western blotting. Immunostaining showed that ERK activation in normal kidney was largely restricted to collecting ducts in the outer medulla. Within 30 minutes of ureter obstruction, Western blotting showed a sixfold increase in ERK activation followed by a second peak (14-fold increase) on days 4 and 7. The initial peak of ERK activation was localized to medullary collecting ducts and the thick ascending limb of Henle (TALH), whereas the second peak corresponded to a progressive increase in ERK activation in dilated collecting ducts and in interstitial cells in the cortex. Proliferation of tubular epithelial cells closely followed the pattern of ERK activation, being evident first in medullary collecting ducts and TALH on day 1, and then in cortical collecting ducts from day 4. CONCLUSION This study has identified a discrete pattern of ERK activation in normal rat kidney and an increase in ERK activation following obstruction. The temporal and spatial relationship in which ERK activation preceded tubular cell proliferation suggest that ERK signaling plays a key role in tubular epithelial cell proliferation in the injured kidney.
Collapse
Affiliation(s)
- Takao Masaki
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Na KY, Oh YK, Han JS, Joo KW, Lee JS, Earm JH, Knepper MA, Kim GH. Upregulation of Na+ transporter abundances in response to chronic thiazide or loop diuretic treatment in rats. Am J Physiol Renal Physiol 2003; 284:F133-43. [PMID: 12388392 DOI: 10.1152/ajprenal.00227.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Furosemide and hydrochlorothiazide (HCTZ) exert their diuretic actions by binding to apical Na(+) transporters, viz., the Na(+)-K(+)-2Cl(-) cotransporter in the thick ascending limb and the Na(+)-Cl(-) cotransporter in the distal convoluted tubule, respectively. We carried out semiquantitative immunoblotting and immunohistochemistry of rat kidneys to investigate whether chronic administration of furosemide or HCTZ is associated with compensatory changes in the abundance of Na(+) transporters downstream from the primary site of action. Osmotic minipumps were implanted into Sprague-Dawley rats to deliver furosemide (12 mg/day) or HCTZ (3.75 mg/day) for 7 days. To prevent volume depletion, all animals were offered tap water and a solution containing 0.8% NaCl and 0.1% KCl as drinking fluid. The diuretic/natriuretic response was quantified in response to both agents by using quantitative urine collections. Semiquantitative immunoblotting revealed that the abundances of thick ascending limb Na(+)-K(+)-2Cl(-) cotransporter and all three subunits of the epithelial Na(+) channel (ENaC) were increased by furosemide infusion. HCTZ infusion increased the abundances of thiazide-sensitive Na(+)-Cl(-) cotransporter and beta-ENaC in the cortex and beta- and gamma-ENaC in the outer medulla. Consistent with these results, beta-ENaC immunohistochemistry showed a remarkable increase in immunoreactivity in the principal cells of collecting ducts with either diuretic treatment. These increases in the abundance of Na(+) transporters in response to chronic diuretic treatment may account for the generation of diuretic tolerance associated with long-term diuretic use.
Collapse
Affiliation(s)
- Ki Young Na
- Department of Internal Medicine, Seoul National University, Clinical Research Institute of Seoul National University Hospital, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ecelbarger CA, Knepper MA, Verbalis JG. Increased abundance of distal sodium transporters in rat kidney during vasopressin escape. J Am Soc Nephrol 2001; 12:207-217. [PMID: 11158210 DOI: 10.1681/asn.v122207] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hyponatremia is associated with inappropriately elevated vasopressin levels. A brisk natriuresis precedes the escape from this antidiuresis. Thus, the hypothesis was that the abundance of one or more of the sodium transporters of the distal tubule (a site for fine tuning of sodium balance) would be altered during vasopressin escape. Semiquantitative immunoblotting was used to examine the regulation of abundance of several sodium transporters/channels of the thick ascending limb through the collecting duct in the rat model. Osmotic minipumps to infuse dDAVP, the V2-selective vasopressin agonist (5 ng/h) for the entire experiment, were implanted in Male Sprague-Dawley rats. After 4 d, rats were divided into a control (dry AIN-76 diet/ad libitum water) or a water-loaded (gelled-agar-AIN-76 diet/ad libitum water) group. Rats were killed after 1, 2, 3, or 7 additional days. The water-loaded rats were hyponatremic (plasma Na+, 98 to 122 mmol/L) and manifested the expected early natriuresis and diuresis of vasopressin escape. Water loading (with dDAVP infusion) resulted in increased whole-kidney abundances of the thiazide-sensitive Na-Cl co-transporter, the alpha-subunit of the epithelial sodium channel (ENaC), and the 70-kD dimer of the gamma-subunit of ENaC. No changes were observed for the ss-subunit of ENaC. Similar protein changes have recently been associated with elevated aldosterone levels in rats. However, plasma aldosterone levels were significantly suppressed in this model. These data suggest that several distal sodium reabsorptive mechanisms are upregulated during vasopressin escape; this may help to attenuate the developing hyponatremia resulting from water loading when vasopressin levels are inappropriately elevated.
Collapse
Affiliation(s)
- Carolyn A Ecelbarger
- Department of Medicine, Division of Endocrinology and Metabolism, Georgetown University, Washington, D. C
| | - Mark A Knepper
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joseph G Verbalis
- Department of Medicine, Division of Endocrinology and Metabolism, Georgetown University, Washington, D. C
| |
Collapse
|
30
|
Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001; 81:51-84. [PMID: 11152754 DOI: 10.1152/physrev.2001.81.1.51] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle. Because there is little Mg(2+) reabsorption beyond the distal tubule, this segment plays an important role in determining the final urinary excretion. The distal convoluted segment (DCT) is characterized by a negative luminal voltage and high intercellular resistance so that Mg(2+) reabsorption is transcellular and active. This review discusses recent evidence for selective and sensitive control of Mg(2+) transport in the DCT and emphasizes the importance of this control in normal and abnormal renal Mg(2+) conservation. Normally, Mg(2+) absorption is load dependent in the distal tubule, whether delivery is altered by increasing luminal Mg(2+) concentration or increasing the flow rate into the DCT. With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent. Peptide hormones such as parathyroid hormone, calcitonin, glucagon, and arginine vasopressin enhance Mg(2+) absorption in the distal tubule and stimulate Mg(2+) uptake into MDCT cells. Prostaglandin E(2) and isoproterenol increase Mg(2+) entry into MDCT cells. The current evidence indicates that cAMP-dependent protein kinase A, phospholipase C, and protein kinase C signaling pathways are involved in these responses. Steroid hormones have significant effects on distal Mg(2+) transport. Aldosterone does not alter basal Mg(2+) uptake but potentiates hormone-stimulated Mg(2+) entry in MDCT cells by increasing hormone-mediated cAMP formation. 1,25-Dihydroxyvitamin D(3), on the other hand, stimulates basal Mg(2+) uptake. Elevation of plasma Mg(2+) or Ca(2+) inhibits hormone-stimulated cAMP accumulation and Mg(2+) uptake in MDCT cells through activation of extracellular Ca(2+)/Mg(2+)-sensing mechanisms. Mg(2+) restriction selectively increases Mg(2+) uptake with no effect on Ca(2+) absorption. This intrinsic cellular adaptation provides the sensitive and selective control of distal Mg(2+) transport. The distally acting diuretics amiloride and chlorothiazide stimulate Mg(2+) uptake in MDCT cells acting through changes in membrane voltage. A number of familial and acquired disorders have been described that emphasize the diversity of cellular controls affecting renal Mg(2+) balance. Although it is clear that many influences affect Mg(2+) transport within the DCT, the transport processes have not been identified.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev 2000; 80:277-313. [PMID: 10617770 DOI: 10.1152/physrev.2000.80.1.277] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The distal tubule of the mammalian kidney, defined as the region between the macula densa and the collecting duct, is morphologically and functionally heterogeneous. This heterogeneity has stymied attempts to define functional properties of individual cell types and has led to controversy concerning mechanisms and regulation of ion transport. Recently, molecular techniques have been used to identify and localize ion transport pathways along the distal tubule and to identify human diseases that result from abnormal distal tubule function. Results of these studies have clarified the roles of individual distal cell types. They suggest that the basic molecular architecture of the distal nephron is surprisingly similar in mammalian species investigated to date. The results have also reemphasized the role played by the distal tubule in regulating urinary potassium excretion. They have clarified how both peptide and steroid hormones, including aldosterone and estrogen, regulate ion transport by distal convoluted tubule cells. Furthermore, they highlight the central role that the distal tubule plays in systemic calcium homeostasis. Disorders of distal nephron function, such as Gitelman's syndrome, nephrolithiasis, and adaptation to diuretic drug administration, emphasize the importance of this relatively short nephron segment to human physiology. This review integrates molecular and functional results to provide a contemporary picture of distal tubule function in mammals.
Collapse
Affiliation(s)
- R F Reilly
- Department of Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | | |
Collapse
|
32
|
Osmotic regulation of DNA activity and the cell cycle. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1568-1254(00)80014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Affiliation(s)
- C Shayakul
- Department of Medicine, Siriraj Hospital, Bangkok, MA, Thailand
| | | | | | | |
Collapse
|
34
|
Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbäumer I, Tapp R, Bachmann S. Developmental expression of sodium entry pathways in rat nephron. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F367-81. [PMID: 10070160 DOI: 10.1152/ajprenal.1999.276.3.f367] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the past several years, sites of expression of ion transport proteins in tubules from adult kidneys have been described and correlated with functional properties. Less information is available concerning sites of expression during tubule morphogenesis, although such expression patterns may be crucial to renal development. In the current studies, patterns of renal axial differentiation were defined by mapping the expression of sodium transport pathways during nephrogenesis in the rat. Combined in situ hybridization and immunohistochemistry were used to localize the Na-Pi cotransporter type 2 (NaPi2), the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), the thiazide-sensitive Na-Cl cotransporter (NCC), the Na/Ca exchanger (NaCa), the epithelial sodium channel (rENaC), and 11beta-hydroxysteroid dehydrogenase (11HSD). The onset of expression of these proteins began in post-S-shape stages. NKCC2 was initially expressed at the macula densa region and later extended into the nascent ascending limb of the loop of Henle (TAL), whereas differentiation of the proximal tubular part of the loop of Henle showed a comparatively retarded onset when probed for NaPi2. The NCC was initially found at the distal end of the nascent distal convoluted tubule (DCT) and later extended toward the junction with the TAL. After a period of changing proportions, subsegmentation of the DCT into a proximal part expressing NCC alone and a distal part expressing NCC together with NaCa was evident. Strong coexpression of rENaC and 11HSD was observed in early nascent connecting tubule (CNT) and collecting ducts and later also in the distal portion of the DCT. Ontogeny of the expression of NCC, NaCa, 11HSD, and rENaC in the late distal convolutions indicates a heterogenous origin of the CNT. These data present a detailed analysis of the relations between the anatomic differentiation of the developing renal tubule and the expression of tubular transport proteins.
Collapse
Affiliation(s)
- R Schmitt
- Institut für Anatomie, Charité, Humboldt Universität, D-10098 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bachmann S. Cell localization and ontogeny of sodium transport pathways in the distal nephron: perspectives in function and failure. Curr Opin Nephrol Hypertens 1999; 8:31-8. [PMID: 9914858 DOI: 10.1097/00041552-199901000-00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The expression and function of ion co-transporters/exchangers/channels in the distal nephron have recently been defined. The role of cation-chloride co-transporters and proteins implicated in aldosterone target cell function are reported in the adult and during ontogeny. Volume disorders can currently be related to identified gene products acting in defined nephron sites.
Collapse
Affiliation(s)
- S Bachmann
- Institut für Anatomie, Charité, Humboldt Universität, Berlin, Germany.
| |
Collapse
|
36
|
Schafer JA, Chen L. Low Na+ diet inhibits Na+ and water transport response to vasopressin in rat cortical collecting duct. Kidney Int 1998; 54:180-7. [PMID: 9648077 DOI: 10.1046/j.1523-1755.1998.00985.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously demonstrated that vasopressin (AVP) produces a sustained increase in Na+ reabsorption by the isolated perfused cortical collecting duct (CCD) from rats on a normal diet, and that this effect is synergistic with that of pharmacological doses of deoxycorticosterone (DOC) or physiological levels of aldosterone. The present experiments examined the effect of AVP under the more physiological circumstances when plasma aldosterone was elevated by prior volume depletion. METHODS Rats were volume depleted by a single dose of furosemide followed by a low-salt diet (0.3% NaCl) for four to nine days. Some of these rats were also implanted with a pellet containing 2.5 mg DOC. Rats in a third group were not injected with furosemide but were implanted with the DOC pellet and maintained on a standard (approximately 1% NaCl) diet. CCD were perfused and the lumen-to-bath Na+ flux (JNA), transepithelial voltage (VT), and osmotic water permeability (Pf) were measured in the presence and absence of 200 pm AVP. RESULTS Although Na+ depletion by a single injection of furosemide and the low salt diet elevated plasma aldosterone and Vt, JNA remained low and there was a decreased response to AVP in comparison with DOC-treated rats on a standard diet. In CCD from rats on the low salt-diet with DOC, JNa was less than observed in CCD from DOC-treated rats on a standard diet. AVP-dependent Pf in CCD from rats on the low salt-diet, with or without DOC treatment, was also markedly lower. CONCLUSIONS We interpret the results to demonstrate that maximal rates of Na+ reabsorption in the CCD depend not only on the synergistic stimulatory effects of aldosterone and AVP, but also require normal to high rates of salt delivery in vivo for the effects of the hormones on Na+ transport to be maximized in vitro.
Collapse
Affiliation(s)
- J A Schafer
- Department of Physiology and Biophysics, University of Alabama at Birmingham, USA.
| | | |
Collapse
|
37
|
Beck FX, Ohno A, Müller E, Seppi T, Pfaller W. Inhibition of angiotensin-converting enzyme modulates structural and functional adaptation to loop diuretic-induced diuresis. Kidney Int 1997; 51:36-43. [PMID: 8995715 DOI: 10.1038/ki.1997.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The roles of elevated cell sodium concentrations and the angiotensin-aldosterone system (AAS) in the structural and functional adaptation of the distal tubule and collecting duct system to a chronic increase of sodium delivery were examined using electron microprobe and quantitative morphologic/stereologic analyses. Studies were performed on rats given the loop diuretic torasemide acutely (20 min) or chronically (12 days), either alone or in combination with the angiotensin-converting enzyme (ACE) inhibitor, enalapril. In the sodium-absorbing cells of the distal tubule and cortical collecting duct-that is, in distal convoluted tubule (DCT), connecting tubule (CNT) and principal cells-an acute increase in sodium delivery caused a significant rise in intracellular sodium concentration and rubidium uptake, the latter an index of in vivo Na,K(Rb)-ATPase activity. The elevated cell sodium concentrations returned to, or close to, control values during chronic torasemide treatment. Intracellular rubidium concentrations, measured after a 30-second rubidium exposure, were not different from controls in DCT and CNT cells but were still higher in principal cells. Since, however, the distribution space for rubidium was significantly increased in chronic torasemide animals, rubidium uptake, and hence Na,K-ATPase activity, must have increased in proportion to cell volume in DCT and CNT cells, but more than proportionately in principal cells. When ACE was inhibited during chronic torasemide, the epithelial volume of DCT and cortical collecting duct (CCD) was increased mainly by lengthening and not, as was the case in rats given torasemide alone, by thickening of the tubule wall. Adaptation of the proximal tubule exclusively by lengthening was not affected by inhibition of the ACE. These data indicate that changes in cell ion composition may participate in initiating cell processes leading to adaptation of distal nephron segments to chronically increased salt delivery. Inhibition of the ACE reverses the torasemide-induced increase in apparent Na pump density in principal cells and seems to shift the relationship between hypertrophy and hyperplasia noted in DCT and CCD after chronic torasemide in favor of hyperplasia.
Collapse
Affiliation(s)
- F X Beck
- Department of Physiology, University of Munich, Germany
| | | | | | | | | |
Collapse
|
38
|
Loffing J, Loffing-Cueni D, Hegyi I, Kaplan MR, Hebert SC, Le Hir M, Kaissling B. Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int 1996; 50:1180-90. [PMID: 8887276 DOI: 10.1038/ki.1996.426] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the effects of inhibition of apical NaCl entry on the structural correlates for electrolyte transport in the distal convoluted tubule (DCT) of rats. Thiazide diuretics were used to block NaCl entry specifically in the DCT. Metolazone or hydrochlorothiazide (HCTZ) were applied for three days subcutaneously via osmotic minipumps. The renal epithelial structure of control and treated rats was studied by light and electron microscopy. Distribution of the thiazide-sensitive NaCl cotransporter (rTSC1), calbindin D28K and Ca(2+)-Mg(2+)-ATPase was examined by immunohistochemistry, and the content of rTSC1 transcripts by Northern blot and in situ hybridization. In treated rats the DCT epithelium had lost the structural characteristics of electrolyte transporting epithelia and the cells were in different stages of apoptosis. In damaged cells calbindin D28K and Ca(2+)-Mg(2+)-ATPase were strongly decreased; the rTSC1 was shifted from the luminal membrane to the basal cell half and was found additionally in small membrane vesicles in intercellular and peritubular spaces. Transcripts of rTSC1 were drastically reduced in homogenates of kidney cortex and almost absent in damaged DCT cells. All other tubular segments were unaffected by the treatment. Focal inflammatory infiltrates were found to be specifically surrounding DCT profiles. Thus, inhibition by thiazides of apical NaCl entry into DCT cells is associated with apoptosis of DCT cells and focal peritubular inflammation.
Collapse
Affiliation(s)
- J Loffing
- Institute of Anatomy, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|