1
|
Van Roy N, Speeckaert MM. The Potential Use of Targeted Proteomics and Metabolomics for the Identification and Monitoring of Diabetic Kidney Disease. J Pers Med 2024; 14:1054. [PMID: 39452561 PMCID: PMC11508375 DOI: 10.3390/jpm14101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent microvascular complication of diabetes mellitus and is associated with a significantly worse prognosis compared to diabetic patients without kidney involvement, other microvascular complications, or non-diabetic chronic kidney disease, due to its higher risk of cardiovascular events, faster progression to end-stage kidney disease, and increased mortality. In clinical practice, diagnosis is based on estimated glomerular filtration rate (eGFR) and albuminuria. However, given the limitations of these diagnostic markers, novel biomarkers must be identified. Omics is a new field of study involving the comprehensive analysis of various types of biological data at the molecular level. In different fields, they have shown promising results in (early) detection of diseases, personalized medicine, therapeutic monitoring, and understanding pathogenesis. DKD is primarily utilized in scientific research and has not yet been implemented in routine clinical practice. The aim of this review is to provide an overview of currently available data on targeted omics. After an extensive literature search, 25 different (panels of) omics were withheld and analyzed. Both serum/plasma and urine proteomics and metabolomics have been described with varying degrees of evidence. For all omics, there is still a relative paucity of data from large, prospective, longitudinal cohorts, presumably because of the heterogeneity of DKD and the lack of patient selection in studies, the complexity of omics technologies, and various practical and ethical considerations (e.g., limited accessibility, cost, and privacy concerns).
Collapse
Affiliation(s)
- Nele Van Roy
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
2
|
Limonte CP, Gao X, Bebu I, Seegmiller JC, Karger AB, Lorenzi GM, Molitch M, Karanchi H, Perkins BA, de Boer IH. Associations of Kidney Tubular Biomarkers With Incident Macroalbuminuria and Sustained Low eGFR in DCCT/EDIC. Diabetes Care 2024; 47:1539-1547. [PMID: 38484321 PMCID: PMC11362110 DOI: 10.2337/dc23-2196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Tubulointerstitial injury contributes to diabetic kidney disease (DKD) progression. We tested tubular biomarker associations with DKD development in type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS We performed a case-cohort study examining associations of tubular biomarkers, measured across seven time points spanning ∼30 years, with incident macroalbuminuria ("severely elevated albuminuria," urinary albumin excretion rate [AER] ≥300 mg/day) and sustained low estimated glomerular filtration rate (eGFR) (persistent eGFR <60 mL/min/1.73 m2) in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study. Biomarkers included KIM-1 and sTNFR1 in serum/plasma, MCP-1 and EGF in urine, and a composite tubular secretion score reflecting secreted solute clearance. We assessed biomarkers using single values, as mean values from consecutive time points, and as change over consecutive time points, each as time-updated exposures. RESULTS At baseline, mean diabetes duration was 5.9 years, with mean HbA1c 8.9%, eGFR 125 mL/min/1.73 m2, and AER 16 mg/day. There were 4.8 and 3.5 cases per 1,000 person-years of macroalbuminuria and low eGFR, respectively. Assessed according to single biomarker values, KIM-1 was associated with risk of subsequent macroalbuminuria and low eGFR (hazard ratio [HR] per 20% higher biomarker 1.11 [95% CI 1.06, 1.16] and 1.12 [1.04, 1.21], respectively) and sTNFR1 was associated with subsequent macroalbuminuria (1.14 [1.03, 1.25]). Mean KIM-1 and EGF-to-MCP-1 ratio were associated with subsequent low eGFR. In slope analyses, increases in KIM-1 and sTNFR1 were associated with subsequent macroalbuminuria (per 20% biomarker increase, HR 1.81 [1.40, 2.34] and 1.95 [1.18, 3.21]) and low eGFR (2.26 [1.65, 3.09] and 2.94 [1.39, 6.23]). CONCLUSIONS Serial KIM-1 and sTNFR1 are associated with incident macroalbuminuria and sustained low eGFR in T1D.
Collapse
Affiliation(s)
- Christine P. Limonte
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
- Kidney Research Institute, University of Washington, Seattle, WA
| | - Xiaoyu Gao
- Biostatistics Center, The George Washington University, Rockville, MD
| | - Ionut Bebu
- Biostatistics Center, The George Washington University, Rockville, MD
| | - Jesse C. Seegmiller
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Gayle M. Lorenzi
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Harsha Karanchi
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Bruce A. Perkins
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
- Kidney Research Institute, University of Washington, Seattle, WA
| | | | | |
Collapse
|
3
|
Adams-Sherrod GA, Brooks HL, Kumar P. Sex-specific modulation of renal epigenetic and injury markers in aging kidney. Am J Physiol Renal Physiol 2024; 327:F543-F551. [PMID: 38961843 PMCID: PMC11460336 DOI: 10.1152/ajprenal.00140.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Sex differences in renal physiology and pathophysiology are now well established in rodent models and in humans. Epigenetic programming is known to be a critical component of renal injury, as studied mainly in male rodent models; however, not much is known about the impact of biological sex and age on the kidney epigenome. We sought to determine the influence of biological sex and age on renal epigenetic and injury markers, using male and female mice at 4 mo (4M; young), 12 mo (12M), and 24 mo (24M; aged) of age. Females had a significant increase in kidney and body weights and serum creatinine levels and a decrease in serum albumin levels from 4M to 24M of age, whereas minor changes were observed in male mice. Kidney injury molecule-1 levels in serum and renal tissue greatly enhanced from 12M to 24M in both males and females. Circulating histone 3 (H3; damage-associated molecular pattern molecules) levels extensively increased with age; however, males had higher levels than females. Overall, females had markedly high histone acetyltransferase (HAT) activity than age-matched males. Aged mice had decreased HAT activity and increased histone deacetylase activity than sex-matched 12M mice. Aged females had substantially decreased renal H3 methylation at lysine 9 and 27 and histone methyltransferase (HMT) activity than aged male mice. Antiaging protein Klotho levels were significantly higher in young males than age-matched females and decreased substantially with age in males, whereas epigenetic repressor of Klotho, trimethylated H3K27, and its HMT enzyme, enhancer of zeste homolog 2, increased consistently with age in both sexes. Moreover, nuclear translocation and activity of proinflammatory transcription factor nuclear factor-κB (p65) were significantly higher in aged mice. Taken together, our data suggest that renal aging lies in a range between normal and diseased kidneys but may differ between female and male mice, highlighting sex-related differences in the aging process.NEW & NOTEWORTHY Although there is evidence of sex-specific differences in kidney diseases, most preclinical studies have used male rodent models. The clinical data on renal injury have typically not been stratified by sex. Our findings provide convincing evidence of sex-specific differences in age-regulated epigenetic alterations and renal injury markers. This study highlights the importance of including both sexes for better realization of underlying sex differences in signaling mechanisms of aging-related renal pathophysiology.
Collapse
Affiliation(s)
- Gabriel A Adams-Sherrod
- Department of Physiology, School of MedicineTulane UniversityNew OrleansLouisianaUnited States
| | - Heddwen L Brooks
- Department of Physiology, School of MedicineTulane UniversityNew OrleansLouisianaUnited States
| | - Prerna Kumar
- Department of Physiology, School of MedicineTulane UniversityNew OrleansLouisianaUnited States
| |
Collapse
|
4
|
Schmidt IM, Surapaneni AL, Zhao R, Upadhyay D, Yeo WJ, Schlosser P, Huynh C, Srivastava A, Palsson R, Kim T, Stillman IE, Barwinska D, Barasch J, Eadon MT, El-Achkar TM, Henderson J, Moledina DG, Rosas SE, Claudel SE, Verma A, Wen Y, Lindenmayer M, Huber TB, Parikh SV, Shapiro JP, Rovin BH, Stanaway IB, Sathe NA, Bhatraju PK, Coresh J, Rhee EP, Grams ME, Waikar SS. Plasma proteomics of acute tubular injury. Nat Commun 2024; 15:7368. [PMID: 39191768 PMCID: PMC11349760 DOI: 10.1038/s41467-024-51304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
The kidney tubules constitute two-thirds of the cells of the kidney and account for the majority of the organ's metabolic energy expenditure. Acute tubular injury (ATI) is observed across various types of kidney diseases and may significantly contribute to progression to kidney failure. Non-invasive biomarkers of ATI may allow for early detection and drug development. Using the SomaScan proteomics platform on 434 patients with biopsy-confirmed kidney disease, we here identify plasma biomarkers associated with ATI severity. We employ regional transcriptomics and proteomics, single-cell RNA sequencing, and pathway analysis to explore biomarker protein and gene expression and enriched biological pathways. Additionally, we examine ATI biomarker associations with acute kidney injury (AKI) in the Kidney Precision Medicine Project (KPMP) (n = 44), the Atherosclerosis Risk in Communities (ARIC) study (n = 4610), and the COVID-19 Host Response and Clinical Outcomes (CHROME) study (n = 268). Our findings indicate 156 plasma proteins significantly linked to ATI with osteopontin, macrophage mannose receptor 1, and tenascin C showing the strongest associations. Pathway analysis highlight immune regulation and organelle stress responses in ATI pathogenesis.
Collapse
Affiliation(s)
- Insa M Schmidt
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Section of Nephrology, Boston Medical Center, Boston, MA, USA.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Aditya L Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Runqi Zhao
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| | - Dhairya Upadhyay
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Wan-Jin Yeo
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Courtney Huynh
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| | - Anand Srivastava
- Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Ragnar Palsson
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Taesoo Kim
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Isaac E Stillman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Barwinska
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan Barasch
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael T Eadon
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel Henderson
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Dennis G Moledina
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sophie E Claudel
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| | - Ashish Verma
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| | - Yumeng Wen
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maja Lindenmayer
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samir V Parikh
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John P Shapiro
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brad H Rovin
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ian B Stanaway
- Kidney Research Institute, Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
| | - Neha A Sathe
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Pavan K Bhatraju
- Kidney Research Institute, Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Josef Coresh
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Eugene P Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
| | - Morgan E Grams
- Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Sushrut S Waikar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Nephrology, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
5
|
Sircuța AF, Grosu ID, Schiller A, Petrica L, Ivan V, Schiller O, Bodea M, Mircea MN, Goleț I, Bob F. The Relationship between Circulating Kidney Injury Molecule-1 and Cardiovascular Morbidity and Mortality in Hemodialysis Patients. Biomedicines 2024; 12:1903. [PMID: 39200365 PMCID: PMC11352197 DOI: 10.3390/biomedicines12081903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND The importance of identifying mortality biomarkers in chronic kidney disease (CKD), and especially in patients treated with hemodialysis (HD), has become evident. In addition to being a marker of tubulointerstitial injury, plasma kidney injury molecule-1 (KIM-1) has been mentioned in regard to HD patients as a risk marker for cardiovascular (CV) mortality and coronary artery calcification. The aim of this study was to assess the level of plasma KIM-1 as a marker of cardiovascular disease (CVD) and mortality in CKD5-HD patients (patients with CKD stage G5D treated with hemodialysis). METHODS We conducted a prospective case-control study that included 63 CKD5-HD patients (HD for 1-5 years) followed up for 48 months and a control group consisting of 52 non-dialysis patients diagnosed with CKD stages G1-G5 (ND-CKD). All patients had a CVD baseline assessment including medical history, echocardiography, and electrocardiography (ECG). Circulating plasma KIM-1 levels were determined with single-molecule counting immunoassay technology using an enzyme-linked immunosorbent assay. We obtained the following parameters: serum creatinine and urea; the inflammation markers CRP (C-reactive protein) and IL-6 (interleukin-6); and the anemia markers complete blood count, serum ferritin, and transferrin saturation (TSAT). RESULTS The mean plasma KIM-1 level was 403.8 ± 546.8 pg/mL, showing a statistically significant correlation with inflammation (CRP, R = 0.28, p = 0.02; IL-6, R = 0.36, p = 0.005) and with anemia (hematocrit, R = -0.5, p = -0.0316; hemoglobin (Hb), R = -0.5, p = 0.02). We found that patients with left ventricular hypertrophy (LVH) on echocardiography (59.7%) had significantly lower mean levels of plasma KIM-1 than patients from the control group (155.51 vs. 432.12 pg/mL; p = 0.026). Regarding the patients' follow-up, we assessed all-cause mortality as an endpoint. After 24 months of follow-up, we found a mortality rate of 22.23%, while after 48 months, the mortality rate was 50.73%. A plasma KIM-1 level < 82.98 pg/mL was significantly associated with decreased survival in hemodialysis patients (p < 0.001). CONCLUSIONS In patients treated with hemodialysis, low levels of plasma KIM-1 were associated with cardiovascular changes and an increased risk of mortality. Plasma KIM-1 levels were significantly higher in HD patients compared to ND-CKD patients.
Collapse
Affiliation(s)
- Alexandru Florin Sircuța
- Department of Internal Medicine II—Nephrology University Clinic, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.F.S.); (A.S.); (L.P.); (M.B.); (F.B.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- County Emergency Hospital, L. Rebreanu Street, Nr. 156, 300723 Timișoara, Romania;
| | - Iulia Dana Grosu
- Department of Internal Medicine II—Nephrology University Clinic, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.F.S.); (A.S.); (L.P.); (M.B.); (F.B.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- County Emergency Hospital, L. Rebreanu Street, Nr. 156, 300723 Timișoara, Romania;
| | - Adalbert Schiller
- Department of Internal Medicine II—Nephrology University Clinic, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.F.S.); (A.S.); (L.P.); (M.B.); (F.B.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II—Nephrology University Clinic, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.F.S.); (A.S.); (L.P.); (M.B.); (F.B.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- County Emergency Hospital, L. Rebreanu Street, Nr. 156, 300723 Timișoara, Romania;
| | - Viviana Ivan
- County Emergency Hospital, L. Rebreanu Street, Nr. 156, 300723 Timișoara, Romania;
- Department of Internal Medicine II—Cardiology University Clinic, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Oana Schiller
- B Braun Avitum Dialysis Centre, 300417 Timișoara, Romania;
| | - Madalina Bodea
- Department of Internal Medicine II—Nephrology University Clinic, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.F.S.); (A.S.); (L.P.); (M.B.); (F.B.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- County Emergency Hospital, L. Rebreanu Street, Nr. 156, 300723 Timișoara, Romania;
| | | | - Ionuţ Goleț
- Department of Management, Faculty of Economics and Business Administration, University of the West, 300115 Timișoara, Romania;
| | - Flaviu Bob
- Department of Internal Medicine II—Nephrology University Clinic, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.F.S.); (A.S.); (L.P.); (M.B.); (F.B.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
- County Emergency Hospital, L. Rebreanu Street, Nr. 156, 300723 Timișoara, Romania;
| |
Collapse
|
6
|
Wang Y, Chen Y, Yu Y, Pan X, Fu G. Association of urinary calcium excretion with chronic kidney disease in patients with type 2 diabetes. Int Urol Nephrol 2024; 56:2715-2723. [PMID: 38498272 DOI: 10.1007/s11255-024-03978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Herein, we investigated the correlation between urinary calcium excretion (UCaE) and chronic kidney disease (CKD) in patients with type 2 diabetes mellitus (T2DM). METHODS From August 2018 to January 2023, a total of 2031 T2DM patients providing 24-h urine samples were included in the final analyses. Patients were separated into four cohorts, based on the UCaE quartiles. We then analyzed renal functional indicators like estimated glomerular filtration rate (eGFR) and urinary albumin excretion (UAE) among the four groups. Lastly, we utilized multivariable logistic regression models to investigate the correlation between UCaE and CKD. RESULTS After adjusting for confounding factors, we observed a decreasing trend in CKD prevalence (36.3%, 13.0%, 7.5%, and 6.6%, respectively, P < 0.001) across the UCaE quartiles. Albuminuria (55.5% vs. 40.0%, 36.5%, 37.4%) and macroalbuminuria prevalence (20.0% vs. 9.3%, 5.2%, 5.7%) in the lowest quartile were markedly elevated, compared to the remaining three quartiles (P < 0.001). Meanwhile, the eGFR level (P < 0.001) showed a clearly increasing trend across the UCaE quartiles, and patients with moderate-to-severe decreases in eGFR levels (with cutoff limits at 30-59, 15-30, and < 15 mL/min/1.73m2) were mostly found in the lowest quartile (P < 0.001). Logistic regression analysis revealed that patients in the lowest quartile experienced an enhanced prevalence of CKD, relative to those in the highest quartile (odds ratio: 5.90, 95% confidence interval: 3.60-9.67, P < 0.001). CONCLUSION Decreased UCaE was independently associated with the CKD prevalence in T2DM patients.
Collapse
Affiliation(s)
- Yanru Wang
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | - Yuxing Chen
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | - Yanping Yu
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | - Xin Pan
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | - Guoxiang Fu
- Department of Geriatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China.
| |
Collapse
|
7
|
Mohammedi K, Hess S, McQueen M, Pigeyre M, Lee SF, Pare G, Gerstein HC. Determinants of serious health outcome-free status in middle-aged and older people with dysglycaemia: Exploratory analysis of the ORIGIN trial. Diabetes Obes Metab 2024; 26:3272-3280. [PMID: 38747213 DOI: 10.1111/dom.15654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024]
Abstract
AIM To assess clinical and biochemical measurements that can identify people with dysglycaemia (i.e. diabetes or pre-diabetes) who remain free of serious outcomes during follow-up. MATERIALS AND METHODS We conducted exploratory analyses using data from the Outcomes Reduction with an Initial Glargine Intervention (ORIGIN) study to identify independent determinants of outcome-free status in 12 537 middle-aged and older adults with prediabetes and early type 2 diabetes from 40 countries. Serious outcome-free status was defined as the absence of major cardiovascular outcomes, kidney or retinal outcomes, peripheral artery disease, dementia, cancer, any hospitalization, or death during follow-up. RESULTS In total, 3328 (26.6%) participants remained free of serious outcomes during a median follow-up of 6.2 years (IQR 5.8, 6.7). Independent clinical determinants of outcome-free status included younger age, female sex, non-White ethnicity, shorter diabetes duration, absence of previous cardiovascular disease, current or former smokers, higher grip strength, Mini-Mental State Examination score, and ankle-brachial index, lower body mass index and kidney disease index, and non-use of renin-angiotensin system drugs and beta-blockers. In a subset of 8401 people with baseline measurements of 238 biomarkers, growth differentiation factor 15, kidney injury molecule-1, N-terminal pro-brain natriuretic peptide, uromodulin, C-reactive protein, factor VII and ferritin were independent determinants. The combination of clinical determinants and biomarkers best identified participants who remained outcome-free (C-statistics 0.71, 95% confidence interval 0.70-0.73; net reclassification improvement 0.55, 95% confidence interval 0.48-0.58). CONCLUSIONS A set of routinely measured clinical characteristics and seven protein biomarkers identify middle-aged and older people with prediabetes or early type 2 diabetes as least likely to experience serious outcomes during follow-up.
Collapse
Affiliation(s)
- Kamel Mohammedi
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Canada
- Université de Bordeaux, INSERM, BMC, U1034, Avenue de Magellan, Pessac, France
| | - Sibylle Hess
- Sanofi, Global Medical Diabetes, Frankfurt, Germany
| | - Matthew McQueen
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Canada
| | - Marie Pigeyre
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Canada
| | - Shun Fu Lee
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Canada
| | - Guillaume Pare
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Canada
| | - Hertzel C Gerstein
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Canada
| |
Collapse
|
8
|
Gohda T, Murakoshi M, Suzuki Y, Kagimura T, Wada T, Narita I. Effect of proteinuria on the rapid kidney function decline in chronic kidney disease depends on the underlying disease: A post hoc analysis of the BRIGHTEN study. Diabetes Res Clin Pract 2024; 212:111682. [PMID: 38677368 DOI: 10.1016/j.diabres.2024.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
AIMS It is unclear whether the effect of proteinuria on rapid kidney function decline is equivalent among diabetic kidney disease (DKD), non-DKD with diabetes (NDKD+DM), and nephrosclerosis without diabetes (NS-DM), particularly in advanced chronic kidney disease patients. METHODS In total, 1038 chronic kidney disease patients who participated in the BRIGHTEN study were included in the present study. A linear mixed effect model was applied to estimate the annual estimated glomerular filtration rate decline in each disease group. RESULTS The prevalence of rapid decliners (rapid kidney function decline, defined as an eGFR loss of > 5 mL/min/1.73 m2/year) in the DKD group (44.6 %) was significantly higher compared with the NDKD+DM (27.9 %) and NS-DM (27.0 %) groups. By contrast, the prevalence of rapid decliners in different urine total protein to creatinine ratio (UPCR) categories (<0.5, 0.5 to < 1.0, 1.0 to < 3.5, and ≥ 3.5 g/g) were equivalent between the DKD and NS-DM groups. Moreover, the prevalence of a UPCR < 1.0 g/g in rapid decliners of the NS-DM group was more than double than in those of the DKD and NDKD+DM groups. CONCLUSIONS The risk of rapid kidney function decline in NS-DM patients with low levels of proteinuria may be greater than initially predicted.
Collapse
Affiliation(s)
- Tomohito Gohda
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Maki Murakoshi
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuo Kagimura
- Translational Research Centre for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | | | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
9
|
Limonte CP, Gao X, Bebu I, Seegmiller JC, Lorenzi GM, Perkins BA, Karger AB, Arends VL, Paterson A, Molitch ME, de Boer IH. Longitudinal Trajectories of Biomarkers of Kidney Tubular Function in Type 1 Diabetes. Kidney Int Rep 2024; 9:1406-1418. [PMID: 38707816 PMCID: PMC11068962 DOI: 10.1016/j.ekir.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 05/07/2024] Open
Abstract
Introduction Tubular biomarkers may shed insight into progression of kidney tubulointerstitial pathology complementary to traditional measures of glomerular function and damage. Methods We examined trajectories of tubular biomarkers in the Diabetes Control and Complications Trial and the Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC Study) of type 1 diabetes (T1D). Biomarkers were measured in a subset of 220 participants across 7 time points over 26 years. Measurements included the following: kidney injury molecule 1 (KIM-1), soluble tumor necrosis factor 1 (sTNFR1) in serum or plasma, epidermal growth factor (EGF), monocyte chemoattractant protein-1 (MCP1) in timed urine, and a composite tubular secretion score. We described biomarker trajectories and examined how these were affected by intensive glucose-lowering therapy and glycemia. Results At baseline, participants had a mean age of 28 years, 45% were women, and 50% were assigned to intensive glucose-lowering therapy. The mean estimated glomerular filtration rate (eGFR) was 125 ml/min per 1.73 m2 and 90% of participants had a urinary albumin excretion rate (AER) <30 mg/24h. Mean changes in biomarkers over time (percent/decade) were: KIM-1: 27.3% (95% confidence interval [CI]: 21.4-33.5), sTNFR1: 16.9% (14.5-19.3), MCP1: 18.4% (8.9-28.8), EGF: -13.5% (-16.7 to -10.1), EGF-MCP1 ratio: -26.9% (-32.2 to -21.3), and tubular secretion score -0.9% (-1.8 to 0.0), versus -12.0% (CI: -12.9 to -11.1) for eGFR and 10.9% (2.5-20.1) for AER. Intensive versus conventional glucose-lowering therapy was associated with slower increase in sTNFR1 (relative difference in change: 0.94 [0.90-0.98]). Higher HbA1c was associated with faster increases in sTNFR1 (relative difference in change: 1.06 per 1% higher HbA1c [1.05-1.08]) and KIM-1 (1.09 [1.05-1.14]). Conclusion Among participants with T1D and normal eGFR at baseline, kidney tubular biomarkers changed significantly over long-term follow-up. Hyperglycemia was associated with larger increases in serum or plasma sTNFR1 and KIM-1, when followed-up longitudinally.
Collapse
Affiliation(s)
- Christine P. Limonte
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Xiaoyu Gao
- Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Ionut Bebu
- Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Jesse C. Seegmiller
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gayle M. Lorenzi
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Bruce A. Perkins
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Valerie L. Arends
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark E. Molitch
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - DCCT/EDIC Research Group9
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Kidney Research Institute, University of Washington, Seattle, Washington, USA
- Biostatistics Center, The George Washington University, Rockville, Maryland, USA
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Fularski P, Czarnik W, Frankenstein H, Gąsior M, Młynarska E, Rysz J, Franczyk B. Unveiling Selected Influences on Chronic Kidney Disease Development and Progression. Cells 2024; 13:751. [PMID: 38727287 PMCID: PMC11083010 DOI: 10.3390/cells13090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-β1 (TGF-β1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Hanna Frankenstein
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Magdalena Gąsior
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.G.)
| |
Collapse
|
11
|
Kugathasan L, Sridhar VS, Tommerdahl KL, Xu C, Bjornstad P, Advani A, Cherney DZI. Minireview: Understanding and targeting inflammatory, hemodynamic and injury markers for cardiorenal protection in type 1 diabetes. Metabolism 2024; 153:155785. [PMID: 38215965 DOI: 10.1016/j.metabol.2024.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
The coexistence of cardiovascular disease (CVD) and diabetic kidney disease (DKD) is common in people with type 1 diabetes (T1D) and is strongly associated with an increased risk of morbidity and mortality. Hence, it is imperative to explore robust tools that can accurately reflect the development and progression of cardiorenal complications. Several cardiovascular and kidney biomarkers have been identified to detect at-risk individuals with T1D. The primary aim of this review is to highlight biomarkers of injury, inflammation, or renal hemodynamic changes that may influence T1D susceptibility to CVD and DKD. We will also examine the impact of approved pharmacotherapies for type 2 diabetes, including renin-angiotensin-aldosterone system (RAAS) inhibitors, sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1RAs) on candidate biomarkers for cardiorenal complications in people with T1D and discuss how these changes may potentially mediate kidney and cardiovascular protection. Identifying predictive and prognostic biomarkers for DKD and CVD may highlight potential drug targets to attenuate cardiorenal disease progression, implement novel risk stratification measures in clinical trials, and improve the assessment, diagnosis, and treatment of at-risk individuals with T1D.
Collapse
Affiliation(s)
- Luxcia Kugathasan
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Canada
| | - Vikas S Sridhar
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kalie L Tommerdahl
- Section of Endocrinology, Department of Pediatrics, University of Colorado, Aurora, CO, USA; Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Cheng Xu
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - Petter Bjornstad
- Section of Endocrinology, Department of Pediatrics, University of Colorado, Aurora, CO, USA; Division of Nephrology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Cardiovascular Sciences Collaborative Specialization, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Rupprecht H, Catanese L, Amann K, Hengel FE, Huber TB, Latosinska A, Lindenmeyer MT, Mischak H, Siwy J, Wendt R, Beige J. Assessment and Risk Prediction of Chronic Kidney Disease and Kidney Fibrosis Using Non-Invasive Biomarkers. Int J Mol Sci 2024; 25:3678. [PMID: 38612488 PMCID: PMC11011737 DOI: 10.3390/ijms25073678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Effective management of chronic kidney disease (CKD), a major health problem worldwide, requires accurate and timely diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for evaluating specific aspects of CKD have been proposed in the literature, many of which are based on a small number of samples. Based on the evidence presented in relevant studies, a comprehensive overview of the different biomarkers applicable for clinical implementation is lacking. This review aims to compile information on the non-invasive diagnostic, prognostic, and predictive biomarkers currently available for the management of CKD and provide guidance on the application of these biomarkers. We specifically focus on biomarkers that have demonstrated added value in prospective studies or those based on prospectively collected samples including at least 100 subjects. Published data demonstrate that several valid non-invasive biomarkers of potential value in the management of CKD are currently available.
Collapse
Affiliation(s)
- Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany; (H.R.); (L.C.)
- Department of Nephrology, Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, 95445 Bayreuth, Germany
| | - Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95445 Bayreuth, Germany; (H.R.); (L.C.)
- Department of Nephrology, Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Kuratorium for Dialysis and Transplantation (KfH) Bayreuth, 95445 Bayreuth, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Felicitas E. Hengel
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Tobias B. Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | | | - Maja T. Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.E.H.); (T.B.H.); (M.T.L.)
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (A.L.); (H.M.); (J.S.)
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (A.L.); (H.M.); (J.S.)
| | - Ralph Wendt
- Department of Nephrology, Hospital St. Georg, 04129 Leipzig, Germany;
| | - Joachim Beige
- Department of Nephrology, Hospital St. Georg, 04129 Leipzig, Germany;
- Kuratorium for Dialysis and Transplantation (KfH) Renal Unit, Hospital St. Georg, 04129 Leipzig, Germany
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, 06108 Halle (Saale), Germany
| |
Collapse
|
13
|
Lu J, Li XQ, Chen PP, Zhang JX, Li L, Wang GH, Liu XQ, Jiang CM, Ma KL. Acetyl-CoA synthetase 2 promotes diabetic renal tubular injury in mice by rewiring fatty acid metabolism through SIRT1/ChREBP pathway. Acta Pharmacol Sin 2024; 45:366-377. [PMID: 37770579 PMCID: PMC10789804 DOI: 10.1038/s41401-023-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Diabetic nephropathy (DN) is characterized by chronic low-grade renal inflammatory responses, which greatly contribute to disease progression. Abnormal glucose metabolism disrupts renal lipid metabolism, leading to lipid accumulation, nephrotoxicity, and subsequent aseptic renal interstitial inflammation. In this study, we investigated the mechanisms underlying the renal inflammation in diabetes, driven by glucose-lipid metabolic rearrangement with a focus on the role of acetyl-CoA synthetase 2 (ACSS2) in lipid accumulation and renal tubular injury. Diabetic models were established in mice by the injection of streptozotocin and in human renal tubular epithelial HK-2 cells cultured under a high glucose (HG, 30 mmol/L) condition. We showed that the expression levels of ACSS2 were significantly increased in renal tubular epithelial cells (RTECs) from the diabetic mice and human diabetic kidney biopsy samples, and ACSS2 was co-localized with the pro-inflammatory cytokine IL-1β in RTECs. Diabetic ACSS2-deficient mice exhibited reduced renal tubular injury and inflammatory responses. Similarly, ACSS2 knockdown or inhibition of ACSS2 by ACSS2i (10 µmol/L) in HK-2 cells significantly ameliorated HG-induced inflammation, mitochondrial stress, and fatty acid synthesis. Molecular docking revealed that ACSS2 interacted with Sirtuin 1 (SIRT1). In HG-treated HK-2 cells, we demonstrated that ACSS2 suppressed SIRT1 expression and activated fatty acid synthesis by modulating SIRT1-carbohydrate responsive element binding protein (ChREBP) activity, leading to mitochondrial oxidative stress and inflammation. We conclude that ACSS2 promotes mitochondrial oxidative stress and renal tubular inflammation in DN by regulating the SIRT1-ChREBP pathway. This highlights the potential therapeutic value of pharmacological inhibition of ACSS2 for alleviating renal inflammation and dysregulation of fatty acid metabolic homeostasis in DN. Metabolic inflammation in the renal region, driven by lipid metabolism disorder, is a key factor in renal injury in diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is abundantly expressed in renal tubular epithelial cells (RTECs) and highly upregulated in diabetic kidneys. Deleting ACSS2 reduces renal fatty acid accumulation and markers of renal tubular injury in diabetic mice. We demonstrate that ACSS2 deletion inhibits ChREBP-mediated fatty acid lipogenesis, mitochondrial oxidative stress, and inflammatory response in RTECs, which play a major role in the progression of diabetic renal tubular injury in the kidney. These findings support the potential use of ACSS2 inhibitors in treating patients with DN.
Collapse
Affiliation(s)
- Jian Lu
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xue-Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pei-Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia-Xiu Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Gui-Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiao-Qi Liu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chun-Ming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Kun-Ling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
14
|
Storjord E, Wahlin S, Karlsen BO, Hardersen RI, Dickey AK, Ludviksen JK, Brekke OL. Potential Biomarkers for the Earlier Diagnosis of Kidney and Liver Damage in Acute Intermittent Porphyria. Life (Basel) 2023; 14:19. [PMID: 38276268 PMCID: PMC11154556 DOI: 10.3390/life14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Acute intermittent porphyria (AIP) is an inherited metabolic disorder associated with complications including kidney failure and hepatocellular carcinoma, probably caused by elevations in the porphyrin precursors porphobilinogen (PBG) and delta-aminolevulinic acid (ALA). This study explored differences in modern biomarkers for renal and hepatic damage between AIP patients and controls. Urine PBG testing, kidney injury panels, and liver injury panels, including both routine and modern biomarkers, were performed on plasma and urine samples from AIP cases and matched controls (50 and 48 matched pairs, respectively). Regarding the participants' plasma, the AIP cases had elevated kidney injury marker-1 (KIM-1, p = 0.0002), fatty acid-binding protein-1 (FABP-1, p = 0.04), and α-glutathione S-transferase (α-GST, p = 0.001) compared to the matched controls. The AIP cases with high PBG had increased FABP-1 levels in their plasma and urine compared to those with low PBG. In the AIP cases, KIM-1 correlated positively with PBG, CXCL10, CCL2, and TCC, and the liver marker α-GST correlated positively with IL-13, CCL2, and CCL4 (all p < 0.05). In conclusion, KIM-1, FABP-1, and α-GST could represent potential early indicators of renal and hepatic damage in AIP, demonstrating associations with porphyrin precursors and inflammatory markers.
Collapse
Affiliation(s)
- Elin Storjord
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
| | - Staffan Wahlin
- Hepatology Division, Department of Upper GI Diseases, Porphyria Centre Sweden, Karolinska Institute and Karolinska University Hospital, 14186 Stockholm, Sweden;
| | - Bård Ove Karlsen
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
- Research Laboratory, Nordland Hospital Trust, 8092 Bodø, Norway;
| | - Randolf I. Hardersen
- Department of Nephrology, Nordland Hospital Trust, 8092 Bodø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Amy K. Dickey
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Harvard Medical School, Boston, MA 02115, USA
| | | | - Ole-Lars Brekke
- Department of Laboratory Medicine, Nordland Hospital Trust, 8092 Bodø, Norway; (B.O.K.); (O.-L.B.)
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
15
|
Elbarbary NS, Ismail EAR, Mohamed SA. Omega-3 fatty acids supplementation improves early-stage diabetic nephropathy and subclinical atherosclerosis in pediatric patients with type 1 diabetes: A randomized controlled trial. Clin Nutr 2023; 42:2372-2380. [PMID: 37862823 DOI: 10.1016/j.clnu.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Numerous studies have evaluated the beneficial effects of omega-3 fatty acids on inflammatory, autoimmune and renal diseases. However, data about the effects of omega-3 fatty acids on diabetic kidney disease in type 1 diabetes mellitus (T1DM) are lacking. OBJECTIVES This randomized-controlled trial assessed the effect of oral omega-3 supplementation on glycemic control, lipid profile, albuminuria level, kidney injury molecule-1 (KIM-1) and carotid intima media thickness (CIMT) in pediatric patients with T1DM and diabetic nephropathy. METHODS Seventy T1DM patients and diabetic nephropathy were enrolled with a mean age 15.2 ± 1.96 years and median disease duration 7 years. Patients were randomly assigned into two groups; intervention group which received oral omega-3 fatty acids capsules (1 g daily). The other group received a matching placebo and served as a control group. Both groups were followed-up for 6 months with assessment of fasting blood glucose (FBG), HbA1c, fasting lipids, urinary albumin creatinine ratio (UACR), KIM-1 and CIMT. RESULTS After 6 months, omega-3 fatty acids adjuvant therapy for the intervention group resulted in a significant decrease in FBG, HbA1c, triglycerides, total cholesterol, LDL-cholesterol, UACR, KIM-1 and CIMT, whereas, HDL-cholesterol was significantly higher post-therapy compared with baseline levels and compared with the control group (p < 0.05). Baseline KIM-1 levels were positively correlated to HbA1c, UACR and CIMT. Supplementation with omega-3 fatty acids was safe and well-tolerated. CONCLUSIONS Omega-3 fatty acids as an adjuvant therapy in pediatric T1DM patients with diabetic nephropathy improved glycemic control, dyslipidemia and delayed disease progression and subclinical atherosclerosis among those patients. This trial was registered under ClinicalTrials.gov Identifier no. NCT05980026.
Collapse
|
16
|
Le D, Chen J, Shlipak MG, Ix JH, Sarnak MJ, Gutierrez OM, Schelling JR, Bonventre JV, Sabbisetti VS, Schrauben SJ, Coca SG, Kimmel PL, Vasan RS, Grams ME, Parikh C, Coresh J, Rebholz CM. Plasma Biomarkers and Incident CKD Among Individuals Without Diabetes. Kidney Med 2023; 5:100719. [PMID: 37841418 PMCID: PMC10568645 DOI: 10.1016/j.xkme.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Rationale & Objective Biomarkers of kidney disease progression have been identified in individuals with diabetes and underlying chronic kidney disease (CKD). Whether or not these markers are associated with the development of CKD in a general population without diabetes or CKD is not well established. Study Design Prospective observational cohort. Setting & Participants In the Atherosclerosis Risk in Communities) study, 948 participants were studied. Exposures The baseline plasma biomarkers of kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein-1 (MCP-1), soluble urokinase plasminogen activator receptor (suPAR), tumor necrosis factor receptor 1 (TNFR-1), tumor necrosis factor receptor 2 (TNFR-2), and human cartilage glycoprotein-39 (YKL-40) measured in 1996-1998. Outcome Incident CKD after 15 years of follow-up defined as ≥40% estimated glomerular filtration rate decline to <60 mL/min/1.73 m2 or dialysis dependence through United States Renal Data System linkage. Analytical Approach Logistic regression and C statistics. Results There were 523 cases of incident CKD. Compared with a random sample of 425 controls, there were greater odds of incident CKD per 2-fold higher concentration of KIM-1 (OR, 1.49; 95% CI, 1.25-1.78), suPAR (OR, 2.57; 95% CI, 1.74-3.84), TNFR-1 (OR, 2.20; 95% CI, 1.58-3.09), TNFR-2 (OR, 2.03; 95% CI, 1.37-3.04). After adjustment for all biomarkers, KIM-1 (OR, 1.42; 95% CI, 1.19-1.71), and suPAR (OR, 1.86; 95% CI, 1.18-2.92) remained associated with incident CKD. Compared with traditional risk factors, the addition of all 6 biomarkers improved the C statistic from 0.695-0.731 (P < 0.01) and using the observed risk of 12% for incident CKD, the predicted risk gradient changed from 5%-40% (for the 1st-5th quintile) to 4%-44%. Limitations Biomarkers and creatinine were measured at one time point. Conclusions Higher levels of KIM-1, suPAR, TNFR-1, and TNFR-2 were associated with higher odds of incident CKD among individuals without diabetes. Plain-Language Summary For people with diabetes or kidney disease, several biomarkers have been shown to be associated with worsening kidney disease. Whether these biomarkers have prognostic significance in people without diabetes or kidney disease is less studied. Using the Atherosclerosis Risk in Communities study, we followed individuals without diabetes or kidney disease for an average of 15 years after biomarker measurement to see if these biomarkers were associated with the development of kidney disease. We found that elevated levels of KIM-1, suPAR, TNFR-1, and TNFR-2 were associated with the development of kidney disease. These biomarkers may help identify individuals who would benefit from interventions to prevent the development of kidney disease.
Collapse
Affiliation(s)
- Dustin Le
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Michael G. Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, California; Division of General Internal Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Joachim H. Ix
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California; Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, California: Kidney Research Innovation Hub of San Diego, San Diego, California
| | - Mark J. Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA
| | - Orlando M. Gutierrez
- Division of Nephrology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jeffrey R. Schelling
- Department of Physiology and Biophysics and Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Joseph V. Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Venkata S. Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sarah J. Schrauben
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven G. Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul L. Kimmel
- Division of Kidney Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ramachandran S. Vasan
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, MA
| | - Morgan E. Grams
- Division of Precision Medicine, Department of Medicine, New York University, NY
| | - Chirag Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Casey M. Rebholz
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Chronic Kidney Disease Biomarkers Consortium
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, California; Division of General Internal Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California; Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, California: Kidney Research Innovation Hub of San Diego, San Diego, California
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA
- Division of Nephrology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Physiology and Biophysics and Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Kidney Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
- Framingham Heart Study of the National Heart, Lung, and Blood Institute and Boston University School of Medicine, Framingham, MA
- Division of Precision Medicine, Department of Medicine, New York University, NY
| |
Collapse
|
17
|
Sandholm N, Valo E, Tuomilehto J, Harjutsalo V, Groop PH. Rate of Kidney Function Decline is Associated With Kidney and Heart Failure in Individuals With Type 1 Diabetes. Kidney Int Rep 2023; 8:2043-2055. [PMID: 37850012 PMCID: PMC10577370 DOI: 10.1016/j.ekir.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/31/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Diabetes is the most common cause of chronic kidney disease (CKD). Urinary albumin excretion rate (AER) and estimated glomerular filtration rate (eGFR) are commonly used to monitor the onset and progression of diabetic kidney disease (DKD). We studied if the preceding rate of kidney function decline, that is, the eGFR slope, is independently associated with incident clinical cardiorenal events. Methods This study included longitudinal data for 2498 Finnish individuals with type 1 diabetes (T1D). The eGFR slope was calculated from 5 years preceding the study visit. Data on kidney failure, coronary heart disease (CHD), stroke, 3-point major adverse cardiovascular events (MACE), heart failure, and death were obtained from national registries. The associations between the eGFR slope and incident events were assessed with multivariable competing risk models during the average follow-up of 9.2 years. Results The eGFR slopes were associated (P ≤ 0.001) with all outcomes when adjusted for age, sex, and HbA1c. However, eGFR slope remained associated only with the composite outcome of kidney failure or death when the albuminuria group and eGFR at the study visit were included in the model (P = 0.041). In addition, eGFR slope was independently associated with kidney failure in individuals without CKD (eGFR > 60 ml/min per 1.73 m2; P = 0.044), and with heart failure in those with CKD (P = 0.033). However, eGFR slope did not markedly improve the model C-index. Conclusion The eGFR slope was independently associated with kidney failure in those without CKD, and with heart failure in those with CKD. However, it is unlikely to have major relevance for clinical practice when the current eGFR and albuminuria status are known.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Jaakko Tuomilehto
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Valma Harjutsalo
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - FinnDiane Study10
- Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Liu Y, Chen W, Li C, Li L, Yang M, Jiang N, Luo S, Xi Y, Liu C, Han Y, Zhao H, Zhu X, Yuan S, Xiao L, Sun L. DsbA-L interacting with catalase in peroxisome improves tubular oxidative damage in diabetic nephropathy. Redox Biol 2023; 66:102855. [PMID: 37597421 PMCID: PMC10458997 DOI: 10.1016/j.redox.2023.102855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Peroxisomes are metabolically active organelles that are known for exerting oxidative metabolism, but the precise mechanism remains unclear in diabetic nephropathy (DN). Here, we used proteomics to uncover a correlation between the antioxidant protein disulfide-bond A oxidoreductase-like protein (DsbA-L) and peroxisomal function. In vivo, renal tubular injury, oxidative stress, and cell apoptosis in high-fat diet plus streptozotocin (STZ)-induced diabetic mice were significantly increased, and these changes were accompanied by a "ghost" peroxisomal phenotype, which was further aggravated in DsbA-L-deficient diabetic mice. In vitro, the overexpression of DsbA-L in peroxisomes could improve peroxisomal phenotype and function, reduce oxidative stress and cell apoptosis induced by high glucose (HG, 30 mM) and palmitic acid (PA, 250 μM), but this effect was reversed by 3-Amino-1,2,4-triazole (3-AT, a catalase inhibitor). Mechanistically, DsbA-L regulated the activity of catalase by binding to it, thereby reducing peroxisomal leakage and proteasomal degradation of peroxisomal matrix proteins induced by HG and PA. Additionally, the expression of DsbA-L in renal tubules of patients with DN significantly decreased and was positively correlated with peroxisomal function. Taken together, these results highlight an important role of DsbA-L in ameliorating tubular injury in DN by improving peroxisomal function.
Collapse
Affiliation(s)
- Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xuejing Zhu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shuguang Yuan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
19
|
Shi W, Le W, Tang Q, Shi S, Shi J. Regulon analysis identifies protective FXR and CREB5 in proximal tubules in early diabetic kidney disease. BMC Nephrol 2023; 24:180. [PMID: 37337149 DOI: 10.1186/s12882-023-03239-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus and a leading cause of kidney failure worldwide. Despite its prevalence, the mechanisms underlying early kidney damage in DKD remain poorly understood. In this study, we used single nucleus RNA-seq to construct gene regulatory networks (GRNs) in the kidney cortex of patients with early DKD. By comparing these networks with those of healthy controls, we identify cell type-specific changes in genetic regulation associated with diabetic status. The regulon activities of FXR (NR1H4) and CREB5 were found to be upregulated in kidney proximal convoluted tubule epithelial cells (PCTs), which were validated using immunofluorescence staining in kidney biopsies from DKD patients. In vitro experiments using cultured HK2 cells showed that FXR and CREB5 protected cells from apoptosis and epithelial-mesenchymal transition. Our findings suggest that FXR and CREB5 may be promising targets for early intervention in patients with DKD.
Collapse
Affiliation(s)
- Wanting Shi
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Weibo Le
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Qiaoli Tang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
- Department of Nephrology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Shaolin Shi
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Jingsong Shi
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Scamporrino A, Di Mauro S, Filippello A, Di Marco G, Di Pino A, Scicali R, Di Marco M, Martorana E, Malaguarnera R, Purrello F, Piro S. Identification of a New RNA and Protein Integrated Biomarker Panel Associated with Kidney Function Impairment in DKD: Translational Implications. Int J Mol Sci 2023; 24:ijms24119412. [PMID: 37298364 DOI: 10.3390/ijms24119412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Diabetic kidney disease (DKD) is a complication that strongly increases the risk of end-stage kidney disease and cardiovascular events. The identification of novel, highly sensitive, and specific early biomarkers to identify DKD patients and predict kidney function decline is a pivotal aim of translational medicine. In a previous study, after a high-throughput approach, we identified in 69 diabetic patients 5 serum mitochondrial RNAs (MT-ATP6, MT-ATP8, MT-COX3, MT-ND1, and MT-RNR1) progressively downregulated with increasing eGFR stages. Here, we analyzed the protein serum concentrations of three well-validated biomarkers: TNFRI, TNFRII, and KIM-1. The protein biomarkers were gradually upregulated from G1 to G2 and G3 patients. All protein biomarkers correlated with creatinine, eGFR, and BUN. Performing multilogistic analyses, we found that, with respect to single protein biomarkers, the combination between (I) TNFRI or KIM-1 with each RNA transcript and (II) TNFRII with MT-ATP8, MT-ATP6, MT-COX-3, and MT-ND1 determined an outstanding improvement of the diagnostic performance of G3 versus G2 patient identification, reaching values in most cases above 0.9 or even equal to 1. The improvement of AUC values was also evaluated in normoalbuminuric or microalbuminuric patients considered separately. This study proposes a novel, promising multikind marker panel associated with kidney impairment in DKD.
Collapse
Affiliation(s)
- Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Grazia Di Marco
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Maurizio Di Marco
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | | | | | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy
| |
Collapse
|
21
|
Rico-Fontalvo J, Aroca-Martínez G, Daza-Arnedo R, Cabrales J, Rodríguez-Yanez T, Cardona-Blanco M, Montejo-Hernández J, Rodelo Barrios D, Patiño-Patiño J, Osorio Rodríguez E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023; 13:biom13040633. [PMID: 37189380 DOI: 10.3390/biom13040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents one of the most common complications arising from diabetes mellitus (DM) and is the leading cause of end-stage kidney disease (ESKD). Its development involves three fundamental components: the hemodynamic, metabolic, and inflammatory axes. Clinically, persistent albuminuria in association with a progressive decline in glomerular filtration rate (GFR) defines this disease. However, as these alterations are not specific to DKD, there is a need to discuss novel biomarkers arising from its pathogenesis which may aid in the diagnosis, follow-up, therapeutic response, and prognosis of the disease.
Collapse
|
22
|
Sinha N, Puri V, Kumar V, Nada R, Rastogi A, Jha V, Puri S. Urinary exosomal miRNA-663a shows variable expression in diabetic kidney disease patients with or without proteinuria. Sci Rep 2023; 13:4516. [PMID: 36934129 PMCID: PMC10024703 DOI: 10.1038/s41598-022-26558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/16/2022] [Indexed: 03/20/2023] Open
Abstract
Heterogeneity in the Diabetic Kidney Disease (DKD) diagnosis makes its rational therapeutics challenging. Although albuminuria characterizes DKD, reports also indicate its prevalence among non-proteinuric. Recent understanding of disease progression has thus inclined the focus on proximal tubular cell damage besides the glomeruli. A non-invasive approach exploiting exosomal miRNA derived from human kidney proximal tubular cell line was, hence, targeted. Upon miRNA profiling, three miRNAs, namely, hsa-miR-155-5p, hsa-miR-28-3p, and hsa-miR-425-5p were found to be significantly upregulated, while hsa-miR-663a was downregulated under diabetic conditions. Among these, hsa-miR-663a downregulation was more pronounced in non-proteinuric than proteinuric DKD subjects and was thus selected for the bioinformatics study. Ingenuity Pathway Analysis (IPA) narrowed on to IL-8 signaling and inflammatory response as the most enriched 'canonical pathway' and 'disease pathway' respectively, during DKD. Further, the putative gene network generated from these enriched pathways revealed experimentally induced diabetes, renal tubular injury, and decreased levels of albumin as part of mapping under 'disease and function'. Genes target predictions and annotations by IPA reiterated miR-663a's role in the pathogenesis of DKD following tubular injury. Overall, the observations might offer an indirect reflection of the underlying mechanism between patients who develop proteinuria and non-proteinuria.
Collapse
Affiliation(s)
- Nisha Sinha
- Centre for Stem Cell Tissue Engineering and Biomedical Excellence, Panjab University, Chandigarh, India
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashu Rastogi
- Department of Endocrinology and Metabolism, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- The George Institute for Global Health, New Delhi, India.
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
23
|
Inhibition of SGLT2 co-transporter by dapagliflozin ameliorates tubular proteinuria and tubule-interstitial injury at the early stage of diabetic kidney disease. Eur J Pharmacol 2023; 942:175521. [PMID: 36681317 DOI: 10.1016/j.ejphar.2023.175521] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by progressive impairment of kidney function. It has been postulated that tubule-interstitial injury, associated with tubular albuminuria, precedes glomerular damage in the early stage of DKD. Here, we wanted to determine if the development of tubule-interstitial injury at the early stage of DKD implies modulation of megalin-mediated protein reabsorption in proximal tubule epithelial cells (PTECs) by SGLT2-dependent high glucose influx. Rats with streptozotocin (STZ)-induced diabetes were treated or not with dapagliflozin (DAPA) for 8 weeks. Four experimental groups were generated: (1) CONT, control; (2) DAPA, rats treated with DAPA; (3) STZ, diabetic rats; (4) STZ + DAPA, diabetic rats treated with DAPA. No changes in glomerular structure and function were observed. The STZ group presented proteinuria and albuminuria associated with an increase in the fractional excretion of proteins. A positive correlation between glycemia and proteinuria was found. These phenomena were linked to a decrease in luminal and total megalin expression and, consequently, in albumin reabsorption in PTECs. We also observed tubule-interstitial injury characterized by an increase in urinary tubular injury biomarkers and changes in tubular histomorphometry parameters. In addition, inverse correlations were found between cortical albumin uptake and tubule-interstitial injury or glycemia. All these modifications were attenuated in the STZ + DAPA group. These results suggest that SGLT2-dependent high glucose influx into PTECs promotes a harmful effect on the PTECs, leading to the development of tubular albuminuria and tubule-interstitial injury preceding glomerular damage. These results expand current knowledge on the renoprotective effects of gliflozins.
Collapse
|
24
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
25
|
Priyadarshini G, Rajappa M. Predictive markers in chronic kidney disease. Clin Chim Acta 2022; 535:180-186. [PMID: 35995274 DOI: 10.1016/j.cca.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Chronic kidney disease (CKD) is defined by gradual deterioration of the renal parenchyma and decline of functioning nephrons. CKD is now recognized as a distinct risk factor for cardiovascular disease (CVD). This risk rises in tandem with the decline in kidney function and peaks at the end-stage. It is important to identify individuals with CKD who are at a higher risk of advancing to end-stage renal disease (ESRD) and the beginning of CVD. This will enhance the clinical benefits and so that evidence-based therapy may be started at the initial stages for those individuals. A promising biomarker must represent tissue damage, and be easy to detect using non-invasive methods. Current CKD progression indicators have difficulties in reaching this aim. Hence this review presents an update on markers studied in the last decade, which help in the prediction of CKD progression such as neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, urinary liver-type fatty acid-binding protein, cystatin-C, asymmetric dimethylarginine, symmetric dimethylarginine, endotrophin, methylglyoxal, sclerostin, uric acid, and miRNA-196a. Additional research is needed to determine the predictive usefulness of these indicators in clinical samples for disease development. Their utility as surrogate markers need to be explored further for the early identification of CKD progression.
Collapse
Affiliation(s)
- G Priyadarshini
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Medha Rajappa
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| |
Collapse
|
26
|
McCoy IE, Hsu JY, Bonventre JV, Parikh CR, Go AS, Liu KD, Ricardo AC, Srivastava A, Cohen DL, He J, Chen J, Rao PS, Muiru AN, Hsu CY. Absence of long-term changes in urine biomarkers after AKI: findings from the CRIC study. BMC Nephrol 2022; 23:311. [PMID: 36100915 PMCID: PMC9472364 DOI: 10.1186/s12882-022-02937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/31/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mechanisms by which AKI leads to CKD progression remain unclear. Several urine biomarkers have been identified as independent predictors of progressive CKD. It is unknown whether AKI may result in long-term changes in these urine biomarkers, which may mediate the effect of AKI on CKD progression. METHODS We selected 198 episodes of hospitalized AKI (defined as peak/nadir inpatient serum creatinine values ≥ 1.5) among adult participants in the Chronic Renal Insufficiency Cohort (CRIC) Study. We matched the best non-AKI hospitalization (unique patients) for each AKI hospitalization using pre-hospitalization characteristics including eGFR and urine protein/creatinine ratio. Biomarkers were measured in banked urine samples collected at annual CRIC study visits. RESULTS Urine biomarker measurements occurred a median of 7 months before and 5 months after hospitalization. There were no significant differences in the change in urine biomarker-to-creatinine ratio between the AKI and non-AKI groups: KIM-1/Cr + 9% vs + 7%, MCP-1/Cr + 4% vs + 1%, YKL-40/Cr + 7% vs -20%, EGF/Cr -11% vs -8%, UMOD/Cr -2% vs -7% and albumin/Cr + 17% vs + 13% (all p > 0.05). CONCLUSION In this cohort of adults with CKD, AKI did not associate with long-term changes in urine biomarkers.
Collapse
Affiliation(s)
- Ian E McCoy
- Division of Nephrology, University of California San Francisco, Box 0532, 500 Parnassus Ave., MUW418, 94143-0532, San Francisco, CA, USA.
| | - Jesse Y Hsu
- Division of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Kathleen D Liu
- Division of Nephrology, University of California San Francisco, Box 0532, 500 Parnassus Ave., MUW418, 94143-0532, San Francisco, CA, USA
| | - Ana C Ricardo
- Division of Nephrology, University of Illinois, Chicago, IL, USA
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Debbie L Cohen
- Division of Nephrology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, Louisiana, USA
| | - Jing Chen
- Department of Epidemiology, Tulane University, New Orleans, Louisiana, USA
- Division of Nephrology, Tulane University, New Orleans, Louisiana, USA
| | - Panduranga S Rao
- Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony N Muiru
- Division of Nephrology, University of California San Francisco, Box 0532, 500 Parnassus Ave., MUW418, 94143-0532, San Francisco, CA, USA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California San Francisco, Box 0532, 500 Parnassus Ave., MUW418, 94143-0532, San Francisco, CA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| |
Collapse
|
27
|
Ozkan S, Isildar B, Ercin M, Gezginci-Oktayoglu S, Konukoglu D, Neşetoğlu N, Oncul M, Koyuturk M. Therapeutic potential of conditioned medium obtained from deferoxamine preconditioned umbilical cord mesenchymal stem cells on diabetic nephropathy model. Stem Cell Res Ther 2022; 13:438. [PMID: 36056427 PMCID: PMC9438289 DOI: 10.1186/s13287-022-03121-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs)-derived conditioned media (CM) can be increased after preconditioning with various chemical agents. The aim of this study is comparative evaluation of effects of N-CM and DFS-CM which are collected from normal (N) and deferoxamine (DFS) preconditioned umbilical cord-derived MSCs on rat diabetic nephropathy (DN) model. Methods After incubation of the MSCs in serum-free medium with/without 150 µM DFS for 48 h, the contents of N-CM and DFS-CM were analyzed by enzyme-linked immunosorbent assay. Diabetes (D) was induced by single dose of 55 mg/kg streptozotocin. Therapeutic effects of CMs were evaluated by biochemical, physical, histopathological and immunohistochemical analysis. Results The concentrations of vascular endothelial growth factor alpha, nerve growth factor and glial-derived neurotrophic factor in DFS-CM increased, while one of brain-derived neurotrophic factor decreased in comparison with N-CM. The creatinine clearance rate increased significantly in both treatment groups, while the improvement in albumin/creatinine ratio and renal mass index values were only significant for D + DFS-CM group. Light and electron microscopic deteriorations and loss of podocytes-specific nephrin and Wilms tumor-1 (WT-1) expressions were significantly restored in both treatment groups. Tubular beclin-1 expression was significantly increased for DN group, but it decreased in both treatment groups. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cell death increased in the tubules of D group, while it was only significantly decreased for D + DFS-CM group. Conclusions DFS-CM can be more effective in the treatment of DN by reducing podocyte damage and tubular apoptotic cell death and regulating autophagic activity with its more concentrated secretome content than N-CM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03121-6.
Collapse
Affiliation(s)
- Serbay Ozkan
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Basak Isildar
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Merve Ercin
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Dildar Konukoglu
- Medical Biochemistry Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Neşet Neşetoğlu
- Faculty of Pharmacy, Drug Application and Research Center, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- Cerrahpasa Faculty of Medicine, Obstetrics and Gynecology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey.
| |
Collapse
|
28
|
The Role of Platelets in Diabetic Kidney Disease. Int J Mol Sci 2022; 23:ijms23158270. [PMID: 35955405 PMCID: PMC9368651 DOI: 10.3390/ijms23158270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is among the most common microvascular complications in patients with diabetes, and it currently accounts for the majority of end-stage kidney disease cases worldwide. The pathogenesis of DKD is complex and multifactorial, including systemic and intra-renal inflammatory and coagulation processes. Activated platelets play a pivotal role in inflammation, coagulation, and fibrosis. Mounting evidence shows that platelets play a role in the pathogenesis and progression of DKD. The potentially beneficial effects of antiplatelet agents in preventing progression of DKD has been studied in animal models and clinical trials. This review summarizes the current knowledge on the role of platelets in DKD, including the potential therapeutic effects of antiplatelet therapies.
Collapse
|
29
|
Harkin C, Smith KW, MacKay CL, Moore T, Brockbank S, Ruddock M, Cobice DF. Spatial localization of β-unsaturated aldehyde markers in murine diabetic kidney tissue by mass spectrometry imaging. Anal Bioanal Chem 2022; 414:6657-6670. [PMID: 35881173 PMCID: PMC9411223 DOI: 10.1007/s00216-022-04229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Limitations in current diagnosis and screening methods have sparked a search for more specific and conclusive biomarkers. Hyperglycemic conditions generate a plethora of harmful molecules in circulation and within tissues. Oxidative stress generates reactive α-dicarbonyls and β-unsaturated hydroxyhexenals, which react with proteins to form advanced glycation end products. Mass spectrometry imaging (MSI) enables the detection and spatial localization of molecules in biological tissue sections. Here, for the first time, the localization and semiquantitative analysis of “reactive aldehydes” (RAs) 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE), and 4-oxo-2-nonenal (4-ONE) in the kidney tissues of a diabetic mouse model is presented. Ionization efficiency was enhanced through on-tissue chemical derivatization (OTCD) using Girard’s reagent T (GT), forming positively charged hydrazone derivatives. MSI analysis was performed using matrix-assisted laser desorption ionization (MALDI) coupled with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR). RA levels were elevated in diabetic kidney tissues compared to lean controls and localized throughout the kidney sections at a spatial resolution of 100 µm. This was confirmed by liquid extraction surface analysis–MSI (LESA-MSI) and liquid chromatography–mass spectrometry (LC–MS). This method identified β-unsaturated aldehydes as “potential” biomarkers of DN and demonstrated the capability of OTCD-MSI for detection and localization of poorly ionizable molecules by adapting existing chemical derivatization methods. Untargeted exploratory distribution analysis of some precursor lipids was also assessed using MALDI-FT-ICR-MSI.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Karl W Smith
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310-4005, USA.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - C Logan MacKay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EastChem School of Chemistry, University of Edinburgh, Edinburgh, Scotland, UK
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Mark Ruddock
- Randox Laboratories Ltd, 55 The Diamond Rd, Crumlin, UK
| | - Diego F Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
30
|
McCoy IE, Hsu JY, Bonventre JV, Parikh CR, Go AS, Liu KD, Ricardo AC, Srivastava A, Cohen DL, He J, Chen J, Rao PS, Hsu CY. Acute Kidney Injury Associates with Long-Term Increases in Plasma TNFR1, TNFR2, and KIM-1: Findings from the CRIC Study. J Am Soc Nephrol 2022; 33:1173-1181. [PMID: 35296554 PMCID: PMC9161789 DOI: 10.1681/asn.2021111453] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Some markers of inflammation-TNF receptors 1 and 2 (TNFR1 and TNFR2)-are independently associated with progressive CKD, as is a marker of proximal tubule injury, kidney injury molecule 1 (KIM-1). However, whether an episode of hospitalized AKI may cause long-term changes in these biomarkers is unknown. METHODS Among adult participants in the Chronic Renal Insufficiency Cohort (CRIC) study, we identified 198 episodes of hospitalized AKI (defined as peak/nadir inpatient serum creatinine values ≥1.5). For each AKI hospitalization, we found the best matched non-AKI hospitalization (unique patients), using prehospitalization characteristics, including eGFR and urine protein/creatinine ratio. We measured TNFR1, TNFR2, and KIM-1 in banked plasma samples collected at annual CRIC study visits before and after the hospitalization (a median of 7 months before and 5 months after hospitalization). RESULTS In the AKI and non-AKI groups, we found similar prehospitalization median levels of TNFR1 (1373 pg/ml versus 1371 pg/ml, for AKI and non-AKI, respectively), TNFR2 (47,141 pg/ml versus 46,135 pg/ml, respectively), and KIM-1 (857 pg/ml versus 719 pg/ml, respectively). Compared with matched study participants who did not experience AKI, study participants who did experience AKI had greater increases in TNFR1 (23% versus 10%, P<0.01), TNFR2 (10% versus 3%, P<0.01), and KIM-1 (13% versus -2%, P<0.01). CONCLUSIONS Among patients with CKD, AKI during hospitalization was associated with increases in plasma TNFR1, TNFR2, and KIM-1 several months after their hospitalization. These results highlight a potential mechanism by which AKI may contribute to more rapid loss of kidney function months to years after the acute insult.
Collapse
Affiliation(s)
- Ian E McCoy
- Division of Nephrology, University of California San Francisco, San Francisco, California
| | - Jesse Y Hsu
- Division of Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins University, Baltimore, Maryland
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Kathleen D Liu
- Division of Nephrology, University of California San Francisco, San Francisco, California
| | - Ana C Ricardo
- Division of Nephrology, University of Illinois, Chicago, Illinois
| | - Anand Srivastava
- Division of Nephrology, Northwestern University, Chicago, Illinois
| | - Debbie L Cohen
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | - Jing Chen
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
- Division of Nephrology, Tulane University, New Orleans, Louisiana
| | - Panduranga S Rao
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California San Francisco, San Francisco, California
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| |
Collapse
|
31
|
Gutiérrez OM, Shlipak MG, Katz R, Waikar SS, Greenberg JH, Schrauben SJ, Coca S, Parikh CR, Vasan RS, Feldman HI, Kimmel PL, Cushman M, Bonventre JV, Sarnak MJ, Ix JH. Associations of Plasma Biomarkers of Inflammation, Fibrosis, and Kidney Tubular Injury With Progression of Diabetic Kidney Disease: A Cohort Study. Am J Kidney Dis 2022; 79:849-857.e1. [PMID: 34752914 PMCID: PMC9072594 DOI: 10.1053/j.ajkd.2021.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Abstract
RATIONALE & OBJECTIVE Most circulating biomarkers of chronic kidney disease (CKD) progression focus on factors reflecting glomerular filtration. Few biomarkers capture nonglomerular pathways of kidney injury or damage, which may be particularly informative in populations at high risk for CKD progression such as individuals with diabetes. STUDY DESIGN Cohort study. SETTING & PARTICIPANTS 594 participants (mean age, 70 years; 53% women) of the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study who had diabetes and an estimated glomerular filtration rate (eGFR)<60mL/min/1.73m2 at baseline. EXPOSURES Plasma biomarkers of inflammation/fibrosis (TNFR1 and TNFR2, suPAR, MCP-1, YKL-40) and tubular injury (KIM-1) measured at the baseline visit. OUTCOMES Incident kidney failure with replacement therapy (KFRT). ANALYTICAL APPROACH Cox proportional hazards regression and least absolute shrinkage and selection operator regression adjusted for established risk factors for kidney function decline, baseline eGFR, and urinary albumin-creatinine ratio (UACR). RESULTS A total of 98 KFRT events were observed over a mean of 6.2±3.5 (standard deviation) years of follow-up. Plasma biomarkers were modestly associated with baseline eGFR (correlation coefficients ranging from-0.08 to-0.65) and UACR (0.14 to 0.56). In individual biomarker models adjusted for eGFR, UACR, and established risk factors, hazard ratios for incident KFRT per 2-fold higher biomarker concentrations were 1.52 (95% CI, 1.25-1.84) for plasma KIM-1, 1.54 (95% CI, 1.08-2.21) for TNFR1, 1.91 (95% CI, 1.16-3.14) for TNFR2, and 1.39 (95% CI, 1.05-1.84) for YKL-40. In least absolute shrinkage and selection operator regression models accounting for biomarkers in parallel, plasma KIM-1 and TNFR1 remained associated with incident KFRT. LIMITATIONS Single biomarker measurement, lack of follow-up eGFR assessments. CONCLUSIONS Individual plasma markers of inflammation/fibrosis (TNFR1, TNFR2, YKL-40) and tubular injury (KIM-1) were associated with risk of incident KFRT in adults with diabetes and an eGFR<60mL/min/1.73m2 after adjustment for established risk factors.
Collapse
Affiliation(s)
- Orlando M Gutiérrez
- Departments of Medicine and Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Michael G Shlipak
- Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Healthcare System and University of California, San Francisco, San Francisco, California
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Jason H Greenberg
- Section of Nephrology, Department of Pediatrics, Program of Applied Translational Research, Yale University School of Medicine, New Haven, Connecticut
| | - Sarah J Schrauben
- Departments of Medicine and Biostatistics, Epidemiology and Informatics and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Coca
- Division of Nephrology, Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chirag R Parikh
- Section of Nephrology, Department of Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ramachandran S Vasan
- Departments of Medicine and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, Massachusetts
| | - Harold I Feldman
- Departments of Medicine and Biostatistics, Epidemiology and Informatics and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul L Kimmel
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Mary Cushman
- Departments of Medicine and Pathology and Laboratory Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | - Joseph V Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark J Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| |
Collapse
|
32
|
The Most Promising Biomarkers of Allogeneic Kidney Transplant Rejection. J Immunol Res 2022; 2022:6572338. [PMID: 35669103 PMCID: PMC9167141 DOI: 10.1155/2022/6572338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical transplantology is a constantly evolving field of medicine. Kidney transplantation has become standard clinical practice, and it has a significant impact on reducing mortality and improving the quality of life of patients. Allogenic transplantation induces an immune response, which may lead to the rejection of the transplanted organ. The gold standard for evaluating rejection of the transplanted kidney by the recipient's organism is a biopsy of this organ. However, due to the high invasiveness of this procedure, alternative diagnostic methods are being sought. Therefore, the biomarkers may play an essential predictive role in transplant rejection. A review of the most promising biomarkers for early diagnosis and prognosis prediction of allogenic kidney transplant rejection summarizes novel data on neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), C-X-C motif chemokine 10 (CXCL-10), cystatin C (CysC), osteopontin (OPN), and clusterin (CLU) and analyses the dynamics of changes of the biomarkers mentioned above in kidney diseases and the mechanism of rejection of the transplanted kidney.
Collapse
|
33
|
Provenzano M, Maritati F, Abenavoli C, Bini C, Corradetti V, La Manna G, Comai G. Precision Nephrology in Patients with Diabetes and Chronic Kidney Disease. Int J Mol Sci 2022; 23:5719. [PMID: 35628528 PMCID: PMC9144494 DOI: 10.3390/ijms23105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes is the leading cause of kidney failure and specifically, diabetic kidney disease (DKD) occurs in up to 30% of all diabetic patients. Kidney disease attributed to diabetes is a major contributor to the global burden of the disease in terms of clinical and socio-economic impact, not only because of the risk of progression to End-Stage Kidney Disease (ESKD), but also because of the associated increase in cardiovascular (CV) risk. Despite the introduction of novel treatments that allow us to reduce the risk of future outcomes, a striking residual cardiorenal risk has been reported. This risk is explained by both the heterogeneity of DKD and the individual variability in response to nephroprotective treatments. Strategies that have been proposed to improve DKD patient care are to develop novel biomarkers that classify with greater accuracy patients with respect to their future risk (prognostic) and biomarkers that are able to predict the response to nephroprotective treatment (predictive). In this review, we summarize the principal prognostic biomarkers of type 1 and type 2 diabetes and the novel markers that help clinicians to individualize treatments and the basis of the characteristics that predict an optimal response.
Collapse
Affiliation(s)
- Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (C.A.); (C.B.); (V.C.); (G.C.)
| | | | | | | | | | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (C.A.); (C.B.); (V.C.); (G.C.)
| | | |
Collapse
|
34
|
Goto H, Shoda S, Nakashima H, Noguchi M, Imakiire T, Ohshima N, Kinoshita M, Tomimatsu S, Kumagai H. Early biomarkers for kidney injury in heat-related illness patients: a prospective observational study at Japanese Self-Defense Force Fuji Hospital. Nephrol Dial Transplant 2022; 38:644-654. [PMID: 35511214 PMCID: PMC9976769 DOI: 10.1093/ndt/gfac166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Since heatstroke-induced acute kidney injury (AKI) can progress to chronic kidney disease, it would be useful to detect heatstroke-induced AKI and severe heat-related illness in the early phase. We studied the epidemiology of heat-related illness among patients in the Japanese Ground Self-Defense Force and evaluated the relationship between heat-related illness severity and early urinary biomarkers for AKI. METHODS We enrolled patients who were diagnosed with heat-related illness at the Self-Defense Force Fuji Hospital from 1 May to 30 September 2020. We compared the urinary kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), liver fatty acid-binding protein (L-FABP), N-acetyl-β-D-glucosaminidase (NAG) and β2-microglobulin levels according to the severity of heat-related illness as defined by positive scores for the Japanese Association of Acute Medicine Heatstroke Working Group (JAAM-HS-WG) criteria (0, mild; 1, moderate; ≥2, severe). RESULTS Of the 44 patients, kidney injury, defined as serum creatinine (sCr) ≥1.2 mg/dL, was seen in 9 (20.5%) patients. Urinary NAG, NGAL and L-FABP levels were significantly higher in the ≥2 JAAM-HS-WG criteria group than in the 0 group. Furthermore, urinary L-FABP levels were positively correlated with sCr levels. In contrast, the urinary KIM-1 levels showed the best correlation with serum cystatin C (sCysC) among these biomarkers. CONCLUSIONS We conclude even mild to moderate heatstroke could lead to AKI. Urinary L-FABP is useful for detecting heatstroke-induced AKI and patients with severe heat-related illness requiring immediate treatment. Urinary KIM-1 may detect heatstroke-induced AKI in terms of sCysC, although it was not related to the severity of heat-related illness.
Collapse
Affiliation(s)
| | - Shinichi Shoda
- Self-Defense Force Fuji Hospital, Subashiri, Shizuoka, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Midori Noguchi
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Naoki Ohshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
35
|
Balu D, Krishnan V, Krishnamoorthy V, Singh RBS, Narayanasamy S, Ramanathan G. Does serum kidney injury molecule-1 predict early diabetic nephropathy: A comparative study with microalbuminuria. Ann Afr Med 2022; 21:136-139. [PMID: 35848645 PMCID: PMC9383012 DOI: 10.4103/aam.aam_92_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction: Diabetic nephropathy (DN) is a multifactorial disease, one of the most common complications of diabetes and a major cause of chronic kidney disease. Kidney injury molecule-1 (KIM-1) is a sensitive and specific marker of kidney injury as well as a predictor of prognosis. Objective: The present study aimed to investigate the usefulness of serum KIM-1 as an early marker of DN. Patients and Methods: The present study included total 75 participants, among whom 25 nondiabetic participants were chosen as controls. The 50 diabetic participants were divided into two groups according to urine protein/creatinine ratio (UPCR) as participants with normoalbuminuria (T2DM patients without nephropathy) and microalbuminuria (T2DM patients with nephropathy). The complete blood count, blood glucose, HbA1c, serum electrolytes, and creatinine levels were measured using standard laboratory techniques, and serum KIM-1 levels were measured by sandwich enzyme-linked immunosorbent assay. Results: There was a significant difference in the mean serum KIM-1 between the control and diabetics without microalbuminuria (P = 0.0001). Patients with longer duration of diabetes had a higher serum KIM-1 values (P = 0.05 in DM without microalbuminuria; P = 0.007 for DM with microalbuminuria). Serum KIM-1 did not correlate with UPCR in controls (P = ‒0.167), in diabetics with microalbuminuria (P = 0.487). However, there was a significant correlation observed between UPCR and serum KIM-1 in diabetics without microalbuminuria (P = 0.04). Conclusion: The present study observed significantly increased levels of serum KIM-1 in both the diabetic groups compared to controls. Moreover, serum KIM-1 positively correlated with the duration of diabetes. Therefore, serum KIM-1 may be used as an early diagnostic marker to predict nephropathy among diabetes in our population.
Collapse
Affiliation(s)
- Divya Balu
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Vasanthan Krishnan
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | - R B Sudagar Singh
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Senthil Narayanasamy
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
36
|
Perkins BA, Bebu I, Gao X, Karger AB, Hirsch IB, Karanchi H, Molitch ME, Zinman B, Lachin JM, de Boer IH. Early Trajectory of Estimated Glomerular Filtration Rate and Long-term Advanced Kidney and Cardiovascular Complications in Type 1 Diabetes. Diabetes Care 2022; 45:585-593. [PMID: 35015817 PMCID: PMC8918200 DOI: 10.2337/dc21-1883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/21/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Rapid loss of estimated glomerular filtration rate (eGFR) within its normal range has been proposed as a strong predictor of future kidney disease. We investigated this association of eGFR slope early in the course of type 1 diabetes with long-term incidence of kidney and cardiovascular complications. RESEARCH DESIGN AND METHODS The annual percentage change in eGFR (slope) was calculated during the Diabetes Control and Complications Trial (DCCT) for each of 1,441 participants over a mean of 6.5 years and dichotomized by the presence or absence of early rapid eGFR loss (slope ≤-3% per year) as the exposure of interest. Outcomes were incident reduced eGFR (eGFR <60 mL/min/1.73 m2), composite cardiovascular events, or major adverse cardiovascular events (MACE) during the subsequent 24 years post-DCCT closeout follow-up. RESULTS At DCCT closeout (the baseline for this analysis), diabetes duration was 12 ± 4.8 years, most participants (85.9%) had normoalbuminuria, mean eGFR was 117.0 ± 13.4 mL/min/1.73 m2, and 149 (10.4%) had experienced early rapid eGFR loss over the preceding trial phase. Over the 24-year subsequent follow-up, there were 187 reduced eGFR (6.3 per 1,000 person-years) and 113 MACE (3.6 per 1,000 person-years) events. Early rapid eGFR loss was associated with risk of reduced eGFR (hazard ratio [HR] 1.81, 95% CI 1.18-2.79, P = 0.0064), but not after adjustment for baseline eGFR level (HR 0.94, 95% CI 0.53-1.66, P = 0.84). There was no association with composite cardiovascular events or MACE. CONCLUSIONS In people with type 1 diabetes primarily with normal eGFR and normoalbuminuria, the preceding slope of eGFR confers no additional association with kidney or cardiovascular outcomes beyond knowledge of an individual's current level.
Collapse
Affiliation(s)
- Bruce A. Perkins
- Department of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
| | - Ionut Bebu
- The Biostatistics Center, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Xiaoyu Gao
- The George Washington University, Washington, DC
| | - Amy B. Karger
- University of Minnesota Twin Cities, Twin Cities, MN
| | - Irl B. Hirsch
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| | - Harsha Karanchi
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Mark E. Molitch
- Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bernard Zinman
- Departments of Endocrinology and Metabolism, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John M. Lachin
- The Biostatistics Center, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Ian H. de Boer
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
37
|
Blood DNA Methylation Predicts Diabetic Kidney Disease Progression in High Fat Diet-Fed Mice. Nutrients 2022; 14:nu14040785. [PMID: 35215435 PMCID: PMC8880442 DOI: 10.3390/nu14040785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) progresses at different rates among patients with type 2 diabetes mellitus (T2D). Early identification of patients with a higher risk of DKD progression is essential to improve prognosis. Epigenetic modifications, particularly DNA methylation, have been independently implicated in T2D and chronic kidney disease. The current study aimed to determine changes in blood DNA methylation that reflects and predicts DKD progression. C57BL/6 mice were fed a high-fat diet (HFD) from weaning and subclassified into two groups, HFD-1 and HFD-2, according to urinary kidney injury marker KIM-1/creatinine ratios (low vs. high) and histological abnormalities (mild–moderate vs. advanced). DNA methylation profiles were determined by reduced representative bisulfide sequencing (RRBS). Our results confirmed early and established DKD at week 9 and week 32, respectively. At week 32, advanced kidney injury was associated with dysregulation of methylation and demethylation enzymes in the kidney. Blood RRBS revealed 579 and 203 differentially methylated sites (DMS) between HFD-1 and HFD-2 animals at week 32 and week 9, respectively, among which 11 were common. The DMS in blood and kidney at week 32 were both related to organ development, neurogenesis, cell junction, and Wnt signalling, while the DMS in blood at week 9 suggested a specific enrichment of kidney development processes. In conclusion, our data strongly support the implication of early blood DNA methylation modifications and DKD progression in T2D that could be used to improve the disease’s prognostication.
Collapse
|
38
|
Waijer SW, Sen T, Arnott C, Neal B, Kosterink JG, Mahaffey KW, Parikh CR, de Zeeuw D, Perkovic V, Neuen BL, Coca SG, Hansen MK, Gansevoort RT, Heerspink HJ. Association between TNF Receptors and KIM-1 with Kidney Outcomes in Early-Stage Diabetic Kidney Disease. Clin J Am Soc Nephrol 2022; 17:251-259. [PMID: 34876454 PMCID: PMC8823939 DOI: 10.2215/cjn.08780621] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Clinical trials in nephrology are enriched for patients with micro- or macroalbuminuria to enroll patients at risk of kidney failure. However, patients with normoalbuminuria can also progress to kidney failure. TNF receptor-1, TNF receptor-2, and kidney injury marker-1 (KIM-1) are known to be associated with kidney disease progression in patients with micro- or macroalbuminuria. We assessed the value of TNF receptor-1, TNF receptor-2, and KIM-1 as prognostic biomarkers for CKD progression in patients with type 2 diabetes and normoalbuminuria. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS TNF receptor-1, TNF receptor-2, and KIM-1 were measured using immunoassays in plasma samples from patients with type 2 diabetes at high cardiovascular risk participating in the Canagliflozin Cardiovascular Assessment Study trial. We used multivariable adjusted Cox proportional hazards analyses to estimate hazard ratios per doubling of each biomarker for the kidney outcome, stratified the population by the fourth quartile of each biomarker distribution, and assessed the number of events and event rates. RESULTS In patients with normoalbuminuria (n=2553), 51 kidney outcomes were recorded during a median follow-up of 6.1 (interquartile range, 5.8-6.4) years (event rate, 3.5; 95% confidence interval, 2.6 to 4.6 per 1000 patient-years). Each doubling of baseline TNF receptor-1 (hazard ratio, 4.2; 95% confidence interval, 1.8 to 9.6) and TNF receptor-2 (hazard ratio, 2.3; 95% confidence interval, 1.5 to 3.6) was associated with a higher risk for the kidney outcome. Baseline KIM-1, urinary albumin-creatinine ratio, and eGFR were not associated with kidney outcomes. The event rates in the highest quartile of TNF receptor-1 (≥2992 ng/ml) and TNF receptor-2 (≥11,394 ng/ml) were 5.6 and 7.0 events per 1000 patient-years, respectively, compared with 2.8 and 2.3, respectively, in the lower three quartiles. CONCLUSIONS TNF receptor-1 and TNF receptor-2 are associated with kidney outcomes in patients with type 2 diabetes and normoalbuminuria. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER CANagliflozin cardioVascular Assessment Study (CANVAS), NCT01032629.
Collapse
Affiliation(s)
- Simke W. Waijer
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Taha Sen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Clare Arnott
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Bruce Neal
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jos G.W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Department of PharmacoTherapy, Epidemiology and Economics, University of Groningen, Groningen, The Netherlands
| | - Kenneth W. Mahaffey
- Stanford Center for Clinical Research, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Chirag R. Parikh
- Department of Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Dick de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vlado Perkovic
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brendon L. Neuen
- The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Steven G. Coca
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Ron T. Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,The George Institute for Global Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Schmidt IM, Srivastava A, Sabbisetti V, McMahon GM, He J, Chen J, Kusek JW, Taliercio J, Ricardo AC, Hsu CY, Kimmel PL, Liu KD, Mifflin TE, Nelson RG, Vasan RS, Xie D, Zhang X, Palsson R, Stillman IE, Rennke HG, Feldman HI, Bonventre JV, Waikar SS. Plasma Kidney Injury Molecule 1 in CKD: Findings From the Boston Kidney Biopsy Cohort and CRIC Studies. Am J Kidney Dis 2022; 79:231-243.e1. [PMID: 34175376 PMCID: PMC8709877 DOI: 10.1053/j.ajkd.2021.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/03/2021] [Indexed: 01/27/2023]
Abstract
RATIONALE & OBJECTIVE Plasma kidney injury molecule 1 (KIM-1) is a sensitive marker of proximal tubule injury, but its association with risks of adverse clinical outcomes across a spectrum of kidney diseases is unknown. STUDY DESIGN Prospective, observational cohort study. SETTING & PARTICIPANTS 524 individuals enrolled into the Boston Kidney Biopsy Cohort (BKBC) Study undergoing clinically indicated native kidney biopsy with biopsy specimens adjudicated for semiquantitative scores of histopathology by 2 kidney pathologists and 3,800 individuals with common forms of chronic kidney disease (CKD) enrolled into the Chronic Renal Insufficiency Cohort (CRIC) Study. EXPOSURE Histopathologic lesions and clinicopathologic diagnosis in cross-sectional analyses, baseline plasma KIM-1 levels in prospective analyses. OUTCOMES Baseline plasma KIM-1 levels in cross-sectional analyses, kidney failure (defined as initiation of kidney replacement therapy) and death in prospective analyses. ANALYTICAL APPROACH Multivariable-adjusted linear regression models tested associations of plasma KIM-1 levels with histopathologic lesions and clinicopathologic diagnoses. Cox proportional hazards models tested associations of plasma KIM-1 levels with future kidney failure and death. RESULTS In the BKBC Study, higher plasma KIM-1 levels were associated with more severe acute tubular injury, tubulointerstitial inflammation, and more severe mesangial expansion after multivariable adjustment. Participants with diabetic nephropathy, glomerulopathies, and tubulointerstitial disease had significantly higher plasma KIM-1 levels after multivariable adjustment. In the BKBC Study, CKD in 124 participants progressed to kidney failure and 85 participants died during a median follow-up time of 5 years. In the CRIC Study, CKD in 1,153 participants progressed to kidney failure and 1,356 participants died during a median follow-up time of 11.5 years. In both cohorts, each doubling of plasma KIM-1 level was associated with an increased risk of kidney failure after multivariable adjustment (hazard ratios of 1.19 [95% CI, 1.03-1.38] and 1.10 [95% CI, 1.06-1.15] for BKBC and CRIC, respectively). There was no statistically significant association of plasma KIM-1 levels with death in either cohort. LIMITATIONS Generalizability and unmeasured confounding. CONCLUSIONS Plasma KIM-1 is associated with underlying tubulointerstitial and mesangial lesions and progression to kidney failure in 2 cohort studies of individuals with kidney diseases.
Collapse
Affiliation(s)
- Insa M Schmidt
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center Boston, Massachusetts; Renal Division, Brigham & Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Venkata Sabbisetti
- Renal Division, Brigham & Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Gearoid M McMahon
- Renal Division, Brigham & Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Jiang He
- Department of Epidemiology and Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University School of Medicine, New Orleans, Louisana
| | - Jing Chen
- Department of Epidemiology and Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University School of Medicine, New Orleans, Louisana
| | - John W Kusek
- Department of Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Taliercio
- Department of Nephrology and Hypertension, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ana C Ricardo
- Division of Nephrology, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California San Francisco School of Medicine, San Francisco, California
| | - Paul L Kimmel
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Kathleen D Liu
- Division of Nephrology, University of California San Francisco School of Medicine, San Francisco, California
| | - Theodore E Mifflin
- Department of Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Boston University Boston, Massachusetts
| | - Dawei Xie
- Department of Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaoming Zhang
- Department of Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ragnar Palsson
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center Boston, Massachusetts
| | - Helmut G Rennke
- Pathology Department, Brigham & Women's Hospital, Boston, Massachusetts
| | - Harold I Feldman
- Department of Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph V Bonventre
- Renal Division, Brigham & Women's Hospital, Harvard Medical School Boston, Massachusetts
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center Boston, Massachusetts; Renal Division, Brigham & Women's Hospital, Harvard Medical School Boston, Massachusetts.
| |
Collapse
|
40
|
Song P, Chen Y, Liu Z, Liu H, Xiao L, Sun L, Wei J, He L. LncRNA MALAT1 Aggravates Renal Tubular Injury via Activating LIN28A and the Nox4/AMPK/mTOR Signaling Axis in Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:895360. [PMID: 35813614 PMCID: PMC9259889 DOI: 10.3389/fendo.2022.895360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious complication among patients with diabetes. Elucidating its pathogenesis is crucial for identifying novel biomarkers and therapeutic targets for DN. METHODS DN tissues were harvested for examining MALAT1, LIN28A and Nox4. Human kidney-2 (HK-2) cells were treated with high glucose (HG) for establishing a cell model of DN. Cell viability was examined by MTT assay. HG-induced cell apoptosis and secretion of TNF-α and IL-6 were analyzed by TUNEL and ELISA assays, respectively. RIP and RNA pull-down assays were applied to analyze the interaction between MALAT1, LIN28A and Nox4 in HK-2 and human embryonic kidney 293T (HEK-293T) cells. A rat model of DN was established to determine the role of MALAT1 in DN in vivo. RESULTS MALAT1, LIN28A and Nox4 were upregulated in DN tissues and HG-treated HK-2 cells. Overexpression of MALAT1, LIN28A or Nox4 reduced cell viability and enhanced cell apoptosis, ROS generation and secretion of inflammatory cytokines in HG-treated HK-2 cells, whereas knockdown of MALAT1, LIN28A or Nox4 exerted opposite effects. Furthermore, MALAT1 directly interacted with LIN28A. Moreover, MALAT1 facilitated the interaction between LIN28A and Nox4 to increase Nox4 stability. Knockdown of Nox4 relieved HG-induced injury by suppressing the AMPK/mTOR signaling in HK-2 cells. Knockdown of MALAT1 alleviated renal tubular epithelial injury by suppressing LIN28A and the Nox4/AMPK/TOR signaling in DN. CONCLUSION MALAT1 activates the AMPK/mTOR signaling via interacting with LIN28A to stabilize Nox4 mRNA, thereby aggravating high glucose-induced renal tubular epithelial injury. Our findings provide potential therapeutic targets for DN.
Collapse
Affiliation(s)
- Panai Song
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yinyin Chen
- Department of Nephrology, Hunan Provincial People’s Hospital, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital, Haiko, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
- *Correspondence: Liyu He,
| |
Collapse
|
41
|
Feng B, Lu Y, Ye L, Yin L, Zhou Y, Chen A. Mendelian randomization study supports the causal association between serum cystatin C and risk of diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1043174. [PMID: 36482996 PMCID: PMC9724588 DOI: 10.3389/fendo.2022.1043174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
AIMS Cystatin C, an inhibitor of cysteine protease, has been used as a biomarker for estimating glomerular filtration rate. However, the causal relation between cystatin C and diabetic nephropathy remains uncertain. METHODS We assessed the causal effect of cystatin C together with other five serum biomarkers including KIM-1, GDF-15, TBIL, uric acid, and Scr on diabetic nephropathy by Mendelian randomization (MR) analysis. 234 genetic variants were selected as instrumental variables to evaluate the causal effect of cystatin C (NGWAS=361194) on diabetic nephropathy (Ncase/Ncontrol up to 3283/210463). Multivariable MR (MVMR) was performed to assess the stability of cystatin C's causal relationship. Two-step MR was used to assess the mediation effect of BMI and SBP. RESULTS Among the six serum biomarkers, only cystatin C causally associated with diabetic nephropathy (IVW OR: 1.36, 95%CI [1.15, 1.61]). After adjusting for the potential confounders BMI and SBP, cystatin C maintained its causal effect on the DN (OR: 1.17, 95%CI [1.02, 1.33]), which means that the risk of DN increased by 17% with an approximate 1 standard deviation (SD) increment of serum cystatin C level. Two-step MR results indicated that BMI might mediate the causal effect of cystatin C on diabetic nephropathy. INTERPRETATION Our findings discovered that cystatin C was a risk factor for diabetic nephropathy independent of BMI and SBP in diabetes mellitus patients. Future research is required to illustrate the underlying mechanism and prove targeting circulating cystatin C could be a potential therapy method.
Collapse
Affiliation(s)
- Baiyu Feng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Yu Lu
- Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Lin Ye
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Lijun Yin
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Yingjun Zhou
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
- *Correspondence: Anqun Chen,
| |
Collapse
|
42
|
Schmidt IM, Sarvode Mothi S, Wilson PC, Palsson R, Srivastava A, Onul IF, Kibbelaar ZA, Zhuo M, Amodu A, Stillman IE, Rennke HG, Humphreys BD, Waikar SS. Circulating Plasma Biomarkers in Biopsy-Confirmed Kidney Disease. Clin J Am Soc Nephrol 2022; 17:27-37. [PMID: 34759008 PMCID: PMC8763150 DOI: 10.2215/cjn.09380721] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Biomarkers for noninvasive assessment of histopathology and prognosis are needed in patients with kidney disease. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Using a proteomics assay, we measured a multimarker panel of 225 circulating plasma proteins in a prospective cohort study of 549 individuals with biopsy-confirmed kidney diseases and semiquantitative assessment of histopathology. We tested the associations of each biomarker with histopathologic lesions and the risks of kidney disease progression (defined as ≥40% decline in eGFR or initiation of KRT) and death. RESULTS After multivariable adjustment and correction for multiple testing, 46 different proteins were associated with histopathologic lesions. The top-performing markers positively associated with acute tubular injury and interstitial fibrosis/tubular atrophy were kidney injury molecule-1 (KIM-1) and V-set and Ig domain-containing protein 2 (VSIG2), respectively. Thirty proteins were significantly associated with kidney disease progression, and 35 were significantly associated with death. The top-performing markers for kidney disease progression were placental growth factor (hazard ratio per doubling, 5.4; 95% confidence interval, 3.4 to 8.7) and BMP and activin membrane-bound inhibitor (hazard ratio, 3.0; 95% confidence interval, 2.1 to 4.2); the top-performing markers for death were TNF-related apoptosis-inducing ligand receptor-2 (hazard ratio, 2.9; 95% confidence interval, 2.0 to 4.0) and CUB domain-containing protein-1 (hazard ratio, 2.4; 95% confidence interval, 1.8 to 3.3). CONCLUSION We identified several plasma protein biomarkers associated with kidney disease histopathology and adverse clinical outcomes in individuals with a diverse set of kidney diseases. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2021_12_28_CJN09380721.mp3.
Collapse
Affiliation(s)
- Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Suraj Sarvode Mothi
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Parker C. Wilson
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri
| | - Ragnar Palsson
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ingrid F. Onul
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Zoe A. Kibbelaar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Min Zhuo
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Afolarin Amodu
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Isaac E. Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Helmut G. Rennke
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
- Renal Division, Brigham & Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
43
|
Chen S, Chen J, Li S, Guo F, Li A, Wu H, Chen J, Pan Q, Liao S, Liu HF, Pan Q. High-Fat Diet-Induced Renal Proximal Tubular Inflammatory Injury: Emerging Risk Factor of Chronic Kidney Disease. Front Physiol 2021; 12:786599. [PMID: 34950058 PMCID: PMC8688947 DOI: 10.3389/fphys.2021.786599] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Nowadays, with the improvements in living standards and changes in living habits, high-fat diet (HFD) has become much more common in the populations worldwide. Recent studies have shown that HFD could induce lipid accumulation, and structural and functional abnormalities, accompanied by the release of large amounts of pro-inflammatory cytokines, in proximal tubular epithelial cells (PTECs). These findings indicate that, as an emerging risk factor, PTEC injury-induced by HFD may be closely related to inflammation; however, the potential mechanisms underlying this phenomenon is still not well-known, but may involve the several inflammatory pathways, including oxidative stress-related signaling pathways, mitochondrial dysfunction, the myeloid differentiation factor 2/Toll like receptor 4 (MD2/TLR4) signaling pathway, the ERK1/2-kidney injury molecule 1 (KIM-1)-related pathway, and nuclear factor-κB (NF-κB) activation, etc., and the detailed molecular mechanisms underlying these pathways still need further investigated in the future. Based on lipid abnormalities-induced inflammation is closely related to the development and progression of chronic kidney disease (CKD), to summarize the potential mechanisms underlying HFD-induced renal proximal tubular inflammatory injury, may provide novel approaches for CKD treatment.
Collapse
Affiliation(s)
- Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Han Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
44
|
Deng L, Li W, Xu G. Update on pathogenesis and diagnosis flow of normoalbuminuric diabetes with renal insufficiency. Eur J Med Res 2021; 26:144. [PMID: 34895352 PMCID: PMC8665546 DOI: 10.1186/s40001-021-00612-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
In recent decades, the prevalence of diabetic kidney disease has remained stable and appears to be a wide heterogeneity. Normoalbuminuric diabetes with renal insufficiency, which is characterized by a decline in the glomerular filtration rate in the absence of albuminuria, has been identified as an albuminuria-independent phenotype of diabetic kidney disease. Epidemiological data demonstrate that normoalbuminuric phenotype is prevalent. Compared to albuminuric phenotype, normoalbuminuric phenotype has distinct clinical characteristics and a wide heterogeneity of pathological features. Currently, the pathogenesis of normoalbuminuric phenotype remains unclear. Additionally, the flow of diagnosing normoalbuminuric phenotype is not perfect. In this article, we review the latest studies addressing the epidemiology, clinical characteristics, and pathology of normoalbuminuric phenotype. Based on the studies of clinical features and renal histopathologic changes, we attempt to propose an underlying pathogenesis model and a flow chart for diagnosing normoalbuminuric phenotype.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wenjie Li
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
45
|
Ferreira JP, Rossignol P, Bakris G, Mehta C, White WB, Zannad F. Blood and Urine Biomarkers Predicting Worsening Kidney Function in Patients with Type 2 Diabetes Post-Acute Coronary Syndrome: An Analysis from the EXAMINE Trial. Am J Nephrol 2021; 52:969-976. [PMID: 34872085 DOI: 10.1159/000519436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Worsening kidney function (WKF) is frequent among patients with type 2 diabetes (T2D) and a recent acute coronary syndrome (ACS) and is associated with a poor prognosis. An accurate prediction of WKF is clinically important. AIMS Using data from the Cardiovascular Outcomes Study of Alogliptin in Patients with Type 2 Diabetes and Acute Coronary Syndrome trial including patients with T2D and a recent ACS, and a large biomarker panel incorporating proteins measured both in blood and urine, we aim to determine those with best performance for WKF prediction. METHODS WKF was defined as a ≥40% estimated glomerular filtration rate (eGFR) drop from baseline, eGFR <15 mL/min, or dialysis. Mixed-effects and time-updated Cox models were used. RESULTS 5,131 patients were included from whom 222 (4.3%) developed at least one WKF episode over a median follow-up of 18 months. Patients who developed WKF were more frequently women, had longer diabetes duration, a more frequent heart failure history, higher anemia prevalence, and impaired kidney function. In multivariable models including all variables (clinical and biomarkers) independently associated with WKF with a p value ≤0.0001, blood kidney injury molecule 1 (KIM-1) was (by far) the variable with strongest WKF association, followed by anemia. KIM-1 alone provided good discrimination for WKF prediction (area under the curve = 0.73). Patients in the high KIM-1-derived risk tertile had a 6.7-fold higher risk of any WKF than patients classified as low risk. In time-updated Cox models, the occurrence of WKF was independently associated with a higher risk of death: adjusted hazard ratio = 4.93 (3.06-7.96), p value <0.0001. CONCLUSION Blood KIM-1 was the biomarker with the strongest association with WKF. The occurrence of WKF was independently associated with a higher risk of subsequent cardiovascular events and mortality.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Centre D'Investigation Clinique-Plurithématique Inserm CIC-P 1433, Inserm U1116, CHRU Nancy Hopitaux de Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, Institut Lorrain Du Coeur et des Vaisseaux Louis Mathieu, Vandoeuvre lès Nancy, France
- Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Patrick Rossignol
- Centre D'Investigation Clinique-Plurithématique Inserm CIC-P 1433, Inserm U1116, CHRU Nancy Hopitaux de Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, Institut Lorrain Du Coeur et des Vaisseaux Louis Mathieu, Vandoeuvre lès Nancy, France
| | - George Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, University of Chicago, Chicago, Illinois, USA
| | - Cyrus Mehta
- Cytel Corporation, Cambridge, Massachusetts, USA
| | - William B White
- Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Faiez Zannad
- Centre D'Investigation Clinique-Plurithématique Inserm CIC-P 1433, Inserm U1116, CHRU Nancy Hopitaux de Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, Institut Lorrain Du Coeur et des Vaisseaux Louis Mathieu, Vandoeuvre lès Nancy, France
| |
Collapse
|
46
|
Connolly P, Stapleton S, Mosoyan G, Fligelman I, Tonar YC, Fleming F, Donovan MJ. Analytical validation of a multi-biomarker algorithmic test for prediction of progressive kidney function decline in patients with early-stage kidney disease. Clin Proteomics 2021; 18:26. [PMID: 34789168 PMCID: PMC8597271 DOI: 10.1186/s12014-021-09332-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/28/2021] [Indexed: 04/03/2023] Open
Abstract
Background The KidneyIntelX™ test applies a machine learning algorithm that incorporates plasma biomarkers and clinical variables to produce a composite risk score to predict a progressive decline in kidney function in patients with type 2 diabetes (T2D) and early-stage chronic kidney disease (CKD). The following studies describe the analytical validation of the KidneyIntelX assay including impact of observed methodologic variability on the composite risk score. Methods Analytical performance studies of sensitivity, precision, and linearity were performed on three biomarkers assayed in multiplexed format: kidney injury molecule-1 (KIM-1), soluble tumor necrosis factor receptor-1 (sTNFR-1) and soluble tumor necrosis factor receptor-2 (sTNFR-2) based on Clinical Laboratory Standards Institute (CLSI) guidelines. Analytical variability across twenty (20) experiments across multiple days, operators, and reagent lots was assessed to examine the impact on the reproducibility of the composite risk score. Analysis of cross-reactivity and interfering substances was also performed. Results Assays for KIM-1, sTNFR-1 and sTNFR-2 demonstrated acceptable sensitivity. Mean within-laboratory imprecision coefficient of variation (CV) was established as less than 9% across all assays in a multi-lot study. The linear range of the assays was determined as 12–5807 pg/mL, 969–23,806 pg/mL and 4256–68,087 pg/mL for KIM-1, sTNFR-1 and sTNFR-2, respectively. The average risk score CV% was less than 5%, with 98% concordance observed for assignment of risk categories. Cross-reactivity between critical assay components in a multiplexed format did not exceed 1.1%. Conclusions The set of analytical validation studies demonstrated robust analytical performance across all three biomarkers contributing to the KidneyIntelX risk score, meeting or exceeding specifications established during characterization studies. Notably, reproducibility of the composite risk score demonstrated that expected analytical laboratory variation did not impact the assigned risk category, and therefore, the clinical validity of the reported results. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09332-y.
Collapse
|
47
|
Ceccarelli Ceccarelli D, Paleari R, Solerte B, Mosca A. Re-thinking diabetic nephropathy: Microalbuminuria is just a piece of the diagnostic puzzle. Clin Chim Acta 2021; 524:146-153. [PMID: 34767792 DOI: 10.1016/j.cca.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 12/13/2022]
Abstract
The decline of the estimated glomerular filtration rate (eGFR) and the presence of albuminuria are the typical hallmarks of kidney disease arising as one of the most frequent diabetic complications over a long period of time, generally known as diabetic nephropathy or diabetes kidney disease (DKD). However, a decline in the renal function may occur in diabetic patients for other reasons unrelated to glycemic control, and this condition is known as non-diabetic kidney disease (NDKD). In this opinion paper we will review these conditions, and we outline the importance of other investigations, such as kidney biopsy and the measurement of novel biomarkers, in order to identify the disease progression early, and to allow a timely intervention. We will also focus on the actual limits of the quantitative measurements of albumin in urine, especially with regards to potential interferences due to the treatment of patients with statins.
Collapse
Affiliation(s)
| | - Renata Paleari
- Dip. di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Bruno Solerte
- Dip. di Medicina Interna e Terapia Medica, Università degli Studi di Pavia, Pavia, Italy
| | - Andrea Mosca
- Dip. di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
48
|
Piani F, Melena I, Severn C, Chung LT, Vinovskis C, Cherney D, Pyle L, Roncal-Jimenez CA, Lanaspa MA, Rewers A, van Raalte DH, Obeid W, Parikh C, Nelson RG, Pavkov ME, Nadeau KJ, Johnson RJ, Bjornstad P. Tubular injury in diabetic ketoacidosis: Results from the diabetic kidney alarm study. Pediatr Diabetes 2021; 22:1031-1039. [PMID: 34435718 PMCID: PMC8957478 DOI: 10.1111/pedi.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/07/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Glomerular injury is a recognized complication of diabetic ketoacidosis (DKA), yet the tubular lesions are poorly understood. The aim of this prospective study was to evaluate the presence and reversibility of tubular injury during DKA in children with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Blood and urine samples were collected from 40 children with DKA (52% boys, mean age 11 ± 4 years, venous pH 7.2 ± 0.1, glucose 451 ± 163 mg/dL) at three timepoints: 0-8 and 12-24 h after starting insulin, and 3 months after discharge. Mixed-effects models evaluated the changes in tubular injury markers over time (neutrophil gelatinase-associated lipocalin [NGAL], kidney injury molecule 1 [KIM-1], and interleukin 18 [IL-18]). We also evaluated the relationships among the tubular injury biomarkers, copeptin, a vasopressin surrogate, and serum uric acid (SUA). RESULTS Serum NGAL, KIM-1, and IL-18 were highest at 0-8 h (306.5 ± 45.9 ng/mL, 128.9 ± 10.1 pg/mL, and 564.3 ± 39.2 pg/mL, respectively) and significantly decreased over 3 months (p = 0.03, p = 0.01, and p < 0.001, respectively). There were strong relationships among increases in copeptin and SUA and rises in tubular injury biomarkers. At 0-8 h, participants with acute kidney injury (AKI) [17%] showed significantly higher concentrations of tubular injury markers, copeptin, and SUA. CONCLUSIONS DKA was characterized by tubular injury, and the degree of injury associated with elevated copeptin and SUA. Tubular injury biomarkers, copeptin and SUA may be able to predict AKI in DKA.
Collapse
Affiliation(s)
- Federica Piani
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Isabella Melena
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cameron Severn
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Linh T. Chung
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carissa Vinovskis
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Laura Pyle
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Colorado, USA
| | - Carlos A. Roncal-Jimenez
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Miguel A. Lanaspa
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Arleta Rewers
- Department of Pediatrics, Section of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniël H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, location VUmc, Amsterdam, the Netherlands
| | - Wassim Obeid
- Department of Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chirag Parikh
- Department of Medicine, Division of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, Arizona, USA
| | - Meda E. Pavkov
- Division of Diabetes Translation, Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristen J. Nadeau
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Richard J. Johnson
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Petter Bjornstad
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
49
|
Karmakova ТА, Sergeeva NS, Kanukoev КY, Alekseev BY, Kaprin АD. Kidney Injury Molecule 1 (KIM-1): a Multifunctional Glycoprotein and Biological Marker (Review). Sovrem Tekhnologii Med 2021; 13:64-78. [PMID: 34603757 PMCID: PMC8482821 DOI: 10.17691/stm2021.13.3.08] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
KIM-1 (kidney injury molecule 1) is a transmembrane glycoprotein also known as HAVcr-1 and TIM-1 belongs to the T-cell immunoglobulin and mucin domain family (TIM) of proteins. TIM glycoproteins are presented on the immune cells and participate in the regulation of immune reactions. KIM-1 differs from other members of its family in that it is expressed not only by immunocompetent cells but epithelial cells as well. Cellular and humoral effects mediated by KIM-1 are involved in a variety of physiological and pathophysiological processes. Current understanding of the mechanisms determining the participation of KIM-1 in viral invasion, the immune response regulation, adaptive reactions of the kidney epithelium to acute ischemic or toxic injury, in progression of chronic renal diseases, and kidney cancer development have been presented in this review. Data of clinical researches demonstrating the association of KIM-1 with viral diseases and immune disorders have also been analyzed. Potential application of KIM-1 as urinary or serological marker in renal and cardiovascular diseases has been considered.
Collapse
Affiliation(s)
- Т А Karmakova
- Leading Researcher, Department of Predicting the Effectiveness of Conservative Therapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia
| | - N S Sergeeva
- Professor, Head of the Department of Predicting the Effectiveness of Conservative Therapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia; Professor, Department of Biology; Pirogov Russian National Research Medical University, 1 Ostrovitianova St., Moscow, 117997, Russia
| | - К Yu Kanukoev
- Urologist, Department of Urology with Chemotherapy; P. Hertsen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 3, 2 Botkinsky Proezd, Moscow, 125284, Russia
| | - B Ya Alekseev
- Professor, Deputy General Director for Science; National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| | - А D Kaprin
- Professor, Academician of the Russian Academy of Sciences, General Director; National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| |
Collapse
|
50
|
Enoksen ITT, Svistounov D, Norvik JV, Stefansson VTN, Solbu MD, Eriksen BO, Melsom T. Serum Matrix Metalloproteinase 7 and accelerated GFR decline in a general non-diabetic population. Nephrol Dial Transplant 2021; 37:1657-1667. [PMID: 34436577 PMCID: PMC9395374 DOI: 10.1093/ndt/gfab251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Age-related reduction of glomerular filtration rate (GFR) is a major contributor to the global chronic kidney disease (CKD) epidemic. We investigated whether baseline serum levels of the pro-fibrotic matrix metalloproteinase 2 (MMP2), MMP7 and their inhibitor, tissue inhibitor of metalloproteinase 1 (TIMP1), which mediates fibrosis development in aging animals, were associated with GFR decline in a general nondiabetic population. METHODS In the Renal Iohexol Clearance Survey (RENIS), we measured GFR using iohexol clearance in 1627 subjects aged 50-64 without self-reported diabetes, kidney or cardiovascular disease. After a median of 5.6 years, 1324 had follow-up GFR measurements. Using linear mixed models and logistic regression analyses, we evaluated the association of MMP7, MMP2 and TIMP1 with the mean GFR decline rate, risk of accelerated GFR decline (defined as subjects with the 10% steepest GFR slopes: ≥1.8 ml/min/1.73 m2/year) and incident CKD (GFR <60 ml/min/1.73 m2 and/or urinary albumin to creatinine ratio (ACR) ≥3.0 mg/mmol). RESULTS Higher MMP7 levels (per SD increase of MMP7) were associated with steeper GFR decline rates (-0.23 ml/min/1.73m2/year [95% confidence interval, -0.34 to -0.12]) and increased risk of accelerated GFR decline and incident CKD, (odds ratios; 1.58 (1.30-1.93) and 1.45 (1.05-2.01), respectively, in a model adjusted for age, sex, baseline GFR, ACR and cardiovascular risk factors). MMP2 and TIMP1 showed no association with GFR decline or incident CKD. CONCLUSION The pro-fibrotic biomarker MMP7, but not MMP2 or TIMP1, is associated with increased risk of accelerated GFR decline and incident CKD in middle-aged persons from the general population.
Collapse
Affiliation(s)
| | - Dmitri Svistounov
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jon V Norvik
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Section of Nephrology, Clinic of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Vidar T N Stefansson
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marit D Solbu
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Section of Nephrology, Clinic of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Bjørn O Eriksen
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Section of Nephrology, Clinic of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Toralf Melsom
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway.,Section of Nephrology, Clinic of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|