1
|
Satao KS, Doshi GM. Intercellular communication via exosomes: A new paradigm in the pathophysiology of neurodegenerative disorders. Life Sci 2025; 365:123468. [PMID: 39954940 DOI: 10.1016/j.lfs.2025.123468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Neurodegenerative disorders are one of the leading causes of death and disability and pose a great economic burden on healthcare systems. Generally, these neurodegenerative disorders have a progressive deterioration in neural function and structure, and deposition of misfolded proteins commonly occurs, such as amyloid-β in AD and α-synuclein in PD. However, there exists a special class of exosomes, which acts like a transmitter and enhances communication between cells. The present review discusses the significant role of exosomes in neurodegenerative diseases, with a focus on Amyotrophic lateral Sclerosis (ALS), AD, PD, and Huntington's disease (HD). In this review, the biogenesis of exosomes is discussed from multivesicular bodies and onwards to their release into the extracellular environment. The present review focuses on recent data concerning the possible use of modified exosomes as ND therapy. Indeed, future work is needed to explain the processes driving exosome biogenesis and cargo selection, while opening new routes by the use of exosome-based therapeutics in neurodegenerative disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kiran S Satao
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Department of Pharmacology, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Department of Pharmacology, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
2
|
Spinelli S, Tripodi D, Corti N, Zocchi E, Bruschi M, Leoni V, Dominici R. Roles, Functions, and Pathological Implications of Exosomes in the Central Nervous System. Int J Mol Sci 2025; 26:1345. [PMID: 39941112 PMCID: PMC11818369 DOI: 10.3390/ijms26031345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Exosomes are a subset of extracellular vesicles (EVs) secreted by nearly all cell types and have emerged as a novel mechanism for intercellular communication within the central nervous system (CNS). These vesicles facilitate the transport of proteins, nucleic acids, lipids, and metabolites between neurons and glial cells, playing a pivotal role in CNS development and the maintenance of homeostasis. Current evidence indicates that exosomes from CNS cells may function as either inhibitors or enhancers in the onset and progression of neurological disorders. Furthermore, exosomes have been found to transport disease-related molecules across the blood-brain barrier, enabling their detection in peripheral blood. This distinctive property positions exosomes as promising diagnostic biomarkers for neurological conditions. Additionally, a growing body of research suggests that exosomes derived from mesenchymal stem cells exhibit reparative effects in the context of neurological disorders. This review provides a concise overview of the functions of exosomes in both physiological and pathological states, with particular emphasis on their emerging roles as potential diagnostic biomarkers and therapeutic agents in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Domenico Tripodi
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Nicole Corti
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| | - Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.S.); (M.B.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Valerio Leoni
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Dominici
- Laboratory of Clinical Pathology and Toxicology, Hospital Pio XI of Desio, ASST-Brianza, 20832 Desio, Italy; (D.T.); (N.C.); (R.D.)
| |
Collapse
|
3
|
Arif S, Qazi TJ, Quan Z, Ni J, Li Z, Qiu Y, Qing H. Extracellular vesicle-packed microRNAs profiling in Alzheimer's disease: The molecular intermediary between pathology and diagnosis. Ageing Res Rev 2025; 104:102614. [PMID: 39626853 DOI: 10.1016/j.arr.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
MicroRNAs (miRNAs), referring to a type of non-coding RNAs functioning in various biological processes, participate in the pathophysiology of Alzheimer's disease (AD) through increasing amyloid-beta (Aβ) production, enhancing Tau phosphorylation, and inducing neuroinflammation. Meanwhile, extracellular vesicles (EVs) have been suggested as promising carriers of AD biomarkers as they possess the ability to transmit information from cerebral tissue to peripheral blood. Inspired by the above findings, we in this review systematically generalized the roles of miRNAs in AD and explored the potential of EV-packed miRNA as biomarkers for early diagnosis of AD. Through the detailed investigation, this review may highlight the promise of EV-packed miRNAs in advancing our understanding of AD, and underscore the imperative needs of further studies on their diagnostic potential.
Collapse
Affiliation(s)
- Sandila Arif
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Talal Jamil Qazi
- The Department of Biomedical Engineering, Balochistan University of Engineering & Technology, Khuzdar 89120, Pakistan
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaohan Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
4
|
Yashooa RK, Duranti E, Conconi D, Lavitrano M, Mustafa SA, Villa C. Mitochondrial microRNAs: Key Drivers in Unraveling Neurodegenerative Diseases. Int J Mol Sci 2025; 26:626. [PMID: 39859339 PMCID: PMC11766038 DOI: 10.3390/ijms26020626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) crucial for regulating gene expression at the post-transcriptional level. Recent evidence has shown that miRNAs are also found in mitochondria, organelles that produce energy in the cell. These mitochondrial miRNAs, also known as mitomiRs, are essential for regulating mitochondrial function and metabolism. MitomiRs can originate from the nucleus, following traditional miRNA biogenesis pathways, or potentially from mitochondrial DNA, allowing them to directly affect gene expression and cellular energy dynamics within the mitochondrion. While miRNAs have been extensively investigated, the function and involvement of mitomiRs in the development of neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis remain to be elucidated. This review aims to discuss findings on the role of mitomiRs in such diseases and their potential as therapeutic targets, as well as to highlight future research directions.
Collapse
Affiliation(s)
- Raya Kh. Yashooa
- Department of Biology, College of Education for Pure Science, University of Al-Hamdaniya, Mosul 41002, Iraq;
| | - Elisa Duranti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (D.C.); (M.L.)
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (D.C.); (M.L.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (D.C.); (M.L.)
| | - Suhad A. Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Kurdistan Region, Erbil 44001, Iraq;
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (D.C.); (M.L.)
| |
Collapse
|
5
|
Wang L, Zhang X, Yang Z, Wang B, Gong H, Zhang K, Lin Y, Sun M. Extracellular vesicles: biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl Neurodegener 2024; 13:60. [PMID: 39643909 PMCID: PMC11622582 DOI: 10.1186/s40035-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles originating from different cells within the brain. The pathophysiological role of EVs in neurodegenerative diseases is progressively acknowledged. This field has advanced from basic biological research to essential clinical significance. The capacity to selectively enrich specific subsets of EVs from biofluids via distinctive surface markers has opened new avenues for molecular understandings across various tissues and organs, notably in the brain. In recent years, brain-derived EVs have been extensively investigated as biomarkers, therapeutic targets, and drug-delivery vehicles for neurodegenerative diseases. This review provides a brief overview of the characteristics and physiological functions of the various classes of EVs, focusing on the biological mechanisms by which various types of brain-derived EVs mediate the occurrence and development of neurodegenerative diseases. Concurrently, novel therapeutic approaches and challenges for the use of EVs as delivery vehicles are delineated.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Alhenaky A, Alhazmi S, Alamri SH, Alkhatabi HA, Alharthi A, Alsaleem MA, Abdelnour SA, Hassan SM. Exosomal MicroRNAs in Alzheimer's Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J Clin Med 2024; 13:6960. [PMID: 39598105 PMCID: PMC11594708 DOI: 10.3390/jcm13226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents a significant health concern, often leading to substantial cognitive decline among older adults. A prominent feature of AD is progressive dementia, which eventually disrupts daily functioning and the ability to live independently. A major challenge in addressing AD is its prolonged pre-symptomatic phase, which makes early detection difficult. Moreover, the disease's complexity and the inefficiency of current diagnostic methods impede the development of targeted therapies. Therefore, there is an urgent need to enhance diagnostic methodologies for detection and treating AD even before clinical symptoms appear. Exosomes are nanoscale biovesicles secreted by cells, including nerve cells, into biofluids. These exosomes play essential roles in the central nervous system (CNS) by facilitating neuronal communication and thus influencing major physiological and pathological processes. Exosomal cargo, particularly microRNAs (miRNAs), are critical mediators in this cellular communication, and their dysregulation affects various pathological pathways related to neurodegenerative diseases, including AD. This review discusses the significant roles of exosomal miRNAs in the pathological mechanisms related to AD, focusing on the promising use of exosomal miRNAs as diagnostic biomarkers and targeted therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Alhanof Alhenaky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Sultan H. Alamri
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mansour A. Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Princess Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
7
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2024:10.1007/s11357-024-01432-5. [PMID: 39562408 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
8
|
Sawant H, Sun B, Mcgrady E, Bihl JC. Role of miRNAs in neurovascular injury and repair. J Cereb Blood Flow Metab 2024; 44:1693-1708. [PMID: 38726895 PMCID: PMC11494855 DOI: 10.1177/0271678x241254772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 10/18/2024]
Abstract
MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases. Central nervous system (CNS) diseases prove fatal due to the intricate nature of both their development and the methods used for treatment. A considerable amount of ongoing research aims to delineate the complex relationships between miRNAs and different diseases, including each of the neurological disorders discussed in the present review. Ongoing research suggests that specific miRNAs can play either a pathologic or restorative and/or protective role in various CNS diseases. Understanding how these miRNAs are involved in various regulatory processes of CNS such as neuroinflammation, neurovasculature, immune response, blood-brain barrier (BBB) integrity and angiogenesis is of empirical importance for developing effective therapies. Here in this review, we summarized the current state of knowledge of miRNAs and their roles in CNS diseases along with a focus on their association with neuroinflammation, innate immunity, neurovascular function and BBB.
Collapse
Affiliation(s)
- Harshal Sawant
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Bowen Sun
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Erin Mcgrady
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Ji Chen Bihl
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
9
|
Lin L, Tang R, Liu Y, Li Z, Li H, Yang H. The brain-protective mechanism of fecal microbiota transplantation from young donor mice in the natural aging process via exosome, gut microbiota, and metabolomics analyses. Pharmacol Res 2024; 207:107323. [PMID: 39053865 DOI: 10.1016/j.phrs.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The natural aging process is accompanied by changes in exosomes, gut microbiota, and metabolites. This study aimed to reveal the anti-aging effect and mechanisms of fecal microbiota transplantation (FMT) from young donors on the natural aging process in mice by analyzing exosomes, gut microbiota, and metabolomics. Aging-relevant telomeric length, oxidative stress indexes in brain tissue, and serum cytokine levels were measured. Flow analysis of T-regulatory (Treg), CD4+, and CD8+ cells was performed, and the expression levels of aging-related proteins were quantified. High-throughput sequencing technology was used to identify differentially expressed serum exosomal miRNAs. Fecal microbiota was tested by 16 S rDNA sequencing. Changes in fecal metabolites were analyzed by UPLC-Q-TOF/MS. The results indicated that the expression of mmu-miR-7010-5p, mmu-miR-376b-5p, mmu-miR-135a-5p, and mmu-miR-3100-5p by serum exosomes was down-regulated and the abundance of opportunistic bacteria (Turicibacter, Allobaculum, Morganella.) was decreased, whereas the levels of protective bacteria (Akkermansia, Muribaculaceae, Helicobacter.) were increased after FMT. Metabolic analysis identified 25 potential biomarkers. Correlation analysis between the gut microbiota and metabolites suggested that the relative abundance of protective bacteria was positively correlated with the levels of spermidine and S-adenosylmethionine. The study indicated that FMT corrected brain injury due to aging via lipid metabolism, the metabolism of cofactors and vitamins, and amino acid metabolism.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, China.
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Lee M, Woo J, Kim KT, Moon SA, Park HC, Kim TY, Park JY. Customized Hydrogel Films for MicroRNA Super-Resolution Imaging in Liquid Biopsies. Adv Healthc Mater 2024; 13:e2303781. [PMID: 38828846 DOI: 10.1002/adhm.202303781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/25/2024] [Indexed: 06/05/2024]
Abstract
Tissue biopsy for early diagnosis and monitoring comes with several challenges, such as its invasiveness, and issues related to tissue heterogeneity in sampling. To address these issues, researchers have proposed a noninvasive approach called liquid biopsy, which uses blood samples to detect specific noncoding RNA (microRNA, miRNA). However, the current process of isolating and amplifying miRNA can be time-consuming and yield nonspecific results. In this study, a new super-resolution imaging tool is introduced that utilizes a thin, hydrogel-based liquid view (LV) film. This film can undergo a ninefold expansion and allows the analysis of cells obtained from liquid biopsy. The potential of the LV film is validated as a tool for early diagnosis and prognosis by testing biofluids derived from a variety of diseases. This method is confirmed to accurately analyze a greater number of miRNAs with higher sensitivity in a shorter time compared to other analytical methods. These findings suggest that the LV film provides high specificity, and multiplexing in detecting small amounts of miRNAs within cells, making it suitable for 3D implementation. It is proposed that liquid biopsy with LV films can be a solution to limitations related to the invasiveness, cost, and time-consuming nature of molecular analysis.
Collapse
Affiliation(s)
- Mirae Lee
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jiwon Woo
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Seul-A Moon
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Hyeong Cheon Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Tae Yeon Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Jeong-Yoon Park
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Department of Neurosurgery, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Kajitani GS, Xavier G, Villena-Rueda BE, Karia BTR, Santoro ML. Extracellular vesicles in neurodegenerative, mental, and other neurological disorders: Perspectives into mechanisms, biomarker potential, and therapeutic implications. CURRENT TOPICS IN MEMBRANES 2024; 94:299-336. [PMID: 39370211 DOI: 10.1016/bs.ctm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Extracellular vesicles (EVs) are produced, secreted, and targeted by most human cells, including cells that compose nervous system tissues. EVs carry several types of biomolecules, such as lipids, proteins and microRNA, and can function as signaling agents in physiological and pathological processes. In this chapter, we will focus on EVs and their cargo secreted by brain cells, especially neurons and glia, and how these aspects are affected in pathological conditions. The chapter covers neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, as well as several psychiatric disorders, namely schizophrenia, autism spectrum disorder and major depressive disorder. This chapter also addresses other types of neurological dysfunctions, epilepsy and traumatic brain injury. EVs can cross the blood brain barrier, and thus brain EVs may be detected in more accessible peripheral tissue, such as circulating blood. Alterations in EV composition and contents can therefore impart valuable clues into the molecular etiology of these disorders, and serve biomarkers regarding disease prevalence, progression and treatment. EVs can also be used to carry drugs and biomolecules into brain tissue, considered as a promising drug delivery agent for neurological diseases. Therefore, although this area of research is still in its early development, it offers great potential in further elucidating and in treating neurological disorders.
Collapse
Affiliation(s)
- Gustavo Satoru Kajitani
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil
| | - Gabriela Xavier
- Center for Genomic Medicine, Massachusetts General Hospital, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, United States; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, United States
| | - Beatriz Enguidanos Villena-Rueda
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil
| | - Bruno Takao Real Karia
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil; Department of Biochemistry, Universidade Federal de São Paulo, Brazil
| | - Marcos Leite Santoro
- Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, Brazil; Department of Biochemistry, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
12
|
Zhang Y, Bi K, Zhou L, Wang J, Huang L, Sun Y, Peng G, Wu W. Advances in Blood Biomarkers for Alzheimer's Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener Neurol Neuromuscul Dis 2024; 14:85-102. [PMID: 39100640 PMCID: PMC11297492 DOI: 10.2147/dnnd.s471174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease has escalated into a critical public health concern, marked by its neurodegenerative nature that progressively diminishes cognitive abilities. Recognized as a continuously advancing and presently incurable condition, AD underscores the necessity for early-stage diagnosis and interventions aimed at delaying the decline in mental function. Despite the proven efficacy of cerebrospinal fluid and positron emission tomography in diagnosing AD, their broader utility is constrained by significant costs and the invasive nature of these procedures. Consequently, the innovation of blood biomarkers such as Amyloid-beta, phosphorylated-tau, total-tau et al, distinguished by their high sensitivity, minimal invasiveness, accessibility, and cost-efficiency, emerges as a promising avenue for AD diagnosis. The advent of ultra-sensitive detection methodologies, including single-molecule enzyme-linked immunosorbent assay and immunoprecipitation-mass spectrometry, has revolutionized the detection of AD plasma biomarkers, supplanting previous low-sensitivity techniques. This rapid advancement in detection technology facilitates the more accurate quantification of pathological brain proteins and AD-associated biomarkers in the bloodstream. This manuscript meticulously reviews the landscape of current research on immunological markers for AD, anchored in the National Institute on Aging-Alzheimer's Association AT(N) research framework. It highlights a selection of forefront ultra-sensitive detection technologies now integral to assessing AD blood immunological markers. Additionally, this review examines the crucial pre-analytical processing steps for AD blood samples that significantly impact research outcomes and addresses the practical challenges faced during clinical testing. These discussions are crucial for enhancing our comprehension and refining the diagnostic precision of AD using blood-based biomarkers. The review aims to shed light on potential avenues for innovation and improvement in the techniques employed for detecting and investigating AD, thereby contributing to the broader field of neurodegenerative disease research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linfu Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lingtong Huang
- Department of Critical Care Units, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
13
|
Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol 2024; 15:1417758. [PMID: 38983854 PMCID: PMC11231912 DOI: 10.3389/fimmu.2024.1417758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.
Collapse
Affiliation(s)
- Meijin Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Zhenzhen Wen
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Tingting Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Linghan Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Xiaoyan Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Maoyuan Wang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, GanZhou, China
| |
Collapse
|
14
|
Sun M, Chen Z. Unveiling the Complex Role of Exosomes in Alzheimer's Disease. J Inflamm Res 2024; 17:3921-3948. [PMID: 38911990 PMCID: PMC11193473 DOI: 10.2147/jir.s466821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative illness, characterized by memory loss and cognitive decline, accounting for 60-80% of dementia cases. AD is characterized by senile plaques made up of amyloid β (Aβ) protein, intracellular neurofibrillary tangles caused by hyperphosphorylation of tau protein linked with microtubules, and neuronal loss. Currently, therapeutic treatments and nanotechnological developments are effective in treating the symptoms of AD, but a cure for the illness has not yet been found. Recently, the increased study of extracellular vesicles (EVs) has led to a growing awareness of their significant involvement in neurodegenerative disorders, including AD. Exosomes are small extracellular vesicles that transport various components including messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive compounds from one cell to another, facilitating information transmission and material movement. There is growing evidence indicating that exosomes have complex functions in AD. Exosomes may have a dual role in Alzheimer's disease by contributing to neuronal death and also helping to alleviate the pathological progression of the disease. Therefore, the primary aim of this review is to outline the updated understandings on exosomes biogenesis and many functions of exosomes in the generation, conveyance, distribution, and elimination of hazardous proteins related to Alzheimer's disease. This review is intended to provide novel insights for understanding the development, specific treatment, and early detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Zhuoyou Chen
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| |
Collapse
|
15
|
de Lourdes Signorini-Souza I, Tureck LV, Batistela MS, Coutinho de Almeida R, Monteiro de Almeida S, Furtado-Alle L, Lehtonen Rodrigues Souza R. The potential of five c-miRNAs as serum biomarkers for Late-Onset Alzheimer's disease diagnosis: miR-10a-5p, miR-29b-2-5p, miR-125a-5p, miR-342-3p, and miR-708-5p. Brain Res 2024; 1841:149090. [PMID: 38880411 DOI: 10.1016/j.brainres.2024.149090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The nervous system is rich in miRNAs, indicating an important role of these molecules in regulating processes associated with cognition, memory, and others. Therefore, qualitative and quantitative imbalances involving such miRNAs may be involved in dementia contexts, including Late-Onset Alzheimer's Disease (LOAD). To test the viability of circulating miRNAs (c-miRNAs) as biomarkers for LOAD, we proceed accordingly to the following reasoning. The first stage was to discover and identify profile of c-miRNAs by RNA sequencing (RNA-Seq). For this purpose, blood serum samples were used from LOAD patients (n = 5) and cognitively healthy elderly control group (CTRL_CH) (n = 5), all over 70 years old. We identified seven c-miRNAs differentially expressed (p ≤ 0.05) in the serum of LOAD patients compared to CTRL_CH (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p, miR-380-5p and miR-340-3p). Of these, five (p ≤ 0.01) were selected for in silico analysis (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p), for which 44 relevant target genes were found regulated by these c-miRNAs and related to LOAD. Through the analysis of these target genes in databases, it was possible to observe that they have functions related to the development and progress of LOAD, directly or indirectly connecting the different Alzheimer's pathways. Thus, this work found five promising serum c-miRNAs as options for biomarkers contributing to LOAD diagnosis. Our study shows the complex network between these molecules and LOAD, supporting the relevance of studies using c-miRNAs in dementia contexts.
Collapse
Affiliation(s)
- Isadora de Lourdes Signorini-Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Luciane Viater Tureck
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Meire Silva Batistela
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, LUMC, Leiden, the Netherlands
| | | | - Lupe Furtado-Alle
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Ricardo Lehtonen Rodrigues Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil.
| |
Collapse
|
16
|
Pereira JD, Teixeira LCR, Mamede I, Alves MT, Caramelli P, Luizon MR, Veloso AA, Gomes KB. miRNAs in cerebrospinal fluid associated with Alzheimer's disease: A systematic review and pathway analysis using a data mining and machine learning approach. J Neurochem 2024; 168:977-994. [PMID: 38390627 DOI: 10.1111/jnc.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 02/24/2024]
Abstract
Alzheimer's disease (AD) is the most common type and accounts for 60%-70% of the reported cases of dementia. MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in gene expression regulation. Although the diagnosis of AD is primarily clinical, several miRNAs have been associated with AD and considered as potential markers for diagnosis and progression of AD. We sought to match AD-related miRNAs in cerebrospinal fluid (CSF) found in the GeoDataSets, evaluated by machine learning, with miRNAs listed in a systematic review, and a pathway analysis. Using machine learning approaches, we identified most differentially expressed miRNAs in Gene Expression Omnibus (GEO), which were validated by the systematic review, using the acronym PECO-Population (P): Patients with AD, Exposure (E): expression of miRNAs, Comparison (C): Healthy individuals, and Objective (O): miRNAs differentially expressed in CSF. Additionally, pathway enrichment analysis was performed to identify the main pathways involving at least four miRNAs selected. Four miRNAs were identified for differentiating between patients with and without AD in machine learning combined to systematic review, and followed the pathways analysis: miRNA-30a-3p, miRNA-193a-5p, miRNA-143-3p, miRNA-145-5p. The pathways epidermal growth factor, MAPK, TGF-beta and ATM-dependent DNA damage response, were regulated by these miRNAs, but only the MAPK pathway presented higher relevance after a randomic pathway analysis. These findings have the potential to assist in the development of diagnostic tests for AD using miRNAs as biomarkers, as well as provide understanding of the relationship between different pathophysiological mechanisms of AD.
Collapse
Affiliation(s)
- Jessica Diniz Pereira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Izabela Mamede
- Intituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Paulo Caramelli
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Intituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriano Alonso Veloso
- Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
17
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
18
|
Shboul M, Bani Domi A, Abu Zahra A, Khasawneh AG, Darweesh R. Plasma miRNAs as potential biomarkers for schizophrenia in a Jordanian cohort. Noncoding RNA Res 2024; 9:350-358. [PMID: 38511065 PMCID: PMC10950580 DOI: 10.1016/j.ncrna.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
Background Schizophrenia (SZ), a complex and chronic neuropsychiatric disorder affecting approximately 1 % of the general population, presents diagnostic challenges due to the absence of reliable biomarkers, and relying mainly on clinical observations. MicroRNAs (miRNAs) signatures in a wide range of diseases, including psychiatric disorders, hold immense potential for serving as biomarkers. This study aimed to analyze the expression levels of specific microRNAs (miRNAs) namely miR-29b-3p, miR-106b-5p, and miR-199a-3p and explore their diagnostic potential for SZ in Jordanian patients. Methods Small RNAs (miRNAs) were extracted from plasma samples of 30 SZ patients and 35 healthy controls. RNA was reverse transcribed and quantified by real-time polymerase chain reaction (qRT-PCR). The expression levels of three miRNAs (miR-29b-3p, miR-106b-5p and miR-199a-3p) were analyzed. Receiver operating characteristic (ROC) curves analysis was performed to evaluate diagnostic value of these miRNAs. Target genes prediction, functional enrichment and pathway analyses were done using miRWalk and Metascape. STRING database was used to construct protein-protein network and identify hub genes. Results Notably, miR-106b-5p and miR-199a-3p were significantly upregulated (p < 0.0001), while miRNA-29b-3p was downregulated (p < 0.0001) in SZ patients compared to controls. The diagnostic potential was assessed through ROC curves, revealing substantial diagnostic value for miR-199a-3p (AUC: 0.979) followed by miR-106b-5p (AUC: 0.774), with limited diagnostic efficacy for miR-29b-3p. Additionally, bioinformatic analyses for the predicted target genes of the diagnostically significant miRNAs uncovered Gene Ontology (GO) terms related to neurological development, including morphogenesis, which is involved in neuron differentiation, brain development, head development, and neuron projection morphogenesis. These findings highlight a potential connection between the identified miRNAs and SZ pathophysiology in the studied Jordanian population. Furthermore, a protein-protein interaction network from the target genes identified in association with neurological development in the Gene Ontology (GO) terms deepens our comprehension of the molecular landscape of the regulated target genes. Conclusions This comprehensive exploration highlights the promising role of miRNAs in unraveling intricate molecular pathways associated with SZ in the Jordanian cohort and suggests that plasma miRNAs could serve as reliable biomarkers for SZ diagnosis and disease progression. Remarkably, this study represents the first investigation into the role of circulating miRNA expression among Jordanian patients with SZ, providing valuable insights into the diagnostic landscape of this disorder.
Collapse
Affiliation(s)
- Mohammad Shboul
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Amal Bani Domi
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Abdulmalek Abu Zahra
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Aws G. Khasawneh
- Department of Neurosciences, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Reem Darweesh
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
19
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
20
|
Kubat Oktem E. Biomarkers of Alzheimer's Disease Associated with Programmed Cell Death Reveal Four Repurposed Drugs. J Mol Neurosci 2024; 74:51. [PMID: 38700745 DOI: 10.1007/s12031-024-02228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/21/2024] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia. Programmed cell death (PCD) is mainly characterized by unique morphological features and energy-dependent biochemical processes. The predominant pathway leading to cell death in AD has not been thoroughly analyzed, although there is evidence of neuron loss in AD and numerous pathways of PCD have been associated with this process. A better understanding of the systems biology underlying the relationship between AD and PCD could lead to the development of new therapeutic approaches. To this end, publicly available transcriptome data were examined using bioinformatic methods such as differential gene expression and weighted gene coexpression network analysis (WGCNA) to find PCD-related AD biomarkers. The diagnostic significance of these biomarkers was evaluated using a logistic regression-based predictive model. Using these biomarkers, a multifactorial regulatory network was developed. Last, a drug repositioning study was conducted to propose new drugs for the treatment of AD targeting PCD. The development of 3PM (predictive, preventive, and personalized) drugs for the treatment of AD would be enabled by additional research on the effects of these drugs on this disease.
Collapse
Affiliation(s)
- Elif Kubat Oktem
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, North Campus, Istanbul, 34700, Turkey.
| |
Collapse
|
21
|
Teekaput C, Thiankhaw K, Chattipakorn N, Chattipakorn SC. Possible Roles of Extracellular Vesicles in the Pathogenesis and Interventions of Immune-Mediated Central Demyelinating Diseases. Exp Neurobiol 2024; 33:47-67. [PMID: 38724476 PMCID: PMC11089403 DOI: 10.5607/en24002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/15/2024] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are two of the most devastating immune-mediated central demyelinating disorders. NMOSD was once considered as a variant of MS until the discovery of an antibody specific to the condition. Despite both MS and NMOSD being considered central demyelinating disorders, their pathogenesis and clinical manifestations are distinct, however the exact mechanisms associated with each disease remain unclear. Extracellular vesicles (EVs) are nano-sized vesicles originating in various cells which serve as intercellular communicators. There is a large body of evidence to show the possible roles of EVs in the pathogenesis of several diseases, including the immune-mediated central demyelinating disorders. Various types of EVs are found across disease stages and could potentially be used as a surrogate marker, as well as acting by carrying a cargo of biochemical molecules. The possibility for EVs to be used as a next-generation targeted treatment for the immune-mediated central demyelinating disorders has been investigated. The aim of this review was to comprehensively identify, compile and discuss key findings from in vitro, in vivo and clinical studies. A summary of all findings shows that: 1) the EV profiles of MS and NMOSD differ from those of healthy individuals, 2) the use of EV markers as liquid biopsy diagnostic tools appears to be promising biomarkers for both MS and NMOSD, and 3) EVs are being studied as a potential targeted therapy for MS and NMOSD. Any controversial findings are also discussed in this review.
Collapse
Affiliation(s)
- Chutithep Teekaput
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kitti Thiankhaw
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
22
|
Ransom LS, Liu CS, Dunsmore E, Palmer CR, Nicodemus J, Ziomek D, Williams N, Chun J. Human brain small extracellular vesicles contain selectively packaged, full-length mRNA. Cell Rep 2024; 43:114061. [PMID: 38578831 DOI: 10.1016/j.celrep.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.
Collapse
Affiliation(s)
- Linnea S Ransom
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emily Dunsmore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carter R Palmer
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliet Nicodemus
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Derya Ziomek
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa Williams
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
23
|
Tsamou M, Roggen EL. Sex-associated microRNAs potentially implicated in sporadic Alzheimer's disease (sAD). Brain Res 2024; 1829:148791. [PMID: 38307153 DOI: 10.1016/j.brainres.2024.148791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND The onset and pathology of sporadic Alzheimer's disease (sAD) seem to be affected by both sex and genetic mechanisms. Evidence supports that the high prevalence of sAD in women, worldwide, may be attributed to an interplay among aging, sex, and lifestyle, influenced by genetics, metabolic changes, and hormones. Interestingly, epigenetic mechanisms such as microRNAs (miRNAs), known as master regulators of gene expression, may contribute to this observed sexual dimorphism in sAD. OBJECTIVES To investigate the potential impact of sex-associated miRNAs on processes manifesting sAD pathology, as described by the Tau-driven Adverse Outcome Pathway (AOP) leading to memory loss. METHODS Using publicly available human miRNA datasets, sex-biased miRNAs, defined as differentially expressed by sex in tissues possibly affected by sAD pathology, were collected. In addition, sex hormone-related miRNAs were also retrieved from the literature. The compiled sex-biased and sex hormone-related miRNAs were further plugged into the dysregulated processes of the Tau-driven AOP for memory loss. RESULTS Several miRNAs, previously identified as sex-associated, were implicated in dysregulated processes associated with the manifestation of sAD pathology. Importantly, the described pathology processes were not confined to a particular sex. A mechanistic-based approach utilizing miRNAs was adopted in order to elucidate the link between sex and biological processes potentially involved in the development of memory loss. CONCLUSIONS The identification of sex-associated miRNAs involved in the early processes manifesting memory loss may shed light to the complex molecular mechanisms underlying sAD pathogenesis in a sex-specific manner.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands.
| | - Erwin L Roggen
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands
| |
Collapse
|
24
|
Duan X, Zheng Q, Liang L, Zhou L. Serum Exosomal miRNA-125b and miRNA-451a are Potential Diagnostic Biomarker for Alzheimer's Diseases. Degener Neurol Neuromuscul Dis 2024; 14:21-31. [PMID: 38618193 PMCID: PMC11012623 DOI: 10.2147/dnnd.s444567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/29/2024] [Indexed: 04/16/2024] Open
Abstract
Aim To explore the diagnostic value of serum-derived exosomal miRNAs and predict the roles of their target genes in Alzheimer's disease (AD) based on the expression of miRNAs in AD patients. Methods We determined the relative concentration of exosomal miRNAs by High-throughput Second-generation Sequencing and real-time quantitative real-time PCR. Results 71 AD patients and 71 ND subjects were collected. The study demonstrated that hsa-miR-125b-1-3p, hsa-miR-193a-5p, hsa-miR-378a-3p, hsa-miR-378i and hsa-miR-451a are differentially expressed in the serum-derived exosomes of AD patients compared with healthy subjects. According to ROC analysis, hsa-miR-125b-1-3p has an AUC of 0.765 in the AD group compared to the healthy group with a sensitivity and specificity of 82.1-67.7%, respectively. Enrichment analysis of its target genes showed that they were related to neuroactive ligand-receptor interactions, the PI3K-Akt signaling pathway, the Hippo signaling pathway and nervous system-related pathways. And, hsa-miR-451a had an AUC of 0.728 that differentiated the AD group from the healthy group with a sensitivity and specificity of 67.9% and 72.6%, respectively. Enrichment analysis of its target genes showed a relationship with cytokine-cytokine receptor interactions and the PI3K-Akt signaling pathway. Conclusion The dysregulation of serum exosomal microRNAs in patients with AD may promote the diagnosis of AD. The target genes of miRNAs may be involved in the occurrence and development of AD through various pathways.
Collapse
Affiliation(s)
- Xian Duan
- Department of Geriatrics, Hunan Provincial People’s Hospital, Changsha, Hunan, 410002, People’s Republic of China
| | - Qing Zheng
- Department of Geriatrics, Hunan Provincial People’s Hospital, Changsha, Hunan, 410002, People’s Republic of China
| | - Lihui Liang
- Department of Geriatrics, Hunan Provincial People’s Hospital, Changsha, Hunan, 410002, People’s Republic of China
| | - Lin Zhou
- Department of Geriatrics, The Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| |
Collapse
|
25
|
Berriel Pinho VH, Daher JPL, Kanaan S, Medeiros T. Extracellular vesicles in Alzheimer's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38467392 PMCID: PMC10927369 DOI: 10.1055/s-0044-1779296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024]
Abstract
Extracellular vesicles (EVs) are small vesicles released by cells that facilitate cell signaling. They are categorized based on their biogenesis and size. In the context of the central nervous system (CNS), EVs have been extensively studied for their role in both normal physiological functions and diseases like Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by cognitive decline and neuronal death. EVs have emerged as potential biomarkers for AD due to their involvement in disease progression. Specifically, EVs derived from neurons, astrocytes, and neuron precursor cells exhibit changes in quantity and composition in AD. Neuron-derived EVs have been found to contain key proteins associated with AD pathology, such as amyloid beta (Aß) and tau. Increased levels of Aß in neuron-derived EVs isolated from the plasma have been observed in individuals with AD and mild cognitive impairment, suggesting their potential as early biomarkers. However, the analysis of tau in neuron-derived EVs is still inconclusive. In addition to Aß and tau, neuron-derived EVs also carry other proteins linked to AD, including synaptic proteins. These findings indicate that EVs could serve as biomarkers for AD, particularly for early diagnosis and disease monitoring. However, further research is required to validate their use and explore potential therapeutic applications. To summarize, EVs are small vesicles involved in cell signaling within the CNS. They hold promise as biomarkers for AD, potentially enabling early diagnosis and monitoring of disease progression. Ongoing research aims to refine their use as biomarkers and uncover additional therapeutic applications.
Collapse
Affiliation(s)
| | - João Paulo Lima Daher
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| | - Salim Kanaan
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| | - Thalia Medeiros
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| |
Collapse
|
26
|
Zhang WT, Zhang GX, Gao SS. The potential diagnostic accuracy of circulating microRNAs for Alzheimer's disease: A meta-analysis. Neurologia 2024; 39:147-159. [PMID: 38460993 DOI: 10.1016/j.nrleng.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/06/2021] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND & OBJECTIVE Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease that seriously affects cognitive ability and has become a key public health problem. Many studies have identified the possibility of peripheral blood microRNA as effective non-invasive biomarkers for AD diagnosis, but the results are inconsistent. Therefore, we carried out this meta-analysis to evaluate the diagnostic accuracy of circulating microRNAs in the diagnosis of AD patients. METHODS We performed a systematic literature search of the following databases: PubMed, EMBASE, Web of Science, Cochrane Library, Wanfang database and China National Knowledge Infrastructure, updated to March 15, 2021. A random effects model was used to pool the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and area under the curve. Meta-regression and subgroup analysis were performed to explore the sources of heterogeneity, and Deeks' funnel plot was used to assess whether there was publication bias. RESULTS 62 studies from 18 articles were included in this meta-analysis. The pooled sensitivity was 0.82 (95% CI: 0.78-0.85), specificity was 0.80 (95% CI: 0.76-0.83), PLR was 4. 1 (95% CI: 3.4-4.9), NLR was 0.23 (95% CI: 0.19-0.28), DOR was 18 (95% CI: 13-25) and AUC was 0.88 (95% CI: 0.84-0.90). Subgroup analysis shows that the microRNA clusters of plasma type performed a better diagnostic accuracy of AD patients. In addition, publication bias was not found. CONCLUSIONS Circulating microRNAs can be used as a promising non-invasive biomarker in AD diagnosis.
Collapse
Affiliation(s)
- W T Zhang
- Xi'an Daxing Hospital, Shaanxi, China; International Doctoral School, University of Seville, Spain
| | - G X Zhang
- International Doctoral School, University of Seville, Spain
| | - S S Gao
- Xi'an Daxing Hospital, Shaanxi, China; International Doctoral School, University of Seville, Spain.
| |
Collapse
|
27
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
28
|
Xu X, Iqbal Z, Xu L, Wen C, Duan L, Xia J, Yang N, Zhang Y, Liang Y. Brain-derived extracellular vesicles: Potential diagnostic biomarkers for central nervous system diseases. Psychiatry Clin Neurosci 2024; 78:83-96. [PMID: 37877617 DOI: 10.1111/pcn.13610] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanovesicles secreted by cells into the extracellular space and contain functional biomolecules, e.g. signaling receptors, bioactive lipids, nucleic acids, and proteins, which can serve as biomarkers. Neurons and glial cells secrete EVs, contributing to various physiological and pathological aspects of brain diseases. EVs confer their role in the bidirectional crosstalk between the central nervous system (CNS) and the periphery owing to their distinctive ability to cross the unique blood-brain barrier (BBB). Thus, EVs in the blood, cerebrospinal fluid (CSF), and urine can be intriguing biomarkers, enabling the minimally invasive diagnosis of CNS diseases. Although there has been an enormous interest in evaluating EVs as promising biomarkers, the lack of ultra-sensitive approaches for isolating and detecting brain-derived EVs (BDEVs) has hindered the development of efficient biomarkers. This review presents the recent salient findings of exosomal biomarkers, focusing on brain disorders. We summarize highly sensitive sensors for EV detection and state-of-the-art methods for single EV detection. Finally, the prospect of developing advanced EV analysis approaches for the non-invasive diagnosis of brain diseases is presented.
Collapse
Affiliation(s)
- Xiao Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Limei Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Caining Wen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ningning Yang
- Lake Erie College of Osteopathic Medicine School of Pharmacy, Bradenton, Florida, USA
| | - Yuanmin Zhang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yujie Liang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| |
Collapse
|
29
|
Sheykhhasan M, Heidari F, Farsani ME, Azimzadeh M, Kalhor N, Ababzadeh S, Seyedebrahimi R. Dual Role of Exosome in Neurodegenerative Diseases: A Review Study. Curr Stem Cell Res Ther 2024; 19:852-864. [PMID: 37496136 DOI: 10.2174/1574888x18666230726161035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are one of the crucial means of intercellular communication, which takes many different forms. They are heterogeneous, secreted by a range of cell types, and can be generally classified into microvesicles and exosomes depending on their location and function. Exosomes are small EVs with diameters of about 30-150 nm and diverse cell sources. METHODS The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of recent years, using the search string "Exosome" and "Neurodegenerative diseases." RESULTS The exosomes have attracted interest as a significant biomarker for a better understanding of disease development, gene silencing delivery, and alternatives to stem cell-based therapy because of their low-invasive therapeutic approach, repeatable distribution in the central nervous system (CNS), and high efficiency. Also, they are nanovesicles that carry various substances, which can have an impact on neural plasticity and cognitive functioning in both healthy and pathological circumstances. Therefore, exosomes are conceived as nanovesicles containing proteins, lipids, and nucleic acids. However, their composition varies considerably depending on the cells from which they are produced. CONCLUSION In the present review, we discuss several techniques for the isolation of exosomes from different cell sources. Furthermore, reviewing research on exosomes' possible functions as carriers of bioactive substances implicated in the etiology of neurodegenerative illnesses, we further examine them. We also analyze the preclinical and clinical research that shows exosomes to have therapeutic potential.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Fatemeh Heidari
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Eslami Farsani
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Azimzadeh
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Shima Ababzadeh
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Seyedebrahimi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
30
|
Chai YL, Strohm L, Zhu Y, Chia RS, Chong JR, Suresh DD, Zhou LH, Too HP, Hilal S, Radivoyevitch T, Koo EH, Chen CP, Poplawski GHD. Extracellular Vesicle-Enriched miRNA-Biomarkers Show Improved Utility for Detecting Alzheimer's Disease Dementia and Medial Temporal Atrophy. J Alzheimers Dis 2024; 99:1317-1331. [PMID: 38788066 PMCID: PMC11191453 DOI: 10.3233/jad-230572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Background Emerging diagnostic modalities suggest that miRNA profiles within extracellular vesicles (EVs) isolated from peripheral blood specimens may provide a non-invasive diagnostic alternative for dementia and neurodegenerative disorders. Given that EVs confer a protective environment against miRNA enzymatic degradation, the miRNAs enriched in the EV fraction of blood samples could serve as more stable and clinically relevant biomarkers compared to those obtained from serum. Objective To compare miRNAs isolated from EVs versus serum in blood taken from Alzheimer's disease (AD) dementia patients and control cohorts. Methods We compared 25 AD patients to 34 individuals who exhibited no cognitive impairments (NCI). Subjects were Singapore residents with Chinese heritage. miRNAs purified from serum versus blood-derived EVs were analyzed for associations with AD dementia and medial temporal atrophy detected by magnetic resonance imaging. Results Compared to serum-miRNAs, we identified almost twice as many EV-miRNAs associated with AD dementia, and they also correlated more significantly with medial temporal atrophy, a neuroimaging marker of AD-brain pathology. We further developed combination panels of serum-miRNAs and EV-miRNAs with improved performance in identifying AD dementia. Dominant in both panels was miRNA-1290. Conclusions This data indicates that miRNA profiling from EVs offers diagnostic superiority. This underscores the role of EVs as vectors harboring prognostic biomarkers for neurodegenerative disorders and suggests their potential in yielding novel biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Lea Strohm
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Yanan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Rachel S.L. Chia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Joyce Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Danesha Devini Suresh
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Heng Phon Too
- Department of Biochemistry, Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Kent Ridge, Singapore
| | - Tomas Radivoyevitch
- Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Edward H. Koo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Gunnar Heiko Dirk Poplawski
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
31
|
Huang Y, Driedonks TAP, Cheng L, Turchinovich A, Pletnikova O, Redding-Ochoa J, Troncoso JC, Hill AF, Mahairaki V, Zheng L, Witwer KW. Small RNA Profiles of Brain Tissue-Derived Extracellular Vesicles in Alzheimer's Disease. J Alzheimers Dis 2024; 99:S235-S248. [PMID: 37781809 DOI: 10.3233/jad-230872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background Extracellular vesicles (EVs) and non-coding RNAs (ncRNAs) are emerging contributors to Alzheimer's disease (AD) pathophysiology. Differential abundance of ncRNAs carried by EVs may provide valuable insights into underlying disease mechanisms. Brain tissue-derived EVs (bdEVs) are particularly relevant, as they may offer valuable insights about the tissue of origin. However, there is limited research on diverse ncRNA species in bdEVs in AD. Objective This study explored whether the non-coding RNA composition of EVs isolated from post-mortem brain tissue is related to AD pathogenesis. Methods bdEVs from age-matched late-stage AD patients (n = 23) and controls (n = 10) that had been separated and characterized in our previous study were used for RNA extraction, small RNA sequencing, and qPCR verification. Results Significant differences of non-coding RNAs between AD and controls were found, especially for miRNAs and tRNAs. AD pathology-related miRNA and tRNA differences of bdEVs partially matched expression differences in source brain tissues. AD pathology had a more prominent association than biological sex with bdEV miRNA and tRNA components in late-stage AD brains. Conclusions Our study provides further evidence that EV non-coding RNAs from human brain tissue, including but not limited to miRNAs, may be altered and contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tom A P Driedonks
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lesley Cheng
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Biolabs GmbH, Heidelberg, Germany
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
- Institute of Health and Sport, Victoria University, Melbourne, Australia
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Morris DC, Zacharek A, Zhang ZG, Chopp M. Extracellular vesicles-Mediators of opioid use disorder? Addict Biol 2023; 28:e13353. [PMID: 38017641 DOI: 10.1111/adb.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023]
Abstract
Opioid use disorder (OUD) is a growing health emergency in the United States leading to an epidemic of overdose deaths. OUD is recognized as an addictive brain disorder resulting in psychological, cognitive and behavioural dysfunction. These observed clinical dysfunctions are a result of cellular changes that occur in the brain. Derangements in inflammation, neurogenesis and synaptic plasticity are observed in the brains of OUD patients. The mechanisms of these derangements are unclear; however, extracellular vesicles (EVs), membrane bound particles containing protein, nucleotides and lipids are currently being investigated as agents that invoke these cellular changes. The primary function of EVs is to facilitate intercellular communication by transfer of cargo (protein, nucleotides and lipids) between cells; however, changes in this cargo have been observed in models of OUD suggesting that EVs may be agents promoting the observed cellular derangements. This review summarizes evidence that altered cargo of EVs, specifically protein and miRNA, in models of OUD promote impairments in neurons, astrocytes and microglial cells. These findings support the premise that opioids alter EVs to detrimentally affect neuro-cellular function resulting in the observed addictive, psychological and neurocognitive deficits in OUD patients.
Collapse
Affiliation(s)
- Daniel C Morris
- Department of Emergency Medicine, Michigan State University, College of Human Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Alex Zacharek
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
| | - Zheng G Zhang
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurological Research, Henry Ford Health, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
33
|
Wang L, Shui X, Diao Y, Chen D, Zhou Y, Lee TH. Potential Implications of miRNAs in the Pathogenesis, Diagnosis, and Therapeutics of Alzheimer's Disease. Int J Mol Sci 2023; 24:16259. [PMID: 38003448 PMCID: PMC10671222 DOI: 10.3390/ijms242216259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex multifactorial disorder that poses a substantial burden on patients, caregivers, and society. Considering the increased aging population and life expectancy, the incidence of AD will continue to rise in the following decades. However, the molecular pathogenesis of AD remains controversial, superior blood-based biomarker candidates for early diagnosis are still lacking, and effective therapeutics to halt or slow disease progression are urgently needed. As powerful genetic regulators, microRNAs (miRNAs) are receiving increasing attention due to their implications in the initiation, development, and theranostics of various diseases, including AD. In this review, we summarize miRNAs that directly target microtubule-associated protein tau (MAPT), amyloid precursor protein (APP), and β-site APP-cleaving enzyme 1 (BACE1) transcripts and regulate the alternative splicing of tau and APP. We also discuss related kinases, such as glycogen synthase kinase (GSK)-3β, cyclin-dependent kinase 5 (CDK5), and death-associated protein kinase 1 (DAPK1), as well as apolipoprotein E, that are directly targeted by miRNAs to control tau phosphorylation and amyloidogenic APP processing leading to Aβ pathologies. Moreover, there is evidence of miRNA-mediated modulation of inflammation. Furthermore, circulating miRNAs in the serum or plasma of AD patients as noninvasive biomarkers with diagnostic potential are reviewed. In addition, miRNA-based therapeutics optimized with nanocarriers or exosomes as potential options for AD treatment are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ying Zhou
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (L.W.)
| |
Collapse
|
34
|
Alqurashi H, Alsharief M, Perciato ML, Raven B, Ren K, Lambert DW. Message in a bubble: the translational potential of extracellular vesicles. J Physiol 2023; 601:4895-4905. [PMID: 37795936 PMCID: PMC10952456 DOI: 10.1113/jp282047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-enclosed vesicles released by cells into the extracellular milieu. They are found in all body fluids and contain a variety of functional cargo including DNA, RNA, proteins, glycoproteins and lipids, able to provoke phenotypic responses in cells, both locally and at distant sites. They are implicated in a wide array of physiological and pathological processes and hence have attracted considerable attention in recent years as potential therapeutic targets, drug delivery vehicles and biomarkers of disease. In this review we summarise the major functions of EVs in health and disease and discuss their translational potential, highlighting opportunities of - and challenges to - capitalising on our rapidly increasing understanding of EV biology for patient benefit.
Collapse
Affiliation(s)
- H. Alqurashi
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- College of DentistryKing Faisal UniversitySaudi Arabia
| | - M. Alsharief
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - M. L. Perciato
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - B. Raven
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- Healthy Lifespan InstituteUniversity of SheffieldSheffieldUK
| | - K. Ren
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - D. W. Lambert
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- Healthy Lifespan InstituteUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
35
|
Blanco K, Salcidua S, Orellana P, Sauma-Pérez T, León T, Steinmetz LCL, Ibañez A, Duran-Aniotz C, de la Cruz R. Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer's disease. Alzheimers Res Ther 2023; 15:176. [PMID: 37838690 PMCID: PMC10576366 DOI: 10.1186/s13195-023-01304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 10/16/2023]
Abstract
Mild cognitive impairment (MCI) is often considered an early stage of dementia, with estimated rates of progression to dementia up to 80-90% after approximately 6 years from the initial diagnosis. Diagnosis of cognitive impairment in dementia is typically based on clinical evaluation, neuropsychological assessments, cerebrospinal fluid (CSF) biomarkers, and neuroimaging. The main goal of diagnosing MCI is to determine its cause, particularly whether it is due to Alzheimer's disease (AD). However, only a limited percentage of the population has access to etiological confirmation, which has led to the emergence of peripheral fluid biomarkers as a diagnostic tool for dementias, including MCI due to AD. Recent advances in biofluid assays have enabled the use of sophisticated statistical models and multimodal machine learning (ML) algorithms for the diagnosis of MCI based on fluid biomarkers from CSF, peripheral blood, and saliva, among others. This approach has shown promise for identifying specific causes of MCI, including AD. After a PRISMA analysis, 29 articles revealed a trend towards using multimodal algorithms that incorporate additional biomarkers such as neuroimaging, neuropsychological tests, and genetic information. Particularly, neuroimaging is commonly used in conjunction with fluid biomarkers for both cross-sectional and longitudinal studies. Our systematic review suggests that cost-effective longitudinal multimodal monitoring data, representative of diverse cultural populations and utilizing white-box ML algorithms, could be a valuable contribution to the development of diagnostic models for AD due to MCI. Clinical assessment and biomarkers, together with ML techniques, could prove pivotal in improving diagnostic tools for MCI due to AD.
Collapse
Affiliation(s)
- Kevin Blanco
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal Las Torres 2700, Building D, Peñalolén, Santiago, Chile
| | - Paulina Orellana
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Tania Sauma-Pérez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Tomás León
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Center (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lorena Cecilia López Steinmetz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Technische Universität Berlin, Berlin, Deutschland
- Instituto de Investigaciones Psicológicas (IIPsi), Universidad Nacional de Córdoba (UNC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Agustín Ibañez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Claudia Duran-Aniotz
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile.
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Rolando de la Cruz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal Las Torres 2700, Building D, Peñalolén, Santiago, Chile.
- Data Observatory Foundation, ANID Technology Center No. DO210001, Santiago, Chile.
| |
Collapse
|
36
|
Nair S, Nova-Lamperti E, Labarca G, Kulasinghe A, Short KR, Carrión F, Salomon C. Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19. J Transl Med 2023; 21:709. [PMID: 37817137 PMCID: PMC10563316 DOI: 10.1186/s12967-023-04552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19. These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease. This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo Labarca
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4102, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia.
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
37
|
Geiger L, Orsi G, Cseh T, Gombos K, Illés Z, Czéh B. Circulating microRNAs correlate with structural and functional MRI parameters in patients with multiple sclerosis. Front Mol Neurosci 2023; 16:1173212. [PMID: 37881368 PMCID: PMC10597671 DOI: 10.3389/fnmol.2023.1173212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Circulating microRNAs are promising biomarkers for multiple sclerosis (MS). Our aim was to correlate serum microRNA levels with various magnetic resonance imaging (MRI) parameters. Methods We recruited 50 MS patients and measured cervical spine and cerebral white matter lesions together with regional brain volumes. Microstructural changes in the white matter were investigated with diffusion tensor imaging. Magnetic resonance spectroscopy was performed to measure cerebral metabolites. Functional connectivity within the default mode network was examined with resting-state functional MRI. On the day of the MRI measurements, we collected serum samples and carried out quantitative analysis of ten pre-selected microRNAs using droplet digital PCR. Results Serum level of miR-143.3p could differentiate between MS subtypes and had lower levels in progressive MS types. We found significant associations between microRNA levels and MRI measures: (1) higher miR-92a.3p and miR-486.5p levels were associated with greater total white matter lesion volumes within the cervical spine, (2) decreased miR-142.5p levels was associated with reduced total creatinine concentration and (3) miR-92a.3p, miR-142.5p and miR-486.5p levels were associated with functional connectivity strengths between specific nodes of the default mode network. Specifically, we found a negative association between miR-92a.3p and miR-486.5p levels and connectivity strength between the lateral temporal cortex and posterior inferior parietal lobule, and a positive association between miR-142.5p level and connectivity strength between the retrosplenial cortex and temporal pole. However, miRNA levels were not associated with regional brain volumes. Conclusion We provide here further evidence that circulating microRNAs may show correlation with both structural and functional neuroimaging outcomes in patients with MS.
Collapse
Affiliation(s)
- Lili Geiger
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gergely Orsi
- HUN-REN-PTE Clinical Neuroscience MR Research Group, Eötvös Loránd Research Network, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- Pécs Diagnostic Centre, Pécs, Hungary
| | - Tamás Cseh
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Katalin Gombos
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zsolt Illés
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
38
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
39
|
Visconte C, Fenoglio C, Serpente M, Muti P, Sacconi A, Rigoni M, Arighi A, Borracci V, Arcaro M, Arosio B, Ferri E, Golia MT, Scarpini E, Galimberti D. Altered Extracellular Vesicle miRNA Profile in Prodromal Alzheimer's Disease. Int J Mol Sci 2023; 24:14749. [PMID: 37834197 PMCID: PMC10572781 DOI: 10.3390/ijms241914749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles released by almost all body tissues, representing important mediators of cellular communication, and are thus promising candidate biomarkers for neurodegenerative diseases like Alzheimer's disease (AD). The aim of the present study was to isolate total EVs from plasma and characterize their microRNA (miRNA) contents in AD patients. We isolated total EVs from the plasma of all recruited subjects using ExoQuickULTRA exosome precipitation solution (SBI). Subsequently, circulating total EVs were characterized using Nanosight nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. A panel of 754 miRNAs was determined with RT-qPCR using TaqMan OpenArray technology in a QuantStudio 12K System (Thermo Fisher Scientific). The results demonstrated that plasma EVs showed widespread deregulation of specific miRNAs (miR-106a-5p, miR-16-5p, miR-17-5p, miR-195-5p, miR-19b-3p, miR-20a-5p, miR-223-3p, miR-25-3p, miR-296-5p, miR-30b-5p, miR-532-3p, miR-92a-3p, and miR-451a), some of which were already known to be associated with neurological pathologies. A further validation analysis also confirmed a significant upregulation of miR-16-5p, miR-25-3p, miR-92a-3p, and miR-451a in prodromal AD patients, suggesting these dysregulated miRNAs are involved in the early progression of AD.
Collapse
Affiliation(s)
- Caterina Visconte
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
| | - Chiara Fenoglio
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Maria Serpente
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- Dental and Maxillo-Facial Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, Regina Elena National Cancer Institute—IRCCS, 00144 Rome, Italy;
| | - Marta Rigoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- Dental and Maxillo-Facial Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Arighi
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Vittoria Borracci
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Marina Arcaro
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Maria Teresa Golia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- National Research Council of Italy, Institute of Neuroscience, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (C.V.); (P.M.); (M.R.); (M.T.G.); (D.G.)
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.S.); (A.A.); (V.B.); (M.A.); (E.S.)
| |
Collapse
|
40
|
Inagaki M, Uchiyama M, Yoshikawa-Kawabe K, Ito M, Murakami H, Gunji M, Minoshima M, Kohnoh T, Ito R, Kodama Y, Tanaka-Sakai M, Nakase A, Goto N, Tsushima Y, Mori S, Kozuka M, Otomo R, Hirai M, Fujino M, Yokoyama T. Comprehensive circulating microRNA profile as a supersensitive biomarker for early-stage lung cancer screening. J Cancer Res Clin Oncol 2023; 149:8297-8305. [PMID: 37076642 PMCID: PMC10115369 DOI: 10.1007/s00432-023-04728-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Less-invasive early diagnosis of lung cancer is essential for improving patient survival rates. The purpose of this study is to demonstrate that serum comprehensive miRNA profile is high sensitive biomarker to early-stage lung cancer in direct comparison to the conventional blood biomarker using next-generation sequencing (NGS) technology combined with automated machine learning (AutoML). METHODS We first evaluated the reproducibility of our measurement system using Pearson's correlation coefficients between samples derived from a single pooled RNA sample. To generate comprehensive miRNA profile, we performed NGS analysis of miRNAs in 262 serum samples. Among the discovery set (57 patients with lung cancer and 57 healthy controls), 1123 miRNA-based diagnostic models for lung cancer detection were constructed and screened using AutoML technology. The diagnostic faculty of the best performance model was evaluated by inspecting the validation samples (74 patients with lung cancer and 74 healthy controls). RESULTS The Pearson's correlation coefficients between samples derived from the pooled RNA sample ≥ 0.98. In the validation analysis, the best model showed a high AUC score (0.98) and a high sensitivity for early stage lung cancer (85.7%, n = 28). Furthermore, in comparison to carcinoembryonic antigen (CEA), a conventional blood biomarker for adenocarcinoma, the miRNA-based model showed higher sensitivity for early-stage lung adenocarcinoma (CEA, 27.8%, n = 18; miRNA-based model, 77.8%, n = 18). CONCLUSION The miRNA-based diagnostic model showed a high sensitivity for lung cancer, including early-stage disease. Our study provides the experimental evidence that serum comprehensive miRNA profile can be a highly sensitive blood biomarker for early-stage lung cancer.
Collapse
Affiliation(s)
- Masayasu Inagaki
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan
| | - Makoto Uchiyama
- Research and Development Division, ARKRAY, Inc., Yousuien-Nai, 59 Gansuin-Cho, Kamigyo-Ku, Kyoto, 602-0008, Japan.
| | - Kanae Yoshikawa-Kawabe
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, 453-8511, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, 453-8511, Japan
| | - Hideki Murakami
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, 453-8511, Japan
| | - Masaharu Gunji
- Department of Cytology and Molecular Pathology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, 453-8511, Japan
| | - Makoto Minoshima
- Department of Cytology and Molecular Pathology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, 453-8511, Japan
| | - Takashi Kohnoh
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan
| | - Ryota Ito
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan
| | - Yuta Kodama
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan
| | - Mari Tanaka-Sakai
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan
| | - Atsushi Nakase
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan
| | - Nozomi Goto
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan
| | - Yusuke Tsushima
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan
| | - Shoich Mori
- Department of Respiratory Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, 453-8511, Japan
| | - Masahiro Kozuka
- Research and Development Division, ARKRAY, Inc., Yousuien-Nai, 59 Gansuin-Cho, Kamigyo-Ku, Kyoto, 602-0008, Japan
| | - Ryo Otomo
- Research and Development Division, ARKRAY, Inc., Yousuien-Nai, 59 Gansuin-Cho, Kamigyo-Ku, Kyoto, 602-0008, Japan
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc., Yousuien-Nai, 59 Gansuin-Cho, Kamigyo-Ku, Kyoto, 602-0008, Japan
| | - Masahiko Fujino
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, 453-8511, Japan
| | - Toshihiko Yokoyama
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, Aichi, 453-8511, Japan.
| |
Collapse
|
41
|
Awuson-David B, Williams AC, Wright B, Hill LJ, Di Pietro V. Common microRNA regulated pathways in Alzheimer's and Parkinson's disease. Front Neurosci 2023; 17:1228927. [PMID: 37719162 PMCID: PMC10502311 DOI: 10.3389/fnins.2023.1228927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in gene regulation. Recently, miRNA dysregulation has been found in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The diagnosis of Alzheimer's and Parkinson's is currently challenging, mainly occurring when pathology is already present, and although treatments are available for both diseases, the role of treatment is primarily to prevent or delay the progress of the diseases instead of fully overcoming the diseases. Therefore, the challenge in the near future will be to determine effective drugs to tackle the dysregulated biological pathways in neurodegenerative diseases. In the present study, we describe the dysregulation of miRNAs in blood of Alzheimer's and Parkinson's patients with the aim to identify common mechanisms between the 2 pathologies and potentially to identify common therapeutic targets which can stop or delay the progression of two most frequent neuropathologies. Two independent systematic reviews, bioinformatic analysis, and experiment validation were performed to identify whether AD and PD share common pathways. A total of 15 common miRNAs were found in the literature and 13 common KEGG pathways. Among the common miRNAs, two were selected for validation in a small cohort of AD and PD patients. Let-7f-5p and miR-29b-3p showed to be good predictors in blood of PD patients.
Collapse
Affiliation(s)
- Betina Awuson-David
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adrian C. Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Benjamin Wright
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Lisa J. Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
42
|
Baek W, Lee J, Jang Y, Kim J, Shin DA, Park H, Koo BN, Lee H. Assessment of Risk Factors for Postoperative Delirium in Older Adults Who Underwent Spinal Surgery and Identifying Associated Biomarkers Using Exosomal Protein. J Korean Acad Nurs 2023; 53:371-384. [PMID: 37673813 DOI: 10.4040/jkan.22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE With an increase in the aging population, the number of patients with degenerative spinal diseases undergoing surgery has risen, as has the incidence of postoperative delirium. This study aimed to investigate the risk factors affecting postoperative delirium in older adults who had undergone spine surgery and to identify the associated biomarkers. METHODS This study is a prospective study. Data of 100 patients aged ≥ 70 years who underwent spinal surgery were analyzed. Demographic data, medical history, clinical characteristics, cognitive function, depression symptoms, functional status, frailty, and nutritional status were investigated to identify the risk factors for delirium. The Confusion Assessment Method, Delirium Rating Scale-R-98, and Nursing Delirium Scale were also used for diagnosing delirium. To discover the biomarkers, urine extracellular vesicles (EVs) were analyzed for tau, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), neurofilament light, and glial fibrillary acidic protein using digital immunoassay technology. RESULTS Nine patients were excluded, and data obtained from the remaining 91 were analyzed. Among them, 18 (19.8%) developed delirium. Differences were observed between participants with and without delirium in the contexts of a history of mental disorder and use of benzodiazepines (p = .005 and p = .026, respectively). Tau and UCH-L1-concentrations of urine EVs-were comparatively higher in participants with severe delirium than that in participants without delirium (p = .002 and p = .001, respectively). CONCLUSION These findings can assist clinicians in accurately identifying the risk factors before surgery, classifying high-risk patients, and predicting and detecting delirium in older patients. Moreover, urine EV analysis revealed that postoperative delirium following spinal surgery is most likely associated with brain damage.
Collapse
Affiliation(s)
- Wonhee Baek
- Department of Nursing, Yonsei University Graduate School, Seoul, Korea
| | - JuHee Lee
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea
| | - Yeonsoo Jang
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Ah Shin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunki Park
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyangkyu Lee
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Korea.
| |
Collapse
|
43
|
He A, Wang M, Li X, Chen H, Lim K, Lu L, Zhang C. Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2023; 24:11054. [PMID: 37446231 DOI: 10.3390/ijms241311054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDDs) threatening the lives of millions of people worldwide, including especially elderly people. Currently, due to the lack of a timely diagnosis and proper intervention strategy, AD and PD largely remain incurable. Innovative diagnosis and therapy are highly desired. Exosomes are small vesicles that are present in various bodily fluids, which contain proteins, nucleic acids, and active biomolecules, and which play a crucial role especially in intercellular communication. In recent years, the role of exosomes in the pathogenesis, early diagnosis, and treatment of diseases has attracted ascending attention. However, the exact role of exosomes in the pathogenesis and theragnostic of AD and PD has not been fully illustrated. In the present review, we first introduce the biogenesis, components, uptake, and function of exosomes. Then we elaborate on the involvement of exosomes in the pathogenesis of AD and PD. Moreover, the application of exosomes in the diagnosis and therapeutics of AD and PD is also summarized and discussed. Additionally, exosomes serving as drug carriers to deliver medications to the central nervous system are specifically addressed. The potential role of exosomes in AD and PD is explored, discussing their applications in diagnosis and treatment, as well as their current limitations. Given the limitation in the application of exosomes, we also propose future perspectives for better utilizing exosomes in NDDs. Hopefully, it would pave ways for expanding the biological applications of exosomes in fundamental research as well as theranostics of NDDs.
Collapse
Affiliation(s)
- Aojie He
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Meiling Wang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Hong Chen
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
44
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
45
|
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, Wolfram J, Fairweather D. Extracellular vesicles as personalized medicine. Mol Aspects Med 2023; 91:101155. [PMID: 36456416 PMCID: PMC10073244 DOI: 10.1016/j.mam.2022.101155] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Keith L March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL, 32611, USA; Division of Cardiology, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
46
|
Patel S, Guo MK, Abdul Samad M, Howe KL. Extracellular vesicles as biomarkers and modulators of atherosclerosis pathogenesis. Front Cardiovasc Med 2023; 10:1202187. [PMID: 37304965 PMCID: PMC10250645 DOI: 10.3389/fcvm.2023.1202187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
Extracellular vesicles (EVs) are small, lipid bilayer-enclosed structures released by various cell types that play a critical role in intercellular communication. In atherosclerosis, EVs have been implicated in multiple pathophysiological processes, including endothelial dysfunction, inflammation, and thrombosis. This review provides an up-to-date overview of our current understanding of the roles of EVs in atherosclerosis, emphasizing their potential as diagnostic biomarkers and their roles in disease pathogenesis. We discuss the different types of EVs involved in atherosclerosis, the diverse cargoes they carry, their mechanisms of action, and the various methods employed for their isolation and analysis. Moreover, we underscore the importance of using relevant animal models and human samples to elucidate the role of EVs in disease pathogenesis. Overall, this review consolidates our current knowledge of EVs in atherosclerosis and highlights their potential as promising targets for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Sarvatit Patel
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mandy Kunze Guo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Majed Abdul Samad
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
47
|
Cable J, Witwer KW, Coffey RJ, Milosavljevic A, von Lersner AK, Jimenez L, Pucci F, Barr MM, Dekker N, Barman B, Humphrys D, Williams J, de Palma M, Guo W, Bastos N, Hill AF, Levy E, Hantak MP, Crewe C, Aikawa E, Adamczyk AM, Zanotto TM, Ostrowski M, Arab T, Rabe DC, Sheikh A, da Silva DR, Jones JC, Okeoma C, Gaborski T, Zhang Q, Gololobova O. Exosomes, microvesicles, and other extracellular vesicles-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1523:24-37. [PMID: 36961472 PMCID: PMC10715677 DOI: 10.1111/nyas.14974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.
Collapse
Affiliation(s)
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics; Dan L Duncan Comprehensive Cancer Center; and Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA
| | | | - Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ferdinando Pucci
- Department of Otolaryngology-Head and Neck Surgery; Department of Cell, Developmental & Cancer Biology; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Niek Dekker
- Protein Sciences, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bahnisikha Barman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Justin Williams
- University of California, Berkeley, Berkeley, California, USA
| | - Michele de Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL); Agora Cancer Research Center; and Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nuno Bastos
- i3S Instituto de Investigação e Inovação em Saúde; IPATIMUP Institute of Molecular Pathology and Immunology; and ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Andrew F Hill
- Research Centre for Extracellular Vesicles; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University and Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry; Department of Biochemistry & Molecular Pharmacology; and NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael P Hantak
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Cell Biology, Washington University, St. Louis, Missouri, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine and Center for Excellence in Vascular Biology, Department of Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tamires M Zanotto
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matias Ostrowski
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel C Rabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Aadil Sheikh
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, Texas, USA
| | | | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology and Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chioma Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Thomas Gaborski
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Sun Y, Hefu Z, Li B, Lifang W, Zhijie S, Zhou L, Deng Y, Zhili L, Ding J, Li T, Zhang W, Chao N, Rong S. Plasma Extracellular Vesicle MicroRNA Analysis of Alzheimer's Disease Reveals Dysfunction of a Neural Correlation Network. RESEARCH (WASHINGTON, D.C.) 2023; 6:0114. [PMID: 37223486 PMCID: PMC10202186 DOI: 10.34133/research.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
Small extracellular vesicle (sEV) is an emerging source of potential biomarkers of Alzheimer's disease (AD), but the role of microRNAs (miRNAs) in sEV is not well understood. In this study, we conducted a comprehensive analysis of sEV-derived miRNAs in AD using small RNA sequencing and coexpression network analysis. We examined a total of 158 samples, including 48 from AD patients, 48 from patients with mild cognitive impairment (MCI), and 62 from healthy controls. We identified an miRNA network module (M1) that was strongly linked to neural function and showed the strongest association with AD diagnosis and cognitive impairment. The expression of miRNAs in the module was decreased in both AD and MCI patients compared to controls. Conservation analysis revealed that M1 was highly preserved in the healthy control group but dysfunctional in the AD and MCI groups, suggesting that changes in the expression of miRNAs in this module may be an early response to cognitive decline prior to the appearance of AD pathology. We further validated the expression levels of the hub miRNAs in M1 in an independent population. The functional enrichment analysis showed that 4 hub miRNAs might interact with a GDF11-centered network and play a critical role in the neuropathology of AD. In summary, our study provides new insights into the role of sEV-derived miRNAs in AD and suggests that M1 miRNAs may serve as potential biomarkers for the early diagnosis and monitoring of AD.
Collapse
Affiliation(s)
- Yuzhe Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College,
Wuhan University of Science and Technology, Wuhan, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Zhen Hefu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Benchao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College,
Wuhan University of Science and Technology, Wuhan, China
| | - Wang Lifang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Song Zhijie
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College,
Wuhan University of Science and Technology, Wuhan, China
| | - Yan Deng
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College,
Wuhan University of Science and Technology, Wuhan, China
| | - Liu Zhili
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahong Ding
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Tao Li
- BGI-Shenzhen, Shenzhen, China
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Nie Chao
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College,
Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Traumatic MicroRNAs: Deconvolving the Signal After Severe Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:1061-1075. [PMID: 35852739 DOI: 10.1007/s10571-022-01254-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
Abstract
History of traumatic brain injury (TBI) represents a significant risk factor for development of dementia and neurodegenerative disorders in later life. While histopathological sequelae and neurological diagnostics of TBI are well defined, the molecular events linking the post-TBI signaling and neurodegenerative cascades remain unknown. It is not only due to the brain's inaccessibility to direct molecular analysis but also due to the lack of well-defined and highly informative peripheral biomarkers. MicroRNAs (miRNAs) in blood are promising candidates to address this gap. Using integrative bioinformatics pipeline including miRNA:target identification, pathway enrichment, and protein-protein interactions analysis we identified set of genes, interacting proteins, and pathways that are connected to previously reported peripheral miRNAs, deregulated following severe traumatic brain injury (sTBI) in humans. This meta-analysis revealed a spectrum of genes closely related to critical biological processes, such as neuroregeneration including axon guidance and neurite outgrowth, neurotransmission, inflammation, proliferation, apoptosis, cell adhesion, and response to DNA damage. More importantly, we have identified molecular pathways associated with neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, based on purely peripheral markers. The pathway signature after acute sTBI is similar to the one observed in chronic neurodegenerative conditions, which implicates a link between the post-sTBI signaling and neurodegeneration. Identified key hub interacting proteins represent a group of novel candidates for potential therapeutic targets or biomarkers.
Collapse
|
50
|
Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer's Disease. Cell Mol Neurobiol 2023:10.1007/s10571-023-01330-y. [PMID: 36847930 DOI: 10.1007/s10571-023-01330-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The development of early non-invasive diagnosis methods and identification of novel biomarkers are necessary for managing Alzheimer's disease (AD) and facilitating effective prognosis and treatment. AD has multi-factorial nature and involves complex molecular mechanism, which causes neuronal degeneration. The primary challenges in early AD detection include patient heterogeneity and lack of precise diagnosis at the preclinical stage. Several cerebrospinal fluid (CSF) and blood biomarkers have been proposed to show excellent diagnosis ability by identifying tau pathology and cerebral amyloid beta (Aβ) for AD. Intense research endeavors are being made to develop ultrasensitive detection techniques and find potent biomarkers for early AD diagnosis. To mitigate AD worldwide, understanding various CSF biomarkers, blood biomarkers, and techniques that can be used for early diagnosis is imperative. This review attempts to provide information regarding AD pathophysiology, genetic and non-genetic factors associated with AD, several potential blood and CSF biomarkers, like neurofilament light, neurogranin, Aβ, and tau, along with biomarkers under development for AD detection. Besides, numerous techniques, such as neuroimaging, spectroscopic techniques, biosensors, and neuroproteomics, which are being explored to aid early AD detection, have been discussed. The insights thus gained would help in finding potential biomarkers and suitable techniques for the accurate diagnosis of early AD before cognitive dysfunction.
Collapse
|