1
|
Hing B, Mitchell SB, Filali Y, Eberle M, Hultman I, Matkovich M, Kasturirangan M, Johnson M, Wyche W, Jimenez A, Velamuri R, Ghumman M, Wickramasinghe H, Christian O, Srivastava S, Hultman R. Transcriptomic Evaluation of a Stress Vulnerability Network Using Single-Cell RNA Sequencing in Mouse Prefrontal Cortex. Biol Psychiatry 2024; 96:886-899. [PMID: 38866174 PMCID: PMC11524784 DOI: 10.1016/j.biopsych.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Increased vulnerability to stress is a major risk factor for several mood disorders, including major depressive disorder. Although cellular and molecular mechanisms associated with depressive behaviors following stress have been identified, little is known about the mechanisms that confer the vulnerability that predisposes individuals to future damage from chronic stress. METHODS We used multisite in vivo neurophysiology in freely behaving male and female C57BL/6 mice (n = 12) to measure electrical brain network activity previously identified as indicating a latent stress vulnerability brain state. We combined this neurophysiological approach with single-cell RNA sequencing of the prefrontal cortex to identify distinct transcriptomic differences between groups of mice with inherent high and low stress vulnerability. RESULTS We identified hundreds of differentially expressed genes (padjusted < .05) across 5 major cell types in animals with high and low stress vulnerability brain network activity. This unique analysis revealed that GABAergic (gamma-aminobutyric acidergic) neuron gene expression contributed most to the network activity of the stress vulnerability brain state. Upregulation of mitochondrial and metabolic pathways also distinguished high and low vulnerability brain states, especially in inhibitory neurons. Importantly, genes that were differentially regulated with vulnerability network activity significantly overlapped (above chance) with those identified by genome-wide association studies as having single nucleotide polymorphisms significantly associated with depression as well as genes more highly expressed in postmortem prefrontal cortex of patients with major depressive disorder. CONCLUSIONS This is the first study to identify cell types and genes involved in a latent stress vulnerability state in the brain.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sara B Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Yassine Filali
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Maureen Eberle
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Ian Hultman
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Molly Matkovich
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | | | - Micah Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Whitney Wyche
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Alli Jimenez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Radha Velamuri
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Mahnoor Ghumman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Himali Wickramasinghe
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Olivia Christian
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sanvesh Srivastava
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Rainbo Hultman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Department of Psychiatry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
2
|
Lu Y, Han L, Wang X, Liu X, Jia X, Lan K, Gao S, Feng Z, Yu L, Yang Q, Cui N, Wei YB, Liu JJ. Association between blood mitochondrial DNA copy number and mental disorders: A bidirectional two-sample mendelian randomization study. J Affect Disord 2024; 366:370-378. [PMID: 39197553 DOI: 10.1016/j.jad.2024.08.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Mitochondria is essential for cellular energy production, oxidative stress, and apoptosis. Mitochondrial DNA (mtDNA) encodes essential proteins for mitochondrial function. Although several studies have explored the association between changes in mtDNA copy number (mtDNA-CN) and risk of mental disorders, the results remain debated. This study used a bidirectional two-sample Mendelian randomization (MR) analysis to examine the genetic causality between mtDNA-CN and mental disorders. METHODS Genome-wide association study (GWAS) data for mtDNA-CN were sourced from UK biobank, involving 383,476 European cases. GWAS data for seven mental disorders-attention deficit/hyperactivity disorder, autism spectrum disorder (ASD), schizophrenia, bipolar disorder, major depressive disorder, anxiety, and obsessive-compulsive disorder-were primarily obtained from the Psychiatric Genomics Consortium. Causal associations were assessed using inverse variance weighting, with sensitivity analyses via the weighted median and MR-Egger methods. Reverse MR considered the seven mental disorders as exposures. All analyses were replicated with additional mtDNA-CN GWAS data from 465,809 individuals in the Heart and Ageing Research in Genomic Epidemiology consortium and the UK Biobank. RESULTS Forward MR observed a 27 % decrease in the risk of ASD per standard deviation increase in genetically determined blood mtDNA-CN (OR = 0.73, 95%CI: 0.58-0.92, p = 0.002), with no causal effects on other disorders. Additionally, reverse MR did not indicate a causal association between any of the mental disorders and mtDNA-CN. Validation analyses corroborated these findings, indicating their robustness. CONCLUSIONS Our study supports the potential causal association between mtDNA-CN and the risk of ASD, suggesting that mtDNA-CN could serve as a promising biomarker for early screening of ASD.
Collapse
Affiliation(s)
- Yan'e Lu
- School of Nursing, Peking University, Beijing 100191, China
| | - Lei Han
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Xingxing Wang
- School of Nursing, Peking University, Beijing 100191, China
| | - Xiaotong Liu
- School of Nursing, Peking University, Beijing 100191, China
| | - Xinlei Jia
- School of Nursing, Peking University, Beijing 100191, China
| | - Kunyi Lan
- School of Nursing, Peking University, Beijing 100191, China
| | - Shumin Gao
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Zhendong Feng
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Lulu Yu
- Mental Health Center, the First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, Hebei Province 050031, China
| | - Qian Yang
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Naixue Cui
- School of Nursing and Rehabilitation, Shandong University, Shandong Province 250012, China
| | - Ya Bin Wei
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Jia Jia Liu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Hartwell EE, Jinwala Z, Milone J, Ramirez S, Gelernter J, Kranzler HR, Kember RL. Application of polygenic scores to a deeply phenotyped sample enriched for substance use disorders reveals extensive pleiotropy with psychiatric and somatic traits. Neuropsychopharmacology 2024; 49:1958-1967. [PMID: 39043921 PMCID: PMC11480112 DOI: 10.1038/s41386-024-01922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/07/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Co-occurring psychiatric, medical, and substance use disorders (SUDs) are common, but the complex pathways leading to such comorbidities are poorly understood. A greater understanding of genetic influences on this phenomenon could inform precision medicine efforts. We used the Yale-Penn dataset, a cross-sectional sample enriched for individuals with SUDs, to examine pleiotropic effects of genetic liability for psychiatric and somatic traits. Participants completed an in-depth interview that provides information on demographics, environment, medical illnesses, and psychiatric and SUDs. Polygenic scores (PGS) for psychiatric disorders and somatic traits were calculated in European-ancestry (EUR; n = 5691) participants and, when discovery datasets were available, for African-ancestry (AFR; n = 4918) participants. Phenome-wide association studies (PheWAS) were then conducted. In AFR participants, the only PGS with significant associations was bipolar disorder (BD), all of which were with substance use phenotypes. In EUR participants, PGS for major depressive disorder (MDD), generalized anxiety disorder (GAD), post-traumatic stress disorder (PTSD), schizophrenia (SCZ), body mass index (BMI), coronary artery disease (CAD), and type 2 diabetes (T2D) all showed significant associations, the majority of which were with phenotypes in the substance use categories. For instance, PGSMDD was associated with over 200 phenotypes, 15 of which were depression-related (e.g., depression criterion count), 55 of which were other psychiatric phenotypes, and 126 of which were substance use phenotypes; and PGSBMI was associated with 138 phenotypes, 105 of which were substance related. Genetic liability for psychiatric and somatic traits is associated with numerous phenotypes across multiple categories, indicative of the broad genetic liability of these traits.
Collapse
Affiliation(s)
- Emily E Hartwell
- Crescenz VA Medical Center, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Zeal Jinwala
- Crescenz VA Medical Center, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Joel Gelernter
- West Haven VA Medical Center, West Haven, CT, USA
- Yale University, New Haven, CT, USA
| | - Henry R Kranzler
- Crescenz VA Medical Center, Philadelphia, PA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel L Kember
- Crescenz VA Medical Center, Philadelphia, PA, USA.
- University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Halvorsen MW, de Schipper E, Bäckman J, Strom NI, Hagen K, Lindblad-Toh K, Karlsson EK, Pedersen NL, Wallert J, Bulik CM, Fundín B, Landén M, Kvale G, Hansen B, Haavik J, Mattheisen M, Rück C, Mataix-Cols D, Crowley JJ. A burden of rare copy number variants in obsessive-compulsive disorder. Mol Psychiatry 2024:10.1038/s41380-024-02763-7. [PMID: 39463448 DOI: 10.1038/s41380-024-02763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Current genetic research on obsessive-compulsive disorder (OCD) supports contributions to risk specifically from common single nucleotide variants (SNVs), along with rare coding SNVs and small insertion-deletions (indels). The contribution to OCD risk from rare copy number variants (CNVs), however, has not been formally assessed at a similar scale. Here we describe an analysis of rare CNVs called from genotype array data in 2248 deeply phenotyped OCD cases and 3608 unaffected controls from Sweden and Norway. Cases carry an elevated burden of CNVs ≥30 kb in size (OR = 1.12, P = 1.77 × 10-3). The excess rate of these CNVs in cases versus controls was around 0.07 (95% CI 0.02-0.11, P = 2.58 × 10-3). This signal was largely driven by CNVs overlapping protein-coding regions (OR = 1.19, P = 3.08 × 10-4), particularly deletions impacting loss-of-function intolerant genes (pLI >0.995, OR = 4.12, P = 2.54 × 10-5). We did not identify any specific locus where CNV burden was associated with OCD case status at genome-wide significance, but we noted non-random recurrence of CNV deletions in cases (permutation P = 2.60 × 10-3). In cases where sufficient clinical data were available (n = 1612) we found that carriers of neurodevelopmental duplications were more likely to have comorbid autism (P < 0.001), and that carriers of deletions overlapping neurodevelopmental genes had lower treatment response (P = 0.02). The results demonstrate a contribution of rare CNVs to OCD risk, and suggest that studies of rare coding variation in OCD would have increased power to identify risk genes if this class of variation were incorporated into formal tests.
Collapse
Affiliation(s)
- Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden.
| | - Elles de Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Julia Bäckman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Nora I Strom
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kristen Hagen
- Department of Psychiatry, Molde Hospital, Molde, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 32, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - John Wallert
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bengt Fundín
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Kvale
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Bjarne Hansen
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Center for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Jan Haavik
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Manuel Mattheisen
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Dalhousie University, Department of Community Health and Epidemiology & Faculty of Computer Science, Halifax, Nova Scotia, Canada
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| |
Collapse
|
5
|
Morey RA, Zheng Y, Bayly H, Sun D, Garrett ME, Gasperi M, Maihofer AX, Baird CL, Grasby KL, Huggins AA, Haswell CC, Thompson PM, Medland S, Gustavson DE, Panizzon MS, Kremen WS, Nievergelt CM, Ashley-Koch AE, Logue MW. Genomic structural equation modeling reveals latent phenotypes in the human cortex with distinct genetic architecture. Transl Psychiatry 2024; 14:451. [PMID: 39448598 PMCID: PMC11502831 DOI: 10.1038/s41398-024-03152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to map the genetic architecture of cortical surface area (SA) and cortical thickness (CT) for 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance, which we are denoting genetically informed brain networks (GIBNs). Genomic SEM can fit a multivariate GWAS from summary statistics for each of the GIBNs, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA identified 6 GIBNs and CT identified 4 GIBNs, although sensitivity analyses indicated that other structures were plausible. The multivariate GWASs of the GIBNs identified 74 genome-wide significant (GWS) loci (p < 5 × 10-8), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of GIBN GWASs found that SA-derived GIBNs had a positive genetic correlation with bipolar disorder (BPD), and cannabis use disorder, indicating genetic predisposition to a larger SA in the specific GIBN is associated with greater genetic risk of these disorders. A negative genetic correlation was observed between attention deficit hyperactivity disorder (ADHD) and major depressive disorder (MDD). CT GIBNs displayed a negative genetic correlation with alcohol dependence. Even though we observed model instability in our application of genomic SEM to high-dimensional data, jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across neuroimaging phenotypes offers new insights into the genetics of cortical structure and relationships to psychopathology.
Collapse
Affiliation(s)
- Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Henry Bayly
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Melanie E Garrett
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
- Department of Medicine, Duke Molecular Physiology Institute, Carmichael Building, Duke University Medical Center, Durham, NC, 27701, USA
| | - Marianna Gasperi
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam X Maihofer
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR, Berghofer Medical Research Institute, 4006, Brisbane, QLD, Australia
| | - Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute Keck School of Medicine University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah Medland
- Queensland Institute for Medical Research, Berghofer Medical Research Institute, 4006, Brisbane, QLD, Australia
| | - Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Matthew S Panizzon
- Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, 92093, USA
| | - William S Kremen
- Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, 92093, USA
| | - Caroline M Nievergelt
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allison E Ashley-Koch
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
- Department of Medicine, Duke Molecular Physiology Institute, Carmichael Building, Duke University Medical Center, Durham, NC, 27701, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, 02118-2526, USA.
| |
Collapse
|
6
|
Wilson C, Gattuso JJ, Kuznetsova M, Li S, Connell S, Choo JM, Rogers GB, Gubert C, Hannan AJ, Renoir T. Experience-dependent grooming microstructure alterations and gastrointestinal dysfunction in the SAPAP3 knockout mouse model of compulsive behaviour. J Affect Disord 2024; 363:520-531. [PMID: 39043310 DOI: 10.1016/j.jad.2024.07.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Compulsive- and anxiety-like behaviour can be efficiently modelled in SAPAP3 knockout (KO) mice, a preclinical model of relevance to obsessive-compulsive disorder (OCD). Although there is emerging evidence in the clinical literature of gastrointestinal dysfunction in OCD, no previous studies have investigated gut function in preclinical models of relevance to OCD. Similarly, the effects of voluntary exercise (EX) or environmental enrichment (EE) have not yet been explored in this context. METHOD We comprehensively phenotyped the SAPAP3 KO mouse model, including the assessment of grooming microstructure, anxiety- and depressive-like behaviour, and gastrointestinal function. Mice were exposed to either standard housing (SH), exercise (EX, provided by giving mice access to running wheels), or environmental enrichment (EE) for 4 weeks to investigate the effects of enriched housing conditions in this animal model relevant to OCD. FINDINGS Our study is the first to assess grooming microstructure, perseverative locomotor activity, and gastrointestinal function in SAPAP3 KO mice. We are also the first to report a sexually dimorphic effect of grooming in young-adult SAPAP3 KO mice; along with changes to grooming patterning and indicators of gut dysfunction, which occurred in the absence of gut dysbiosis in this model. Overall, we found no beneficial effects of voluntary exercise or environmental enrichment interventions in this mouse model; and unexpectedly, we revealed a deleterious effect of wheel-running exercise on grooming behaviour. We suspect that the detrimental effects of experimental housing in our study may be indicative of off-target effects of stress-a conclusion that warrants further investigation into the effects of chronic stress in this preclinical model of compulsive behaviour.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Maria Kuznetsova
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Sasha Connell
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
7
|
Cao S, Su H, Zhang X, Fang C, Wu N, Zeng Y, Chen M. Mendelian Randomization Study Supports Genetic Liability to Obsessive-Compulsive Disorder Associated With the Risk of Alzheimer's Disease. Brain Behav 2024; 14:e70081. [PMID: 39344387 PMCID: PMC11440019 DOI: 10.1002/brb3.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Observational studies have suggested that obsessive-compulsive disorder (OCD) may be associated with Alzheimer's disease (AD). However, whether OCD is a causal risk factor for AD remains unclear. This study aimed to assess the causal effect of OCD on AD risk by performing a two-sample Mendelian randomization (MR) analysis. METHODS Genome-wide association summary statistics were obtained for OCD, comprising 2688 cases and 7037 controls, as well as for AD, including 21,982 cases and 41,944 controls from Kunkle et al.'s study, and 39,918 cases and 358,140 controls from Wightman et al.'s study. On the basis of two diverse thresholds, OCD-associated genetic variants were screened as instrumental variables (IVs) for subsequent MR analyses. Inverse variance weighed was the primary MR method. MR-Egger, weighted median, and weighted mode were used as supplementary MR methods. Various sensitivity tests assessed the reliability of MR results. RESULTS On the basis of strict IV selecting thresholds, inverse-variance weighted (IVW) identified significant causal associations between genetic liability to OCD and increased risk of AD in two different sources ((i) Kunkle et al.: odds ratio [OR] = 1.070, 95% confidence interval [CI]: 1.015-1.127, p = 0.012; (ii) Wightman et al. 0.012; (iii) Wightman et al.: OR = 1.051, 95% CI: 1.014-1.090, p = 0.007). Three other supplementary MR methods yielded similar results to IVWs (OR > 1). Furthermore, all results were replicated in MR analyses based on lenient IV selecting thresholds. The sensitivity tests indicated that MR results were stable and not affected by significant horizontal pleiotropy. CONCLUSIONS This comprehensive MR study suggests that genetic liability to OCD is a causal risk factor for AD. Early intervention in patients with OCD may be beneficial in preventing future AD progression.
Collapse
Affiliation(s)
- Si Cao
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Han Su
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaoyi Zhang
- Department of Medicine, Jacobi Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Chao Fang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer HospitalChangshaHunanChina
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer HospitalChangshaHunanChina
| | - Youjie Zeng
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Minghua Chen
- Department of Anesthesiology, Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
8
|
You Z, Chen S, Tang J. Neuroticism and posttraumatic stress disorder: A Mendelian randomization analysis. Brain Behav 2024; 14:e70041. [PMID: 39344274 PMCID: PMC11440025 DOI: 10.1002/brb3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE Epidemiological studies revealed an unestablished association between neuroticism and posttraumatic stress disorder (PTSD) and we conducted mendelian randomization (MR) analyses to examine whether neuroticism clusters of worry, depressed affect, and sensitivity to environmental stress and adversity (SESA) were involved in the development of PTSD. METHOD We obtained data on three neuroticism clusters, PTSD, and nine other psychiatric disorders from genome-wide association studies summary statistics and employed univariable, multivariable, and mediation MR analyses to explore causal associations among them. RESULTS Neuroticism clusters were linked with PTSD (depressed affect (odds ratio [OR]: 2.94 [95% confidence interval: 2.21-3.92]); SESA (2.69 [1.95-3.71]; worry (1.81 [1.37-2.99])). Neuroticism clusters were also associated with psychiatric disorders, with the depressed effect on panic disorder (PD) (2.60 [1.14-5.91]), SESA on anorexia nervosa (AN) (2.77 [1.95-3.94]) and schizophrenia (2.55 [1.99-3.25]), worry on major depressive disorder (MDD) (2.58 [2.19-3.05]). In multivariable MR, only the SESA-PTSD association remained (2.60 [2.096, 3.107]) while worry-PTSD and depressed affect-PTSD associations attenuated to nonsignificance. Mediation MR analyses suggested that PD mediated 3.76% of the effect of depressed effect on PTSD and AN mediated 10.33% of the effect of SESA on PTSD. CONCLUSION Delving deeper into neuroticism clusters, we comprehensively understand the role of neuroticism in PTSD.
Collapse
Affiliation(s)
- Zifan You
- Department of Psychiatry, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Shanshan Chen
- Department of Psychiatry, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
9
|
Wen J, Skampardoni I, Tian YE, Yang Z, Cui Y, Erus G, Hwang G, Varol E, Boquet-Pujadas A, Chand GB, Nasrallah I, Satterthwaite T, Shou H, Shen L, Toga AW, Zalesky A, Davatzikos C. Nine Neuroimaging-AI Endophenotypes Unravel Disease Heterogeneity and Partial Overlap across Four Brain Disorders: A Dimensional Neuroanatomical Representation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.16.23294179. [PMID: 37662256 PMCID: PMC10473785 DOI: 10.1101/2023.08.16.23294179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Disease heterogeneity poses a significant challenge for precision diagnostics. Recent work leveraging artificial intelligence has offered promise to dissect this heterogeneity by identifying complex intermediate brain phenotypes, herein called dimensional neuroimaging endophenotypes (DNEs). We advance the argument that these DNEs capture the degree of expression of respective neuroanatomical patterns measured, offering a dimensional neuroanatomical representation for studying disease heterogeneity and similarities of neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×10-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs, along with their polygenic risk scores, significantly enhanced the predictive accuracy for 14 systemic disease categories, particularly for conditions related to mental health and the central nervous system, as well as mortality outcomes. These findings underscore the potential of the nine DNEs to capture the expression of disease-related brain phenotypes in individuals of the general population and to relate such measures with genetics, lifestyle factors, and chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine/.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, California, USA
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gyujoon Hwang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Erdem Varol
- Department of Computer Science and Engineering, New York University, New York, USA
| | - Aleix Boquet-Pujadas
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, California, USA
| | - Ganesh B. Chand
- Department of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ilya Nasrallah
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Haochang Shou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AID), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
10
|
Fan CC, Dehkordi SR, Border R, Shao L, Xu B, Loughnan R, Thompson WK, Hsu LY, Lin MC, Cheng CF, Lai RY, Su MH, Kao WY, Werge T, Wu CS, Schork AJ, Zaitlen N, Demur AB, Wang SH. Assortative mating across nine psychiatric disorders is consistent and persistent over cultures and generations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24314024. [PMID: 39371142 PMCID: PMC11451716 DOI: 10.1101/2024.09.19.24314024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Emerging evidence has shown that assortative mating (AM) is a key factor that shapes the landscape of complex human traits. It can increase the overall prevalence of disorders, influence occurrences of comorbidities, and bias estimation of genetic architectures. However, there is lack of large-scale studies to examine the cultural differences and the generational trends of AM for psychiatric disorders. Here, using national registry datasets, we conduct the largest scale of AM analyses on nine psychiatric disorders, with up to 1.4 million mated cases and 6 million matched controls. We performed meta-analyses on AM estimates from Taiwan, Denmark, and Sweden, to examine the potential impact of cultural differences. Generational changes for people born after 1930s were investigated as well. We found that AM of psychiatric disorders are consistent across nations and persistent over generations, with a small proportion of disorders showing generational changes of AM. Our results provide additional insight into the mechanisms of AM across psychiatric disorders and have evident implications on the estimation of the genetic architectures of psychiatric disorders.
Collapse
|
11
|
Nolasco-Rosales GA, Martínez-Magaña JJ, Juárez-Rojop IE, Rodríguez-Sánchez E, Ruiz-Ramos D, Villatoro-Velázquez JA, Bustos-Gamiño M, Medina-Mora ME, Tovilla-Zárate CA, Cruz-Castillo JD, Nicolini H, Genis-Mendoza AD. Phenome-Wide Association Study of Latent Autoimmune Diabetes from a Southern Mexican Population Implicates rs7305229 with Plasmatic Anti-Glutamic Acid Decarboxylase Autoantibody (GADA) Levels. Int J Mol Sci 2024; 25:10154. [PMID: 39337639 PMCID: PMC11432505 DOI: 10.3390/ijms251810154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is characterized by the presence of glutamate decarboxylase autoantibodies (GADA). LADA has intermediate features between type 1 diabetes and type 2 diabetes. In addition, genetic risk factors for both types of diabetes are present in LADA. Nonetheless, evidence about the genetics of LADA in non-European populations is scarce. This study aims to perform a genome-wide association study with a phenome-wide association study of LADA in a southeastern Mexican population. We included 59 patients diagnosed with LADA from a previous study and 3121 individuals without diabetes from the MxGDAR/ENCODAT database. We utilized the GENESIS package in R to perform the genome-wide association study (GWAS) of LADA and PLINK for the phenome-wide association study (PheWAS) of LADA features. Nine polymorphisms reach the nominal association level (1 × 10-5) in the GWAS. The PheWAS showed that rs7305229 is genome-wide and associated with serum GADA levels in our sample (p = 1.84 × 10-8). rs7305229 is located downstream of the FAIM2 gene; previous reports associate FAIM2 variants with childhood obesity, body mass index, body adiposity measures, lymphocyte CD8+ activity, and anti-thyroid peroxidase antibodies. Our findings reveal that rs7305229 affects the GADA levels in patients with LADA from southeastern Mexico. More studies are needed to determine if this risk genotype exists in other populations with LADA.
Collapse
Affiliation(s)
- Germán Alberto Nolasco-Rosales
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (G.A.N.-R.); (I.E.J.-R.); (D.R.-R.); (J.D.C.-C.)
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06520, USA;
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, West Haven, CT 06516, USA
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (G.A.N.-R.); (I.E.J.-R.); (D.R.-R.); (J.D.C.-C.)
| | - Ester Rodríguez-Sánchez
- Hospital Regional de Alta Especialidad “Dr. Gustavo A. Rovirosa Pérez”, Secretaría de Salud, Villahermosa 86020, Mexico;
| | - David Ruiz-Ramos
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (G.A.N.-R.); (I.E.J.-R.); (D.R.-R.); (J.D.C.-C.)
| | - Jorge Ameth Villatoro-Velázquez
- Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Secretaría de Salud, Mexico City 14370, Mexico; (J.A.V.-V.); (M.B.-G.); (M.E.M.-M.)
| | - Marycarmen Bustos-Gamiño
- Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Secretaría de Salud, Mexico City 14370, Mexico; (J.A.V.-V.); (M.B.-G.); (M.E.M.-M.)
| | - Maria Elena Medina-Mora
- Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Secretaría de Salud, Mexico City 14370, Mexico; (J.A.V.-V.); (M.B.-G.); (M.E.M.-M.)
- Facultad de Psicología, Universidad Nacional Autónoma de México—UNAM, Mexico City 04510, Mexico
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Villahermosa 86658, Mexico;
| | - Juan Daniel Cruz-Castillo
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (G.A.N.-R.); (I.E.J.-R.); (D.R.-R.); (J.D.C.-C.)
| | - Humberto Nicolini
- Laboratorio de Enfermedades Psiquiátricas, Neurodegenerativas y Adicciones, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City 14610, Mexico
| | - Alma Delia Genis-Mendoza
- Laboratorio de Enfermedades Psiquiátricas, Neurodegenerativas y Adicciones, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City 14610, Mexico
| |
Collapse
|
12
|
Pan YJ, Lin MC, Liou JM, Fan CC, Su MH, Chen CY, Wu CS, Chen PC, Huang YT, Wang SH. A population-based study of familial coaggregation and shared genetic etiology of psychiatric and gastrointestinal disorders. COMMUNICATIONS MEDICINE 2024; 4:180. [PMID: 39300237 DOI: 10.1038/s43856-024-00607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND It has been proposed that having a psychiatric disorder could increase the risk of developing a gastrointestinal disorder, and vice versa. The role of familial coaggregation and shared genetic loading between psychiatric and gastrointestinal disorders remains unclear. METHODS This study used the Taiwan National Health Insurance Research Database; 4,504,612 individuals born 1970-1999 with parental information, 51,664 same-sex twins, and 3,322,959 persons with full-sibling(s) were enrolled. Genotyping was available for 106,796 unrelated participants from the Taiwan Biobank. A logistic regression model was used to examine the associations of individual history, affected relatives, and polygenic risk scores (PRS) for schizophrenia (SCZ), bipolar disorder (BPD), major depressive disorder (MDD), and obsessive-compulsive disorder (OCD), with the risk of peptic ulcer disease (PUD), gastroesophageal reflux disease (GERD), irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD), and vice versa. RESULTS Here we show that parental psychiatric disorders are associated with gastrointestinal disorders. Full-siblings of psychiatric cases have an increased risk of gastrointestinal disorders except for SCZ/BPD and IBD; the magnitude of coaggregation is higher in same-sex twins than in full-siblings. The results of bidirectional analyses mostly remain unchanged. PRS for SCZ, MDD, and OCD are associated with IBS, PUD/GERD/IBS/IBD, and PUD/GERD/IBS, respectively. PRS for PUD, GERD, IBS, and IBD are associated with MDD, BPD/MDD, SCZ/BPD/MDD, and BPD, respectively. CONCLUSIONS There is familial coaggregation and shared genetic etiology between psychiatric and gastrointestinal comorbidity. Individuals with psychiatric disorder-affected relatives or with higher genetic risk for psychiatric disorders should be monitored for gastrointestinal disorders, and vice versa.
Collapse
Affiliation(s)
- Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mei-Hsin Su
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Virginia Institute for Psychiatric Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Cheng-Yun Chen
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chi-Shin Wu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Yunlin branch, Douliu, Taiwan
| | - Pei-Chun Chen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
Guo J, Yang P, Wang JH, Tang SH, Han JZ, Yao S, Yu K, Liu CC, Dong SS, Zhang K, Duan YY, Yang TL, Guo Y. Blood metabolites, neurocognition and psychiatric disorders: a Mendelian randomization analysis to investigate causal pathways. Transl Psychiatry 2024; 14:376. [PMID: 39285197 PMCID: PMC11405529 DOI: 10.1038/s41398-024-03095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Neurocognitive dysfunction is observationally associated with the risk of psychiatric disorders. Blood metabolites, which are readily accessible, may become highly promising biomarkers for brain disorders. However, the causal role of blood metabolites in neurocognitive function, and the biological pathways underlying their association with psychiatric disorders remain unclear. METHODS To explore their putative causalities, we conducted bidirectional two-sample Mendelian randomization (MR) using genetic variants associated with 317 human blood metabolites (nmax = 215,551), g-Factor (an integrated index of multiple neurocognitive tests with nmax = 332,050), and 10 different psychiatric disorders (n = 9,725 to 807,553) from the large-scale genome-wide association studies of European ancestry. Mediation analysis was used to assess the potential causal pathway among the candidate metabolite, neurocognitive trait and corresponding psychiatric disorder. RESULTS MR evidence indicated that genetically predicted acetylornithine was positively associated with g-Factor (0.035 standard deviation units increase in g-Factor per one standard deviation increase in acetylornithine level; 95% confidence interval, 0.021 to 0.049; P = 1.15 × 10-6). Genetically predicted butyrylcarnitine was negatively associated with g-Factor (0.028 standard deviation units decrease in g-Factor per one standard deviation increase in genetically proxied butyrylcarnitine; 95% confidence interval, -0.041 to -0.015; P = 1.31 × 10-5). There was no evidence of associations between genetically proxied g-Factor and metabolites. Furthermore, the mediation analysis via two-step MR revealed that the causal pathway from acetylornithine to bipolar disorder was partly mediated by g-Factor, with a mediated proportion of 37.1%. Besides, g-Factor mediated the causal pathway from butyrylcarnitine to schizophrenia, with a mediated proportion of 37.5%. Other neurocognitive traits from different sources provided consistent findings. CONCLUSION Our results provide genetic evidence that acetylornithine protects against bipolar disorder through neurocognitive abilities, while butyrylcarnitine has an adverse effect on schizophrenia through neurocognition. These findings may provide insight into interventions at the metabolic level for risk of neurocognitive and related disorders.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ping Yang
- Hunan Brain Hospital, Clinical Medical School of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, P. R. China
| | - Jia-Hao Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shi-Hao Tang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ji-Zhou Han
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Ke Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Cong-Cong Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kun Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
| |
Collapse
|
14
|
Lin YL, Yao T, Wang YW, Lu JH, Chen YM, Wu YQ, Qian XG, Liu JC, Fang LX, Zheng C, Wu CH, Lin JF. Causal association between mitochondrial function and psychiatric disorders: Insights from a bidirectional two-sample Mendelian randomization study. J Affect Disord 2024; 368:55-66. [PMID: 39265869 DOI: 10.1016/j.jad.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Previous observational studies have suggested that there appears to be a close association between mitochondrial function and psychiatric disorders, but whether a causal role exists remains unclear. METHODS We extracted genetic instruments for 67 mitochondrial-related proteins and 10 psychiatric disorders from publicly available genome-wide association studies, and employed five distinct MR methods and false discovery rate correction to detect causal associations between them. Additionally, we conducted a series of sensitivity tests and additional model analysis to ensure the robustness of the results. For potential causal associations, we further performed reverse MR analyses to assess the impact of reverse causality. RESULTS We identified a total of 2 significant causal associations and 24 suggestive causal associations. Specifically, Phenylalanine-tRNA ligase was found to increase the risk of Alzheimer's disease, while Mitochondrial glutamate carrier 2 decreased the risk of autism spectrum disorder. Furthermore, there was no evidence of significant pleiotropy, heterogeneity, or reverse causality. LIMITATIONS This study was limited to individuals of European ancestry, and the conclusions drawn are merely revelatory. CONCLUSION This study provides novel insights into the relationship between mitochondria and psychiatric disorders, as well as the pathogenesis and treatment strategies for psychiatric disorders.
Collapse
Affiliation(s)
- Yun-Lu Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ying-Wei Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jia-Hao Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yan-Min Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yu-Qing Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xin-Ge Qian
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jing-Chen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Luo-Xiang Fang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Cheng Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chun-Hui Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Department of Ultrasonography, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Jia-Feng Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
15
|
Auvergne A, Traut N, Henches L, Troubat L, Frouin A, Boetto C, Kazem S, Julienne H, Toro R, Aschard H. Multitrait analysis to decipher the intertwined genetic architecture of neuroanatomical phenotypes and psychiatric disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00266-0. [PMID: 39260564 DOI: 10.1016/j.bpsc.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND There is increasing evidence of shared genetic factors between psychiatric disorders and brain magnetic resonance imaging (MRI) phenotypes. However, deciphering the joint genetic architecture of these outcomes has proven challenging, and new approaches are needed to infer potential genetic structure underlying those phenotypes. Multivariate analyses is arising as a meaningful approach to reveal links between MRI phenotypes and psychiatric disorders missed by univariate approaches. METHODS We first conducted univariate and multivariate genome-wide association studies (GWAS) for nine MRI-derived brain volume phenotypes in 20K UK Biobank participants. We next performed various complementary enrichment analyses to assess whether and how univariate and multitrait approaches can distinguish disorder-associated and non-disorder-associated variants from six psychiatric disorders: bipolarity, attention-deficit/hyperactivity disorder (ADHD), autism, schizophrenia, obsessive-compulsive disorder, and major depressive disorder. Finally, we conducted a clustering analysis of top associated variants based on their MRI multitrait association using an optimized k-medoids approach. RESULTS Univariate MRI GWAS displayed only negligible genetic correlation with psychiatric disorders, while multitrait GWAS identified multiple new associations and showed significant enrichment for variants related to both ADHD and schizophrenia. Clustering analyses further detected two clusters displaying not only enrichment for association with ADHD and schizophrenia, but also consistent direction of effects. Functional annotation analyses of those clusters pointed to multiple potential mechanisms, suggesting in particular a role of neurotrophins pathways on both MRI and schizophrenia. CONCLUSIONS Our results show that multitrait association signature can be used to infer genetically-driven latent MRI variables associated with psychiatric disorders, opening paths for future biomarker development.
Collapse
Affiliation(s)
- Antoine Auvergne
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France.
| | - Nicolas Traut
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France
| | - Léo Henches
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France
| | - Lucie Troubat
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France
| | - Arthur Frouin
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France
| | - Christophe Boetto
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France
| | - Sayeh Kazem
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France
| | - Hanna Julienne
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France
| | - Hugues Aschard
- Institut Pasteur, Université Paris Cité, Department of Computational Biology, F-75015 Paris, France; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA.
| |
Collapse
|
16
|
Li M, Dang X, Chen Y, Chen Z, Xu X, Zhao Z, Wu D. Cognitive processing speed and accuracy are intrinsically different in genetic architecture and brain phenotypes. Nat Commun 2024; 15:7786. [PMID: 39242605 PMCID: PMC11379965 DOI: 10.1038/s41467-024-52222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Since the birth of cognitive science, researchers have used reaction time and accuracy to measure cognitive ability. Although recognition of these two measures is often based on empirical observations, the underlying consensus is that most cognitive behaviors may be along two fundamental dimensions: cognitive processing speed (CPS) and cognitive processing accuracy (CPA). In this study, we used genomic-wide association studies (GWAS) data from 14 cognitive traits to show the presence of those two factors and revealed the specific neurobiological basis underlying them. We identified that CPS and CPA had distinct brain phenotypes (e.g. white matter microstructure), neurobiological bases (e.g. postsynaptic membrane), and developmental periods (i.e. late infancy). Moreover, those two factors showed differential associations with other health-related traits such as screen exposure and sleep status, and a significant causal relationship with psychiatric disorders such as major depressive disorder and schizophrenia. Utilizing an independent cohort from the Adolescent Brain Cognitive Development (ABCD) study, we also uncovered the distinct contributions of those two factors on the cognitive development of young adolescents. These findings reveal two fundamental factors underlying various cognitive abilities, elucidate the distinct brain structural fingerprint and genetic architecture of CPS and CPA, and hint at the complex interrelationship between cognitive ability, lifestyle, and mental health.
Collapse
Affiliation(s)
- Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Xixi Dang
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Yiwei Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Zhifan Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China.
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
- Binjiang Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Hearne LJ, Yeo BTT, Webb L, Zalesky A, Fitzgerald PB, Murphy OW, Tian Y, Breakspear M, Hall CV, Choi S, Kim M, Kwon JS, Cocchi L. Distinct cognitive and functional connectivity features from healthy cohorts can identify clinical obsessive-compulsive disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.02.24312960. [PMID: 39281735 PMCID: PMC11398446 DOI: 10.1101/2024.09.02.24312960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Improving diagnostic accuracy of obsessive-compulsive disorder (OCD) using models of brain imaging data is a key goal of the field, but this objective is challenging due to the limited size and phenotypic depth of clinical datasets. Leveraging the phenotypic diversity in large non-clinical datasets such as the UK Biobank (UKBB), offers a potential solution to this problem. Nevertheless, it remains unclear whether classification models trained on non-clinical populations will generalise to individuals with clinical OCD. This question is also relevant for the conceptualisation of OCD; specifically, whether the symptomology of OCD exists on a continuum from normal to pathological. Here, we examined a recently published "meta-matching" model trained on functional connectivity data from five large normative datasets (N=45,507) to predict cognitive, health and demographic variables. Specifically, we tested whether this model could classify OCD status in three independent clinical datasets (N=345). We found that the model could identify out-of-sample OCD individuals. Notably, the most predictive functional connectivity features mapped onto known cortico-striatal abnormalities in OCD and correlated with genetic brain expression maps previously implicated in the disorder. Further, the meta-matching model relied upon estimates of cognitive functions, such as cognitive flexibility and inhibition, to successfully predict OCD. These findings suggest that variability in non-clinical brain and behavioural features can discriminate clinical OCD status. These results support a dimensional and transdiagnostic conceptualisation of the brain and behavioural basis of OCD, with implications for research approaches and treatment targets.
Collapse
Affiliation(s)
- Luke J Hearne
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Paul B Fitzgerald
- School of Medicine and Psychology, Australian National University, Canberra, Australia
| | - Oscar W Murphy
- Central Clinical School, Monash University, Clayton, Australia
- Bionics Institute, East Melbourne, Australia
| | - Ye Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, Australia
- School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, Australia
- Program of Neuromodulation, Hunter Medical Research Institute, New Lambton, Australia
| | - Caitlin V Hall
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Republic of Korea
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Ali D, Laighneach A, Corley E, Patlola SR, Mahoney R, Holleran L, McKernan DP, Kelly JP, Corvin AP, Hallahan B, McDonald C, Donohoe G, Morris DW. Direct targets of MEF2C are enriched for genes associated with schizophrenia and cognitive function and are involved in neuron development and mitochondrial function. PLoS Genet 2024; 20:e1011093. [PMID: 39259737 PMCID: PMC11419381 DOI: 10.1371/journal.pgen.1011093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Myocyte Enhancer Factor 2C (MEF2C) is a transcription factor that plays a crucial role in neurogenesis and synapse development. Genetic studies have identified MEF2C as a gene that influences cognition and risk for neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ). Here, we investigated the involvement of MEF2C in these phenotypes using human-derived neural stem cells (NSCs) and glutamatergic induced neurons (iNs), which represented early and late neurodevelopmental stages. For these cellular models, MEF2C function had previously been disrupted, either by direct or indirect mutation, and gene expression assayed using RNA-seq. We integrated these RNA-seq data with MEF2C ChIP-seq data to identify dysregulated direct target genes of MEF2C in the NSCs and iNs models. Several MEF2C direct target gene-sets were enriched for SNP-based heritability for intelligence, educational attainment and SCZ, as well as being enriched for genes containing rare de novo mutations reported in ASD and/or developmental disorders. These gene-sets are enriched in both excitatory and inhibitory neurons in the prenatal and adult brain and are involved in a wide range of biological processes including neuron generation, differentiation and development, as well as mitochondrial function and energy production. We observed a trans expression quantitative trait locus (eQTL) effect of a single SNP at MEF2C (rs6893807, which is associated with IQ) on the expression of a target gene, BNIP3L. BNIP3L is a prioritized risk gene from the largest genome-wide association study of SCZ and has a function in mitophagy in mitochondria. Overall, our analysis reveals that either direct or indirect disruption of MEF2C dysregulates sets of genes that contain multiple alleles associated with SCZ risk and cognitive function and implicates neuron development and mitochondrial function in the etiology of these phenotypes.
Collapse
Affiliation(s)
- Deema Ali
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Emma Corley
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Saahithh Redddi Patlola
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - Rebecca Mahoney
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Laurena Holleran
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Declan P. McKernan
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - John P. Kelly
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - Aiden P. Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Psychiatry, School of Medicine, University of Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Psychiatry, School of Medicine, University of Galway, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| |
Collapse
|
19
|
Gustavson DE, Morrison CL, Mallard TT, Jennings MV, Fontanillas P, Elson SL, Palmer AA, Friedman NP, Sanchez-Roige S. Executive Function and Impulsivity Predict Distinct Genetic Variance in Internalizing Problems, Externalizing Problems, Thought Disorders, and Compulsive Disorders: A Genomic Structural Equation Modeling Study. Clin Psychol Sci 2024; 12:865-881. [PMID: 39323941 PMCID: PMC11423426 DOI: 10.1177/21677026231207845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Individual differences in self-control predict many health and life outcomes. Building on twin literature, we used genomic structural equation modeling to test the hypothesis that genetic influences on executive function and impulsivity predict independent variance in mental health and other outcomes. The impulsivity factor (comprising urgency, lack of premeditation, and other facets) was only modestly genetically correlated with low executive function (rg =.13). Controlling for impulsivity, low executive function was genetically associated with increased internalizing (βg =.15), externalizing (βg =.13), thought disorders (βg =.38), compulsive disorders (βg =.22), and chronotype (βg =.11). Controlling for executive function, impulsivity was positively genetically associated with internalizing (βg =.36), externalizing (βg =.55), body mass index (βg =.26), and insomnia (βg =.35), and negatively genetically associated with compulsive disorders (βg = -.17). Executive function and impulsivity were both genetically correlated with general cognitive ability and educational attainment. This work suggests that executive function and impulsivity are genetically separable and show independent associations with mental health.
Collapse
Affiliation(s)
- Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
| | - Claire L Morrison
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
| | | | | | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Marchi M, Alkema A, Xia C, Thio CHL, Chen LY, Schalkwijk W, Galeazzi GM, Ferrari S, Pingani L, Kweon H, Evans-Lacko S, David Hill W, Boks MP. Investigating the impact of poverty on mental illness in the UK Biobank using Mendelian randomization. Nat Hum Behav 2024; 8:1771-1783. [PMID: 38987359 PMCID: PMC11420075 DOI: 10.1038/s41562-024-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
It is unclear whether poverty and mental illness are causally related. Using UK Biobank and Psychiatric Genomic Consortium data, we examined evidence of causal links between poverty and nine mental illnesses (attention deficit and hyperactivity disorder (ADHD), anorexia nervosa, anxiety disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, post-traumatic stress disorder and schizophrenia). We applied genomic structural equation modelling to derive a poverty common factor from household income, occupational income and social deprivation. Then, using Mendelian randomization, we found evidence that schizophrenia and ADHD causally contribute to poverty, while poverty contributes to major depressive disorder and schizophrenia but decreases the risk of anorexia nervosa. Poverty may also contribute to ADHD, albeit with uncertainty due to unbalanced pleiotropy. The effects of poverty were reduced by approximately 30% when we adjusted for cognitive ability. Further investigations of the bidirectional relationships between poverty and mental illness are warranted, as they may inform efforts to improve mental health for all.
Collapse
Affiliation(s)
- Mattia Marchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Mental Health and Addiction Services, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Anne Alkema
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Charley Xia
- Lothian Birth Cohort Studies, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
- Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Li-Yu Chen
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Winni Schalkwijk
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands
| | - Gian M Galeazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Mental Health and Addiction Services, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Silvia Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Mental Health and Addiction Services, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Pingani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Mental Health and Addiction Services, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Hyeokmoon Kweon
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, HV Amsterdam, the Netherlands
| | - Sara Evans-Lacko
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, UK
| | - W David Hill
- Lothian Birth Cohort Studies, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands.
- Dimence Institute for Specialized Mental Health Care, Dimence Group, Deventer, The Netherlands.
- Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Strom NI, Burton CL, Iyegbe C, Silzer T, Antonyan L, Pool R, Lemire M, Crowley JJ, Hottenga JJ, Ivanov VZ, Larsson H, Lichtenstein P, Magnusson P, Rück C, Schachar R, Wu HM, Cath D, Crosbie J, Mataix-Cols D, Boomsma DI, Mattheisen M, Meier SM, Smit DJA, Arnold PD. Genome-Wide Association Study of Obsessive-Compulsive Symptoms including 33,943 individuals from the general population. Mol Psychiatry 2024; 29:2714-2723. [PMID: 38548983 PMCID: PMC11420085 DOI: 10.1038/s41380-024-02489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 04/24/2024]
Abstract
While 1-2% of individuals meet the criteria for a clinical diagnosis of obsessive-compulsive disorder (OCD), many more (~13-38%) experience subclinical obsessive-compulsive symptoms (OCS) during their life. To characterize the genetic underpinnings of OCS and its genetic relationship to OCD, we conducted the largest genome-wide association study (GWAS) meta-analysis of parent- or self-reported OCS to date (N = 33,943 with complete phenotypic and genome-wide data), combining the results from seven large-scale population-based cohorts from Sweden, the Netherlands, England, and Canada (including six twin cohorts and one cohort of unrelated individuals). We found no genome-wide significant associations at the single-nucleotide polymorphism (SNP) or gene-level, but a polygenic risk score (PRS) based on the OCD GWAS previously published by the Psychiatric Genetics Consortium (PGC-OCD) was significantly associated with OCS (Pfixed = 3.06 × 10-5). Also, one curated gene set (Mootha Gluconeogenesis) reached Bonferroni-corrected significance (Ngenes = 28, Beta = 0.79, SE = 0.16, Pbon = 0.008). Expression of genes in this set is high at sites of insulin mediated glucose disposal. Dysregulated insulin signaling in the etiology of OCS has been suggested by a previous study describing a genetic overlap of OCS with insulin signaling-related traits in children and adolescents. We report a SNP heritability of 4.1% (P = 0.0044) in the meta-analyzed GWAS, and heritability estimates based on the twin cohorts of 33-43%. Genetic correlation analysis showed that OCS were most strongly associated with OCD (rG = 0.72, p = 0.0007) among all tested psychiatric disorders (N = 11). Of all 97 tested phenotypes, 24 showed a significant genetic correlation with OCS, and 66 traits showed concordant directions of effect with OCS and OCD. OCS have a significant polygenic contribution and share genetic risk with diagnosed OCD, supporting the hypothesis that OCD represents the extreme end of widely distributed OCS in the population.
Collapse
Affiliation(s)
- Nora I Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Christie L Burton
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Conrad Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Talisa Silzer
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Lilit Antonyan
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Mathieu Lemire
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - James J Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jouke-Jan Hottenga
- Netherlands Twin Register, Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Volen Z Ivanov
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical sciences, Örebro University, Örebro, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Russell Schachar
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Hei Man Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Danielle Cath
- Rijksuniversiteit Groningen and Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Assen, The Netherlands
| | - Jennifer Crosbie
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Sweden
| | - Dorret I Boomsma
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Netherlands Twin Register, Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Manuel Mattheisen
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Community Health & Epidemiology, Dalhousie University, NS, Halifax, Canada
| | - Sandra M Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Community Health & Epidemiology, Dalhousie University, NS, Halifax, Canada
| | - Dirk J A Smit
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, The Netherlands
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Lu ZA, Ploner A, Birgegård A, Bulik CM, Bergen SE. Shared Genetic Architecture Between Schizophrenia and Anorexia Nervosa: A Cross-trait Genome-Wide Analysis. Schizophr Bull 2024; 50:1255-1265. [PMID: 38848516 PMCID: PMC11349005 DOI: 10.1093/schbul/sbae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SCZ) and anorexia nervosa (AN) are 2 severe and highly heterogeneous disorders showing substantial familial co-aggregation. Genetic factors play a significant role in both disorders, but the shared genetic etiology between them is yet to be investigated. STUDY DESIGN Using summary statistics from recent large genome-wide association studies on SCZ (Ncases = 53 386) and AN (Ncases = 16 992), a 2-sample Mendelian randomization analysis was conducted to explore the causal relationship between SCZ and AN. MiXeR was employed to quantify their polygenic overlap. A conditional/conjunctional false discovery rate (condFDR/conjFDR) framework was adopted to identify loci jointly associated with both disorders. Functional annotation and enrichment analyses were performed on the shared loci. STUDY RESULTS We observed a cross-trait genetic enrichment, a suggestive bidirectional causal relationship, and a considerable polygenic overlap (Dice coefficient = 62.2%) between SCZ and AN. The proportion of variants with concordant effect directions among all shared variants was 69.9%. Leveraging overlapping genetic associations, we identified 6 novel loci for AN and 33 novel loci for SCZ at condFDR <0.01. At conjFDR <0.05, we identified 10 loci jointly associated with both disorders, implicating multiple genes highly expressed in the cerebellum and pituitary and involved in synapse organization. Particularly, high expression of the shared genes was observed in the hippocampus in adolescence and orbitofrontal cortex during infancy. CONCLUSIONS This study provides novel insights into the relationship between SCZ and AN by revealing a shared genetic component and offers a window into their complex etiology.
Collapse
Affiliation(s)
- Zheng-An Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Birgegård
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah E Bergen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Garcia MF, Retallick-Townsley K, Pruitt A, Davidson E, Dai Y, Fitzpatrick SE, Sen A, Cohen S, Livoti O, Khan S, Dossou G, Cheung J, Deans PJM, Wang Z, Huckins L, Hoffman E, Brennand K. Dynamic convergence of autism disorder risk genes across neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609190. [PMID: 39229156 PMCID: PMC11370590 DOI: 10.1101/2024.08.23.609190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Over a hundred risk genes underlie risk for autism spectrum disorder (ASD) but the extent to which they converge on shared downstream targets to increase ASD risk is unknown. To test the hypothesis that cellular context impacts the nature of convergence, here we apply a pooled CRISPR approach to target 29 ASD loss-of-function genes in human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells, glutamatergic neurons, and GABAergic neurons. Two distinct approaches (gene-level and network-level analyses) demonstrate that convergence is greatest in mature glutamatergic neurons. Convergent effects are dynamic, varying in strength, composition, and biological role between cell types, increasing with functional similarity of the ASD genes examined, and driven by cell-type-specific gene co-expression patterns. Stratification of ASD genes yield targeted drug predictions capable of reversing gene-specific convergent signatures in human cells and ASD-related behaviors in zebrafish. Altogether, convergent networks downstream of ASD risk genes represent novel points of individualized therapeutic intervention.
Collapse
Affiliation(s)
- Meilin Fernandez Garcia
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Kayla Retallick-Townsley
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - April Pruitt
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Elizabeth Davidson
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Yi Dai
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Sarah E Fitzpatrick
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Annabel Sen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sophie Cohen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Olivia Livoti
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Suha Khan
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Grace Dossou
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Jen Cheung
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - P J Michael Deans
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Zuoheng Wang
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Laura Huckins
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ellen Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen Brennand
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
24
|
Deng X, Ren H, Wu S, Jie H, Gu C. Exploring the genetic and socioeconomic interplay between ADHD and anxiety disorders using Mendelian randomization. Front Psychiatry 2024; 15:1439474. [PMID: 39165506 PMCID: PMC11333326 DOI: 10.3389/fpsyt.2024.1439474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Background ADHD and anxiety disorders often co-occur, sharing symptoms and dysfunctions, yet the underlying mechanisms remain elusive. Methods To explore the shared and distinct genetic variations between ADHD and anxiety disorders, we applied Mendelian randomization (MR) analysis to ADHD, anxiety disorders, and three socioeconomic factors: income, educational attainment (EA), and intelligence. MR analysis utilized genome-wide association study summary datasets (anxiety disorder: 7,016 cases and 14,745 controls; ADHD: 38,691 cases and 275,986 controls; EA: 766,345 participants; intelligence: 146,808 participants; household income: 392,422 participants), with inverse-variance weighting as the primary method. Results Our MR analysis revealed no discernible genetic-level causal effect between ADHD and anxiety disorders (p > 0.77). Additionally, the independent variables for ADHD (25 SNPs) and anxiety disorders (18 SNPs) did not overlap, highlighting the genetic distinction between the two conditions. Higher income (p < 0.002) and EA (p < 0.005) were found to serve as protective factors for both ADHD and anxiety disorders. Genetic predisposition to higher income (86 SNPs) and EA (457 SNPs) were identified as a potential common protective factors for both conditions. Lastly, genetic predisposition to higher intelligence was found to potentially guard against ADHD (p < 0.001) but not against anxiety disorders (p > 0.55). Conclusion Our findings indicate that the shared symptoms observed between ADHD and anxiety disorders are more likely influenced by genetic predispositions related to socioeconomic factors rather than by the genetic predispositions specific to the disorders themselves.
Collapse
Affiliation(s)
- Xiaojuan Deng
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyan Ren
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Wu
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijin Jie
- Department of Psychiatry, The Fourth People’s Hospital Of Haining, Haining, Zhejiang, China
| | - Chengyu Gu
- Department of Psychiatry, The Fourth People’s Hospital Of Haining, Haining, Zhejiang, China
| |
Collapse
|
25
|
Reid M, Lin A, Farhat LC, Fernandez TV, Olfson E. The genetics of trichotillomania and excoriation disorder: A systematic review. Compr Psychiatry 2024; 133:152506. [PMID: 38833896 PMCID: PMC11513794 DOI: 10.1016/j.comppsych.2024.152506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Trichotillomania (TTM) and excoriation disorder (ED) are impairing obsessive-compulsive related disorders that are common in the general population and for which there are no clear first-line medications, highlighting the need to better understand the underlying biology of these disorders to inform treatments. Given the importance of genetics in obsessive-compulsive disorder (OCD), evaluating genetic factors underlying TTM and ED may advance knowledge about the pathophysiology of these body-focused repetitive behaviors. AIM In this systematic review, we summarize the available evidence on the genetics of TTM and ED and highlight gaps in the field warranting further research. METHOD We systematically searched Embase, PsycInfo, PubMed, Medline, Scopus, and Web of Science for original studies in genetic epidemiology (family or twin studies) and molecular genetics (candidate gene and genome-wide) published up to June 2023. RESULTS Of the 3536 records identified, 109 studies were included in this review. These studies indicated that genetic factors play an important role in the development of TTM and ED, some of which may be shared across the OCD spectrum, but there are no known high-confidence specific genetic risk factors for either TTM or ED. CONCLUSIONS Our review underscores the need for additional genome-wide research conducted on the genetics of TTM and ED, for instance, genome-wide association and whole-genome/whole-exome DNA sequencing studies. Recent advances in genomics have led to the discovery of risk genes in several psychiatric disorders, including related conditions such as OCD, but to date, TTM and ED have remained understudied.
Collapse
Affiliation(s)
- Madison Reid
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; The University of the South, USA
| | - Ashley Lin
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Luis C Farhat
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thomas V Fernandez
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Emily Olfson
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
26
|
Kranzler HR, Davis CN, Feinn R, Jinwala Z, Khan Y, Oikonomou A, Silva-Lopez D, Burton I, Dixon M, Milone J, Ramirez S, Shifman N, Levey D, Gelernter J, Hartwell EE, Kember RL. Gene × environment effects and mediation involving adverse childhood events, mood and anxiety disorders, and substance dependence. Nat Hum Behav 2024; 8:1616-1627. [PMID: 38834750 DOI: 10.1038/s41562-024-01885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Adverse childhood events (ACEs) contribute to the development of mood and anxiety disorders and substance dependence. However, the extent to which these effects are direct or indirect and whether genetic risk moderates them is unclear. We examined associations among ACEs, mood/anxiety disorders and substance dependence in 12,668 individuals (44.9% female, 42.5% African American/Black, 42.1% European American/white). Using latent variables for each phenotype, we modelled direct and indirect associations of ACEs with substance dependence, mediated by mood/anxiety disorders (the forward or 'self-medication' model) and of ACEs with mood/anxiety disorders, mediated by substance dependence (the reverse or 'substance-induced' model). In a subsample, we tested polygenic scores for the substance dependence and mood/anxiety disorder factors as moderators in the mediation models. Although there were significant indirect paths in both directions, mediation by mood/anxiety disorders (the forward model) was greater than that by substance dependence (the reverse model). Greater genetic risk for substance use disorders was associated with a weaker direct association between ACEs and substance dependence in both ancestry groups (reflecting gene × environment interactions) and a weaker indirect association in European-ancestry individuals (reflecting moderated mediation). We found greater evidence that substance dependence reflects self-medication of mood/anxiety disorders than that mood/anxiety disorders are substance induced. Among individuals at higher genetic risk for substance dependence, ACEs were less associated with that outcome. Following exposure to ACEs, multiple pathways appear to underlie the associations between mood/anxiety disorders and substance dependence. Specification of these pathways could inform individually targeted prevention and treatment approaches.
Collapse
Affiliation(s)
- Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.
| | - Christal N Davis
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Richard Feinn
- Department of Medical Sciences, Frank H. Netter School of Medicine at Quinnipiac University, North Haven, CT, USA
| | - Zeal Jinwala
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Yousef Khan
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ariadni Oikonomou
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Damaris Silva-Lopez
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel Burton
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Morgan Dixon
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jackson Milone
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Ramirez
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naomi Shifman
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Departments of Genetics and Neurobiology, Yale University School of Medicine, New Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Emily E Hartwell
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Rachel L Kember
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| |
Collapse
|
27
|
He K, Ying J, Yang F, Hu T, Du Y. Seven psychiatric traits and the risk of increased carotid intima-media thickness: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1383032. [PMID: 39119190 PMCID: PMC11306041 DOI: 10.3389/fcvm.2024.1383032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background Numerous observational studies have suggested an association between psychiatric traits and carotid intima-media thickness (cIMT). However, whether these associations have a causal relationship remains unknown, largely due to issues of reverse causality and potential confounders. This study aims to elucidate the potential causal role of psychiatric traits in the risk of arterial injury as measured by cIMT. Methods We utilized instrumental variables for attention deficit/hyperactivity disorder (ADHD, n = 226,534), bipolar disorder (n = 353,899), major depressive disorder (n = 142,646), post-traumatic stress disorder (n = 174,494), obsessive-compulsive disorder (n = 9,725), autism spectrum disorder (n = 173,773), and anxiety disease (n = 17,310), derived from the largest corresponding genome-wide association studies (GWAS). Summary statistics for cIMT associations were obtained from a meta-analysis combining GWAS data from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortia (n = 71,128) and the UK Biobank study (n = 45,185). The inverse-variance weighted method served as the primary analytical tool, supplemented by additional statistical methods in the secondary analyses to corroborate the findings. Adjustments were made according to the Bonferroni correction threshold. Results The Mendelian randomization analyses indicated a suggestive causal link between genetically predicted ADHD and cIMT (beta = 0.05; 95% confidence interval, 0.01-0.09; p = 0.018). Sensitivity analyses largely concurred with this finding. However, no significant associations were found between other psychiatric traits and cIMT. Conclusions This study provides insights into the risk effect of ADHD on cIMT, suggesting that arteriopathy and potential associated complications should be considered during the treatment and monitoring of patients with ADHD.
Collapse
Affiliation(s)
- Kewan He
- Department of Ultrasound, LiHuiLi Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiajun Ying
- Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Fangkun Yang
- Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Teng Hu
- Cardiology Center, Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Yuewu Du
- Department of Ultrasound, LiHuiLi Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
28
|
Breunig S, Lee YH, Karlson EW, Krishnan A, Lawrence JM, Schaffer LS, Grotzinger AD. Examining the Genetic Links between Clusters of Immune-mediated Diseases and Psychiatric Disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310651. [PMID: 39072040 PMCID: PMC11275673 DOI: 10.1101/2024.07.18.24310651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Importance Autoimmune and autoinflammatory diseases have been linked to psychiatric disorders in the phenotypic and genetic literature. However, a comprehensive model that investigates the association between a broad range of psychiatric disorders and immune-mediated disease in a multivariate framework is lacking. Objective This study aims to establish a factor structure based on the genetic correlations of immune-mediated diseases and investigate their genetic relationships with clusters of psychiatric disorders. Design Setting and Participants We utilized Genomic Structural Equation Modeling (Genomic SEM) to establish a factor structure of 11 immune-mediated diseases. Genetic correlations between these immune factors were examined with five established factors across 13 psychiatric disorders representing compulsive, schizophrenia/bipolar, neurodevelopmental, internalizing, and substance use disorders. We included GWAS summary statistics of individuals of European ancestry with sample sizes from 1,223 cases for Addison's disease to 170,756 cases for major depressive disorder. Main Outcomes and Measures Genetic correlations between psychiatric and immune-mediated disease factors and traits to determine genetic overlap. We develop and validate a new heterogeneity metric, Q Factor , that quantifies the degree to which factor correlations are driven by more specific pairwise associations. We also estimate residual genetic correlations between pairs of psychiatric disorders and immune-mediated diseases. Results A four-factor model of immune-mediated diseases fit the data well and described a continuum from autoimmune to autoinflammatory diseases. The four factors reflected autoimmune, celiac, mixed pattern, and autoinflammatory diseases. Analyses revealed seven significant factor correlations between the immune and psychiatric factors, including autoimmune and mixed pattern diseases with the internalizing and substance use factors, and autoinflammatory diseases with the compulsive, schizophrenia/bipolar, and internalizing factors. Additionally, we find evidence of divergence in associations within factors as indicated by Q Factor . This is further supported by 14 significant residual genetic correlations between individual psychiatric disorders and immune-mediated diseases. Conclusion and Relevance Our results revealed genetic links between clusters of immune-mediated diseases and psychiatric disorders. Current analyses indicate that previously described relationships between specific psychiatric disorders and immune-mediated diseases often capture broader pathways of risk sharing indexed by our genomic factors, yet are more specific than a general association across all psychiatric disorders and immune-mediated diseases.
Collapse
Affiliation(s)
- Sophie Breunig
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO USA
| | - Younga Heather Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA Massachusetts General Hospital Brigham, Boston, MA USA
| | - Elizabeth W. Karlson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Jeremy M. Lawrence
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO USA
| | - Lukas S. Schaffer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO USA
| | - Andrew D. Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
29
|
Cha J, Lee E, van Dijk M, Kim B, Kim G, Murphy E, Talati A, Joo Y, Weissman M. Polygenic scores for psychiatric traits mediate the impact of multigenerational history for depression on offspring psychopathology. RESEARCH SQUARE 2024:rs.3.rs-4264742. [PMID: 39070622 PMCID: PMC11275997 DOI: 10.21203/rs.3.rs-4264742/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A family history of depression is a well-documented risk factor for offspring psychopathology. However, the genetic mechanisms underlying the intergenerational transmission of depression remain unclear. We used genetic, family history, and diagnostic data from 11,875 9-10 year-old children from the Adolescent Brain Cognitive Development study. We estimated and investigated the children's polygenic scores (PGSs) for 30 distinct traits and their association with a family history of depression (including grandparents and parents) and the children's overall psychopathology through logistic regression analyses. We assessed the role of polygenic risk for psychiatric disorders in mediating the transmission of depression from one generation to the next. Among 11,875 multi-ancestry children, 8,111 participants had matching phenotypic and genotypic data (3,832 female [47.2%]; mean (SD) age, 9.5 (0.5) years), including 6,151 [71.4%] of European ancestry). Greater PGSs for depression (estimate = 0.129, 95% CI = 0.070-0.187) and bipolar disorder (estimate = 0.109, 95% CI = 0.051-0.168) were significantly associated with higher family history of depression (Bonferroni-corrected P < .05). Depression PGS was the only PGS that significantly associated with both family risk and offspring's psychopathology, and robustly mediated the impact of family history of depression on several youth psychopathologies including anxiety disorders, suicidal ideation, and any psychiatric disorder (proportions mediated 1.39%-5.87% of the total effect on psychopathology; FDR-corrected P < .05). These findings suggest that increased polygenic risk for depression partially mediates the associations between family risk for depression and offspring psychopathology, showing a genetic basis for intergenerational transmission of depression. Future approaches that combine assessments of family risk with polygenic profiles may offer a more accurate method for identifying children at elevated risk.
Collapse
Affiliation(s)
| | | | | | - Bogyeom Kim
- Department of Psychology, Seoul National University
| | | | | | | | | | - Myrna Weissman
- Columbia University Vagelos College of Physicians and Surgeons
| |
Collapse
|
30
|
Zhang YD, Shi DD, Wang Z. Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. Neurosci Bull 2024:10.1007/s12264-024-01252-9. [PMID: 38982026 DOI: 10.1007/s12264-024-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 07/11/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
31
|
Retallick-Townsley KG, Lee S, Cartwright S, Cohen S, Sen A, Jia M, Young H, Dobbyn L, Deans M, Fernandez-Garcia M, Huckins LM, Brennand KJ. Dynamic stress- and inflammatory-based regulation of psychiatric risk loci in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602755. [PMID: 39026810 PMCID: PMC11257632 DOI: 10.1101/2024.07.09.602755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The prenatal environment can alter neurodevelopmental and clinical trajectories, markedly increasing risk for psychiatric disorders in childhood and adolescence. To understand if and how fetal exposures to stress and inflammation exacerbate manifestation of genetic risk for complex brain disorders, we report a large-scale context-dependent massively parallel reporter assay (MPRA) in human neurons designed to catalogue genotype x environment (GxE) interactions. Across 240 genome-wide association study (GWAS) loci linked to ten brain traits/disorders, the impact of hydrocortisone, interleukin 6, and interferon alpha on transcriptional activity is empirically evaluated in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons. Of ~3,500 candidate regulatory risk elements (CREs), 11% of variants are active at baseline, whereas cue-specific CRE regulatory activity range from a high of 23% (hydrocortisone) to a low of 6% (IL-6). Cue-specific regulatory activity is driven, at least in part, by differences in transcription factor binding activity, the gene targets of which show unique enrichments for brain disorders as well as co-morbid metabolic and immune syndromes. The dynamic nature of genetic regulation informs the influence of environmental factors, reveals a mechanism underlying pleiotropy and variable penetrance, and identifies specific risk variants that confer greater disorder susceptibility after exposure to stress or inflammation. Understanding neurodevelopmental GxE interactions will inform mental health trajectories and uncover novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kayla G. Retallick-Townsley
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Seoyeon Lee
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sam Cartwright
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sophie Cohen
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Annabel Sen
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meng Jia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Hannah Young
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee Dobbyn
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Deans
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meilin Fernandez-Garcia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Laura M. Huckins
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen J. Brennand
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
32
|
Xu B, Forthman KL, Kuplicki R, Ahern J, Loughnan R, Naber F, Thompson WK, Nemeroff CB, Paulus MP, Fan CC. Genetic Correlates of Treatment-Resistant Depression: Insights from Polygenic Scores Across Cognitive, Temperamental, and Sleep Traits in the All of US cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309914. [PMID: 39006419 PMCID: PMC11245070 DOI: 10.1101/2024.07.03.24309914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Treatment-resistant depression (TRD) is a major challenge in mental health, affecting a significant number of patients and leading to considerable economic and social burdens. The etiological factors contributing to TRD are complex and not fully understood. Objective To investigate the genetic factors associated with TRD using polygenic scores (PGS) across various traits, and to explore their potential role in the etiology of TRD using large-scale genomic data from the All of Us Research Program (AoU). Methods Data from 292,663 participants in the AoU were analyzed using a case-cohort design. Treatment resistant depression (TRD), treatment responsive Major Depressive Disorder (trMDD), and all others who have no formal diagnosis of Major Depressive Disorder (non-MDD) were identified through diagnostic codes and prescription patterns. Polygenic scores (PGS) for 61 unique traits from seven domains were used and logistic regressions were conducted to assess associations between PGS and TRD. Finally, Cox proportional hazard models were used to explore the predictive value of PGS for progression rate from the diagnostic event of Major Depressive Disorder (MDD) to TRD. Results In the discovery set (104128 non-MDD, 16640 trMDD, and 4177 TRD), 44 of 61 selected PGS were found to be significantly associated with MDD, regardless of treatment responsiveness. Eleven of them were found to have stronger associations with TRD than with trMDD, encompassing PGS from domains in education, cognition, personality, sleep, and temperament. Genetic predisposition for insomnia and specific neuroticism traits were associated with increased TRD risk (OR range from 1.05 to 1.15), while higher education and intelligence scores were protective (ORs 0.88 and 0.91, respectively). These associations are consistent across two other independent sets within AoU (n = 104,388 and 63,330). Among 28,964 individuals tracked over time, 3,854 developed TRD within an average of 944 days (95% CI: 883 ~ 992 days) after MDD diagnosis. All eleven previously identified and replicated PGS were found to be modulating the conversion rate from MDD to TRD. Thus, those having higher education PGS would experiencing slower conversion rates than those who have lower education PGS with hazard ratios in 0.79 (80th versus 20th percentile, 95% CI: 0.74 ~ 0.85). Those who had higher insomnia PGS experience faster conversion rates than those who had lower insomnia PGS, with hazard ratios in 1.21 (80th versus 20th percentile, 95% CI: 1.13 ~ 1.30). Conclusions Our results indicate that genetic predisposition related to neuroticism, cognitive function, and sleep patterns play a significant role in the development of TRD. These findings underscore the importance of considering genetic and psychosocial factors in managing and treating TRD. Future research should focus on integrating genetic data with clinical outcomes to enhance our understanding of pathways leading to treatment resistance.
Collapse
Affiliation(s)
- Bohan Xu
- Population Neuroscience and Genetics Center, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | | | - Rayus Kuplicki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Jonathan Ahern
- Population Neuroscience and Genetics Center, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Center for Human Development, University of California, San Diego, La Jolla, California, USA
| | - Robert Loughnan
- Population Neuroscience and Genetics Center, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Center for Human Development, University of California, San Diego, La Jolla, California, USA
| | - Firas Naber
- Population Neuroscience and Genetics Center, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Wesley K. Thompson
- Population Neuroscience and Genetics Center, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Division of Biostatistics and Bioinformatics, the Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, California, USA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Martin P. Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
| | - Chun Chieh Fan
- Population Neuroscience and Genetics Center, Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
33
|
Liu Y, Xiao X, Yang Y, Yao R, Yang Q, Zhu Y, Yang X, Zhang S, Shen L, Jiao B. The risk of Alzheimer's disease and cognitive impairment characteristics in eight mental disorders: A UK Biobank observational study and Mendelian randomization analysis. Alzheimers Dement 2024; 20:4841-4853. [PMID: 38860751 PMCID: PMC11247675 DOI: 10.1002/alz.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION The cognitive impairment patterns and the association with Alzheimer's disease (AD) in mental disorders remain poorly understood. METHODS We analyzed data from 486,297 UK Biobank participants, categorizing them by mental disorder history to identify the risk of AD and the cognitive impairment characteristics. Causation was further assessed using Mendelian randomization (MR). RESULTS AD risk was higher in individuals with bipolar disorder (BD; hazard ratio [HR] = 2.37, P < 0.01) and major depressive disorder (MDD; HR = 1.63, P < 0.001). MR confirmed a causal link between BD and AD (ORIVW = 1.098), as well as obsessive-compulsive disorder (OCD) and AD (ORIVW = 1.050). Cognitive impairments varied, with BD and schizophrenia showing widespread deficits, and OCD affecting complex task performance. DISCUSSION Observational study and MR provide consistent evidence that mental disorders are independent risk factors for AD. Mental disorders exhibit distinct cognitive impairment prior to dementia, indicating the potential different mechanisms in AD pathogenesis. Early detection of these impairments in mental disorders is crucial for AD prevention. HIGHLIGHTS This is the most comprehensive study that investigates the risk and causal relationships between a history of mental disorders and the development of Alzheimer's disease (AD), alongside exploring the cognitive impairment characteristics associated with different mental disorders. Individuals with bipolar disorder (BD) exhibited the highest risk of developing AD (hazard ratio [HR] = 2.37, P < 0.01), followed by those with major depressive disorder (MDD; HR = 1.63, P < 0.001). Individuals with schizophrenia (SCZ) showed a borderline higher risk of AD (HR = 2.36, P = 0.056). Two-sample Mendelian randomization (MR) confirmed a causal association between BD and AD (ORIVW = 1.098, P < 0.05), as well as AD family history (proxy-AD, ORIVW = 1.098, P < 0.001), and kept significant after false discovery rate correction. MR also identified a nominal significant causal relationship between the obsessive-compulsive disorder (OCD) spectrum and AD (ORIVW = 1.050, P < 0.05). Individuals with SCZ, BD, and MDD exhibited impairments in multiple cognitive domains with distinct patterns, whereas those with OCD showed only slight declines in complex tasks.
Collapse
Affiliation(s)
- Yiliang Liu
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xuewen Xiao
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Yang Yang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Rui Yao
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Qijie Yang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Yuan Zhu
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Xuan Yang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Sizhe Zhang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Lu Shen
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| | - Bin Jiao
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersCentral South UniversityChangshaChina
- Engineering Research Center of Hunan Province in Cognitive Impairment DisordersCentral South UniversityChangshaChina
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic DiseasesXiangya HospitalChangshaChina
- Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaChina
| |
Collapse
|
34
|
Ohi K, Tanaka Y, Otowa T, Shimada M, Kaiya H, Nishimura F, Sasaki T, Tanii H, Shioiri T, Hara T. Discrimination between healthy participants and people with panic disorder based on polygenic scores for psychiatric disorders and for intermediate phenotypes using machine learning. Aust N Z J Psychiatry 2024; 58:603-614. [PMID: 38581251 DOI: 10.1177/00048674241242936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
OBJECTIVE Panic disorder is a modestly heritable condition. Currently, diagnosis is based only on clinical symptoms; identifying objective biomarkers and a more reliable diagnostic procedure is desirable. We investigated whether people with panic disorder can be reliably diagnosed utilizing combinations of multiple polygenic scores for psychiatric disorders and their intermediate phenotypes, compared with single polygenic score approaches, by applying specific machine learning techniques. METHODS Polygenic scores for 48 psychiatric disorders and intermediate phenotypes based on large-scale genome-wide association studies (n = 7556-1,131,881) were calculated for people with panic disorder (n = 718) and healthy controls (n = 1717). Discrimination between people with panic disorder and healthy controls was based on the 48 polygenic scores using five methods for classification: logistic regression, neural networks, quadratic discriminant analysis, random forests and a support vector machine. Differences in discrimination accuracy (area under the curve) due to an increased number of polygenic score combinations and differences in the accuracy across five classifiers were investigated. RESULTS All five classifiers performed relatively well for distinguishing people with panic disorder from healthy controls by increasing the number of polygenic scores. Of the 48 polygenic scores, the polygenic score for anxiety UK Biobank was the most useful for discrimination by the classifiers. In combinations of two or three polygenic scores, the polygenic score for anxiety UK Biobank was included as one of polygenic scores in all classifiers. When all 48 polygenic scores were used in combination, the greatest areas under the curve significantly differed among the five classifiers. Support vector machine and logistic regression had higher accuracy than quadratic discriminant analysis and random forests. For each classifier, the greatest area under the curve was 0.600 ± 0.030 for logistic regression (polygenic score combinations N = 14), 0.591 ± 0.039 for neural networks (N = 9), 0.603 ± 0.033 for quadratic discriminant analysis (N = 10), 0.572 ± 0.039 for random forests (N = 25) and 0.617 ± 0.041 for support vector machine (N = 11). The greatest areas under the curve at the best polygenic score combination significantly differed among the five classifiers. Random forests had the lowest accuracy among classifiers. Support vector machine had higher accuracy than neural networks. CONCLUSIONS These findings suggest that increasing the number of polygenic score combinations up to approximately 10 effectively improved the discrimination accuracy and that support vector machine exhibited greater accuracy among classifiers. However, the discrimination accuracy for panic disorder, when based solely on polygenic score combinations, was found to be modest.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Yuta Tanaka
- Department of Intelligence Science and Engineering, Gifu University Graduate School of Natural Science and Technology, Gifu, Japan
| | - Takeshi Otowa
- Department of Psychiatry, East Medical Center, Nagoya City University, Nagoya, Japan
| | - Mihoko Shimada
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Hisanobu Kaiya
- Panic Disorder Research Center, Warakukai Medical Corporation, Tokyo, Japan
| | - Fumichika Nishimura
- Center for Research on Counseling and Support Services, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, Mie, Japan
- Graduate School of Medicine, Department of Health Promotion and Disease Prevention, Mie University, Mie, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takeshi Hara
- Department of Intelligence Science and Engineering, Gifu University Graduate School of Natural Science and Technology, Gifu, Japan
| |
Collapse
|
35
|
Xue B, Jian X, Peng L, Wu C, Fahira A, Syed AAS, Xia D, Wang B, Niu M, Jiang Y, Ding Y, Gao C, Zhao X, Zhang Q, Shi Y, Li Z. Dissecting the genetic and causal relationship between sleep-related traits and common brain disorders. Sleep Med 2024; 119:201-209. [PMID: 38703603 DOI: 10.1016/j.sleep.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND There is a profound connection between abnormal sleep patterns and brain disorders, suggesting a shared influential association. However, the shared genetic basis and potential causal relationships between sleep-related traits and brain disorders are yet to be fully elucidated. METHODS Utilizing linkage disequilibrium score regression (LDSC) and bidirectional two-sample univariable Mendelian Randomization (UVMR) analyses with large-scale GWAS datasets, we investigated the genetic correlations and causal associations across six sleep traits and 24 prevalent brain disorders. Additionally, a multivariable Mendelian Randomization (MVMR) analysis evaluated the cumulative effects of various sleep traits on each brain disorder, complemented by genetic loci characterization to pinpoint pertinent genes and pathways. RESULTS LDSC analysis identified significant genetic correlations in 66 out of 144 (45.8 %) pairs between sleep-related traits and brain disorders, with the most pronounced correlations observed in psychiatric disorders (66 %, 48/72). UVMR analysis identified 29 causal relationships (FDR<0.05) between sleep traits and brain disorders, with 19 associations newly discovered according to our knowledge. Notably, major depression, attention-deficit/hyperactivity disorder, bipolar disorder, cannabis use disorder, and anorexia nervosa showed bidirectional causal relations with sleep traits, especially insomnia's marked influence on major depression (IVW beta 0.468, FDR = 5.24E-09). MVMR analysis revealed a nuanced interplay among various sleep traits and their impact on brain disorders. Genetic loci characterization underscored potential genes, such as HOXB2, while further enrichment analyses illuminated the importance of synaptic processes in these relationships. CONCLUSIONS This study provides compelling evidence for the causal relationships and shared genetic backgrounds between common sleep-related traits and brain disorders.
Collapse
Affiliation(s)
- Baiqiang Xue
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Lixia Peng
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; School of Pharmacy, Qingdao University, Qingdao, 266003, China
| | - Chuanhong Wu
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; School of Basic Medicine, Qingdao University, Qingdao, 266003, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ali Alamdar Shah Syed
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Disong Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Baokun Wang
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; School of Pharmacy, Qingdao University, Qingdao, 266003, China
| | - Mingming Niu
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yajie Jiang
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yonghe Ding
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; School of Public Health, Qingdao University, Qingdao, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China; School of Basic Medicine, Qingdao University, Qingdao, 266003, China; Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, 266003, China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200030, China; Department of Psychiatry, the First Teaching Hospital of Xinjiang Medical University, Urumqi, 830054, China; Changning Mental Health Center, Shanghai, 200042, China.
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China; School of Public Health, Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China; School of Pharmacy, Qingdao University, Qingdao, 266003, China; School of Basic Medicine, Qingdao University, Qingdao, 266003, China; Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shandong Provincial Key Laboratory of Metabolic Disease & the Metabolic Disease Institute of Qingdao University, Qingdao, 266003, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200030, China.
| |
Collapse
|
36
|
Korbmacher M, van der Meer D, Beck D, Askeland-Gjerde DE, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Distinct Longitudinal Brain White Matter Microstructure Changes and Associated Polygenic Risk of Common Psychiatric Disorders and Alzheimer's Disease in the UK Biobank. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100323. [PMID: 39132576 PMCID: PMC11313202 DOI: 10.1016/j.bpsgos.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background During the course of adulthood and aging, white matter (WM) structure and organization are characterized by slow degradation processes such as demyelination and shrinkage. An acceleration of such aging processes has been linked to the development of a range of diseases. Thus, an accurate description of healthy brain maturation, particularly in terms of WM features, is fundamental to the understanding of aging. Methods We used longitudinal diffusion magnetic resonance imaging to provide an overview of WM changes at different spatial and temporal scales in the UK Biobank (UKB) (n = 2678; agescan 1 = 62.38 ± 7.23 years; agescan 2 = 64.81 ± 7.1 years). To examine the genetic overlap between WM structure and common clinical conditions, we tested the associations between WM structure and polygenic risk scores for the most common neurodegenerative disorder, Alzheimer's disease, and common psychiatric disorders (unipolar and bipolar depression, anxiety, obsessive-compulsive disorder, autism, schizophrenia, attention-deficit/hyperactivity disorder) in longitudinal (n = 2329) and cross-sectional (n = 31,056) UKB validation data. Results Our findings indicate spatially distributed WM changes across the brain, as well as distributed associations of polygenic risk scores with WM. Importantly, brain longitudinal changes reflected genetic risk for disorder development better than the utilized cross-sectional measures, with regional differences giving more specific insights into gene-brain change associations than global averages. Conclusions We extend recent findings by providing a detailed overview of WM microstructure degeneration on different spatial levels, helping to understand fundamental brain aging processes. Further longitudinal research is warranted to examine aging-related gene-brain associations.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Daniel E. Askeland-Gjerde
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T. Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
Stiede JT, Spencer SD, Onyeka O, Mangen KH, Church MJ, Goodman WK, Storch EA. Obsessive-Compulsive Disorder in Children and Adolescents. Annu Rev Clin Psychol 2024; 20:355-380. [PMID: 38100637 DOI: 10.1146/annurev-clinpsy-080822-043910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Obsessive-compulsive disorder (OCD) in children and adolescents is a neurobehavioral condition that can lead to functional impairment in multiple domains and decreased quality of life. We review the clinical presentation, diagnostic considerations, and common comorbidities of pediatric OCD. An overview of the biological and psychological models of OCD is provided along with a discussion of developmental considerations in youth. We also describe evidence-based treatments for OCD in childhood and adolescence, including cognitive behavioral therapy (CBT) with exposure and response prevention (ERP) and pharmacotherapy. Finally, research evaluating the delivery of CBT in different formats and modalities is discussed, and we conclude with suggestions for future research directions.
Collapse
Affiliation(s)
- Jordan T Stiede
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Samuel D Spencer
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Ogechi Onyeka
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Katie H Mangen
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Molly J Church
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Wayne K Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
38
|
Mu C, Dang X, Luo XJ. Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders. Nat Hum Behav 2024; 8:1417-1428. [PMID: 38724650 DOI: 10.1038/s41562-024-01879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Dysfunction of brain resting-state functional networks has been widely reported in psychiatric disorders. However, the causal relationships between brain resting-state functional networks and psychiatric disorders remain largely unclear. Here we perform bidirectional two-sample Mendelian randomization (MR) analyses to investigate the causalities between 191 resting-state functional magnetic resonance imaging (rsfMRI) phenotypes (n = 34,691 individuals) and 12 psychiatric disorders (n = 14,307 to 698,672 individuals). Forward MR identified 8 rsfMRI phenotypes causally associated with the risk of psychiatric disorders. For example, the increase in the connectivity of motor, subcortical-cerebellum and limbic network was associated with lower risk of autism spectrum disorder. In adddition, increased connectivity in the default mode and central executive network was associated with lower risk of post-traumatic stress disorder and depression. Reverse MR analysis revealed significant associations between 4 psychiatric disorders and 6 rsfMRI phenotypes. For instance, the risk of attention-deficit/hyperactivity disorder increases the connectivity of the attention, salience, motor and subcortical-cerebellum network. The risk of schizophrenia mainly increases the connectivity of the default mode and central executive network and decreases the connectivity of the attention network. In summary, our findings reveal causal relationships between brain functional networks and psychiatric disorders, providing important interventional and therapeutic targets for psychiatric disorders at the brain functional network level.
Collapse
Affiliation(s)
- Changgai Mu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xinglun Dang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xiong-Jian Luo
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
| |
Collapse
|
39
|
Mato-Blanco X, Kim SK, Jourdon A, Ma S, Tebbenkamp AT, Liu F, Duque A, Vaccarino FM, Sestan N, Colantuoni C, Rakic P, Santpere G, Micali N. Early Developmental Origins of Cortical Disorders Modeled in Human Neural Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598925. [PMID: 38915580 PMCID: PMC11195173 DOI: 10.1101/2024.06.14.598925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The implications of the early phases of human telencephalic development, involving neural stem cells (NSCs), in the etiology of cortical disorders remain elusive. Here, we explored the expression dynamics of cortical and neuropsychiatric disorder-associated genes in datasets generated from human NSCs across telencephalic fate transitions in vitro and in vivo. We identified risk genes expressed in brain organizers and sequential gene regulatory networks across corticogenesis revealing disease-specific critical phases, when NSCs are more vulnerable to gene dysfunctions, and converging signaling across multiple diseases. Moreover, we simulated the impact of risk transcription factor (TF) depletions on different neural cell types spanning the developing human neocortex and observed a spatiotemporal-dependent effect for each perturbation. Finally, single-cell transcriptomics of newly generated autism-affected patient-derived NSCs in vitro revealed recurrent alterations of TFs orchestrating brain patterning and NSC lineage commitment. This work opens new perspectives to explore human brain dysfunctions at the early phases of development.
Collapse
Affiliation(s)
- Xoel Mato-Blanco
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alexandre Jourdon
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Fuchen Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Genetics and Comparative Medicine, Wu Tsai Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlo Colantuoni
- Depts. of Neurology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia, Spain
| | - Nicola Micali
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
40
|
Ma L, Liu Z, Fu L, Fan J, Kong C, Wang T, Bu H, Liu Q, Yuan J, Fan X. Bidirectional causal relational between frailty and mental illness: a two-sample Mendelian randomization study. Front Psychiatry 2024; 15:1397813. [PMID: 38911707 PMCID: PMC11190300 DOI: 10.3389/fpsyt.2024.1397813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Background Frailty has been associated with mental illness (MI) observational studies, but the causal relationship between these factors remains uncertain. We aimed to assess the bidirectional causality between frailty and MI by two-sample Mendelian randomization (MR) analyses. Methods To investigate the causal relationship among them, summary statistics of frailty index (FI) and six types of MI: anxiety, depression, affective disorder, mania, schizophrenia, and obsessive-compulsive disorder (OCD) were included in this MR study. This MR analysis was performed using inverse variance weighting (IVW), MR-Egger regression, and weighted median. The stability of the results was evaluated using Cochran's Q test, MR-Egger intercept test, Funnel Plots, and leave-one-out analysis. Results Genetic predisposition to FI was significantly associated with increased anxiety (odds ratio [OR] = 1.62, 95% confidence interval [CI] 1.13-2.33, P = 8.18E-03), depression (OR = 1.88, 95% CI 1.30-2.71, P = 8.21E-04), affective disorder (OR = 1.70, 95% CI 1.28-2.27, P = 2.57E-04). However, our study findings do not demonstrate a causal relationship between FI and mania (OR = 1.02, 95% CI 0.99-1.06, P = 2.20E-01), schizophrenia (OR = 1.02, 95% CI 0.07-0.86, P = 9.28E-01). In particular, although the IVW results suggest a potential causal relationship between FI and OCD (OR = 0.64, 95% CI 0.07-0.86, P = 2.85E-02), the directions obtained from the three methods we employed ultimately show inconsistency. Therefore, the result must be interpreted with caution. The results of the reverse MR analysis indicated a statistically significant and causal relationship between anxiety (OR = 1.06, 95% CI 1.01-1.11, P = 2.00E-02), depression (OR = 1.14, 95% CI 1.04-1.26, P = 7.99E-03), affective disorder (OR = 1.15, 95% CI 1.09-1.21, P = 3.39E-07), and schizophrenia (OR = 1.02, 95% CI 1.01-1.04, P = 1.70E-03) with FI. However, our findings do not provide support for a link between mania (OR = 1.46, 95% CI 0.79-2.72, P = 2.27E-01), OCD (OR = 1.01, 95% CI 1.00-1.02, P = 2.11E-01) and an increased risk of FI. Conclusion The MR results suggest a potential bidirectional causal relationship between FI and anxiety, depression, and affective disorder. Schizophrenia was found to be associated with a higher risk of FI. The evidence was insufficient to support a causal relationship between Fl and other Ml. These findings offer new insights into the development of effective management strategies for frailty and MI.
Collapse
Affiliation(s)
- Letian Ma
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zuying Liu
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Fu
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaming Fan
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cunlong Kong
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Wang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huilian Bu
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan, China
| | - Qingying Liu
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan, China
| | - Jingjing Yuan
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan, China
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaochong Fan
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan, China
| |
Collapse
|
41
|
Di Luzio M, Bellantoni D, Bellantoni AL, Villani V, Di Vincenzo C, Zanna V, Vicari S, Pontillo M. Similarities and differences between eating disorders and obsessive-compulsive disorder in childhood and adolescence: a systematic review. Front Psychiatry 2024; 15:1407872. [PMID: 38895032 PMCID: PMC11183500 DOI: 10.3389/fpsyt.2024.1407872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background The developmental age, comprising childhood and adolescence, constitutes an extremely important phase of neurodevelopment during which various psychiatric disorders can emerge. Obsessive-Compulsive Disorder (OCD) and Eating Disorders (ED) often manifest during this critical developmental period sharing similarities but also differences in psychopathology, neurobiology, and etiopathogenesis. The aim of this study is to focus on clinical, genetic and neurobiological similarities and differences in OCD and ED. Methods This study is based on a PubMed/MEDLINE and Cochrane Central Register for Controlled Trial (CENTRAL). The research adhered to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results The aforementioned search yielded an initial collection of 335 articles, published from 1968 to September 2023. Through the application of inclusion and exclusion criteria, a total of 324 articles were excluded, culminating in a final selection of 10 articles. Conclusions Our findings showed both differences and similarities between OCD and ED. Obsessive-compulsive (OC) symptoms are more prevalent in ED characterized by a binge/purge profile than in those with a restrictive profile during developmental age. OC symptomatology appears to be a common dimension in both OCD and ED. When presents, OC symptomatology, exhibits transversal characteristic alterations in the anterior cingulate cortex and poorer cognitive flexibility. These correlations could be highlighted by genetic overlaps between disorders. A comprehensive definition, integrating psychopathological and neurobiological aspects could significantly aid treatment selection and thereby influence the prognosis of these patients.
Collapse
Affiliation(s)
- Michelangelo Di Luzio
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Domenica Bellantoni
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Valeria Villani
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristina Di Vincenzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valeria Zanna
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| | - Maria Pontillo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
42
|
Deng YT, Wu BS, Yang L, He XY, Kang JJ, Liu WS, Li ZY, Wu XR, Zhang YR, Chen SD, Ge YJ, Huang YY, Feng JF, Zhu Y, Dong Q, Mao Y, Cheng W, Yu JT. Large-scale whole-exome sequencing of neuropsychiatric diseases and traits in 350,770 adults. Nat Hum Behav 2024; 8:1194-1208. [PMID: 38589703 DOI: 10.1038/s41562-024-01861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
While numerous genomic loci have been identified for neuropsychiatric conditions, the contribution of protein-coding variants has yet to be determined. Here we conducted a large-scale whole-exome-sequencing study to interrogate the impact of protein-coding variants on 46 neuropsychiatric diseases and 23 traits in 350,770 adults from the UK Biobank. Twenty new genes were associated with neuropsychiatric diseases through coding variants, among which 16 genes had impacts on the longitudinal risks of diseases. Thirty new genes were associated with neuropsychiatric traits, with SYNGAP1 showing pleiotropic effects across cognitive function domains. Pairwise estimation of genetic correlations at the coding-variant level highlighted shared genetic associations among pairs of neurodegenerative diseases and mental disorders. Lastly, a comprehensive multi-omics analysis suggested that alterations in brain structures, blood proteins and inflammation potentially contribute to the gene-phenotype linkages. Overall, our findings characterized a compendium of protein-coding variants for future research on the biology and therapeutics of neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Ying Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Fu H, Jiang S, Song S, Zhang C, Xie Q. Causal associations between chronic viral hepatitis and psychiatric disorders: a Mendelian randomization study. Front Psychiatry 2024; 15:1359080. [PMID: 38881548 PMCID: PMC11176532 DOI: 10.3389/fpsyt.2024.1359080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Background There may be an interaction between viral hepatitis and psychiatric disorders during disease progression. Herein, we conducted Mendelian randomization (MR) to explore the causal associations and mediators between viral hepatitis and psychiatric disorders. Methods Genome-wide association studies summary data for viral hepatitis [including chronic hepatitis B (CHB) and chronic hepatitis C (CHC)] and psychiatric disorders (including depression, anxiety, schizophrenia, obsessive-compulsive disorder, bipolar disorder, and post-traumatic stress disorder) were obtained. Two-sample MR was performed to assess the causal associations between viral hepatitis and psychiatric disorders. Further, a mediation analysis was conducted to evaluate the potential mediators. Inverse-variance weighted, MR-Egger, and weighted median were used as the main methods, while a sensitivity analysis was performed to evaluate pleiotropy and heterogeneity. Results There was no causal effect of CHB/CHC on psychiatric disorders, as well as psychiatric disorders on CHB. However, schizophrenia presented a causal effect on increased CHC risk [odds ratio (OR)=1.378, 95%CI: 1.012-1.876]. Further, a mediation analysis identified coffee consumption and body mass index as mediators in the effect of schizophrenia on CHC, mediating 3.75% (95%CI: 0.76%-7.04%) and 0.94% (95%CI: 0.00%-1.70%) proportion, respectively. Conclusion We revealed that schizophrenia patients faced a high risk of CHC, and insufficient coffee consumption and underweight could mediate the causal effect of schizophrenia on CHC. The prevention of hepatitis C might be a beneficial strategy for patients with schizophrenia. The right amount of nutrition supplements and coffee consumption might be part of a beneficial lifestyle in preventing the high CHC risk in patients with schizophrenia.
Collapse
Affiliation(s)
- Haoshuang Fu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowen Jiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuying Song
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxi Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, Pollen AA, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024; 384:eadh0559. [PMID: 38781390 DOI: 10.1126/science.adh0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Daniela A Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Davide Capauto
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Alex A Pollen
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
45
|
Joo YY, Lee E, Kim BG, Kim G, Seo J, Cha J. Polygenic architecture of brain structure and function, behaviors, and psychopathologies in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595444. [PMID: 38826224 PMCID: PMC11142157 DOI: 10.1101/2024.05.22.595444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The human brain undergoes structural and functional changes during childhood, a critical period in cognitive and behavioral development. Understanding the genetic architecture of the brain development in children can offer valuable insights into the development of the brain, cognition, and behaviors. Here, we integrated brain imaging-genetic-phenotype data from over 8,600 preadolescent children of diverse ethnic backgrounds using multivariate statistical techniques. We found a low-to-moderate level of SNP-based heritability in most IDPs, which is lower compared to the adult brain. Using sparse generalized canonical correlation analysis (SGCCA), we identified several covariation patterns among genome-wide polygenic scores (GPSs) of 29 traits, 7 different modalities of brain imaging-derived phenotypes (IDPs), and 266 cognitive and psychological phenotype data. In structural MRI, significant positive associations were observed between total grey matter volume, left ventral diencephalon volume, surface area of right accumbens and the GPSs of cognition-related traits. Conversely, negative associations were found with the GPSs of ADHD, depression and neuroticism. Additionally, we identified a significant positive association between educational attainment GPS and regional brain activation during the N-back task. The BMI GPS showed a positive association with fractional anisotropy (FA) of connectivity between the cerebellum cortex and amygdala in diffusion MRI, while the GPSs for educational attainment and cannabis use were negatively associated with the same IDPs. Our GPS-based prediction models revealed substantial genetic contributions to cognitive variability, while the genetic basis for many mental and behavioral phenotypes remained elusive. This study delivers a comprehensive map of the relationships between genetic profiles, neuroanatomical diversity, and the spectrum of cognitive and behavioral traits in preadolescence.
Collapse
Affiliation(s)
- Yoonjung Yoonie Joo
- Department of Psychology, Seoul National University
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Eunji Lee
- Department of Psychology, Seoul National University
| | - Bo-Gyeom Kim
- Department of Psychology, Seoul National University
| | - Gakyung Kim
- Department of Brain and Cognitive Sciences, Seoul National University
| | - Jungwoo Seo
- Department of Brain and Cognitive Sciences, Seoul National University
| | - Jiook Cha
- Department of Psychology, Seoul National University
- Department of Brain and Cognitive Sciences, Seoul National University
- Institute of Psychological Science, Seoul National University, Seoul, South Korea
- Graduate School of Artificial Intelligence, Seoul National University, Seoul, South Korea
| |
Collapse
|
46
|
Knol MJ, Poot RA, Evans TE, Satizabal CL, Mishra A, Sargurupremraj M, van der Auwera S, Duperron MG, Jian X, Hostettler IC, van Dam-Nolen DHK, Lamballais S, Pawlak MA, Lewis CE, Carrion-Castillo A, van Erp TGM, Reinbold CS, Shin J, Scholz M, Håberg AK, Kämpe A, Li GHY, Avinun R, Atkins JR, Hsu FC, Amod AR, Lam M, Tsuchida A, Teunissen MWA, Aygün N, Patel Y, Liang D, Beiser AS, Beyer F, Bis JC, Bos D, Bryan RN, Bülow R, Caspers S, Catheline G, Cecil CAM, Dalvie S, Dartigues JF, DeCarli C, Enlund-Cerullo M, Ford JM, Franke B, Freedman BI, Friedrich N, Green MJ, Haworth S, Helmer C, Hoffmann P, Homuth G, Ikram MK, Jack CR, Jahanshad N, Jockwitz C, Kamatani Y, Knodt AR, Li S, Lim K, Longstreth WT, Macciardi F, Mäkitie O, Mazoyer B, Medland SE, Miyamoto S, Moebus S, Mosley TH, Muetzel R, Mühleisen TW, Nagata M, Nakahara S, Palmer ND, Pausova Z, Preda A, Quidé Y, Reay WR, Roshchupkin GV, Schmidt R, Schreiner PJ, Setoh K, Shapland CY, Sidney S, St Pourcain B, Stein JL, Tabara Y, Teumer A, Uhlmann A, van der Lugt A, Vernooij MW, Werring DJ, Windham BG, Witte AV, Wittfeld K, Yang Q, Yoshida K, Brunner HG, Le Grand Q, Sim K, Stein DJ, Bowden DW, Cairns MJ, Hariri AR, Cheung CL, Andersson S, Villringer A, Paus T, Cichon S, Calhoun VD, Crivello F, Launer LJ, White T, Koudstaal PJ, Houlden H, Fornage M, Matsuda F, Grabe HJ, Ikram MA, Debette S, Thompson PM, Seshadri S, Adams HHH. Genetic variants for head size share genes and pathways with cancer. Cell Rep Med 2024; 5:101529. [PMID: 38703765 PMCID: PMC11148644 DOI: 10.1016/j.xcrm.2024.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/18/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.
Collapse
Affiliation(s)
- Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tavia E Evans
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France
| | - Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Sandra van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre of Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Marie-Gabrielle Duperron
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France
| | - Xueqiu Jian
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Isabel C Hostettler
- Stroke Research Centre, University College London, Institute of Neurology, London, UK; Department of Neurosurgery, Klinikum rechts der Isar, University of Munich, Munich, Germany; Neurosurgical Department, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Dianne H K van Dam-Nolen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mikolaj A Pawlak
- Department of Neurology, Poznań University of Medical Sciences, Poznań, Poland; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cora E Lewis
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Jean Shin
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Disease, Leipzig, Germany
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gloria H Y Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Reut Avinun
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alyssa R Amod
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Max Lam
- North Region, Institute of Mental Health, Singapore, Singapore; Population and Global Health, LKC Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ami Tsuchida
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, Bordeaux, France; Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Mariël W A Teunissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Nil Aygün
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yash Patel
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Dan Liang
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gwenaëlle Catheline
- University of Bordeaux, CNRS, INCIA, UMR 5287, team NeuroImagerie et Cognition Humaine, Bordeaux, France; EPHE-PSL University, Bordeaux, France
| | - Charlotte A M Cecil
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Shareefa Dalvie
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Jean-François Dartigues
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team SEPIA, UMR 1219, Bordeaux, France
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA
| | - Maria Enlund-Cerullo
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Judith M Ford
- San Francisco Veterans Administration Medical Center, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Melissa J Green
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Simon Haworth
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Catherine Helmer
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team LEHA, UMR 1219, Bordeaux, France
| | - Per Hoffmann
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Yoichiro Kamatani
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Annchen R Knodt
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Keane Lim
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Fabio Macciardi
- Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | - Bernard Mazoyer
- Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France; Centre Hospitalo-Universitaire de Bordeaux, Bordeaux, France
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Psychology, University of Queensland, Brisbane, QLD, Australia; Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susanne Moebus
- Institute for Urban Public Health, University of Duisburg-Essen, Essen, Germany
| | - Thomas H Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA; Memory Impairment and Neurodegenerative Dementia (MIND) Center, Jackson, MS, USA
| | - Ryan Muetzel
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Thomas W Mühleisen
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manabu Nagata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soichiro Nakahara
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA; Unit 2, Candidate Discovery Science Labs, Drug Discovery Research, Astellas Pharma Inc, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Adrian Preda
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Yann Quidé
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chin Yang Shapland
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, University of Bristol, Bristol, UK
| | - Stephen Sidney
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jason L Stein
- Department of Genetics UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - David J Werring
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - B Gwen Windham
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS, USA; Memory Impairment and Neurodegenerative Dementia (MIND) Center, Jackson, MS, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Collaborative Research Center 1052 Obesity Mechanisms, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Centre of Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics MUMC+, GROW School of Oncology and Developmental Biology, and MHeNs School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Quentin Le Grand
- Bordeaux Population Health, University of Bordeaux, INSERM U1219, Bordeaux, France
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dan J Stein
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany; SAMRC Unit on Risk and Resilience, University of Cape Town, Cape Town, South Africa
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sture Andersson
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) {Georgia State, Georgia Tech, Emory}, Atlanta, GA, USA
| | - Fabrice Crivello
- Groupe d'imagerie neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, Intramural Research Program, National Institute of Aging, The National Institutes of Health, Bethesda, MD, USA
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Henry Houlden
- Stroke Research Centre, University College London, Institute of Neurology, London, UK
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Stéphanie Debette
- Bordeaux Population Health, University of Bordeaux, INSERM U1219, Bordeaux, France; Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; The Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Hieab H H Adams
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| |
Collapse
|
47
|
Hu Y, Xiong Z, Huang P, He W, Zhong M, Zhang D, Tang G. Association of mental disorders with sepsis: a bidirectional Mendelian randomization study. Front Public Health 2024; 12:1327315. [PMID: 38827616 PMCID: PMC11140049 DOI: 10.3389/fpubh.2024.1327315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Background Substantial research evidence supports the correlation between mental disorders and sepsis. Nevertheless, the causal connection between a particular psychological disorder and sepsis remains unclear. Methods For investigating the causal relationships between mental disorders and sepsis, genetic variants correlated with mental disorders, including anorexia nervosa (AN), attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), panic disorder (PD), posttraumatic stress disorder (PTSD), schizophrenia (SCZ), and tourette syndrome (TS), were all extracted from the Psychiatric Genomics Consortium (PGC). The causal estimates and direction between these mental disorders and sepsis were evaluated employing a two-sample bidirectional MR strategy. The inverse variance weighted (IVW) method was the primary approach utilized. Various sensitivity analyses were performed to confirm the validity of the causal effect. Meta-analysis, multivariable MR, and mediation MR were conducted to ensure the credibility and depth of this research. Results The presence of AN was in relation to a greater likelihood of sepsis (OR 1.08, 95% CI 1.02-1.14; p = 0.013). A meta-analysis including validation cohorts supported this observation (OR 1.06, 95% CI 1.02-1.09). None of the investigated mental disorders appeared to be impacted when sepsis was set as the exposure factor. Even after adjusting for confounding factors, AN remained statistically significant (OR 1.08, 95% CI 1.02-1.15; p = 0.013). Mediation analysis indicated N-formylmethionine levels (with a mediated proportion of 7.47%), cystatin D levels (2.97%), ketogluconate Metabolism (17.41%) and N10-formyl-tetrahydrofolate biosynthesis (20.06%) might serve as mediators in the pathogenesis of AN-sepsis. Conclusion At the gene prediction level, two-sample bidirectional MR analysis revealed that mental disorder AN had a causal association with an increased likelihood of sepsis. In addition, N-formylmethionine levels, cystatin D levels, ketogluconate metabolism and N10-formyl-tetrahydrofolate biosynthesis may function as potential mediators in the pathophysiology of AN-sepsis. Our research may contribute to the investigation of novel therapeutic strategies for mental illness and sepsis.
Collapse
Affiliation(s)
- Yuanzhi Hu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihui Xiong
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pinge Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wan He
- Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minlin Zhong
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Danqi Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghua Tang
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| |
Collapse
|
48
|
Xu WM, Zhang HF, Feng YH, Li SJ, Xie BY. Genetically predicted fatty liver disease and risk of psychiatric disorders: A mendelian randomization study. World J Clin Cases 2024; 12:2359-2369. [PMID: 38765736 PMCID: PMC11099412 DOI: 10.12998/wjcc.v12.i14.2359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/18/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ArLD) constitute the primary forms of chronic liver disease, and their incidence is progressively increasing with changes in lifestyle habits. Earlier studies have documented a correlation between the occurrence and development of prevalent mental disorders and fatty liver. AIM To investigate the correlation between fatty liver and mental disorders, thus necessitating the implementation of a mendelian randomization (MR) study to elucidate this association. METHODS Data on NAFLD and ArLD were retrieved from the genome-wide association studies catalog, while information on mental disorders, including Alzheimer's disease, schizophrenia, anxiety disorder, attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder, multiple personality disorder, obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and schizophrenia was acquired from the psychiatric genomics consortium. A two-sample MR method was applied to investigate mediators in significant associations. RESULTS After excluding weak instrumental variables, a causal relationship was identified between fatty liver disease and the occurrence and development of some psychiatric disorders. Specifically, the findings indicated that ArLD was associated with a significantly elevated risk of developing ADHD (OR: 5.81, 95%CI: 5.59-6.03, P < 0.01), bipolar disorder (OR: 5.73, 95%CI: 5.42-6.05, P = 0.03), OCD (OR: 6.42, 95%CI: 5.60-7.36, P < 0.01), and PTSD (OR: 5.66, 95%CI: 5.33-6.01, P < 0.01). Meanwhile, NAFLD significantly increased the risk of developing bipolar disorder (OR: 55.08, 95%CI: 3.59-845.51, P < 0.01), OCD (OR: 61.50, 95%CI: 6.69-565.45, P < 0.01), and PTSD (OR: 52.09, 95%CI: 4.24-639.32, P < 0.01). CONCLUSION Associations were found between genetic predisposition to fatty liver disease and an increased risk of a broad range of psychiatric disorders, namely bipolar disorder, OCD, and PTSD, highlighting the significance of preventive measures against psychiatric disorders in patients with fatty liver disease.
Collapse
Affiliation(s)
- Wei-Ming Xu
- Department of Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Hai-Fu Zhang
- Department of Internal Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Yong-Hang Feng
- Department of Internal Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Shuo-Jun Li
- Department of Internal Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| | - Bi-Yun Xie
- Department of Internal Medicine, The First People's Hospital of Fuyang, Hangzhou 311400, Zhejiang Province, China
| |
Collapse
|
49
|
Mannens CCA, Hu L, Lönnerberg P, Schipper M, Reagor CC, Li X, He X, Barker RA, Sundström E, Posthuma D, Linnarsson S. Chromatin accessibility during human first-trimester neurodevelopment. Nature 2024:10.1038/s41586-024-07234-1. [PMID: 38693260 DOI: 10.1038/s41586-024-07234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/02/2024] [Indexed: 05/03/2024]
Abstract
The human brain develops through a tightly organized cascade of patterning events, induced by transcription factor expression and changes in chromatin accessibility. Although gene expression across the developing brain has been described at single-cell resolution1, similar atlases of chromatin accessibility have been primarily focused on the forebrain2-4. Here we describe chromatin accessibility and paired gene expression across the entire developing human brain during the first trimester (6-13 weeks after conception). We defined 135 clusters and used multiomic measurements to link candidate cis-regulatory elements to gene expression. The number of accessible regions increased both with age and along neuronal differentiation. Using a convolutional neural network, we identified putative functional transcription factor-binding sites in enhancers characterizing neuronal subtypes. We applied this model to cis-regulatory elements linked to ESRRB to elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking disease-associated single nucleotide polymorphisms to cis-regulatory elements, we validated putative pathogenic mechanisms in several diseases and identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive disorder-related mutations. Our findings provide a more detailed view of key gene regulatory mechanisms underlying the emergence of brain cell types during the first trimester and a comprehensive reference for future studies related to human neurodevelopment.
Collapse
Affiliation(s)
- Camiel C A Mannens
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Lijuan Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Marijn Schipper
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Caleb C Reagor
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Xiaofei Li
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Erik Sundström
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
50
|
Nievergelt CM, Maihofer AX, Atkinson EG, Chen CY, Choi KW, Coleman JRI, Daskalakis NP, Duncan LE, Polimanti R, Aaronson C, Amstadter AB, Andersen SB, Andreassen OA, Arbisi PA, Ashley-Koch AE, Austin SB, Avdibegoviç E, Babić D, Bacanu SA, Baker DG, Batzler A, Beckham JC, Belangero S, Benjet C, Bergner C, Bierer LM, Biernacka JM, Bierut LJ, Bisson JI, Boks MP, Bolger EA, Brandolino A, Breen G, Bressan RA, Bryant RA, Bustamante AC, Bybjerg-Grauholm J, Bækvad-Hansen M, Børglum AD, Børte S, Cahn L, Calabrese JR, Caldas-de-Almeida JM, Chatzinakos C, Cheema S, Clouston SAP, Colodro-Conde L, Coombes BJ, Cruz-Fuentes CS, Dale AM, Dalvie S, Davis LK, Deckert J, Delahanty DL, Dennis MF, Desarnaud F, DiPietro CP, Disner SG, Docherty AR, Domschke K, Dyb G, Kulenović AD, Edenberg HJ, Evans A, Fabbri C, Fani N, Farrer LA, Feder A, Feeny NC, Flory JD, Forbes D, Franz CE, Galea S, Garrett ME, Gelaye B, Gelernter J, Geuze E, Gillespie CF, Goleva SB, Gordon SD, Goçi A, Grasser LR, Guindalini C, Haas M, Hagenaars S, Hauser MA, Heath AC, Hemmings SMJ, Hesselbrock V, Hickie IB, Hogan K, Hougaard DM, Huang H, Huckins LM, Hveem K, Jakovljević M, Javanbakht A, Jenkins GD, Johnson J, Jones I, Jovanovic T, Karstoft KI, Kaufman ML, Kennedy JL, Kessler RC, Khan A, Kimbrel NA, King AP, Koen N, Kotov R, Kranzler HR, Krebs K, Kremen WS, Kuan PF, Lawford BR, Lebois LAM, Lehto K, Levey DF, Lewis C, Liberzon I, Linnstaedt SD, Logue MW, Lori A, Lu Y, Luft BJ, Lupton MK, Luykx JJ, Makotkine I, Maples-Keller JL, Marchese S, Marmar C, Martin NG, Martínez-Levy GA, McAloney K, McFarlane A, McLaughlin KA, McLean SA, Medland SE, Mehta D, Meyers J, Michopoulos V, Mikita EA, Milani L, Milberg W, Miller MW, Morey RA, Morris CP, Mors O, Mortensen PB, Mufford MS, Nelson EC, Nordentoft M, Norman SB, Nugent NR, O'Donnell M, Orcutt HK, Pan PM, Panizzon MS, Pathak GA, Peters ES, Peterson AL, Peverill M, Pietrzak RH, Polusny MA, Porjesz B, Powers A, Qin XJ, Ratanatharathorn A, Risbrough VB, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero KJ, Rung A, Runz H, Rutten BPF, de Viteri SS, Salum GA, Sampson L, Sanchez SE, Santoro M, Seah C, Seedat S, Seng JS, Shabalin A, Sheerin CM, Silove D, Smith AK, Smoller JW, Sponheim SR, Stein DJ, Stensland S, Stevens JS, Sumner JA, Teicher MH, Thompson WK, Tiwari AK, Trapido E, Uddin M, Ursano RJ, Valdimarsdóttir U, Van Hooff M, Vermetten E, Vinkers CH, Voisey J, Wang Y, Wang Z, Waszczuk M, Weber H, Wendt FR, Werge T, Williams MA, Williamson DE, Winsvold BS, Winternitz S, Wolf C, Wolf EJ, Xia Y, Xiong Y, Yehuda R, Young KA, Young RM, Zai CC, Zai GC, Zervas M, Zhao H, Zoellner LA, Zwart JA, deRoon-Cassini T, van Rooij SJH, van den Heuvel LL, Stein MB, Ressler KJ, Koenen KC. Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder. Nat Genet 2024; 56:792-808. [PMID: 38637617 PMCID: PMC11396662 DOI: 10.1038/s41588-024-01707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.
Collapse
Affiliation(s)
- Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA.
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chia-Yen Chen
- Biogen Inc.,Translational Sciences, Cambridge, MA, USA
| | - Karmel W Choi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan R I Coleman
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Nikolaos P Daskalakis
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Renato Polimanti
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Cindy Aaronson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Soren B Andersen
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
| | - Ole A Andreassen
- Oslo University Hospital, Division of Mental Health and Addiction, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Paul A Arbisi
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | | | - S Bryn Austin
- Boston Children's Hospital, Division of Adolescent and Young Adult Medicine, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Esmina Avdibegoviç
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dragan Babić
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jean C Beckham
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Sintia Belangero
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
| | - Corina Benjet
- Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Center for Global Mental Health, Mexico City, Mexico
| | - Carisa Bergner
- Medical College of Wisconsin, Comprehensive Injury Center, Milwaukee, WI, USA
| | - Linda M Bierer
- Department of Psychiatry, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Jonathan I Bisson
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elizabeth A Bolger
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Amber Brandolino
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gerome Breen
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King's College London, NIHR Maudsley BRC, London, UK
| | - Rodrigo Affonseca Bressan
- Department of Psychiatry, Universidade Federal de São Paulo, Laboratory of Integrative Neuroscience, São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard A Bryant
- University of New South Wales, School of Psychology, Sydney, New South Wales, Australia
| | - Angela C Bustamante
- Department of Internal Medicine, University of Michigan Medical School, Division of Pulmonary and Critical Care Medicine, Ann Arbor, MI, USA
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Department of Biomedicine-Human Genetics, Aarhus University, Aarhus, Denmark
| | - Sigrid Børte
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Leah Cahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Joseph R Calabrese
- Case Western Reserve University, School of Medicine, Cleveland, OH, USA
- Department of Psychiatry, University Hospitals, Cleveland, OH, USA
| | | | - Chris Chatzinakos
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Sheraz Cheema
- University of Toronto, CanPath National Coordinating Center, Toronto, Ontario, Canada
| | - Sean A P Clouston
- Stony Brook University, Family, Population, and Preventive Medicine, Stony Brook, NY, USA
- Stony Brook University, Public Health, Stony Brook, NY, USA
| | - Lucía Colodro-Conde
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Carlos S Cruz-Fuentes
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Anders M Dale
- Department of Radiology, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Shareefa Dalvie
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Lea K Davis
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Jürgen Deckert
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | | | - Michelle F Dennis
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
| | - Frank Desarnaud
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Christopher P DiPietro
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- McLean Hospital, Division of Depression and Anxiety Disorders, Belmont, MA, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anna R Docherty
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katharina Domschke
- University of Freiburg, Faculty of Medicine, Centre for Basics in Neuromodulation, Freiburg, Denmark
- Department of Psychiatry and Psychotherapy, University of Freiburg, Faculty of Medicine, Freiburg, Denmark
| | - Grete Dyb
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Alma Džubur Kulenović
- Department of Psychiatry, University Clinical Center of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Howard J Edenberg
- Indiana University School of Medicine, Biochemistry and Molecular Biology, Indianapolis, IN, USA
- Indiana University School of Medicine, Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Alexandra Evans
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Chiara Fabbri
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Adriana Feder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Norah C Feeny
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Janine D Flory
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Forbes
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sandro Galea
- Boston University School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joel Gelernter
- VA Connecticut Healthcare Center, Psychiatry Service, West Haven, CT, USA
- Department of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, The Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Slavina B Goleva
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN, USA
- National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Aferdita Goçi
- Department of Psychiatry, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Lana Ruvolo Grasser
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Camila Guindalini
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, Queensland, Australia
| | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Saskia Hagenaars
- King's College London, National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Michael A Hauser
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Andrew C Heath
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Victor Hesselbrock
- University of Connecticut School of Medicine, Psychiatry, Farmington, CT, USA
| | - Ian B Hickie
- University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Kelleigh Hogan
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - David Michael Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Laura M Huckins
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kristian Hveem
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
| | - Miro Jakovljević
- Department of Psychiatry, University Hospital Center of Zagreb, Zagreb, Croatia
| | - Arash Javanbakht
- Wayne State University School of Medicine, Psychiatry and Behavioral Neurosciencess, Detroit, MI, USA
| | - Gregory D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jessica Johnson
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ian Jones
- Cardiff University, National Centre for Mental Health, Cardiff University Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karen-Inge Karstoft
- The Danish Veteran Centre, Research and Knowledge Centre, Ringsted, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - James L Kennedy
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Alaptagin Khan
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Nathan A Kimbrel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC), Genetics Research Laboratory, Durham, NC, USA
- Durham VA Health Care System, Mental Health Service Line, Durham, NC, USA
| | - Anthony P King
- The Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - Nastassja Koen
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kristi Krebs
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Bruce R Lawford
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Center of Excellence in Depression and Anxiety Disorders, Belmont, MA, USA
| | - Kelli Lehto
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | - Daniel F Levey
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Catrin Lewis
- Cardiff University, National Centre for Mental Health, MRC Centre for Psychiatric Genetics and Genomics, Cardiff, UK
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Mark W Logue
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Michelle K Lupton
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Iouri Makotkine
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Shelby Marchese
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Marmar
- New York University, Grossman School of Medicine, New York City, NY, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Genetics, Brisbane, Queensland, Australia
| | - Gabriela A Martínez-Levy
- Department of Genetics, Instituto Nacional de Psiquiatraía Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Kerrie McAloney
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Alexander McFarlane
- University of Adelaide, Discipline of Psychiatry, Adelaide, South Australia, Australia
| | | | - Samuel A McLean
- Department of Anesthesiology, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
- Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Mental Health & Neuroscience Program, Brisbane, Queensland, Australia
| | - Divya Mehta
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Jacquelyn Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Elizabeth A Mikita
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Lili Milani
- University of Tartu, Institute of Genomics, Estonian Genome Center, Tartu, Estonia
| | | | - Mark W Miller
- Boston University School of Medicine, Psychiatry, Biomedical Genetics, Boston, MA, USA
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
| | - Rajendra A Morey
- Duke University School of Medicine, Duke Brain Imaging and Analysis Center, Durham, NC, USA
| | - Charles Phillip Morris
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University Hospital-Psychiatry, Psychosis Research Unit, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Aarhus University, Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus University, Centre for Integrated Register-Based Research, Aarhus, Denmark
- Aarhus University, National Centre for Register-Based Research, Aarhus, Denmark
| | - Mary S Mufford
- Department of Pathology, University of Cape Town, Division of Human Genetics, Cape Town, South Africa
| | - Elliot C Nelson
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- University of Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
| | - Sonya B Norman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- National Center for Post Traumatic Stress Disorder, Executive Division, White River Junction, VT, USA
| | - Nicole R Nugent
- Department of Emergency Medicine, Alpert Brown Medical School, Providence, RI, USA
- Department of Pediatrics, Alpert Brown Medical School, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Brown Medical School, Providence, RI, USA
| | - Meaghan O'Donnell
- Department of Psychiatry, University of Melbourne, Phoenix Australia, Melbourne, Victoria, Australia
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Pedro M Pan
- Universidade Federal de São Paulo, Psychiatry, São Paulo, Brazil
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Gita A Pathak
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Edward S Peters
- University of Nebraska Medical Center, College of Public Health, Omaha, NE, USA
| | - Alan L Peterson
- South Texas Veterans Health Care System, Research and Development Service, San Antonio, TX, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, West Haven, CT, USA
| | - Melissa A Polusny
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Care Delivery and Outcomes Research (CCDOR), Minneapolis, MN, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Xue-Jun Qin
- Duke University, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York City, NY, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex O Rothbaum
- Department of Psychological Sciences, Emory University, Atlanta, GA, USA
- Department of Research and Outcomes, Skyland Trail, Atlanta, GA, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Peter Roy-Byrne
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Kenneth J Ruggiero
- Department of Nursing, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Ariane Rung
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Heiko Runz
- Biogen Inc., Research & Development, Cambridge, MA, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | | | - Giovanni Abrahão Salum
- Child Mind Institute, New York City, NY, USA
- Instituto Nacional de Psiquiatria de Desenvolvimento, São Paulo, Brazil
| | - Laura Sampson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sixto E Sanchez
- Department of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Marcos Santoro
- Universidade Federal de São Paulo, Departamento de Bioquímica-Disciplina de Biologia Molecular, São Paulo, Brazil
| | - Carina Seah
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Stellenbosch University, SAMRC Extramural Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Julia S Seng
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Women's and Gender Studies, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Institute for Research on Women and Gender, Ann Arbor, MI, USA
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
| | - Andrey Shabalin
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christina M Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Derrick Silove
- Department of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Department of Gynecology and Obstetrics, Department of Psychiatry and Behavioral Sciences, Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Mental Health Service Line, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan J Stein
- University of Cape Town, Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Synne Stensland
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Norwegian Centre for Violence and Traumatic Stress Studies, Oslo, Norway
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Developmental Biopsychiatry Research Program, Belmont, MA, USA
| | - Wesley K Thompson
- Mental Health Centre Sct. Hans, Institute of Biological Psychiatry, Roskilde, Denmark
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Arun K Tiwari
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Edward Trapido
- Department of Epidemiology, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Monica Uddin
- University of South Florida College of Public Health, Genomics Program, Tampa, FL, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Unnur Valdimarsdóttir
- Karolinska Institutet, Unit of Integrative Epidemiology, Institute of Environmental Medicine, Stockholm, Sweden
- University of Iceland, Faculty of Medicine, Center of Public Health Sciences, School of Health Sciences, Reykjavik, Iceland
| | - Miranda Van Hooff
- University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Eric Vermetten
- ARQ Nationaal Psychotrauma Centrum, Psychotrauma Research Expert Group, Diemen, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, New York University School of Medicine, New York City, NY, USA
| | - Christiaan H Vinkers
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joanne Voisey
- Queensland University of Technology, School of Biomedical Sciences, Kelvin Grove, Queensland, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, Queensland, Australia
| | - Yunpeng Wang
- Department of Psychology, University of Oslo, Lifespan Changes in Brain and Cognition (LCBC), Oslo, Norway
| | - Zhewu Wang
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Mental Health, Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Monika Waszczuk
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Heike Weber
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Copenhagen University Hospital, Institute of Biological Psychiatry, Mental Health Services, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- University of Copenhagen, The Globe Institute, Lundbeck Foundation Center for Geogenetics, Copenhagen, Denmark
| | - Michelle A Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Douglas E Williamson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Research, Durham VA Health Care System, Durham, NC, USA
| | - Bendik S Winsvold
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Christiane Wolf
- University Hospital of Würzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Würzburg, Denmark
| | - Erika J Wolf
- VA Boston Healthcare System, National Center for PTSD, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yan Xia
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Analytic and Translational Genetics Unit, Boston, MA, USA
| | - Ying Xiong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Mental Health, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Keith A Young
- Central Texas Veterans Health Care System, Research Service, Temple, TX, USA
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, Queensland, Australia
- University of the Sunshine Coast, The Chancellory, Sippy Downs, Queensland, Australia
| | - Clement C Zai
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Gwyneth C Zai
- Centre for Addiction and Mental Health, Neurogenetics Section, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Tanenbaum Centre for Pharmacogenetics, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, General Adult Psychiatry and Health Systems Division, Toronto, Ontario, Canada
| | - Mark Zervas
- Cohen Veterans Bioscience, New York City, NY, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Lori A Zoellner
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - John-Anker Zwart
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, K. G. Jebsen Center for Genetic Epidemiology, Trondheim, Norway
- Oslo University Hospital, Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo, Norway
| | - Terri deRoon-Cassini
- Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- SAMRC Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
| |
Collapse
|