1
|
Horecka-Lewitowicz A, Lewitowicz W, Wawszczak-Kasza M, Lim H, Lewitowicz P. Autism Spectrum Disorder Pathogenesis-A Cross-Sectional Literature Review Emphasizing Molecular Aspects. Int J Mol Sci 2024; 25:11283. [PMID: 39457068 PMCID: PMC11508848 DOI: 10.3390/ijms252011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The etiology of autism spectrum disorder (ASD) has not yet been completely elucidated. Through time, multiple attempts have been made to uncover the causes of ASD. Different theories have been proposed, such as being caused by alterations in the gut-brain axis with an emphasis on gut dysbiosis, post-vaccine complications, and genetic or even autoimmune causes. In this review, we present data covering the main streams that focus on ASD etiology. Data collection occurred in many countries covering ethnically diverse subjects. Moreover, we aimed to show how the progress in genetic techniques influences the explanation of medical White Papers in the ASD area. There is no single evidence-based pathway that results in symptoms of ASD. Patient management has constantly only been symptomatic, and there is no ASD screening apart from symptom-based diagnosis and parent-mediated interventions. Multigene sequencing or epigenetic alterations hold promise in solving the disjointed molecular puzzle. Further research is needed, especially in the field of biogenetics and metabolomic aspects, because young children constitute the patient group most affected by ASD. In summary, to date, molecular research has confirmed multigene dysfunction as the causative factor of ASD, the multigene model with metabolomic influence would explain the heterogeneity in ASD, and it is proposed that ion channel dysfunction could play a core role in ASD pathogenesis.
Collapse
Affiliation(s)
- Agata Horecka-Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Wojciech Lewitowicz
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Monika Wawszczak-Kasza
- Institute of Health Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Hyebin Lim
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Piotr Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| |
Collapse
|
2
|
Schultz LM, Knighton A, Huguet G, Saci Z, Jean-Louis M, Mollon J, Knowles EEM, Glahn DC, Jacquemont S, Almasy L. Copy-number variants differ in frequency across genetic ancestry groups. HGG ADVANCES 2024; 5:100340. [PMID: 39138864 PMCID: PMC11401192 DOI: 10.1016/j.xhgg.2024.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Copy-number variants (CNVs) have been implicated in a variety of neuropsychiatric and cognitive phenotypes. We found that deleterious CNVs are less prevalent in non-European ancestry groups than they are in European ancestry groups of both the UK Biobank (UKBB) and a US replication cohort (SPARK). We also identified specific recurrent CNVs that consistently differ in frequency across ancestry groups in both the UKBB and SPARK. These ancestry-related differences in CNV prevalence present in both an unselected community population and a family cohort enriched with individuals diagnosed with autism spectrum disorder (ASD) strongly suggest that genetic ancestry should be considered when probing associations between CNVs and health outcomes.
Collapse
Affiliation(s)
- Laura M Schultz
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Alexys Knighton
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Zohra Saci
- CHU Sainte-Justine, Montréal, QC, Canada
| | | | - Josephine Mollon
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emma E M Knowles
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David C Glahn
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sébastien Jacquemont
- CHU Sainte-Justine, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Pollak RM, Sefik E, Aberizk K, Duan K, Espana R, Guest RM, Goldman-Yassen AE, Goines K, Novacek DM, Saulnier CA, Klaiman C, Pulver S, Cubells JF, Burrell TL, Shultz S, Walker EF, Murphy MM, Mulle JG. Beyond IQ: executive function deficits and their relation to functional, clinical, and neuroimaging outcomes in 3q29 deletion syndrome. Psychol Med 2024:1-12. [PMID: 39365000 DOI: 10.1017/s0033291724002320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND 3q29 deletion syndrome (3q29del) is a rare (~1:30 000) genomic disorder associated with a wide array of neurodevelopmental and psychiatric phenotypes. Prior work by our team identified clinically significant executive function (EF) deficits in 47% of individuals with 3q29del; however, the nuances of EF in this population have not been described. METHODS We used the Behavior Rating Inventory of Executive Function (BRIEF) to perform the first in-depth assessment of real-world EF in a cohort of 32 individuals with 3q29del (62.5% male, mean age = 14.5 ± 8.3 years). All participants were also evaluated with gold-standard neuropsychiatric and cognitive assessments. High-resolution structural magnetic resonance imaging was performed on a subset of participants (n = 24). RESULTS We found global deficits in EF; individuals with 3q29del scored higher than the population mean on the BRIEF global executive composite (GEC) and all subscales. In total, 81.3% of study subjects (n = 26) scored in the clinical range on at least one BRIEF subscale. BRIEF GEC T scores were higher among 3q29del participants with a diagnosis of attention deficit/hyperactivity disorder (ADHD), and BRIEF GEC T scores were associated with schizophrenia spectrum symptoms as measured by the Structured Interview for Psychosis-Risk Syndromes. BRIEF GEC T scores were not associated with cognitive ability. The BRIEF-2 ADHD form accurately (sensitivity = 86.7%) classified individuals with 3q29del based on ADHD diagnosis status. BRIEF GEC T scores were correlated with cerebellar white matter and subregional cerebellar cortex volumes. CONCLUSIONS Together, these data expand our understanding of the phenotypic spectrum of 3q29del and identify EF as a core feature linked to both psychiatric and neuroanatomical features of the syndrome.
Collapse
Affiliation(s)
- Rebecca M Pollak
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Esra Sefik
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, GA, USA
| | - Roberto Espana
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Ryan M Guest
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Katrina Goines
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Derek M Novacek
- Desert Pacific Mental Illness Research, Education, and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Decatur, GA, USA
| | - Cheryl Klaiman
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stormi Pulver
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F Cubells
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Sarah Shultz
- Marcus Autism Center, Children's Healthcare of Atlanta & Emory University School of Medicine, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Burack JA, Russo N, Evans DW, Boatswain-Jacques AF, Rey G, Iarocci G, Hodapp RM. Cicchetti's organizational-developmental perspective of Down syndrome: Contributions to the emergence of developmental psychopathology and the study of persons with neurodevelopmental conditions. Dev Psychopathol 2024:1-12. [PMID: 39363859 DOI: 10.1017/s0954579424000178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Dante Cicchetti's earliest work, his studies of social-emotional development in infants and children with Down syndrome, set the stage for the emergence of the larger field of developmental psychopathology. By applying basic developmental principles, methodologies, and questions to the study of persons with Down syndrome, Dante took on the challenge of searching for patterns in atypical development. In doing so, he extended traditional developmental theory and introduced a more "liberal" approach that both continues to guide developmentally based research with persons with neurodevelopmental conditions (NDCs), including Down syndrome. We highlight five themes from Dante's work: (1) appreciating the importance of developmental level; (2) prioritizing the organization of development; (3) examining whether developmental factors work similarly in those with known genetic conditions; (4) rethinking narratives about ways of being; and (5) examining the influence of multiple levels of the environment on the individual's functioning. We highlight ways that these essential lessons anticipated present-day research with persons with a variety of NDCs, including Down syndrome, other genetic syndromes associated with intellectual disability, and autism. We conclude with visions to the future for research with these populations as well as for the field of developmental psychopathology more generally.
Collapse
Affiliation(s)
- Jacob A Burack
- Department of Educational & Counselling Psychology, McGill University, Montreal, Canada
| | - Natalie Russo
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - David W Evans
- Program in Neuroscience, Bucknell University, Lewisburg, PA, USA
| | | | - Gabriela Rey
- Department of Educational & Counselling Psychology, McGill University, Montreal, Canada
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Robert M Hodapp
- Department of Special Education, Vanderbilt University Peabody College, Nashville, TN, USA
| |
Collapse
|
5
|
Vaez M, Montalbano S, Calle Sánchez X, Georgii Hellberg KL, Dehkordi SR, Krebs MD, Meijsen J, Shorter J, Bybjerg-Grauholm J, Mortensen PB, Børglum AD, Hougaard DM, Nordentoft M, Geschwind DH, Buil A, Schork AJ, Helenius D, Raznahan A, Thompson WK, Werge T, Ingason A. Population-Based Risk of Psychiatric Disorders Associated With Recurrent Copy Number Variants. JAMA Psychiatry 2024; 81:957-966. [PMID: 38922630 PMCID: PMC11209205 DOI: 10.1001/jamapsychiatry.2024.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
Importance Recurrent copy number variants (rCNVs) have been associated with increased risk of psychiatric disorders in case-control studies, but their population-level impact is unknown. Objective To provide unbiased population-based estimates of prevalence and risk associated with psychiatric disorders for rCNVs and to compare risks across outcomes, rCNV dosage type (deletions or duplications), and locus features. Design, Setting, and Participants This genetic association study is an analysis of data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) case-cohort sample of individuals born in Denmark in 1981-2008 and followed up until 2015, including (1) all individuals (n = 92 531) with a hospital discharge diagnosis of attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder, major depressive disorder (MDD), or schizophrenia spectrum disorder (SSD) and (2) a subcohort (n = 50 625) randomly drawn from the source population. Data were analyzed from January 2021 to August 2023. Exposures Carrier status of deletions and duplications at 27 autosomal rCNV loci was determined from neonatal blood samples genotyped on single-nucleotide variant microarrays. Main Outcomes and Measures Population-based rCNV prevalence was estimated with a survey model using finite population correction to account for oversampling of cases. Hazard ratio (HR) estimates and 95% CIs for psychiatric disorders were derived using weighted Cox proportional hazard models. Risks were compared across outcomes, dosage type, and locus features using generalized estimating equation models. Results A total of 3547 rCNVs were identified in 64 735 individuals assigned male at birth (53.8%) and 55 512 individuals assigned female at birth (46.2%) whose age at the end of follow-up ranged from 7.0 to 34.7 years (mean, 21.8 years). Most observed increases in rCNV-associated risk for ADHD, ASD, or SSD were moderate, and risk estimates were highly correlated across these disorders. Notable exceptions included high ASD-associated risk observed for Prader-Willi/Angelman syndrome duplications (HR, 20.8; 95% CI, 7.9-55). No rCNV was associated with increased MDD risk. Also, rCNV-associated risk was positively correlated with locus size and gene constraint but not with dosage type. Comparison with published case-control and community-based studies revealed a higher prevalence of deletions and lower associated increase in risk for several rCNVs in iPSYCH2015. Conclusions and Relevance This study found that several rCNVs were more prevalent and conferred less risk of psychiatric disorders than estimated previously. Most case-control studies overestimate rCNV-associated risk of psychiatric disorders, likely because of selection bias. In an era where genetics is increasingly being clinically applied, these results highlight the importance of population-based risk estimates for genetics-based predictions.
Collapse
Affiliation(s)
- Morteza Vaez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Simone Montalbano
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Xabier Calle Sánchez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Kajsa-Lotta Georgii Hellberg
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Saeid Rasekhi Dehkordi
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Morten Dybdahl Krebs
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Joeri Meijsen
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - John Shorter
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jonas Bybjerg-Grauholm
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Preben B. Mortensen
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Department of Biomedicine – Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - David M. Hougaard
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel H. Geschwind
- Department of Neurology, University of California, Los Angeles
- Department of Human Genetics, University of California, Los Angeles
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles
- Center for Human Development, University of California, San Diego
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J. Schork
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Neurogenomics Division, Translational Genomics Research Institute (TGEN), Phoenix, Arizona
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland
| | - Wesley K. Thompson
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Auwerx C, Kutalik Z, Reymond A. The pleiotropic spectrum of proximal 16p11.2 CNVs. Am J Hum Genet 2024:S0002-9297(24)00301-X. [PMID: 39332410 DOI: 10.1016/j.ajhg.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024] Open
Abstract
Recurrent genomic rearrangements at 16p11.2 BP4-5 represent one of the most common causes of genomic disorders. Originally associated with increased risk for autism spectrum disorder, schizophrenia, and intellectual disability, as well as adiposity and head circumference, these CNVs have since been associated with a plethora of phenotypic alterations, albeit with high variability in expressivity and incomplete penetrance. Here, we comprehensively review the pleiotropy associated with 16p11.2 BP4-5 rearrangements to shine light on its full phenotypic spectrum. Illustrating this phenotypic heterogeneity, we expose many parallels between findings gathered from clinical versus population-based cohorts, which often point to the same physiological systems, and emphasize the role of the CNV beyond neuropsychiatric and anthropometric traits. Revealing the complex and variable clinical manifestations of this CNV is crucial for accurate diagnosis and personalized treatment strategies for carrier individuals. Furthermore, we discuss areas of research that will be key to identifying factors contributing to phenotypic heterogeneity and gaining mechanistic insights into the molecular pathways underlying observed associations, while demonstrating how diversity in affected individuals, cohorts, experimental models, and analytical approaches can catalyze discoveries.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Huang R, Ma C, Chen H, Fu F, Han J, Liu L, Li L, Yan S, Lu J, Zhou H, Wang Y, Guo F, Jing X, Li F, Zhen L, Li D, Li R, Liao C. Prenatal diagnosis of 17q12 copy number variants in fetuses via chromosomal microarray analysis - A retrospective cohort study and literature review. Heliyon 2024; 10:e36558. [PMID: 39286125 PMCID: PMC11402952 DOI: 10.1016/j.heliyon.2024.e36558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose 17q12 copy number variants (CNVs) have variable presentations and incomplete penetrance, challenging prenatal counseling and management. This study aims to investigate the intrauterine phenotype. Methods We included 48 fetuses diagnosed with 17q12 microdeletion or microduplication by chromosomal microarray analysis. Results For 17q12 deletion, renal anomalies were found in 35 fetuses (35/37, 94.6 %), with hyperechogenic kidneys (HEK, 28/37, 75.7 %) and multicystic dysplastic kidneys (17/37, 45.9 %) being the most common findings. Duodenal obstruction (DO) was most frequently combined in 17q12 duplication fetuses. In addition, cardiac abnormalities were the first reported prenatal phenotype in 17q12 duplication fetuses. Conclusion Our study shows that HEK and DO are the most predominant presentations of 17q12 deletion and duplication, respectively, and cardiac structural abnormalities may be associated with the latter. Although 17q12 CNVs have incomplete penetrance and variable expressivity and may be mainly involved in neurodevelopmental disorders, their short-term prognosis appears positive.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Huanyi Chen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Liyuan Liu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lushan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jianqin Lu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Xiangyi Jing
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fucheng Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| |
Collapse
|
8
|
Romanovsky E, Choudhary A, Peles D, Abu-Akel A, Stern S. Uncovering convergence and divergence between autism and schizophrenia using genomic tools and patients' neurons. Mol Psychiatry 2024:10.1038/s41380-024-02740-0. [PMID: 39237719 DOI: 10.1038/s41380-024-02740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorders (ASDs) are highly heritable and result in abnormal repetitive behaviors and impairment in communication and cognitive skills. Previous studies have focused on the genetic correlation between ASDs and other neuropsychiatric disorders, but an in-depth understanding of the correlation to other disorders is required. We conducted an extensive meta-analysis of common variants identified in ASDs by genome-wide association studies (GWAS) and compared it to the consensus genes and single nucleotide polymorphisms (SNPs) of Schizophrenia (SCZ). We found approximately 75% of the GWAS genes that are associated with ASD are also associated with SCZ. We further investigated the cellular phenotypes of neurons derived from induced pluripotent stem cell (iPSC) models in ASD and SCZ. Our findings revealed that ASD and SCZ neurons initially follow divergent developmental trajectories compared to control neurons. However, despite these early diametrical differences, both ASD and SCZ neurons ultimately display similar deficits in synaptic activity as they mature. This significant genetic overlap between ASD and SCZ, coupled with the convergence towards similar synaptic deficits, highlights the intricate interplay of genetic and developmental factors in shaping the shared underlying mechanisms of these complex neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eva Romanovsky
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub, University of Haifa, Haifa, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
9
|
Zhuang J, Zhang N, Fu W, Jiang Y, Chen Y, Chen C. Prenatal diagnosis of fetuses with 15q11.2 BP1-BP2 microdeletion in the Chinese population: a seven-year single-center retrospective study. Mol Cytogenet 2024; 17:20. [PMID: 39218907 PMCID: PMC11367773 DOI: 10.1186/s13039-024-00690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The 15q11.2 BP1-BP2 microdeletion syndrome is associated with developmental delays, language impairments, neurobehavioral disorders, and psychiatric complications. The aim of the present study was to provide prenatal and postnatal clinical data for 16 additional fetuses diagnosed with the 15q11.2 BP1-BP2 microdeletion syndrome in the Chinese population. METHODS A total of 5,789 pregnancy women that underwent amniocentesis were enrolled in the present study. Both karyotype analysis and chromosomal microarray analysis (CMA) were conducted on these subjects to detect chromosomal abnormalities and copy number variants (CNVs). Whole exome sequencing (WES) was performed to investigate sequence variants in subjects with clinical abnormalities after birth. RESULTS Sixteen fetuses with 15q11.2 BP1-BP2 microdeletion were identified in the present study, with a detection rate of 0.28% (16/5,789). The 15q11.2 BP1-BP2 microdeletion fragments ranged from 311.8 kb to 849.7 kb, encompassing the NIPA1, NIPA2, CYFIP1, and TUBGCP5 genes. The follow-up results regarding pregnancy outcomes showed that five cases opted for pregnancy termination, while the remaining cases continued with their pregnancies. Subsequent postnatal follow-up indicated that only one case with the 15q11.2 BP1-BP2 microdeletion displayed neurodevelopmental disorders, demonstrating an incomplete penetrance rate of 9.09% (1/11). CONCLUSION The majority of fetuses with the 15q11.2 microdeletion exhibit typical features during early childhood, indicating a low penetrance and mild impact. Nonetheless, pregnancies involving fetuses with the 15q11.2 microdeletion require thorough prenatal counseling. Additionally, enhanced supervision and extended postnatal monitoring are warranted for those who choose to proceed with their pregnancies.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Na Zhang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Wanyu Fu
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Yuying Jiang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Yu'e Chen
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Chunnuan Chen
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
10
|
Wu XR, Wu BS, Kang JJ, Chen LM, Deng YT, Chen SD, Dong Q, Feng JF, Cheng W, Yu JT. Contribution of copy number variations to education, socioeconomic status and cognition from a genome-wide study of 305,401 subjects. Mol Psychiatry 2024:10.1038/s41380-024-02717-z. [PMID: 39215183 DOI: 10.1038/s41380-024-02717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Educational attainment (EA), socioeconomic status (SES) and cognition are phenotypically and genetically linked to health outcomes. However, the role of copy number variations (CNVs) in influencing EA/SES/cognition remains unclear. Using a large-scale (n = 305,401) genome-wide CNV-level association analysis, we discovered 33 CNV loci significantly associated with EA/SES/cognition, 20 of which were novel (deletions at 2p22.2, 2p16.2, 2p12, 3p25.3, 4p15.2, 5p15.33, 5q21.1, 8p21.3, 9p21.1, 11p14.3, 13q12.13, 17q21.31, and 20q13.33, as well as duplications at 3q12.2, 3q23, 7p22.3, 8p23.1, 8p23.2, 17q12 (105 kb), and 19q13.32). The genes identified in gene-level tests were enriched in biological pathways such as neurodegeneration, telomere maintenance and axon guidance. Phenome-wide association studies further identified novel associations of EA/SES/cognition-associated CNVs with mental and physical diseases, such as 6q27 duplication with upper respiratory disease and 17q12 (105 kb) duplication with mood disorders. Our findings provide a genome-wide CNV profile for EA/SES/cognition and bridge their connections to health. The expanded candidate CNVs database and the residing genes would be a valuable resource for future studies aimed at uncovering the biological mechanisms underlying cognitive function and related clinical phenotypes.
Collapse
Affiliation(s)
- Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Li-Min Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Song J, Pasman JA, Johansson V, Kuja-Halkola R, Harder A, Karlsson R, Lu Y, Kowalec K, Pedersen NL, Cannon TD, Hultman CM, Sullivan PF. Polygenic Risk Scores and Twin Concordance for Schizophrenia and Bipolar Disorder. JAMA Psychiatry 2024:2822688. [PMID: 39196586 PMCID: PMC11359115 DOI: 10.1001/jamapsychiatry.2024.2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 08/29/2024]
Abstract
Importance Schizophrenia and bipolar disorder are highly heritable psychiatric disorders with strong genetic and phenotypic overlap. Twin and molecular methods can be leveraged to predict the shared genetic liability to these disorders. Objective To investigate whether twin concordance for psychosis depends on the level of polygenic risk score (PRS) for psychosis and zygosity and compare PRS from cases and controls from several large samples and estimate the twin heritability of psychosis. Design, Setting, and Participants In this case-control study, psychosis PRS were generated from a genome-wide association study (GWAS) combining schizophrenia and bipolar disorder into a single psychosis phenotype and compared between cases and controls from the Schizophrenia and Bipolar Twin Study in Sweden (STAR) project. Further tests were conducted to ascertain if twin concordance for psychosis depended on the mean PRS for psychosis. Structural equation modeling was used to estimate heritability. This study constituted an analysis of existing clinical and population datasets with genotype and/or twin data. Included were twins from the STAR cohort and from the Swedish Twin Registry. Data were collected during the 2006 to 2013 period and analyzed from March 2023 to June 2024. Exposures PRS for psychosis based on the most recent GWAS of combined schizophrenia/bipolar disorder. Main Outcomes and Measures Psychosis case status was assessed by clinical interviews and/or Swedish National Register data. Results The final cohort comprised 87 pairs of twins with 1 or both affected and 59 unaffected pairs from the STAR project (for a total of 292 twins) as well as 443 pairs with 1 or both affected and 20 913 unaffected pairs from the Swedish Twin Registry. Among the 292 twins (mean [SD] birth year, 1960 [10.8] years; 158 female [54.1%]; 134 male [45.9%]), 134 were monozygotic twins, and 158 were dyzygotic twins. PRS for psychosis was higher in cases than in controls and associated with twin concordance for psychosis (1-SD increase in PRS, odds ratio [OR], 2.12; 95% CI, 1.23-3.87 on case status in monozygotic twins and OR, 2.74; 95% CI, 1.56-5.30 in dizygotic twins). The association between PRS for psychosis and concordance was not modified by zygosity. The twin heritability was estimated at 0.73 (95% CI, 0.30-1.00), which overlapped with the estimate in the full Swedish Twin Registry (0.69; 95% CI, 0.43-0.85). Conclusions and Relevance In this case-control study, using the natural experiment of twins, results suggest that twins with greater inherited liability for psychosis were more likely to have an affected co-twin. Results from twin and molecular designs largely aligned. Even as illness vulnerability is not solely genetic, PRS carried predictive power for psychosis even in a modest sample size.
Collapse
Affiliation(s)
- Jie Song
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joëlle A. Pasman
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arvid Harder
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kaarina Kowalec
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tyrone D. Cannon
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Christina M. Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill
| |
Collapse
|
12
|
Jensen M, Smolen C, Tyryshkina A, Pizzo L, Banerjee D, Oetjens M, Shimelis H, Taylor CM, Pounraja VK, Song H, Rohan L, Huber E, El Khattabi L, van de Laar I, Tadros R, Bezzina C, van Slegtenhorst M, Kammeraad J, Prontera P, Caberg JH, Fraser H, Banka S, Van Dijck A, Schwartz C, Voorhoeve E, Callier P, Mosca-Boidron AL, Marle N, Lefebvre M, Pope K, Snell P, Boys A, Lockhart PJ, Ashfaq M, McCready E, Nowacyzk M, Castiglia L, Galesi O, Avola E, Mattina T, Fichera M, Bruccheri MG, Mandarà GML, Mari F, Privitera F, Longo I, Curró A, Renieri A, Keren B, Charles P, Cuinat S, Nizon M, Pichon O, Bénéteau C, Stoeva R, Martin-Coignard D, Blesson S, Le Caignec C, Mercier S, Vincent M, Martin C, Mannik K, Reymond A, Faivre L, Sistermans E, Kooy RF, Amor DJ, Romano C, Andrieux J, Girirajan S. Genetic modifiers and ascertainment drive variable expressivity of complex disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.27.24312158. [PMID: 39252907 PMCID: PMC11383473 DOI: 10.1101/2024.08.27.24312158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Variable expressivity of disease-associated variants implies a role for secondary variants that modify clinical features. We assessed the effects of modifier variants towards clinical outcomes of 2,252 individuals with primary variants. Among 132 families with the 16p12.1 deletion, distinct rare and common variant classes conferred risk for specific developmental features, including short tandem repeats for neurological defects and SNVs for microcephaly, while additional disease-associated variants conferred multiple genetic diagnoses. Within disease and population cohorts of 773 individuals with the 16p12.1 deletion, we found opposing effects of secondary variants towards clinical features across ascertainments. Additional analysis of 1,479 probands with other primary variants, such as 16p11.2 deletion and CHD8 variants, and 1,084 without primary variants, showed that phenotypic associations differed by primary variant context and were influenced by synergistic interactions between primary and secondary variants. Our study provides a paradigm to dissect the genomic architecture of complex disorders towards personalized treatment.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Corrine Smolen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Hermela Shimelis
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Cora M. Taylor
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Vijay Kumar Pounraja
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
| | - Hyebin Song
- Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Rohan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Emily Huber
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laila El Khattabi
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Ingrid van de Laar
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rafik Tadros
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Connie Bezzina
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janneke Kammeraad
- Department of Clinical Genetics, Erasmus MC, Univ. Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paolo Prontera
- Medical Genetics Unit, Hospital Santa Maria della Misericordia, Perugia, Italy
| | - Jean-Hubert Caberg
- Centre Hospitalier Universitaire de Liège. Domaine Universitaire du Sart Tilman, Liège, Belgium
| | - Harry Fraser
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddhartha Banka
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Central Manchester University Hospitals, NHS Foundation Trust Manchester Academic Health Sciences Centre, Manchester, UK
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | | | - Els Voorhoeve
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Patrick Callier
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Nathalie Marle
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Amber Boys
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Myla Ashfaq
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Nowacyzk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lucia Castiglia
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Ornella Galesi
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Emanuela Avola
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Teresa Mattina
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Marco Fichera
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Maria Grazia Bruccheri
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | | | - Francesca Mari
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Flavia Privitera
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Longo
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Curró
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Renieri
- Laboratory of Clinical Molecular Genetics and Cytogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | - Perrine Charles
- Département de Génétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75019 Paris, France
| | | | | | | | | | - Radka Stoeva
- CHU Nantes, Medical Genetics Department, Nantes, France
| | | | - Sophia Blesson
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Cedric Le Caignec
- CHU Toulouse, Department of Medical Genetics, Toulouse, France
- Toulouse Neuro Imaging, Center, Inserm, UPS, Université de Toulouse, Toulouse, France
| | - Sandra Mercier
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Marie Vincent
- Department of Genetics, Bretonneau University Hospital, Tours, France
| | - Christa Martin
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA 17837, USA
| | - Katrin Mannik
- Institute of Genomics, University of Tartu, Estonia
- Health2030 Genome Center, Fondation Campus Biotech, Geneva, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Laurence Faivre
- Center for Rare Diseases and Reference Developmental Anomalies and Malformation Syndromes, CHU Dijon, Dijon, France
- Laboratoire de Genetique Chromosomique et Moleculaire, CHU Dijon, France
| | - Erik Sistermans
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - R. Frank Kooy
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - David J. Amor
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Section of Clinical Biochemistry and Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania School of Medicine, Catania, Italy
| | - Joris Andrieux
- Institut de Genetique Medicale, Hopital Jeanne de Flandre, CHRU de Lille, Lille, France
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate program, Pennsylvania State University, University Park, PA 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Pollak RM, Burrell TL, Cubells JF, Klaiman C, Murphy MM, Saulnier CA, Walker EF, White SP, Mulle JG. Visual-Motor Integration Deficits in 3q29 Deletion Syndrome. J Autism Dev Disord 2024; 54:3142-3154. [PMID: 37354284 PMCID: PMC11300491 DOI: 10.1007/s10803-023-06034-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/26/2023]
Abstract
3q29 deletion syndrome (3q29del) is associated with neuropsychiatric and neurodevelopmental phenotypes. We previously reported that graphomotor weakness is present in up to 78% of individuals with 3q29del. We have now explored nuances of the graphomotor phenotype and its association with other comorbidities in this population. Participants were recruited from the online 3q29 registry (3q29deletion.org) for two days of deep phenotyping. 32 individuals with 3q29del (62.5% male) were evaluated with the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI) to assess visual-motor integration. Participants were also evaluated with measures of cognitive ability, executive function, adaptive behavior, and school function. Males with 3q29del performed significantly worse than females on the VMI and Motor Coordination subtest. VMI performance was significantly associated with ADHD diagnosis and cognitive ability. Compared to published data from individuals with 22q11.2 deletion syndrome, individuals with 3q29del showed significantly more impairment. The 3q29 deletion is associated with substantial deficits in visual-motor integration, Visual Perception, and Motor Coordination. Our data suggests that 3q29del may qualify as a nonverbal learning disability. Future studies should assess whether individuals with 3q29del would benefit from early interventions, including occupational therapy.
Collapse
Affiliation(s)
- Rebecca M Pollak
- Center for Advanced Biotechnology and Medicine and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - T Lindsey Burrell
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Joseph F Cubells
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA
- Department of Psychiatry and Behavioral Science, School of Medicine, Emory University, Atlanta, USA
| | - Cheryl Klaiman
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University, Atlanta, USA
| | - Melissa M Murphy
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Celine A Saulnier
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
- Neurodevelopmental Assessment & Consulting Services, Decatur, USA
| | | | - Stormi Pulver White
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University, Atlanta, USA
| | - Jennifer G Mulle
- Center for Advanced Biotechnology and Medicine and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, USA.
| |
Collapse
|
14
|
Zaks N, Mahjani B, Reichenberg A, Birnbaum R. CLINICAL AND COGNITIVE PHENOTYPING OF COPY NUMBER VARIANTS PATHOGENIC FOR NEURODEVELOPMENTAL DISORDERS FROM A MULTI-ANCESTRY BIOBANK. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.16.24310489. [PMID: 39072027 PMCID: PMC11275656 DOI: 10.1101/2024.07.16.24310489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Rare copy number variants (CNVs) are pathogenic for neurodevelopmental disorders (NDDs) and effect neurocognitive impairment. In aggregate, NDD CNVs may present in up to 2% of population cohorts with implications for neuropsychiatric disease risk and cognitive health. However, analyses of NDD CNVs in biobanks or population cohorts have been hindered by limited clinical or cognitive phenotypes, and a lack of ancestral diversity. In the current proof-of-concept study, NDD CNV carriers were recontacted from BioMe, a multi-ancestry biobank derived from the Mount Sinai healthcare system, to enable 'deep phenotyping' beyond electronic health record outcomes. Methods From BioMe biobank, 892 adult participants were recontacted, including 335 harboring NDD CNVs, 217 with schizophrenia and 340 neurotypical controls as comparators. Clinical and cognitive assessments were administered to each recruited participant. Results Seventy-three participants completed study assessments (mean age=48.8 years; 66% female; 36% African, 26% European, 34% Hispanic), or 8% of the recontacted subset, including 30 NDD CNV carriers across 15 loci. Among NDD CNV carriers, assessments indicated 40% with mood and anxiety disorders, 30% with learning disorders, and 13% with a history of special education. NDD CNV carriers were significantly cognitively impaired compared to controls on digit span backwards (Beta=-1.76, FDR=0.04) and digit span sequencing (Beta=-2.01, FDR=0.04). Conclusions Feasibility of "recall-by-genotype" from a multi-ancestry biobank was established for NDD CNV carriers, along with comparator groups. The current study corroborated past reports of NDD CNVs effects of cognitive impairment, while elucidating clinical phenotypes for recalled individuals. Future "recall-by-genotype" studies may further facilitate clinical characterization of disease-relevant genomic variants.
Collapse
Affiliation(s)
- Nina Zaks
- Department of Child and Adolescent Psychiatry, NYU Langone Health
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai
| | - Rebecca Birnbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
15
|
D'Amico A, Sung H, Arbona-Lampaya A, Freifeld A, Hosey K, Garcia J, Lacbawan L, Besançon E, Kassem L, Akula N, Knowles EEM, Dickinson D, McMahon FJ. Independent inheritance of cognition and bipolar disorder in a family sample. Am J Med Genet B Neuropsychiatr Genet 2024:e33001. [PMID: 39011872 DOI: 10.1002/ajmg.b.33001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Cognitive deficits in people with bipolar disorder (BD) may be the result of the illness or its treatment, but they could also reflect genetic risk factors shared between BD and cognition. We investigated this question using empirical genetic relationships within a sample of patients with BD and their unaffected relatives. Participants with bipolar I, II, or schizoaffective disorder ("narrow" BD, n = 69), related mood disorders ("broad" BD, n = 135), and their clinically unaffected relatives (n = 227) completed five cognitive tests. General cognitive function (g) was quantified via principal components analysis (PCA). Heritability and genetic correlations were estimated with SOLAR-Eclipse. Participants with "narrow" or "broad" diagnoses showed deficits in g, although affect recognition was unimpaired. Cognitive performance was significantly heritable (h2 = 0.322 for g, p < 0.005). Coheritability between psychopathology and g was small (0.0184 for narrow and 0.0327 for broad) and healthy relatives of those with BD were cognitively unimpaired. In this family sample, cognitive deficits were present in participants with BD but were not explained by substantial overlaps in genetic determinants of mood and cognition. These findings support the view that cognitive deficits in BD are largely the result of the illness or its treatment.
Collapse
Affiliation(s)
- Alexander D'Amico
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Heejong Sung
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Alejandro Arbona-Lampaya
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Ally Freifeld
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Katie Hosey
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Joshua Garcia
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Ley Lacbawan
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Emily Besançon
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | | | - Dwight Dickinson
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, NIH, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Massier M, Doco-Fenzy M, Egloff M, Le Guillou X, Le Guyader G, Redon S, Benech C, Le Millier K, Uguen K, Ropars J, Sacaze E, Audebert-Bellanger S, Apetrei A, Molin A, Gruchy N, Vincent-Devulder A, Spodenkiewicz M, Jacquin C, Loron G, Thibaud M, Delplancq G, Brisset S, Lesieur-Sebellin M, Malan V, Romana S, Rio M, Marlin S, Amiel J, Marquet V, Dauriat B, Moradkhani K, Mercier S, Isidor B, Arpin S, Pujalte M, Jedraszak G, Pebrel-Richard C, Salaun G, Laffargue F, Boudjarane J, Missirian C, Chelloug N, Toutain A, Chiesa J, Keren B, Mignot C, Gouy E, Jaillard S, Landais E, Poirsier C. 3q29 duplications: A cohort of 46 patients and a literature review. Am J Med Genet A 2024; 194:e63531. [PMID: 38421086 DOI: 10.1002/ajmg.a.63531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024]
Abstract
Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.
Collapse
Affiliation(s)
- Marie Massier
- Department of Genetics, Reims University Hospital, Reims, France
| | - Martine Doco-Fenzy
- Department of Genetics, Reims University Hospital, Reims, France
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Matthieu Egloff
- Department of Genetics, Poitiers University Hospital, Poitiers, France
- University of Poitiers, INSERM, LNEC, Department of Genetics, Poitiers University Hospital, Poitiers, France
| | - Xavier Le Guillou
- Department of Genetics, Poitiers University Hospital, Poitiers, France
- University of Poitiers, CNRS, LMA, Department of Genetics, Poitiers University Hospital, Poitiers, France
| | | | - Sylvia Redon
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Caroline Benech
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | | | - Kevin Uguen
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Juliette Ropars
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Elise Sacaze
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Séverine Audebert-Bellanger
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Andreea Apetrei
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Arnaud Molin
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Nicolas Gruchy
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Aline Vincent-Devulder
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | | | - Clémence Jacquin
- Department of Genetics, Reims University Hospital, Reims, France
| | - Gauthier Loron
- Department of Neonatal Medicine and Pediatric Intensive Care, University of Reims Champagne-Ardenne, CReSTIC, Reims University Hospital, Reims, France
| | - Marie Thibaud
- Department of Pediatrics, American Memorial Hospital, Reims, France
| | | | - Sophie Brisset
- Constitutional Genetics Unit, Versailles Hospital, Le Chesnay, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Valérie Malan
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Serge Romana
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Marlène Rio
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Sandrine Marlin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Jeanne Amiel
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Valentine Marquet
- Department of Cytogenetics, Clinical Genetics and Reproductive Biology, Limoges University Hospital, Limoges, France
| | - Benjamin Dauriat
- Department of Cytogenetics, Clinical Genetics and Reproductive Biology, Limoges University Hospital, Limoges, France
| | | | - Sandra Mercier
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Bertrand Isidor
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Stéphanie Arpin
- Department of Genetics, Tours University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | | | - Guillaume Jedraszak
- Constitutional Genetic Laboratory, University Hospital of Amiens & UR4666 HEMATIM, University of Picardie Jules Verne, Amiens, France
| | - Céline Pebrel-Richard
- Cytogenetic Medical Department; UIC Cytogenetics of Rare Diseases and Reproduction (GRUIC ADERGEN), Rare Diseases Reference Center (CRMR): Developmental Anomalies and Malformative Syndromes in the Auvergne Region, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Gaëlle Salaun
- Cytogenetic Medical Department; UIC Cytogenetics of Rare Diseases and Reproduction (GRUIC ADERGEN), Rare Diseases Reference Center (CRMR): Developmental Anomalies and Malformative Syndromes in the Auvergne Region, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Fanny Laffargue
- Department of Medical Genetics, UIC ADDIR (GRIUC ADERGEN), Constitutive Reference Center CLAD South-East: Developmental anomalies and malformative syndromes, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - John Boudjarane
- Medical Genetics Department, Timone Enfants University Hospital, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Chantal Missirian
- Medical Genetics Department, Timone Enfants University Hospital, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Nora Chelloug
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Jean Chiesa
- Department of Genetics, Nimes, University Hospital, Nimes University Hospital, Nimes, France
| | - Boris Keren
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Cyril Mignot
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Evan Gouy
- Department of Genetics, Hospices Civils de Lyon, Lyon, France
| | - Sylvie Jaillard
- Department of Cytogenetics and Cell Biology, Rennes university hospital, Rennes, France
| | - Emilie Landais
- Department of Genetics, Reims University Hospital, Reims, France
| | - Céline Poirsier
- Department of Genetics, Reims University Hospital, Reims, France
| |
Collapse
|
17
|
Leone R, Zuglian C, Brambilla R, Morella I. Understanding copy number variations through their genes: a molecular view on 16p11.2 deletion and duplication syndromes. Front Pharmacol 2024; 15:1407865. [PMID: 38948459 PMCID: PMC11211608 DOI: 10.3389/fphar.2024.1407865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of pathological conditions that affect >4% of children worldwide, share common features and present a variegated genetic origin. They include clinically defined diseases, such as autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), motor disorders such as Tics and Tourette's syndromes, but also much more heterogeneous conditions like intellectual disability (ID) and epilepsy. Schizophrenia (SCZ) has also recently been proposed to belong to NDDs. Relatively common causes of NDDs are copy number variations (CNVs), characterised by the gain or the loss of a portion of a chromosome. In this review, we focus on deletions and duplications at the 16p11.2 chromosomal region, associated with NDDs, ID, ASD but also epilepsy and SCZ. Some of the core phenotypes presented by human carriers could be recapitulated in animal and cellular models, which also highlighted prominent neurophysiological and signalling alterations underpinning 16p11.2 CNVs-associated phenotypes. In this review, we also provide an overview of the genes within the 16p11.2 locus, including those with partially known or unknown function as well as non-coding RNAs. A particularly interesting interplay was observed between MVP and MAPK3 in modulating some of the pathological phenotypes associated with the 16p11.2 deletion. Elucidating their role in intracellular signalling and their functional links will be a key step to devise novel therapeutic strategies for 16p11.2 CNVs-related syndromes.
Collapse
Affiliation(s)
- Roberta Leone
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Cecilia Zuglian
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
| | - Riccardo Brambilla
- Università di Pavia, Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Pavia, Italy
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| | - Ilaria Morella
- Cardiff University, School of Biosciences, Neuroscience and Mental Health Innovation Institute, Cardiff, United Kingdom
| |
Collapse
|
18
|
de Masfrand S, Cogné B, Nizon M, Deb W, Goldenberg A, Lecoquierre F, Nicolas G, Bournez M, Vitobello A, Mau-Them FT, le Guyader G, Bilan F, Bauer P, Zweier C, Piard J, Pasquier L, Bézieau S, Gerard B, Faivre L, Saugier-Veber P, Piton A, Isidor B. Penetrance, variable expressivity and monogenic neurodevelopmental disorders. Eur J Med Genet 2024; 69:104932. [PMID: 38453051 DOI: 10.1016/j.ejmg.2024.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Incomplete penetrance is observed for most monogenic diseases. However, for neurodevelopmental disorders, the interpretation of single and multi-nucleotide variants (SNV/MNVs) is usually based on the paradigm of complete penetrance. METHOD From 2020 to 2022, we proposed a collaboration study with the French molecular diagnosis for intellectual disability network. The aim was to recruit families for whom the index case, diagnosed with a neurodevelopmental disorder, was carrying a pathogenic or likely pathogenic variant for an OMIM morbid gene and inherited from an asymptomatic parent. Grandparents were analyzed when available for segregation study. RESULTS We identified 12 patients affected by a monogenic neurodevelopmental disorder caused by likely pathogenic or pathogenic variant (SNV/MNV) inherited from an asymptomatic parent. These genes were usually associated with de novo variants. The patients carried different variants (1 splice-site variant, 4 nonsense and 7 frameshift) in 11 genes: CAMTA1, MBD5, KMT2C, KMT2E, ZMIZ1, MN1, NDUFB11, CUL3, MED13, ARID2 and RERE. Grandparents have been tested in 6 families, and each time the variant was confirmed de novo in the healthy carrier parent. CONCLUSION Incomplete penetrance for SNV and MNV in neurodevelopmental disorders might be more frequent than previously thought. This point is crucial to consider for interpretation of variants, family investigation, genetic counseling, and prenatal diagnosis. Molecular mechanisms underlying this incomplete penetrance still need to be identified.
Collapse
Affiliation(s)
- Servane de Masfrand
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France.
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France
| | - Alice Goldenberg
- CHU Rouen, Service de Génétique et Centre de Référence pour Les Troubles Du Développement, 76183, Rouen, France
| | - François Lecoquierre
- CHU Rouen, Service de Génétique et Centre de Référence pour Les Troubles Du Développement, 76183, Rouen, France
| | - Gaël Nicolas
- CHU Rouen, Service de Génétique et Centre de Référence pour Les Troubles Du Développement, 76183, Rouen, France
| | - Marie Bournez
- Centre de Référence Anomalies Du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France; Génétique des Anomalies Du Développement, INSERM 123, Université de Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France; Génétique des Anomalies Du Développement, INSERM 123, Université de Bourgogne, Dijon, France
| | - Gwenaël le Guyader
- Service de Génétique Clinique, Centre de Compétence Maladies Rares Anomalies Du Développement, CHU de Poitiers, Poitiers, France
| | - Frédéric Bilan
- Service de Génétique Clinique, Centre de Compétence Maladies Rares Anomalies Du Développement, CHU de Poitiers, Poitiers, France
| | | | | | - Juliette Piard
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, Université de Franche-Comté, Besançon, France
| | | | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France
| | - Bénédicte Gerard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurence Faivre
- Centre de Référence Anomalies Du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, 21000, Dijon, France; Génétique des Anomalies Du Développement, INSERM 123, Université de Bourgogne, Dijon, France
| | - Pascale Saugier-Veber
- CHU Rouen, Service de Génétique et Centre de Référence pour Les Troubles Du Développement, 76183, Rouen, France
| | - Amélie Piton
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France.
| |
Collapse
|
19
|
Sha Z, Sun KY, Jung B, Barzilay R, Moore TM, Almasy L, Forsyth JK, Prem S, Gandal MJ, Seidlitz J, Glessner JT, Alexander-Bloch AF. The copy number variant architecture of psychopathology and cognitive development in the ABCD ® study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.14.24307376. [PMID: 38798629 PMCID: PMC11118651 DOI: 10.1101/2024.05.14.24307376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Importance Childhood is a crucial developmental phase for mental health and cognitive function, both of which are commonly affected in patients with psychiatric disorders. This neurodevelopmental trajectory is shaped by a complex interplay of genetic and environmental factors. While common genetic variants account for a large proportion of inherited genetic risk, rare genetic variations, particularly copy number variants (CNVs), play a significant role in the genetic architecture of neurodevelopmental disorders. Despite their importance, the relevance of CNVs to child psychopathology and cognitive function in the general population remains underexplored. Objective Investigating CNV associations with dimensions of child psychopathology and cognitive functions. Design Setting and Participants ABCD® study focuses on a cohort of over 11,875 youth aged 9 to 10, recruited from 21 sites in the US, aiming to investigate the role of various factors, including brain, environment, and genetic factors, in the etiology of mental and physical health from middle childhood through early adulthood. Data analysis occurred from April 2023 to April 2024. Main Outcomes and Measures In this study, we utilized PennCNV and QuantiSNP algorithms to identify duplications and deletions larger than 50Kb across a cohort of 11,088 individuals from the Adolescent Brain Cognitive Development® study. CNVs meeting quality control standards were subjected to a genome-wide association scan to identify regions associated with quantitative measures of broad psychiatric symptom domains and cognitive outcomes. Additionally, a CNV risk score, reflecting the aggregated burden of genetic intolerance to inactivation and dosage sensitivity, was calculated to assess its impact on variability in overall and dimensional child psychiatric and cognitive phenotypes. Results In a final sample of 8,564 individuals (mean age=9.9 years, 4,532 males) passing quality control, we identified 4,111 individuals carrying 5,760 autosomal CNVs. Our results revealed significant associations between specific CNVs and our phenotypes of interest, psychopathology and cognitive function. For instance, a duplication at 10q26.3 was associated with overall psychopathology, and somatic complaints in particular. Additionally, deletions at 1q12.1, along with duplications at 14q11.2 and 10q26.3, were linked to overall cognitive function, with particular contributions from fluid intelligence (14q11.2), working memory (10q26.3), and reading ability (14q11.2). Moreover, individuals carrying CNVs previously associated with neurodevelopmental disorders exhibited greater impairment in social functioning and cognitive performance across multiple domains, in particular working memory. Notably, a higher deletion CNV risk score was significantly correlated with increased overall psychopathology (especially in dimensions of social functioning, thought disorder, and attention) as well as cognitive impairment across various domains. Conclusions and Relevance In summary, our findings shed light on the contributions of CNVs to interindividual variability in complex traits related to neurocognitive development and child psychopathology.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Kevin Y. Sun
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Benjamin Jung
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ran Barzilay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Almasy
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Michael J. Gandal
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Joseph T. Glessner
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Jiang J, Wang D, Jiang Y, Yang X, Sun R, Chang J, Zhu W, Yao P, Song K, Chang S, Wang H, Zhou L, Zhang XS, Li H, Li N. The gut metabolite indole-3-propionic acid activates ERK1 to restore social function and hippocampal inhibitory synaptic transmission in a 16p11.2 microdeletion mouse model. MICROBIOME 2024; 12:66. [PMID: 38549163 PMCID: PMC10976717 DOI: 10.1186/s40168-024-01755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/04/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Microdeletion of the human chromosomal region 16p11.2 (16p11.2+ / - ) is a prevalent genetic factor associated with autism spectrum disorder (ASD) and other neurodevelopmental disorders. However its pathogenic mechanism remains unclear, and effective treatments for 16p11.2+ / - syndrome are lacking. Emerging evidence suggests that the gut microbiota and its metabolites are inextricably linked to host behavior through the gut-brain axis and are therefore implicated in ASD development. Despite this, the functional roles of microbial metabolites in the context of 16p11.2+ / - are yet to be elucidated. This study aims to investigate the therapeutic potential of indole-3-propionic acid (IPA), a gut microbiota metabolite, in addressing behavioral and neural deficits associated with 16p11.2+ / - , as well as the underlying molecular mechanisms. RESULTS Mice with the 16p11.2+ / - showed dysbiosis of the gut microbiota and a significant decrease in IPA levels in feces and blood circulation. Further, these mice exhibited significant social and cognitive memory impairments, along with hyperactivation of hippocampal dentate gyrus neurons and reduced inhibitory synaptic transmission in this region. However, oral administration of IPA effectively mitigated the histological and electrophysiological alterations, thereby ameliorating the social and cognitive deficits of the mice. Remarkably, IPA treatment significantly increased the phosphorylation level of ERK1, a protein encoded by the Mapk3 gene in the 16p11.2 region, without affecting the transcription and translation of the Mapk3 gene. CONCLUSIONS Our study reveals that 16p11.2+ / - leads to a decline in gut metabolite IPA levels; however, IPA supplementation notably reverses the behavioral and neural phenotypes of 16p11.2+ / - mice. These findings provide new insights into the critical role of gut microbial metabolites in ASD pathogenesis and present a promising treatment strategy for social and cognitive memory deficit disorders, such as 16p11.2 microdeletion syndrome. Video Abstract.
Collapse
Affiliation(s)
- Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Youheng Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Runfeng Sun
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kun Song
- Brain Research Centre, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shuwen Chang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
- China-UK Institute for Frontier Science, Shenzhen, China.
- Department of Anesthesiology, The Afliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
21
|
De La Fuente DC, Tamburini C, Stonelake E, Andrews R, Hall J, Owen MJ, Linden DEJ, Pocklington A, Li M. Impaired oxysterol-liver X receptor signaling underlies aberrant cortical neurogenesis in a stem cell model of neurodevelopmental disorder. Cell Rep 2024; 43:113946. [PMID: 38483902 DOI: 10.1016/j.celrep.2024.113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
The mechanisms by which genomic risks contribute to the onset of neuropsychiatric conditions remain a key challenge and a prerequisite for successful development of effective therapies. 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. Using stem cell models, we show that 15q11.2 deletion (15q11.2del) and CYFIP1 loss of function (CYFIP1-LoF) lead to premature neuronal differentiation, while CYFIP1 gain of function (CYFIP1-GoF) favors neural progenitor maintenance. CYFIP1 dosage changes led to dysregulated cholesterol metabolism and altered levels of 24S,25-epoxycholesterol, which can mimic the 15q11.2del and CYFIP1-LoF phenotypes by promoting cortical neuronal differentiation and can restore the impaired neuronal differentiation of CYFIP1-GoF neural progenitors. Moreover, the neurogenic activity of 24S,25-epoxycholesterol is lost following genetic deletion of liver X receptor (LXRβ), while compound deletion of LXRβ in CYFIP1-/- background rescued their premature neurogenesis. This work delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.
Collapse
Affiliation(s)
| | - Claudia Tamburini
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | | | - Robert Andrews
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK; Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK; Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - David E J Linden
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK; Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Andrew Pocklington
- Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK; Division of Psychiatry and Clinical Neuroscience, Cardiff University, Cardiff, UK; School of Bioscience, Cardiff University, Cardiff, UK.
| |
Collapse
|
22
|
Visibelli E, Vigna G, Nascimben C, Benavides-Varela S. Neurobiology of numerical learning. Neurosci Biobehav Rev 2024; 158:105545. [PMID: 38220032 DOI: 10.1016/j.neubiorev.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Numerical abilities are complex cognitive skills essential for dealing with requirements of the modern world. Although the brain structures and functions underlying numerical cognition in different species have long been appreciated, genetic and molecular techniques have more recently expanded the knowledge about the mechanisms underlying numerical learning. In this review, we discuss the status of the research related to the neurobiological bases of numerical abilities. We consider how genetic factors have been associated with mathematical capacities and how these link to the current knowledge of brain regions underlying these capacities in human and non-human animals. We further discuss the extent to which significant variations in the levels of specific neurotransmitters may be used as potential markers of individual performance and learning difficulties and take into consideration the therapeutic potential of brain stimulation methods to modulate learning and improve interventional outcomes. The implications of this research for formulating a more comprehensive view of the neural basis of mathematical learning are discussed.
Collapse
Affiliation(s)
- Emma Visibelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giulia Vigna
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Chiara Nascimben
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
23
|
Pollak RM, Burrell TL, Cubells JF, Klaiman C, Murphy MM, Saulnier CA, Walker EF, White SP, Mulle JG. Adaptive behaviour deficits in individuals with 3q29 deletion syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2024; 68:113-127. [PMID: 37740553 PMCID: PMC10843465 DOI: 10.1111/jir.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 09/02/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND 3q29 deletion syndrome (3q29del) is associated with a significantly increased risk for neurodevelopmental and neuropsychiatric phenotypes. Mild to moderate intellectual disability (ID) is common in this population, and previous work by our team identified substantial deficits in adaptive behaviour. However, the full profile of adaptive function in 3q29del has not been described nor has it been compared with other genomic syndromes associated with elevated risk for neurodevelopmental and neuropsychiatric phenotypes. METHODS Individuals with 3q29del (n = 32, 62.5% male) were evaluated using the Vineland Adaptive Behaviour Scales, Third Edition, Comprehensive Parent/Caregiver Form (Vineland-3). We explored the relationship between adaptive behaviour and cognitive function, executive function, and neurodevelopmental and neuropsychiatric comorbidities in our 3q29del study sample, and we compared subjects with 3q29del with published data on fragile X syndrome, 22q11.2 deletion syndrome and 16p11.2 deletion and duplication syndromes. RESULTS Individuals with 3q29del had global deficits in adaptive behaviour that were not driven by specific weaknesses in any given domain. Individual neurodevelopmental and neuropsychiatric diagnoses had a small effect on adaptive behaviour, and the cumulative number of comorbid diagnoses was significantly negatively associated with Vineland-3 performance. Both cognitive ability and executive function were significantly associated with adaptive behaviour, and executive function was a better predictor of Vineland-3 performance than cognitive ability. Finally, the severity of adaptive behaviour deficits in 3q29del was distinct from previously published data on comparable genomic disorders. CONCLUSIONS Individuals with 3q29del have significant deficits in adaptive behaviour, affecting all domains assessed by the Vineland-3. Executive function is a better predictor of adaptive behaviour than cognitive ability in this population and suggests that interventions targeting executive function may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- R M Pollak
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - T L Burrell
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - J F Cubells
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| | - C Klaiman
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - M M Murphy
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - C A Saulnier
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - E F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - S P White
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - J G Mulle
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
24
|
Mariano V, Kanellopoulos AK, Ricci C, Di Marino D, Borrie SC, Dupraz S, Bradke F, Achsel T, Legius E, Odent S, Billuart P, Bienvenu T, Bagni C. Intellectual Disability and Behavioral Deficits Linked to CYFIP1 Missense Variants Disrupting Actin Polymerization. Biol Psychiatry 2024; 95:161-174. [PMID: 37704042 DOI: 10.1016/j.biopsych.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND 15q11.2 deletions and duplications have been linked to autism spectrum disorder, schizophrenia, and intellectual disability. Recent evidence suggests that dysfunctional CYFIP1 (cytoplasmic FMR1 interacting protein 1) contributes to the clinical phenotypes observed in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal development and brain connectivity, promoting actin polymerization and regulating local protein synthesis. However, information about the impact of single nucleotide variants in CYFIP1 on neurodevelopmental disorders is limited. METHODS Here, we report a family with 2 probands exhibiting intellectual disability, autism spectrum disorder, spastic tetraparesis, and brain morphology defects and who carry biallelic missense point mutations in the CYFIP1 gene. We used skin fibroblasts from one of the probands, the parents, and typically developing individuals to investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated Drosophila knockin mutants to address the effect of the variants in vivo and gain insight into the molecular mechanism that underlies the clinical phenotype. RESULTS Our study revealed that the 2 missense variants are in protein domains responsible for maintaining the interaction within the wave regulatory complex. Molecular and cellular analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly model for these mutations exhibited abnormal brain morphology and F-actin loss and recapitulated the core behavioral symptoms, such as deficits in social interaction and motor coordination. CONCLUSIONS Our findings suggest that the 2 CYFIP1 variants contribute to the clinical phenotype in the probands that reflects deficits in actin-mediated brain development processes.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Human Genetics, KU Leuven, Belgium
| | | | - Carlotta Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center, Polytechnic University of Marche, Ancona, Italy; Department of Neuroscience, Neuronal Death and Neuroprotection Unit, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Belgium
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, Centre Hospitalier Universitaire de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN-ITHACA, France
| | - Pierre Billuart
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
25
|
Boen R, Kaufmann T, van der Meer D, Frei O, Agartz I, Ames D, Andersson M, Armstrong NJ, Artiges E, Atkins JR, Bauer J, Benedetti F, Boomsma DI, Brodaty H, Brosch K, Buckner RL, Cairns MJ, Calhoun V, Caspers S, Cichon S, Corvin AP, Crespo-Facorro B, Dannlowski U, David FS, de Geus EJC, de Zubicaray GI, Desrivières S, Doherty JL, Donohoe G, Ehrlich S, Eising E, Espeseth T, Fisher SE, Forstner AJ, Fortaner-Uyà L, Frouin V, Fukunaga M, Ge T, Glahn DC, Goltermann J, Grabe HJ, Green MJ, Groenewold NA, Grotegerd D, Grøntvedt GR, Hahn T, Hashimoto R, Hehir-Kwa JY, Henskens FA, Holmes AJ, Håberg AK, Haavik J, Jacquemont S, Jansen A, Jockwitz C, Jönsson EG, Kikuchi M, Kircher T, Kumar K, Le Hellard S, Leu C, Linden DE, Liu J, Loughnan R, Mather KA, McMahon KL, McRae AF, Medland SE, Meinert S, Moreau CA, Morris DW, Mowry BJ, Mühleisen TW, Nenadić I, Nöthen MM, Nyberg L, Ophoff RA, Owen MJ, Pantelis C, Paolini M, Paus T, Pausova Z, Persson K, Quidé Y, Marques TR, Sachdev PS, Sando SB, Schall U, Scott RJ, Selbæk G, Shumskaya E, Silva AI, Sisodiya SM, Stein F, Stein DJ, Straube B, Streit F, Strike LT, Teumer A, Teutenberg L, Thalamuthu A, Tooney PA, Tordesillas-Gutierrez D, Trollor JN, van 't Ent D, van den Bree MBM, van Haren NEM, Vázquez-Bourgon J, Völzke H, Wen W, Wittfeld K, Ching CRK, Westlye LT, Thompson PM, Bearden CE, Selmer KK, Alnæs D, Andreassen OA, Sønderby IE. Beyond the Global Brain Differences: Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers. Biol Psychiatry 2024; 95:147-160. [PMID: 37661008 PMCID: PMC7615370 DOI: 10.1016/j.biopsych.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure. METHODS Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference. RESULTS For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness. CONCLUSIONS We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment.
Collapse
Affiliation(s)
- Rune Boen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Kew, Victoria, Australia; National Ageing Research Institute, Parkville, Victoria, Australia
| | - Micael Andersson
- Department of Integrative Medical Biology and Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale U1299, École Normale Supérieure Paris-Saclay, Université Paris Saclay, Gif-sur-Yvette, France; Établissement public de santé (EPS) Barthélemy Durand, Etampes, France
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, College of Medicine, Health and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jochen Bauer
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Randy L Buckner
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, College of Medicine, Health and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University/Georgia Institute of Technology/Emory University, Atlanta, Georgia
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; University Hospital Basel, Institute of Medical Genetics and Pathology, Basel, Switzerland
| | - Aiden P Corvin
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Benedicto Crespo-Facorro
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Centro superior de investigaciones científicas (CSIC), Sevilla, Spain; Centro de Investigación Biomédica en Red Salud Mental, Sevilla, Spain; Department of Psychiatry, University of Sevilla, Sevilla, Spain
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joanne L Doherty
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Donohoe
- School of Psychology and Center for Neuroimaging, Cognition and Genomics, University of Galway, Galway, Ireland
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychology, Oslo New University College, Oslo, Norway
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Lidia Fortaner-Uyà
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Vincent Frouin
- Neurospin, Commissariat a l'Energie Atomique (CEA), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Glahn
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Melissa J Green
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Frans A Henskens
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia; Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, New South Wales, Australia
| | - Avram J Holmes
- Department of Psychiatry, Rutgers University, New Brunswick, New Jersey; Brain Health Institute, Rutgers University, Piscataway, New Jersey
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Core-Facility Brainimaging and Department of Psychiatry, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Kuldeep Kumar
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Stephanie Le Hellard
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Costin Leu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, Texas
| | - David E Linden
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Jingyu Liu
- Department of Computer Science and Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, Georgia
| | - Robert Loughnan
- Department of Cognitive Science and Population Neuroscience and Genetics Lab, University of California San Diego, La Jolla, California
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah E Medland
- Psychiatric Genetics, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia; University of Queensland, Brisbane, Queensland, Australia; Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Clara A Moreau
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Derek W Morris
- Centre for Neuroimaging, Cognition and Genomics, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Bryan J Mowry
- Queensland Brain Institute and Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Lars Nyberg
- Departments of Radiation Sciences, Integrative Medical Biology and Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Roel A Ophoff
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands; Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California Los Angeles, Los Angeles, California
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Carlton South, Victoria, Australia; Western Centre for Health Research and Education, Sunshine Hospital, St Albans, Victoria, Australia
| | - Marco Paolini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Sainte Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada; Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karin Persson
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway; Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Yann Quidé
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Tiago Reis Marques
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Ulrich Schall
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Medicine, Health and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia; Division of Molecular Medicine, New South Wales Health Pathology, Newcastle, New South Wales, Australia
| | - Geir Selbæk
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway; Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana I Silva
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lachlan T Strike
- Psychiatric Genetics, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research, Greifswald, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, College of Medicine, Health and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Diana Tordesillas-Gutierrez
- Instituto de Física de Cantabria UC-CSIC, Santander, Spain; Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain
| | - Julian N Trollor
- Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Dennis van 't Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marianne B M van den Bree
- Institute of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Neeltje E M van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Psychiatry, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Javier Vázquez-Bourgon
- Centro de Investigación Biomédica en Red Salud Mental, Sevilla, Spain; Department of Psychiatry, University Hospital Maqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain; Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
| | - Henry Völzke
- German Centre for Cardiovascular Research, Greifswald, Germany; Greifswald University Hospital, Greifswald, Germany
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California Los Angeles, Los Angeles, California
| | - Kaja K Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Kristiania University College, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ida E Sønderby
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Pollak RM, Mortillo M, Murphy MM, Mulle JG. Behavioral Phenotypes and Comorbidity in 3q29 Deletion Syndrome: Results from the 3q29 Registry. J Autism Dev Disord 2024:10.1007/s10803-023-06218-w. [PMID: 38216835 DOI: 10.1007/s10803-023-06218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
3q29 deletion syndrome (3q29del) is associated with a significantly increased risk for neurodevelopmental and neuropsychiatric disorders. However, the full spectrum of behavioral phenotypes associated with 3q29del is still evolving. Individuals with 3q29del (n = 96, 60.42% male) or their guardian completed the Achenbach Child or Adult Behavior Checklist (CBCL/ABCL) via the online 3q29 registry (3q29deletion.org). Typically developing controls (n = 57, 49.12% male) were ascertained as a comparison group. We analyzed mean performance on the CBCL/ABCL for individuals with 3q29del and controls across composite, DSM-keyed, and developmental scales; and the relationship between CBCL/ABCL performance and clinical and developmental phenotypes for individuals with 3q29del. Individuals with 3q29del showed significantly elevated behavioral and developmental impairment relative to controls across CBCL/ABCL domains. A substantial proportion of study participants with 3q29del scored in the Borderline or Clinical range for composite and DSM-keyed scales, indicating significant behavioral problems that may require clinical evaluation. We found that the preschool CBCL DSM-keyed autism spectrum problems scale is a potential screening tool for autism spectrum disorder (ASD) for individuals with 3q29del; CBCL/ABCL DSM-keyed scales were not accurate screeners for anxiety disorders or attention-deficit/hyperactivity disorder (ADHD) in our study sample. We identified a high degree of psychiatric comorbidity in individuals with 3q29del, with 60.42% (n = 58) of individuals with 3q29del scoring in the Borderline or Clinical range on two or more DSM-keyed CBCL/ABCL scales. Finally, we found that the degree of developmental delay in participants with 3q29del does not explain the increased behavioral problems observed on the CBCL/ABCL. The CBCL/ABCL can be used as screening tools in populations such as 3q29del, even in the presence of substantial psychiatric comorbidity. These results expand our understanding of the phenotypic spectrum of 3q29del and demonstrate an effective method for recruiting and phenotyping a large sample of individuals with a rare genetic disorder.
Collapse
Affiliation(s)
- Rebecca M Pollak
- Department of Psychiatry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Ln W, Piscataway, NJ, 08854, USA
| | - Michael Mortillo
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, 679 Hoes Ln W, Piscataway, NJ, 08854, USA.
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
27
|
McClellan JM, Zoghbi AW, Buxbaum JD, Cappi C, Crowley JJ, Flint J, Grice DE, Gulsuner S, Iyegbe C, Jain S, Kuo PH, Lattig MC, Passos-Bueno MR, Purushottam M, Stein DJ, Sunshine AB, Susser ES, Walsh CA, Wootton O, King MC. An evolutionary perspective on complex neuropsychiatric disease. Neuron 2024; 112:7-24. [PMID: 38016473 PMCID: PMC10842497 DOI: 10.1016/j.neuron.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
The forces of evolution-mutation, selection, migration, and genetic drift-shape the genetic architecture of human traits, including the genetic architecture of complex neuropsychiatric illnesses. Studying these illnesses in populations that are diverse in genetic ancestry, historical demography, and cultural history can reveal how evolutionary forces have guided adaptation over time and place. A fundamental truth of shared human biology is that an allele responsible for a disease in anyone, anywhere, reveals a gene critical to the normal biology underlying that condition in everyone, everywhere. Understanding the genetic causes of neuropsychiatric disease in the widest possible range of human populations thus yields the greatest possible range of insight into genes critical to human brain development. In this perspective, we explore some of the relationships between genes, adaptation, and history that can be illuminated by an evolutionary perspective on studies of complex neuropsychiatric disease in diverse populations.
Collapse
Affiliation(s)
- Jon M McClellan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anthony W Zoghbi
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan Flint
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Suleyman Gulsuner
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Conrad Iyegbe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | | | | | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Dan J Stein
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Anna B Sunshine
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ezra S Susser
- Department of Epidemiology, Mailman School of Public Health, and New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA
| | - Christopher A Walsh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Wootton
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Mary-Claire King
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Cai M, Lv A, Zhao W, Xu L, Lin N, Huang H. Intrauterine ultrasound phenotyping, molecular characteristics, and postnatal follow-up of fetuses with the 15q11.2 BP1-BP2 microdeletion syndrome: a single-center, retrospective clinical study. BMC Pregnancy Childbirth 2024; 24:23. [PMID: 38172840 PMCID: PMC10763152 DOI: 10.1186/s12884-023-06223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES The 15q11.2 BP1-BP2 microdeletion is associated with neurodevelopmental diseases. However, most studies on this microdeletion have focused on adults and children. Thus, in this study, we summarized the molecular characteristics of fetuses with the 15q11.2 BP1-BP2 microdeletion and their postnatal follow-up to guide prenatal diagnosis. METHODS Ten thousand fetuses were retrospectively subjected to karyotype analysis and chromosome microarray analysis. RESULTS Chromosome microarray analysis revealed that 37 (0.4%) of the 10,000 fetuses had 15q11.2 BP1-BP2 microdeletions. The fragment size of the 15q11.2 BP1-BP2 region was approximately 312-855 kb and encompassed TUBGCP5, CYFIP1, NIPA2, and NIPA1 genes. Twenty-five of the 37 fetuses with this microdeletion showed phenotypic abnormalities. The most common ultrasonic structural abnormality was congenital heart disease, followed by renal dysplasia and Dandy-Walker malformation. The 15q11.2 BP1-BP2 microdeletion was inherited from the father and mother in 6 and 10 cases, respectively, and de novo inherited in 4 cases. In the postnatal follow-up, 16.1% of the children had postnatal abnormalities. CONCLUSION Fetuses with the 15q11.2 BP1-BP2 microdeletion showed high proportions of phenotypic abnormalities, but the specificity of penetrance was low. Thus, fetuses with this syndrome are potentially at a higher risk of postnatal growth/behavioral problems and require continuous monitoring of growth and development.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Aixiang Lv
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China.
| |
Collapse
|
29
|
Whitford V, Byers N, O'Driscoll GA, Titone D. Eye movements and the perceptual span in disordered reading: A comparison of schizophrenia and dyslexia. Schizophr Res Cogn 2023; 34:100289. [PMID: 37435364 PMCID: PMC10331593 DOI: 10.1016/j.scog.2023.100289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
Increasing evidence of a common neurodevelopmental etiology between schizophrenia and developmental dyslexia suggests that neurocognitive functions, such as reading, may be similarly disrupted. However, direct comparisons of reading performance in these disorders have yet to be conducted. To address this gap in the literature, we employed a gaze-contingent moving window paradigm to examine sentence-level reading fluency and perceptual span (breadth of parafoveal processing) in adults with schizophrenia (dataset from Whitford et al., 2013) and psychiatrically healthy adults with dyslexia (newly collected dataset). We found that the schizophrenia and dyslexia groups exhibited similar reductions in sentence-level reading fluency (e.g., slower reading rates, more regressions) compared to matched controls. Similar reductions were also found for standardized language/reading and executive functioning measures. However, despite these reductions, the dyslexia group exhibited a larger perceptual span (greater parafoveal processing) than the schizophrenia group, potentially reflecting a disruption in normal foveal-parafoveal processing dynamics. Taken together, our findings suggest that reading and reading-related functions are largely similarly disrupted in schizophrenia and dyslexia, providing additional support for a common neurodevelopmental etiology.
Collapse
Affiliation(s)
- Veronica Whitford
- Department of Psychology, University of New Brunswick, 38 Dineen Drive, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Narissa Byers
- Department of Psychology, University of New Brunswick, 38 Dineen Drive, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Gillian A. O'Driscoll
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montréal, Québec, H3A 1G1, Canada
- Department of Psychiatry, McGill University, 1003 Avenue des Pins Ouest, Montréal, Québec, H3A 1A1, Canada
- Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Verdun, Québec, H4H 1R3, Canada
- Montreal Neurological Institute and Hospital, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
- Department of Neurology & Neurosurgery, McGill University, 1003 Avenue des Pins Ouest, Montréal, Québec, H3A 1A1, Canada
| | - Debra Titone
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montréal, Québec, H3A 1G1, Canada
- Centre for Research on Brain, Language and Music, 3640 Rue de la Montagne, Montréal, Québec, H3G 2A8, Canada
| |
Collapse
|
30
|
Woodbury-Smith M, D'Abate L, Stavropoulos DJ, Howe J, Drmic I, Hoang N, Zarrei M, Trost B, Iaboni A, Anagnostou E, Scherer SW. The Phenotypic variability of 16p11.2 distal BP2-BP3 deletion in a transgenerational family and in neurodevelopmentally ascertained samples. J Med Genet 2023; 60:1153-1160. [PMID: 37290907 PMCID: PMC10715508 DOI: 10.1136/jmg-2022-108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND We present genomic and phenotypic findings of a transgenerational family consisting of three male offspring, each with a maternally inherited distal 220 kb deletion at locus 16p11.2 (BP2-BP3). Genomic analysis of all family members was prompted by a diagnosis of autism spectrum disorder (ASD) in the eldest child, who also presented with a low body mass index. METHODS All male offspring underwent extensive neuropsychiatric evaluation. Both parents were also assessed for social functioning and cognition. The family underwent whole-genome sequencing. Further data curation was undertaken from samples ascertained for neurodevelopmental disorders and congenital abnormalities. RESULTS On medical examination, both the second and third-born male offspring presented with obesity. The second-born male offspring met research diagnostic criteria for ASD at 8 years of age and presented with mild attention deficits. The third-born male offspring was only noted as having motor deficits and received a diagnosis of developmental coordination disorder. Other than the 16p11.2 distal deletion, no additional contributing variants of clinical significance were observed. The mother was clinically evaluated and noted as having a broader autism phenotype. CONCLUSION In this family, the phenotypes observed are most likely caused by the 16p11.2 distal deletion. The lack of other overt pathogenic mutations identified by genomic sequencing reinforces the variable expressivity that should be heeded in a clinical setting. Importantly, distal 16p11.2 deletions can present with a highly variable phenotype even within a single family. Our additional data curation provides further evidence on the variable clinical presentation among those with pathogenetic 16p11.2 (BP2-BP3) mutations.
Collapse
Affiliation(s)
- Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lia D'Abate
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Dimitri J Stavropoulos
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Irene Drmic
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ron Joyce Children's Health Centre, Autism Spectrum Disorder (ASD) Program and Child and Youth Mental Health Program, McMaster Autism Research Team, McMaster University, Hamilton, Hamilton, Ontario, Canada
| | - Ny Hoang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alana Iaboni
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Centre, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Centre, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Pollak RM, Tilmon JC, Murphy MM, Gambello MJ, Sanchez Russo R, Dormans JP, Mulle JG. Musculoskeletal phenotypes in 3q29 deletion syndrome. Am J Med Genet A 2023; 191:2749-2756. [PMID: 37691301 PMCID: PMC10662927 DOI: 10.1002/ajmg.a.63384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
3q29 deletion syndrome (3q29del) is a rare genomic disorder caused by a 1.6 Mb deletion (hg19, chr3:195725000-197350000). 3q29del is associated with neurodevelopmental and psychiatric phenotypes, including an astonishing >40-fold increased risk for schizophrenia, but medical phenotypes are less well-described. We used the online 3q29 registry of 206 individuals (3q29deletion.org) to recruit 57 individuals with 3q29del (56.14% male) and requested information about musculoskeletal phenotypes with a custom questionnaire. 85.96% of participants with 3q29del reported at least one musculoskeletal phenotype. Congenital anomalies were most common (70.18%), with pes planus (40.35%), pectus excavatum (22.81%), and pectus carinatum (5.26%) significantly elevated relative to the pediatric general population. 49.12% of participants reported fatigue after 30 min or less of activity. Bone fractures (8.77%) were significantly elevated relative to the pediatric general population. Participants commonly report receiving medical care for musculoskeletal complaints (71.93%), indicating that these phenotypes impact quality of life for individuals with 3q29del. This is the most comprehensive description of musculoskeletal phenotypes in 3q29del to date, suggests ideas for clinical evaluation, and expands our understanding of the phenotypic spectrum of this syndrome.
Collapse
Affiliation(s)
- Rebecca M Pollak
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Jacob C Tilmon
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rossana Sanchez Russo
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John P Dormans
- Emeritus Professor of Orthopedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer G Mulle
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
32
|
Mollon J, Schultz LM, Huguet G, Knowles EEM, Mathias SR, Rodrigue A, Alexander-Bloch A, Saci Z, Jean-Louis M, Kumar K, Douard E, Almasy L, Jacquemont S, Glahn DC. Impact of Copy Number Variants and Polygenic Risk Scores on Psychopathology in the UK Biobank. Biol Psychiatry 2023; 94:591-600. [PMID: 36764568 PMCID: PMC10409883 DOI: 10.1016/j.biopsych.2023.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited. METHODS The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289). RESULTS CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs. CONCLUSIONS CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.
Collapse
Affiliation(s)
- Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Laura M Schultz
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Guillaume Huguet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amanda Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zohra Saci
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Martineau Jean-Louis
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Kuldeep Kumar
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Elise Douard
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sebastien Jacquemont
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut
| |
Collapse
|
33
|
Vaez M, Montalbano S, Sánchez XC, Georgii Hellberg KL, Rasekhi Dehkordi S, Dybdahl Krebs M, Meijsen J, Shorter J, Byberg-Grauholm J, Mortensen PB, Børglum AD, Hougaard DM, Nordentoft M, Geschwind DH, Buil A, Schork AJ, Helenius D, Raznahan A, Thompson WK, Werge T, Ingason A. Population-based Risk of Psychiatric Disorders Associated with Recurrent CNVs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.04.23294975. [PMID: 37886536 PMCID: PMC10602037 DOI: 10.1101/2023.09.04.23294975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Recurrent copy number variants (rCNVs) are associated with increased risk of neuropsychiatric disorders but their pathogenic population-level impact is unknown. We provide population-based estimates of rCNV-associated risk of neuropsychiatric disorders for 34 rCNVs in the iPSYCH2015 case-cohort sample (n=120,247). Most observed significant increases in rCNV-associated risk for ADHD, autism or schizophrenia were moderate (HR:1.42-5.00), and risk estimates were highly correlated across these disorders, the most notable exception being high autism-associated risk with Prader-Willi/Angelman Syndrome duplications (HR=20.8). No rCNV was associated with significant increase in depression risk. Also, rCNV-associated risk was positively correlated with locus size and gene constraint. Comparison with published rCNV studies suggests that prevalence of some rCNVs is higher, and risk of psychiatric disorders lower, than previously estimated. In an era where genetics is increasingly being clinically applied, our results highlight the importance of population-based risk estimates for genetics-based predictions.
Collapse
Affiliation(s)
- Morteza Vaez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Simone Montalbano
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Xabier Calle Sánchez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Kajsa-Lotta Georgii Hellberg
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Saeid Rasekhi Dehkordi
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Morten Dybdahl Krebs
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Joeri Meijsen
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - John Shorter
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark
| | - Jonas Byberg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Preben B Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, DK-8210 Aarhus, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Department of Biomedicine-Human Genetics and the iSEQ Center, Aarhus University, DK-8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, DK-8000 Aarhus, Denmark
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, DK-2400 Copenhagen, Denmark
| | - Daniel H Geschwind
- Department of Neurology, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
- Center for Human Development, University of California, San Diego, CA, USA
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, DK-1350 Copenhagen, Denmark
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Wesley K Thompson
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, DK-1350 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, DK-1350 Copenhagen, Denmark
| |
Collapse
|
34
|
Owen MJ, Legge SE, Rees E, Walters JTR, O'Donovan MC. Genomic findings in schizophrenia and their implications. Mol Psychiatry 2023; 28:3638-3647. [PMID: 37853064 PMCID: PMC10730422 DOI: 10.1038/s41380-023-02293-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
There has been substantial progress in understanding the genetics of schizophrenia over the past 15 years. This has revealed a highly polygenic condition with the majority of the currently explained heritability coming from common alleles of small effect but with additional contributions from rare copy number and coding variants. Many specific genes and loci have been implicated that provide a firm basis upon which mechanistic research can proceed. These point to disturbances in neuronal, and particularly synaptic, functions that are not confined to a small number of brain regions and circuits. Genetic findings have also revealed the nature of schizophrenia's close relationship to other conditions, particularly bipolar disorder and childhood neurodevelopmental disorders, and provided an explanation for how common risk alleles persist in the population in the face of reduced fecundity. Current genomic approaches only potentially explain around 40% of heritability, but only a small proportion of this is attributable to robustly identified loci. The extreme polygenicity poses challenges for understanding biological mechanisms. The high degree of pleiotropy points to the need for more transdiagnostic research and the shortcomings of current diagnostic criteria as means of delineating biologically distinct strata. It also poses challenges for inferring causality in observational and experimental studies in both humans and model systems. Finally, the Eurocentric bias of genomic studies needs to be rectified to maximise benefits and ensure these are felt across diverse communities. Further advances are likely to come through the application of new and emerging technologies, such as whole-genome and long-read sequencing, to large and diverse samples. Substantive progress in biological understanding will require parallel advances in functional genomics and proteomics applied to the brain across developmental stages. For these efforts to succeed in identifying disease mechanisms and defining novel strata they will need to be combined with sufficiently granular phenotypic data.
Collapse
Affiliation(s)
- Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
35
|
Alibutud R, Hansali S, Cao X, Zhou A, Mahaganapathy V, Azaro M, Gwin C, Wilson S, Buyske S, Bartlett CW, Flax JF, Brzustowicz LM, Xing J. Structural Variations Contribute to the Genetic Etiology of Autism Spectrum Disorder and Language Impairments. Int J Mol Sci 2023; 24:13248. [PMID: 37686052 PMCID: PMC10487745 DOI: 10.3390/ijms241713248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.
Collapse
Affiliation(s)
- Rohan Alibutud
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sammy Hansali
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Vaidhyanathan Mahaganapathy
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Marco Azaro
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Christine Gwin
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Sherri Wilson
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Christopher W. Bartlett
- The Steve Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (R.A.); (S.H.); (X.C.); (A.Z.); (V.M.); (M.A.); (C.G.); (S.W.); (J.F.F.); (L.M.B.)
- The Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
36
|
Hanssen R, Auwerx C, Jõeloo M, Sadler MC, Henning E, Keogh J, Bounds R, Smith M, Firth HV, Kutalik Z, Farooqi IS, Reymond A, Lawler K. Chromosomal deletions on 16p11.2 encompassing SH2B1 are associated with accelerated metabolic disease. Cell Rep Med 2023; 4:101155. [PMID: 37586323 PMCID: PMC10439272 DOI: 10.1016/j.xcrm.2023.101155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
New approaches are needed to treat people whose obesity and type 2 diabetes (T2D) are driven by specific mechanisms. We investigate a deletion on chromosome 16p11.2 (breakpoint 2-3 [BP2-3]) encompassing SH2B1, a mediator of leptin and insulin signaling. Phenome-wide association scans in the UK (N = 502,399) and Estonian (N = 208,360) biobanks show that deletion carriers have increased body mass index (BMI; p = 1.3 × 10-10) and increased rates of T2D. Compared with BMI-matched controls, deletion carriers have an earlier onset of T2D, with poorer glycemic control despite higher medication usage. Cystatin C, a biomarker of kidney function, is significantly elevated in deletion carriers, suggesting increased risk of renal impairment. In a Mendelian randomization study, decreased SH2B1 expression increases T2D risk (p = 8.1 × 10-6). We conclude that people with 16p11.2 BP2-3 deletions have early, complex obesity and T2D and may benefit from therapies that enhance leptin and insulin signaling.
Collapse
Affiliation(s)
- Ruth Hanssen
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; University Center for Primary Care and Public Health, 1010 Lausanne, Switzerland
| | - Maarja Jõeloo
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia; Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Marie C Sadler
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; University Center for Primary Care and Public Health, 1010 Lausanne, Switzerland
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Julia Keogh
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Miriam Smith
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust & Wellcome Sanger Institute, Cambridge, UK
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; University Center for Primary Care and Public Health, 1010 Lausanne, Switzerland
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
37
|
Jonsson L, Martin J, Lichtenstein P, Magnusson PKE, Lundström S, Westberg L, Tammimies K. Examining neurodevelopmental problems in 15q11.2 (BP1-BP2) copy number variation carriers at ages 9/12 and 18 in a Swedish twin sample. Mol Genet Genomic Med 2023; 11:e2191. [PMID: 37156729 PMCID: PMC10422071 DOI: 10.1002/mgg3.2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Several copy number variations (CNVs) are associated with increased risk for neurodevelopmental and psychiatric disorders. The CNV 15q11.2 (BP1-BP2) deletion has been associated with learning difficulties, attention deficit hyperactivity disorder (ADHD), epilepsy, and brain morphology; however, many carriers present mild or no symptoms. Carrying the reciprocal duplication does not seem to confer risk for these disorders or traits. Our aim was to examine the impact of carrying either 15q11.2 deletion and reciprocal duplication on neurodevelopmental problems in a population-based sample of children. METHODS Twins with genotype and phenotype information in the Child and Adolescent Twin Study in Sweden (CATSS) were included (N = 12,040). We included measures of neurodevelopmental problems (NDPs), including learning problems, from the questionnaire Autism-Tics, ADHD, and other Comorbidities inventory (A-TAC) at age 9/12, ADHD and autism spectrum disorder (ASD) questionnaires at age 18, as well as information about lifetime psychiatric diagnoses and epileptic seizures. We tested the association between these phenotypic measurements and carrying the 15q11.2 deletion, the reciprocal duplication, and other CNVs with previously reported strong associations with neurodevelopmental and psychiatric disorders (i.e., psychiatric CNVs). RESULTS We identified 57 carriers of the 15q11.2 deletion, 75 carriers of the reciprocal duplication, and 67 carriers of other psychiatric CNVs. We did not find an increased risk for NDPs or psychiatric diagnoses in the 15q11.2 deletion carriers. For 15q11.2 duplication carriers, we found an increased risk for math learning problems and fewer self-reported ADHD symptoms at age 18 but not for other NDPs. In line with previous studies, we found an increased risk of NDPs and other evaluated phenotypes in carriers of psychiatric CNVs. CONCLUSIONS Our results support previous findings that carrying 15q11.2 deletion does not have a large effect on NDPs in children.
Collapse
Affiliation(s)
- Lina Jonsson
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Joanna Martin
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
- Centre for Neuropsychiatric Genetics and GenomicsDivision of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Paul Lichtenstein
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry CentreInstitute of Neuroscience and Physiology at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Lars Westberg
- Department of PharmacologyInstitute of Neuroscience and Physiology at the Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND)Centre for Psychiatry ResearchDepartment of Women's and Children's HealthKarolinska Institutet and Child and Adolescent PsychiatryStockholm Health Care Services, Stockholm County CouncilStockholmSweden
- Astrid Lindgren Children's HospitalKarolinska University Hospital, Region StockholmSolnaSweden
| |
Collapse
|
38
|
Holm H, Ivarsdottir EV, Olafsdottir T, Thorolfsdottir R, Eythorsson E, Norland K, Gisladottir R, Jonsdottir G, Unnsteinsdottir U, Sveinsdottir KE, Jonsson BA, Andresdottir M, Arnar DO, Arnthorsson AO, Birgisdottir K, Bjarnadottir K, Bjarnadottir S, Bjornsdottir G, Einarsson G, Eiriksdottir B, Gardarsdottir EE, Gislason T, Gottfredsson M, Gudmundsdottir S, Gudmundsson J, Gunnarsdottir K, Helgadottir A, Helgason D, Hinriksdottir I, Ingvarsson RF, Jonasdottir SS, Jonsdottir I, Karlsdottir TH, Kristinsdottir AM, Kristinsson SY, Kristjansdottir S, Love TJ, Ludviksdottir D, Masson G, Norddahl G, Olafsdottir T, Olafsson I, Rafnar T, Runolfsdottir HL, Saemundsdottir J, Sigurbjornsson S, Sigurdardottir K, Sigurdsson E, Sigurdsson MI, Sigurdsson EL, Steinthorsdottir V, Sveinbjornsson G, Thorarensen EA, Thorbjornsson B, Thorsteinsdottir B, Tragante V, Ulfarsson MO, Stefansson H, Gislason T, Kristjansson M, Palsson R, Sulem P, Thorsteinsdottir U, Thorgeirsson G, Gudbjartsson DF, Stefansson K. Physical and cognitive impact following SARS-CoV-2 infection in a large population-based case-control study. COMMUNICATIONS MEDICINE 2023; 3:94. [PMID: 37414856 DOI: 10.1038/s43856-023-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Persistent symptoms are common after SARS-CoV-2 infection but correlation with objective measures is unclear. METHODS We invited all 3098 adults who tested SARS-CoV-2 positive in Iceland before October 2020 to the deCODE Health Study. We compared multiple symptoms and physical measures between 1706 Icelanders with confirmed prior infection (cases) who participated, and 619 contemporary and 13,779 historical controls. Cases participated in the study 5-18 months after infection. RESULTS Here we report that 41 of 88 symptoms are associated with prior infection, most significantly disturbed smell and taste, memory disturbance, and dyspnea. Measured objectively, cases had poorer smell and taste results, less grip strength, and poorer memory recall. Differences in grip strength and memory recall were small. No other objective measure associated with prior infection including heart rate, blood pressure, postural orthostatic tachycardia, oxygen saturation, exercise tolerance, hearing, and traditional inflammatory, cardiac, liver, and kidney blood biomarkers. There was no evidence of more anxiety or depression among cases. We estimate the prevalence of long Covid to be 7% at a median of 8 months after infection. CONCLUSIONS We confirm that diverse symptoms are common months after SARS-CoV-2 infection but find few differences between cases and controls in objective parameters measured. These discrepancies between symptoms and physical measures suggest a more complicated contribution to symptoms related to prior infection than is captured with conventional tests. Traditional clinical assessment is not expected to be particularly informative in relating symptoms to a past SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
| | | | | | | | - Elias Eythorsson
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Rosa Gisladottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Humanities, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Solveig Bjarnadottir
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Thorarinn Gislason
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Gottfredsson
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Dadi Helgason
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Ragnar F Ingvarsson
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Sigurdur Yngvi Kristinsson
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Thorvardur J Love
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Dora Ludviksdottir
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Isleifur Olafsson
- Clinical Laboratory Services, Diagnostics and Blood Bank, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Hrafnhildur L Runolfsdottir
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | - Engilbert Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Mental Health Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Martin I Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Perioperative Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Emil L Sigurdsson
- Department of Family Medicine, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Health Care in Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | | | - Mar Kristjansson
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Runolfur Palsson
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
39
|
Zanoni P, Steindl K, Sticht H, Oneda B, Joset P, Ivanovski I, Horn AHC, Cabello EM, Laube J, Zweier M, Baumer A, Rauch A, Khan N. The genetic landscape and clinical implication of pediatric Moyamoya angiopathy in an international cohort. Eur J Hum Genet 2023; 31:784-792. [PMID: 37012328 PMCID: PMC10325976 DOI: 10.1038/s41431-023-01320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 04/05/2023] Open
Abstract
Pediatric Moyamoya Angiopathy (MMA) is a progressive intracranial occlusive arteriopathy that represents a leading cause of transient ischemic attacks and strokes in childhood. Despite this, up to now no large, exclusively pediatric MMA cohort has been subjected to systematic genetic investigation. In this study, we performed molecular karyotyping, exome sequencing and automated structural assessment of missense variants on a series of 88 pediatric MMA patients and correlated genetic, angiographic and clinical (stroke burden) findings. The two largest subgroups in our cohort consisted of RNF213 and neurofibromatosis type 1 (NF1) patients. While deleterious RNF213 variants were associated with a severe MMA clinical course with early symptom onset, frequent posterior cerebral artery involvement and higher stroke rates in multiple territories, NF1 patients had a similar infarct burden compared to non-NF1 individuals and were often diagnosed incidentally during routine MRIs. Additionally, we found that MMA-associated RNF213 variants have lower predicted functional impact compared to those associated with aortic disease. We also raise the question of MMA as a feature of recurrent as well as rare chromosomal imbalances and further support the possible association of MMA with STAT3 deficiency. In conclusion, we provide a comprehensive characterization at the genetic and clinical level of a large exclusively pediatric MMA population. Due to the clinical differences found across genetic subgroups, we propose genetic testing for risk stratification as part of the routine assessment of pediatric MMA patients.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland.
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Elena M Cabello
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Julia Laube
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, 8000, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8000, Switzerland.
- Moyamoya Center, University Children's Hospital, University of Zurich, Zurich, 8032, Switzerland.
| | - Nadia Khan
- Moyamoya Center, University Children's Hospital, University of Zurich, Zurich, 8032, Switzerland.
| |
Collapse
|
40
|
Fusar-Poli L, Rodolico A, Martinez M, Fichera C, Lin BD, Basadonne I, Concerto C, Aguglia E, Guloksuz S, Signorelli MS. The association between polygenic risk scores for mental disorders and social cognition: A scoping review. J Psychiatr Res 2023; 164:389-401. [PMID: 37418886 DOI: 10.1016/j.jpsychires.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
People with mental disorders, such as psychosis or autism spectrum disorder (ASD), often present impairments in social cognition (SC), which may cause significant difficulties in real-world functioning. SC deficits are seen also in unaffected relatives, indicating a genetic substratum. The present review evaluated the evidence on the association between SC and the polygenic risk score (PRS), a single metric of the molecular genetic risk to develop a specific disorder. In July 2022, we conducted systematic searches in Scopus and PubMed following the PRISMA-ScR guidelines. We selected original articles written in English reporting results on the association between PRSs for any mental disorder and domains of SC either in people with mental disorders or controls. The search yielded 244 papers, of which 13 were selected for inclusion. Studies tested mainly PRSs for schizophrenia, ASD, and attention-deficit hyperactivity disorder. Emotion recognition was the most investigated domain of SC. Overall, evidence revealed that currently available PRSs for mental disorders do not explain variation in SC performances. To enhance the understanding of mechanisms underlying SC in mental disorders, future research should focus on the development of transdiagnostic PRSs, study their interaction with environmental risk factors, and standardize outcome measurement.
Collapse
Affiliation(s)
- Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy.
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Miriam Martinez
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Clarissa Fichera
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Bochao D Lin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ilaria Basadonne
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Italy
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
41
|
Openshaw RL, Thomson DM, Bristow GC, Mitchell EJ, Pratt JA, Morris BJ, Dawson N. 16p11.2 deletion mice exhibit compromised fronto-temporal connectivity, GABAergic dysfunction, and enhanced attentional ability. Commun Biol 2023; 6:557. [PMID: 37225770 DOI: 10.1038/s42003-023-04891-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Autism spectrum disorders are more common in males, and have a substantial genetic component. Chromosomal 16p11.2 deletions in particular carry strong genetic risk for autism, yet their neurobiological impact is poorly characterised, particularly at the integrated systems level. Here we show that mice reproducing this deletion (16p11.2 DEL mice) have reduced GABAergic interneuron gene expression (decreased parvalbumin mRNA in orbitofrontal cortex, and male-specific decreases in Gad67 mRNA in parietal and insular cortex and medial septum). Metabolic activity was increased in medial septum, and in its efferent targets: mammillary body and (males only) subiculum. Functional connectivity was altered between orbitofrontal, insular and auditory cortex, and between septum and hippocampus/subiculum. Consistent with this circuit dysfunction, 16p11.2 DEL mice showed reduced prepulse inhibition, but enhanced performance in the continuous performance test of attentional ability. Level 1 autistic individuals show similarly heightened performance in the equivalent human test, also associated with parietal, insular-orbitofrontal and septo-subicular dysfunction. The data implicate cortical and septal GABAergic dysfunction, and resulting connectivity changes, as the cause of pre-attentional and attentional changes in autism.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Greg C Bristow
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, UK
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK.
| | - Neil Dawson
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, UK.
| |
Collapse
|
42
|
Yilmaz F, Gurusamy U, Mosley TJ, Hallast P, Kim K, Mostovoy Y, Purcell RH, Shaikh TH, Zwick ME, Kwok PY, Lee C, Mulle JG. High level of complexity and global diversity of the 3q29 locus revealed by optical mapping and long-read sequencing. Genome Med 2023; 15:35. [PMID: 37165454 PMCID: PMC10170684 DOI: 10.1186/s13073-023-01184-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND High sequence identity between segmental duplications (SDs) can facilitate copy number variants (CNVs) via non-allelic homologous recombination (NAHR). These CNVs are one of the fundamental causes of genomic disorders such as the 3q29 deletion syndrome (del3q29S). There are 21 protein-coding genes lost or gained as a result of such recurrent 1.6-Mbp deletions or duplications, respectively, in the 3q29 locus. While NAHR plays a role in CNV occurrence, the factors that increase the risk of NAHR at this particular locus are not well understood. METHODS We employed an optical genome mapping technique to characterize the 3q29 locus in 161 unaffected individuals, 16 probands with del3q29S and their parents, and 2 probands with the 3q29 duplication syndrome (dup3q29S). Long-read sequencing-based haplotype resolved de novo assemblies from 44 unaffected individuals, and 1 trio was used for orthogonal validation of haplotypes and deletion breakpoints. RESULTS In total, we discovered 34 haplotypes, of which 19 were novel haplotypes. Among these 19 novel haplotypes, 18 were detected in unaffected individuals, while 1 novel haplotype was detected on the parent-of-origin chromosome of a proband with the del3q29S. Phased assemblies from 44 unaffected individuals enabled the orthogonal validation of 20 haplotypes. In 89% (16/18) of the probands, breakpoints were confined to paralogous copies of a 20-kbp segment within the 3q29 SDs. In one del3q29S proband, the breakpoint was confined to a 374-bp region using long-read sequencing. Furthermore, we categorized del3q29S cases into three classes and dup3q29S cases into two classes based on breakpoints. Finally, we found no evidence of inversions in parent-of-origin chromosomes. CONCLUSIONS We have generated the most comprehensive haplotype map for the 3q29 locus using unaffected individuals, probands with del3q29S or dup3q29S, and available parents, and also determined the deletion breakpoint to be within a 374-bp region in one proband with del3q29S. These results should provide a better understanding of the underlying genetic architecture that contributes to the etiology of del3q29S and dup3q29S.
Collapse
Affiliation(s)
- Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Umamaheswaran Gurusamy
- Cardiovascular Research Institute and Institute for Human Genetics, UCSF School of Medicine, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Trenell J Mosley
- Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Kwondo Kim
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Yulia Mostovoy
- Cardiovascular Research Institute and Institute for Human Genetics, UCSF School of Medicine, 513 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Ryan H Purcell
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, 13123 E 16Th Ave, Aurora, CO, 80045, USA
| | - Michael E Zwick
- Department of Genetics, Rutgers University-New Brunswick, Rutgers University, Piscataway, New Brunswick, NJ, 08901, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute and Institute for Human Genetics, UCSF School of Medicine, 513 Parnassus Ave, San Francisco, CA, 94143, USA
- Department of Dermatology, UCSF School of Medicine, 1701 Divisadero Street, San Francisco, CA, 94115, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, 671 Hoes Lane, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
43
|
Meossi C, Carrer A, Ciaccio C, Estienne M, Silipigni R, Sciacca FL, Pantaleoni C, D'Arrigo S, Milani D. Clinical features and magnesium levels: Novel insights in 15q11.2 BP1-BP2 copy number variants. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023. [PMID: 37129092 DOI: 10.1111/jir.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Investigating copy number variations (CNVs) such as microdeletions or microduplications can significantly contribute to discover the aetiology of neurodevelopmental disorders. 15q11.2 genomic region, including NIPA1 and NIPA2 genes, contains a recurrent but rare CNV, flanked by the break points BP1 and BP2. Both BP1-BP2 microdeletion and microduplication have been associated with intellectual disability (ID), neuropsychiatric/behavioural disturbances and mild clinical features, even if with incomplete penetrance and variable expressivity. The pathogenic role of this CNV is quite unclear though. Unknown variants in other DNA regions and parent-of-origin effect (POE) are some of the mechanisms that have been proposed as an explanation of the wide phenotypic variability. As NIPA1 and NIPA2 encode for proteins that mediate magnesium (Mg2+ ) metabolism, it has been suggested that urinary Mg2+ levels could potentially represent informative and affordable biomarkers for a rapid screening of 15q11.2 duplications or deletions. Furthermore, magnesium supplementation has been proposed as possible therapeutic strategy. METHODS Thirty one children with ID and/or other neurodevelopmental disorders carrying either a duplication or a deletion in 15q11.2 BP1-BP2 region have been recruited. When available, blood samples from parents have been analysed to identify the CNV origin. All participants underwent family and medical data collection, physical examination and neuropsychiatric assessment. Electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) scan were performed in 15 children. In addition, 11 families agreed to participate to the assessment of blood and urinary Mg2+ levels. RESULTS We observed a highly variable phenotypic spectrum of developmental issues encompassing ID in most subjects as well as a variety of behavioural disorders such as autism and attention-deficit disorder/attention-deficit hyperactivity disorder. Dysmorphic traits and malformations were detected only in a minority of the participants, and no clear association with growth anomalies was found. Abnormal brain MRI and/or EEG were reported respectively in 64% and 92% of the subjects. Inheritance assessment highlighted an excess of duplication of maternal origin, while cardiac alterations were detected only in children with 15q11.2 CNV inherited from the father. We found great variability in Mg2+ urinary values, without correlation with 15q11.2 copy numbers. However, the variance of urinary Mg2+ levels largely increases in individuals with 15q11.2 deletion/duplication. CONCLUSIONS This study provides further evidence that 15q11.2 BP1-BP2 CNV is associated with a broad spectrum of neurodevelopmental disorders and POE might be an explanation for clinical variability. However, some issues may question the real impact of 15q11.2 CNV on the phenotype in the carriers: DNA sequencing could be useful to exclude other pathogenic gene mutations. Our results do not support the possibility that urinary Mg2+ levels can be used as biomarkers to screen children with neurodevelopmental disorders for 15q11.2 duplication/deletion. However, there are evidences of correlations between 15q11.2 BP1-BP2 CNV and Mg2+ metabolism and future studies may pave the way to new therapeutic options.
Collapse
Affiliation(s)
- C Meossi
- Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Carrer
- Università degli Studi di Milano and Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C Ciaccio
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - M Estienne
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - R Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F L Sciacca
- Laboratory of Clinical Pathology and Medical Genetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - C Pantaleoni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - S D'Arrigo
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
44
|
Rammos A, Kirov G, Hubbard L, Walters JTR, Holmans P, Owen MJ, O'Donovan MC, Rees E. Family-based analysis of the contribution of rare and common genetic variants to school performance in schizophrenia. Mol Psychiatry 2023; 28:2081-2087. [PMID: 36914811 PMCID: PMC10575776 DOI: 10.1038/s41380-023-02013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
Impaired cognition in schizophrenia is associated with worse functional outcomes. While genetic factors are known to contribute to variation in cognition in schizophrenia, few rare coding variants with strong effects have been identified, and the relative effects from de novo, inherited and non-transmitted alleles are unknown. We used array and exome sequencing data from 656 proband-parent trios to examine the contribution of common and rare variants to school performance, and by implication cognitive function, in schizophrenia. Parental transmission of common alleles contributing to higher educational attainment (p value = 0.00015; OR = 2.63) and intelligence (p value = 0.00009; OR = 2.80), but not to schizophrenia, were associated with higher proband school performance. No significant effects were seen for non-transmitted parental common alleles. Probands with lower school performance were enriched for damaging de novo coding variants in genes associated with developmental disorders (DD) (p value = 0.00026; OR = 11.6). Damaging, ultra-rare coding variants in DD genes that were transmitted or non-transmitted from parents, had no effects on school performance. Among probands with lower school performance, those with damaging de novo coding variants in DD genes had a higher rate of comorbid mild intellectual disability (p value = 0.0002; OR = 15.6). Overall, we provide evidence for rare and common genetic contributions to school performance in schizophrenia. The strong effects for damaging de novo coding variants in DD genes provide further evidence that cognitive impairment in schizophrenia has a shared aetiology with developmental disorders. Furthermore, we report no evidence in this sample that non-transmitted parental common alleles for cognitive traits contributed to school performance in schizophrenia via indirect effects on the environment.
Collapse
Affiliation(s)
- Alexandros Rammos
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - George Kirov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Leon Hubbard
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
45
|
Moreau CA, Kumar K, Harvey A, Huguet G, Urchs SGW, Schultz LM, Sharmarke H, Jizi K, Martin CO, Younis N, Tamer P, Martineau JL, Orban P, Silva AI, Hall J, van den Bree MBM, Owen MJ, Linden DEJ, Lippé S, Bearden CE, Almasy L, Glahn DC, Thompson PM, Bourgeron T, Bellec P, Jacquemont S. Brain functional connectivity mirrors genetic pleiotropy in psychiatric conditions. Brain 2023; 146:1686-1696. [PMID: 36059063 PMCID: PMC10319760 DOI: 10.1093/brain/awac315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 02/03/2023] Open
Abstract
Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.
Collapse
Affiliation(s)
- Clara A Moreau
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université Paris Cité, Paris, France
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
| | - Kuldeep Kumar
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Annabelle Harvey
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
| | - Guillaume Huguet
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Sebastian G W Urchs
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Laura M Schultz
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hanad Sharmarke
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
| | - Khadije Jizi
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | | | - Nadine Younis
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Petra Tamer
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Jean-Louis Martineau
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Pierre Orban
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Montréal, UdeM, Montréal, QC H1N 3V2, Canada
- Département de Psychiatrie et d’Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Ana Isabel Silva
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sarah Lippé
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| | - Carrie E Bearden
- Integrative Center for Neurogenetics, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095, USA
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biobehavioral Sciences and Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David C Glahn
- Department of Psychiatry, Harvard Medical School, Cambridge, MA 02115, USA
- Boston Children’s Hospital, Tommy Fuss Center for Neuropsychiatric Disease Research, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck USC School of Medicine, Marina del Rey, CA, USA
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université Paris Cité, Paris, France
| | - Pierre Bellec
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, UdeM, Montreal, QC H3W 1W5, Canada
| | - Sebastien Jacquemont
- Sainte Justine Research Center, University of Montréal, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
46
|
Luo H, Wang Q, Fu D, Gao J, Lu D. Additional diagnostic value of CNV-seq over conventional karyotyping in prenatal diagnosis: A systematic review and meta-analysis. J Obstet Gynaecol Res 2023. [PMID: 37037422 DOI: 10.1111/jog.15652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/25/2023] [Indexed: 04/12/2023]
Abstract
OBJECTIVE To identify the additional diagnostic value of CNV-seq over conventional karyotyping on the part of chromosomal abnormalities in prenatal diagnosis. METHOD This was a systematic review conducted in accordance with PRISMA criteria. In order to clarify related research, PubMed, Web of Science databases (including Core Collection, BIOSIS Previews, MEDLINE, and so on), The Cochrane Library and Wiley Online Library were searched with the terms: "prenatal diagnosis," "CNV-seq," "karyotyping," published from January 2010 to May 2022. No language restrictions. RenMan 5.4 was used for the meta-analysis. RESULTS Eight studies were included in this systemic review and meta-analysis, including 11 091 pregnant women with high-risk pregnancy factors or with structurally abnormal fetus under ultrasound. CNV-seq detected a 2% (95% CI, -0% to 4%) additional chromosomal anomalies over conventional karyotyping in the six series. A 4% (95% CI, 3%-6%) pooled mean incremental yield of pathogenic CNVs by CNV-seq over karyotyping was observed, with a 1%-16% range. CONCLUSION CNV-seq, applied in prenatal diagnosis, may detect more chromosomal abnormalities when compared with karyotyping. With the advantages of wide coverage, high throughput, high resolution, no culture, good compatibility, and adjustable sequencing depth, CNV-seq has high application value in prenatal diagnosis.
Collapse
Affiliation(s)
- Heng Luo
- Medical College of Yangzhou University, Yangzhou, China
| | - Qian Wang
- Department of Obstetrics, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Dan Fu
- Department of Prenatal Diagnosis, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Jun Gao
- Department of Obstetrics, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics, Clinical Medical School of Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Molloy CJ, Quigley C, McNicholas Á, Lisanti L, Gallagher L. A review of the cognitive impact of neurodevelopmental and neuropsychiatric associated copy number variants. Transl Psychiatry 2023; 13:116. [PMID: 37031194 PMCID: PMC10082763 DOI: 10.1038/s41398-023-02421-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The heritability of intelligence or general cognitive ability is estimated at 41% and 66% in children and adults respectively. Many rare copy number variants are associated with neurodevelopmental and neuropsychiatric conditions (ND-CNV), including schizophrenia and autism spectrum disorders, and may contribute to the observed variability in cognitive ability. Here, we reviewed studies of intelligence quotient or cognitive function in ND-CNV carriers, from both general population and clinical cohorts, to understand the cognitive impact of ND-CNV in both contexts and identify potential genotype-specific cognitive phenotypes. We reviewed aggregate studies of sets ND-CNV broadly linked to neurodevelopmental and neuropsychiatric conditions, and genotype-first studies of a subset of 12 ND-CNV robustly associated with schizophrenia and autism. Cognitive impacts were observed across ND-CNV in both general population and clinical cohorts, with reports of phenotypic heterogeneity. Evidence for ND-CNV-specific impacts were limited by a small number of studies and samples sizes. A comprehensive understanding of the cognitive impact of ND-CNVs would be clinically informative and could identify potential educational needs for ND-CNV carriers. This could improve genetic counselling for families impacted by ND-CNV, and clinical outcomes for those with complex needs.
Collapse
Affiliation(s)
- Ciara J Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland.
| | - Ciara Quigley
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Áine McNicholas
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Linda Lisanti
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Pollak RM, Tilmon JC, Murphy MM, Gambello MJ, Russo RS, Dormans JP, Mulle JG. Musculoskeletal phenotypes in 3q29 deletion syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.03.23288084. [PMID: 37066183 PMCID: PMC10104205 DOI: 10.1101/2023.04.03.23288084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
3q29 deletion syndrome (3q29del) is a rare genomic disorder caused by a 1.6 Mb deletion (hg19, chr3:195725000â€"197350000). 3q29del is associated with neurodevelopmental and psychiatric phenotypes, including an astonishing >40-fold increased risk for schizophrenia, but medical phenotypes are less well-described. We used the online 3q29 registry ( 3q29deletion.org ) to recruit 57 individuals with 3q29del (56.14% male) and requested information about musculoskeletal phenotypes with a custom questionnaire. 85.96% of participants with 3q29del reported at least one musculoskeletal phenotype. Congenital anomalies were most common (70.18%), with pes planus (40.35%), pectus excavatum (22.81%), and pectus carinatum (5.26%) significantly elevated relative to the pediatric general population. 49.12% of participants reported fatigue after 30 minutes or less of activity. Bone fractures (8.77%) were significantly elevated relative to the pediatric general population, suggesting 3q29del impacts bone strength. Participants commonly report receiving medical care for musculoskeletal complaints (71.93%), indicating that these phenotypes impact quality of life for individuals with 3q29del. This is the most comprehensive description of musculoskeletal phenotypes in 3q29del to date, suggests ideas for clinical evaluation, and expands our understanding of the phenotypic spectrum of this syndrome.
Collapse
Affiliation(s)
- Rebecca M Pollak
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University
| | | | | | | | | | - John P Dormans
- Emeritus Professor of Orthopedic Surgery, University of Pennsylvania
| | - Jennifer G Mulle
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| |
Collapse
|
49
|
Pollak RM, Burrell TL, Cubells JF, Klaiman C, Murphy MM, Saulnier CA, Walker EF, White SP, Mulle JG. Adaptive behavior deficits in individuals with 3q29 deletion syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.31.23288022. [PMID: 37066139 PMCID: PMC10104221 DOI: 10.1101/2023.03.31.23288022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Background 3q29 deletion syndrome (3q29del) is associated with a significantly increased risk for neurodevelopmental and neuropsychiatric phenotypes. Mild to moderate intellectual disability (ID) is common in this population, and previous work by our team identified substantial deficits in adaptive behavior. However, the full profile of adaptive function in 3q29del has not been described, nor has it been compared to other genomic syndromes associated with elevated risk for neurodevelopmental and neuropsychiatric phenotypes. Methods Individuals with 3q29del (n=32, 62.5% male) were evaluated using the Vineland Adaptive Behavior Scales, Third Edition, Comprehensive Parent/Caregiver Form (Vineland-3). We explored the relationship between adaptive behavior and cognitive function, executive function, and neurodevelopmental and neuropsychiatric comorbidities in our 3q29del study sample, and we compared subjects with 3q29del to published data on Fragile X syndrome, 22q11.2 deletion syndrome, and 16p11.2 deletion and duplication syndromes. Results Individuals with 3q29del had global deficits in adaptive behavior that were not driven by specific weaknesses in any given domain. Individual neurodevelopmental and neuropsychiatric diagnoses had a small effect on adaptive behavior, and the cumulative number of comorbid diagnoses was significantly negatively associated with Vineland-3 performance. Both cognitive ability and executive function were significantly associated with adaptive behavior, and executive function was a better predictor of Vineland-3 performance than cognitive ability. Finally, the severity of adaptive behavior deficits in 3q29del was distinct from previously published data on comparable genomic disorders. Conclusions Individuals with 3q29del have significant deficits in adaptive behavior, affecting all domains assessed by the Vineland-3. Executive function is a better predictor of adaptive behavior than cognitive ability in this population and suggests that interventions targeting executive function may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Rebecca M Pollak
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University
| | | | - Joseph F Cubells
- Department of Human Genetics, School of Medicine, Emory University
- Department of Psychiatry and Behavioral Science, School of Medicine, Emory University
| | - Cheryl Klaiman
- Department of Pediatrics, School of Medicine, Emory University
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University
| | | | - Celine A Saulnier
- Department of Pediatrics, School of Medicine, Emory University
- Neurodevelopmental Assessment & Consulting Services
| | | | - Stormi Pulver White
- Department of Pediatrics, School of Medicine, Emory University
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University
| | - Jennifer G Mulle
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University
| |
Collapse
|
50
|
Verbitsky M, Krishnamurthy S, Krithivasan P, Hughes D, Khan A, Marasà M, Vena N, Khosla P, Zhang J, Lim TY, Glessner JT, Weng C, Shang N, Shen Y, Hripcsak G, Hakonarson H, Ionita-Laza I, Levy B, Kenny EE, Loos RJ, Kiryluk K, Sanna-Cherchi S, Crosslin DR, Furth S, Warady BA, Igo RP, Iyengar SK, Wong CS, Parsa A, Feldman HI, Gharavi AG. Genomic Disorders in CKD across the Lifespan. J Am Soc Nephrol 2023; 34:607-618. [PMID: 36302597 PMCID: PMC10103259 DOI: 10.1681/asn.2022060725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
SIGNIFICANCE STATEMENT Pathogenic structural genetic variants, also known as genomic disorders, have been associated with pediatric CKD. This study extends those results across the lifespan, with genomic disorders enriched in both pediatric and adult patients compared with controls. In the Chronic Renal Insufficiency Cohort study, genomic disorders were also associated with lower serum Mg, lower educational performance, and a higher risk of death. A phenome-wide association study confirmed the link between kidney disease and genomic disorders in an unbiased way. Systematic detection of genomic disorders can provide a molecular diagnosis and refine prediction of risk and prognosis. BACKGROUND Genomic disorders (GDs) are associated with many comorbid outcomes, including CKD. Identification of GDs has diagnostic utility. METHODS We examined the prevalence of GDs among participants in the Chronic Kidney Disease in Children (CKiD) cohort II ( n =248), Chronic Renal Insufficiency Cohort (CRIC) study ( n =3375), Columbia University CKD Biobank (CU-CKD; n =1986), and the Family Investigation of Nephropathy and Diabetes (FIND; n =1318) compared with 30,746 controls. We also performed a phenome-wide association analysis (PheWAS) of GDs in the electronic MEdical Records and GEnomics (eMERGE; n =11,146) cohort. RESULTS We found nine out of 248 (3.6%) CKiD II participants carried a GD, replicating prior findings in pediatric CKD. We also identified GDs in 72 out of 6679 (1.1%) adult patients with CKD in the CRIC, CU-CKD, and FIND cohorts, compared with 199 out of 30,746 (0.65%) GDs in controls (OR, 1.7; 95% CI, 1.3 to 2.2). Among adults with CKD, we found recurrent GDs at the 1q21.1, 16p11.2, 17q12, and 22q11.2 loci. The 17q12 GD (diagnostic of renal cyst and diabetes syndrome) was most frequent, present in 1:252 patients with CKD and diabetes. In the PheWAS, dialysis and neuropsychiatric phenotypes were the top associations with GDs. In CRIC participants, GDs were associated with lower serum magnesium, lower educational achievement, and higher mortality risk. CONCLUSION Undiagnosed GDs are detected both in children and adults with CKD. Identification of GDs in these patients can enable a precise genetic diagnosis, inform prognosis, and help stratify risk in clinical studies. GDs could also provide a molecular explanation for nephropathy and comorbidities, such as poorer neurocognition for a subset of patients.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | | | - Priya Krithivasan
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Daniel Hughes
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Maddalena Marasà
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Natalie Vena
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Pavan Khosla
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Junying Zhang
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Joseph T. Glessner
- Center for Applied Genomics and Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Ning Shang
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Yufeng Shen
- Department of Systems Biology and Columbia Genome Center, Columbia University, New York, New York
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Hakon Hakonarson
- Center for Applied Genomics and Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - David R. Crosslin
- Division of Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana
| | - Susan Furth
- Departments of Pediatrics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bradley A. Warady
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Robert P. Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University and Louis Stoke, Cleveland, Ohio
| | - Sudha K. Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University and Louis Stoke, Cleveland, Ohio
| | - Craig S. Wong
- Division of Pediatric Nephrology, University of New Mexico Children’s Hospital, Albuquerque, New Mexico
| | - Afshin Parsa
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Harold I. Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| |
Collapse
|