1
|
Bischoff ME, Shamsaei B, Yang J, Secic D, Vemuri B, Reisz JA, D'Alessandro A, Bartolacci C, Adamczak R, Schmidt L, Wang J, Martines A, Venkat J, Tcheuyap VT, Biesiada J, Behrmann CA, Vest KE, Brugarolas J, Scaglioni PP, Plas DR, Patra KC, Gulati S, Landero Figueroa JA, Meller J, Cunningham JT, Czyzyk-Krzeska MF. Copper Drives Remodeling of Metabolic State and Progression of Clear Cell Renal Cell Carcinoma. Cancer Discov 2025; 15:401-426. [PMID: 39476412 DOI: 10.1158/2159-8290.cd-24-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/02/2024]
Abstract
SIGNIFICANCE The work establishes a requirement for glucose-dependent coordination between energy production and redox homeostasis, which is fundamental for the survival of cancer cells that accumulate Cu and contributes to tumor growth.
Collapse
Affiliation(s)
- Megan E Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Behrouz Shamsaei
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Juechen Yang
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dina Secic
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bhargav Vemuri
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Caterina Bartolacci
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rafal Adamczak
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Lucas Schmidt
- Trace Elements Group, Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amelia Martines
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jahnavi Venkat
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vanina Toffessi Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Catherine A Behrmann
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine E Vest
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pier Paolo Scaglioni
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Krushna C Patra
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shuchi Gulati
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Oncology and Hematology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Julio A Landero Figueroa
- Trace Elements Group, Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jarek Meller
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
- Department of Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio
| | - John T Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Veterans Affairs, Veteran Affairs Medical Center, Cincinnati, Ohio
- Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
2
|
Li X, Ge J, Wan M, Feng T, Li X, Zhang H, Wang Z, Gao Y, Chen M, Pan F. SLC31A1 promotes chemoresistance through inducing CPT1A-mediated fatty acid oxidation in ER-positive breast cancer. Neoplasia 2025; 61:101125. [PMID: 39904115 DOI: 10.1016/j.neo.2025.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Over 60% of breast cancer cases are diagnosed with estrogen-receptor (ER) positive. Tamoxifen (TAM), a commonly employed medication for ER-positive breast cancer, often yields suboptimal therapeutic outcomes due to the emergence of TAM resistance, leading to the recurrence and a poor prognosis. The copper transporter, solute carrier family 31 member 1 (SLC31A1), has been associated with tumor aggressiveness and unfavorable outcomes in various types of tumors. In our current study, we found high expression of SLC31A1 that predicted poor survival in patients with breast cancer. Significantly, ER-positive breast cancer tissues in patients with recurrence post-TAM treatment exhibited considerably stronger SLC31A1 expression levels. In vitro experiments verified that TAM-resistant ER-positive breast cancer cell lines expressed notably higher SLC31A1 levels compared to the parental cell lines. Of great significance, SLC31A1 depletion notably rescued TAM sensitivity in chemoresistant ER-positive breast cancer cells, as demonstrated by the attenuated cell proliferative and invasive capabilities. Conversely, promoting SLC31A1 significantly facilitated the proliferation and invasion of wild-type breast cancer cells. Subsequently, we detected reduced copper levels in TAM-resistant breast cancer cells with SLC31A1 depletion. Mechanistically, we observed that in chemoresistant breast cancer cell lines, SLC31A1 knockdown resulted in a substantial decrease in the expression of carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme of fatty acid oxidation (FAO). RNA-Seq analysis indicated that FAO might be implicated in SLC31A1-mediated breast cancer progression. CPT1A was also overexpressed in TAM-resistant breast cancer cells, accompanied by enhanced FAO rates and ATP levels. Suppressing CPT1A significantly enhanced the chemosensitivity of TAM-resistant breast cancer cells in response to TAM treatments. Intriguingly, copper exposure dose-dependently increased CPT1A expression in chemoresistant breast cancer cells, but this could be abolished upon SLC31A1 knockdown, along with enhanced apoptosis, which elucidated that copper uptake contributed to CPT1A expression. Furthermore, SLC31A1 overexpression significantly augmented CPT1A expression in parental breast cancer cells, accompanied by facilitated copper levels, FAO rates, and ATP levels, while being notably diminished upon CPT1A suppression. Finally, our in vivo studies confirmed that SLC31A1 deficiency re-sensitized TAM-resistant breast cancer cells to TAM treatment and abolished tumor growth. Collectively, all our studies demonstrated that SLC31A1/copper suppression could enhance TAM responses for chemoresistant ER-positive breast cancer cells through constraining the CPT1A-mediated FAO process.
Collapse
Affiliation(s)
- Xudong Li
- Department of Oncology, Guangyuan Central Hospital, Guangyuan 628000, Sichuan, China
| | - Jingjing Ge
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Mengdi Wan
- Department of Medical Oncology, Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Tongtong Feng
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaoqian Li
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Haibo Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhangyan Wang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Meiting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Fei Pan
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
3
|
Li SR, Tao SY, Li Q, Hu CY, Sun ZJ. Harnessing nanomaterials for copper-induced cell death. Biomaterials 2025; 313:122805. [PMID: 39250865 DOI: 10.1016/j.biomaterials.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shi-Yue Tao
- Bathune School of Stomatology, Jilin University, Changchun, 130021, Jilin, PR China
| | - Qian Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
4
|
Müller S, Cañeque T, Solier S, Rodriguez R. Copper and iron orchestrate cell-state transitions in cancer and immunity. Trends Cell Biol 2025; 35:105-114. [PMID: 39079798 DOI: 10.1016/j.tcb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 02/09/2025]
Abstract
Whereas genetic mutations can alter cell properties, nongenetic mechanisms can drive rapid and reversible adaptations to changes in their physical environment, a phenomenon termed 'cell-state transition'. Metals, in particular copper and iron, have been shown to be rate-limiting catalysts of cell-state transitions controlling key chemical reactions in mitochondria and the cell nucleus, which govern metabolic and epigenetic changes underlying the acquisition of distinct cell phenotypes. Acquisition of a distinct cell identity, independently of genetic alterations, is an underlying phenomenon of various biological processes, including development, inflammation, erythropoiesis, aging, and cancer. Here, mechanisms that have been uncovered related to the role of these metals in the regulation of cell plasticity are described, illustrating how copper and iron can be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France
| | - Tatiana Cañeque
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France
| | - Stéphanie Solier
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France; Department of Genetics, Institut Curie, Paris, France; Paris Saclay University, UVSQ, Montigny-le-Bretonneux, France
| | - Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France.
| |
Collapse
|
5
|
Lu K, Wijaya CS, Yao Q, Jin H, Feng L. Cuproplasia and cuproptosis, two sides of the coin. Cancer Commun (Lond) 2025. [PMID: 39865459 DOI: 10.1002/cac2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Copper is an essential micronutrient in the human body, mainly acting as a crucial cofactor required for a wide range of physiological processes across nearly all cell types. Recent advances revealed that tumor cells seize copper to fulfill their rapid proliferation, metastasis, immune evasion, and so on by reprogramming the copper regulatory network, defined as cuproplasia. Thus, targeting copper chelation to reduce copper levels has been considered a rational tumor therapy strategy. However, overloaded copper ions could be toxic, which leads to the aggregation of lipoylated mitochondrial proteins and the depletion of iron-sulfur clusters, ultimately resulting in cell death, termed cuproptosis. Upon its discovery, cuproptosis has attracted great interest from oncologists, and targeting cuproptosis by copper ionophores exhibits as a potential anti-tumor therapy. In this review, we present the underlying mechanisms involved in cuproplasia and cuproptosis. Additionally, we sum up the chemicals targeting either cuproplasia or cuproptosis for cancer therapy. Further attention should be paid to distinguishing cancer patients who are suitable for targeting cuproplasia or cuproptosis.
Collapse
Affiliation(s)
- Kaizhong Lu
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Chandra Sugiarto Wijaya
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qinghua Yao
- Department of Oncology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
- Key Laboratory for Research on the Pathogenesis of Inflammation-Cancer Transformation in Intestinal Diseases, Zhejiang Engineering Research Center of Intelligent Equipment of Chronic Chinese and Western Medicine, Hangzhou, Zhejiang, P. R. China
| | - Hongchuan Jin
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Lifeng Feng
- Department of Medical Oncology, Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
6
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
7
|
Cong Y, Li N, Zhang Z, Shang Y, Zhao H. Cuproptosis: molecular mechanisms, cancer prognosis, and therapeutic applications. J Transl Med 2025; 23:104. [PMID: 39844182 PMCID: PMC11752808 DOI: 10.1186/s12967-025-06121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Cuproptosis differs from other forms of cell death, such as apoptosis, necroptosis, and ferroptosis, in its unique molecular mechanisms and signaling pathways. In this review, we delve into the cellular metabolic pathways of copper, highlighting the role of copper in biomolecule synthesis, mitochondrial respiration, and antioxidant defense. Furthermore, we elucidate the relationship between cuproptosis-related genes (CRGs) and cancer prognosis, analyzing their expression patterns across various tumor types and their impact on patient outcomes. Our review also uncovers the potential therapeutic applications of copper chelators, copper ionophores, and copper-based nanomaterials in oncology. In addition, we discuss the emerging role of cuproptosis in remodeling the tumor microenvironment, enhancing immune cell infiltration, and converting "cold tumors" into "hot tumors" that respond better to immunotherapy. In short, this review underscores the pivotal importance of cuproptosis in cancer biology and highlights its translational potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yating Cong
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Na Li
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Zixin Zhang
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yan Shang
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
8
|
Messina MS, Torrente L, Pezacki AT, Humpel HI, Li EL, Miller SG, Verdejo-Torres O, Padilla-Benavides T, Brady DC, Killilea DW, Killilea AN, Ralle M, Ward NP, Ohata J, DeNicola GM, Chang CJ. A histochemical approach to activity-based copper sensing reveals cuproplasia-dependent vulnerabilities in cancer. Proc Natl Acad Sci U S A 2025; 122:e2412816122. [PMID: 39813247 PMCID: PMC11761388 DOI: 10.1073/pnas.2412816122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel. Coppermycin-1 reacts selectively with Cu(I) to release puromycin, which is then incorporated into nascent peptides during protein translation, thus leaving a permanent and dose-dependent marker for labile copper that can be visualized with standard immunofluorescence assays. We showcase the utility of this platform for screening labile Cu(I) pools across the National Cancer Institute's 60 (NCI-60) human tumor cell line panel, identifying cell types with elevated basal levels of labile copper. Moreover, we use Coppermycin-1 to show that lung cancer cells with heightened activation of nuclear factor-erythroid 2-related factor 2 (NRF2) possess lower resting labile Cu(I) levels and, as a result, have reduced viability when treated with a copper chelator. This work establishes that methods for labile copper detection can be used to assess cuproplasia, an emerging form of copper-dependent cell growth and proliferation, providing a starting point for broader investigations into the roles of transition metal signaling in biology and medicine.
Collapse
Affiliation(s)
- Marco S. Messina
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Hanna I. Humpel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Erin L. Li
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT06459
| | | | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Killilea
- Office of Research, University of California, San Francisco, Oakland, CA94609
| | - Alison N. Killilea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, NC27695
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
9
|
Feng Q, Sun Y, Yang Z, Wang Z, Chen Z, Liu F, Liu L. Copper in the colorectal cancer microenvironment: pioneering a new era of cuproptosis-based therapy. Front Oncol 2025; 14:1522919. [PMID: 39850821 PMCID: PMC11754209 DOI: 10.3389/fonc.2024.1522919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Copper, an essential trace element and biochemical cofactor in humans plays a critical role in maintaining health. Recent studies have identified a significant association between copper levels and the progression and metastasis of cancer. Copper is primarily absorbed in the intestinal tract, often leading to an imbalance of copper ions in the body. Colorectal cancer (CRC), the most common cancer originating in the intestines, thrives in an environment with elevated copper concentrations. Current research is focused on uncovering the relationship between copper and CRC which has introduced new concepts such as cuproplasia and cuproptosis, significantly deepening our understanding of copper's influence on cell proliferation and death. Cuproplasia is a kind of cell proliferation mediated by the co-regulatory activities of enzymes and non-enzymatic factors, while cuproptosis refers to cell death induced by excessive copper, which results in abnormal oligomerization of lipacylated proteins and the reduction of iron-sulfur cluster proteins. Exploring cuproplasia and cuproptosis opens new avenues for treating CRC. This review aims to summarize the critical role of copper in promoting colorectal cancer, the dual effects of copper in the tumor microenvironment (TME), and strategies for leveraging this unique microenvironment to induce cuproptosis in colorectal cancer. Understanding the relationship between copper and CRC holds promise for establishing a theoretical foundation for innovative therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Qixuan Feng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Yang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyu Wang
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhangyi Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
12
|
Wang D, Guan H. Cuproptosis: A new mechanism for anti-tumour therapy. Pathol Res Pract 2024; 266:155790. [PMID: 39729956 DOI: 10.1016/j.prp.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc. The therapeutic role of Cuproptosis as a hotspot of research in cancer has also attracted much attention. Therefore, this paper comprehensively searches the literature to review the roles and mechanisms of Cuproptosis in the treatment of malignant tumours, aiming to provide new insights into the role and mechanism of Cuproptosis in anti-malignant tumour therapy and present novel ideas and methods.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haoran Guan
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
13
|
Fang RR, Yang QF, Zhao J, Xu SZ. A Novel Signature Combing Cuproptosis- and Ferroptosis-Related Genes in Nonalcoholic Fatty Liver Disease. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2024; 39:261-272. [PMID: 39789929 DOI: 10.24920/004403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
OBJECTIVES To identify cuproptosis- and ferroptosis-related genes involved in nonalcoholic fatty liver disease and to determine the diagnostic value of hub genes. METHODS The gene expression dataset GSE89632 was retrieved from the Gene Expression Omnibus database to identify differentially expressed genes (DEGs) between the non-alcoholic steatohepatitis (NASH) group and the healthy group using the 'limma' package in R software and weighted gene co-expression network analysis. Gene ontology, kyoto encyclopedia of genes and genomes pathway, and single-sample gene set enrichment analyses were performed to identify functional enrichment of DEGs. Ferroptosis- and cuproptosis-related genes were obtained from the FerrDb V2 database and available literatures, respectively. A combined signature for cuproptosis- and ferroptosis-related genes, called CRF, was constructed using the STRING database. Hub genes were identified by overlapping DEGs, WGCNA-derived key genes, and combined signature CRF genes, and validated using the GSE109836 and GSE227714 datasets and real-time quantitative polymerase chain reaction. A nomogram of NASH diagnostic model was established utilizing the 'rms' package in R software based on the hub genes, and the diagnostic value of hub genes was assessed using receiver operating characteristic curve analysis. In addition, immune cell infiltration in NASH versus healthy controls was examined using the CIBERSORT algorithm. The relationships among various infiltrated immune cells were explored with Spearman's correlation analysis. RESULTS Analysis of GSE89632 identified 236 DEGs between the NASH group and the healthy group. WGCNA highlighted 8 significant modules and 11,095 pivotal genes, of which 330 genes constituted CRF. Intersection analysis identified IL6, IL1B, JUN, NR4A1, and PTGS2 as hub genes. The hub genes were all downregulated in the NASH group, and this result was further verified by the NASH validation dataset and real-time quantitative polymerase chain reaction. Receiver operating characteristic curve analysis confirmed the diagnostic efficacy of these hub genes with areas under the curve of 0.985, 0.941, 1.000, 0.967, and 0.985, respectively. Immune infiltration assessment revealed that gamma delta T cells, M1 macrophages, M2 macrophages, and resting mast cells were predominantly implicated. CONCLUSIONS Our investigation underscores the significant association of cuproptosis- and ferroptosis-related genes, specifically IL6, IL1B, JUN, NR4A1, and PTGS2, with NASH. These findings offer novel insights into the pathogenesis of NASH, potentially guiding future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Jing Zhao
- Shaanxi Key Laboratory of Acupuncture & Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | | |
Collapse
|
14
|
Li H, Chen J, Liu Z, Pan L, Lan X, Jiang L, Huang F. Construction of a novel copper-induced-cell-death-related gene signature for prognosis in colon cancer, with focus on KIF7. BMC Cancer 2024; 24:1532. [PMID: 39695482 DOI: 10.1186/s12885-024-13315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Colon cancer (CC) is a leading cause of cancer-related mortality worldwide. Accurate prognostic markers are essential for patient risk stratification and personalized treatment. Copper-induced cell-death-related genes (CRG) have emerged as potential players in cancer prognosis, yet their role in CC remains unclear. METHODS This study aimed to comprehensively evaluate the expression of CRG and their roles in CC using gene expression and clinical data from TCGA and GEO databases. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses identified prognostic genes, leading to the construction of a CRG prognostic signature. The signature's predictive accuracy was validated using Kaplan-Meier survival curves, Receiver Operating Characteristic (ROC) curves, and a nomogram model. Additionally, we conducted experiments including immunofluorescence staining and cellular assays to validate the key genes' biological functions. RESULTS A 12-gene CRG signature was significantly associated with overall survival in CC patients. The high-risk group, as classified by median risk score, exhibited significantly shorter survival times compared to the low-risk group. The signature's predictive accuracy was further confirmed with Area Under the Curve (AUC) scores exceeding 0.75 in TCGA and GSE17536 cohorts. Notably, the risk score was significantly correlated with immune checkpoints, chemotherapy sensitivity, and tumor microenvironment. Furthermore, the risk score showed a strong association with immunotherapy response in patients from GSE78220 and GSE39688 cohorts. Bioinformatics analysis of KIF7, a key gene within the signature, revealed its upregulation in CC and significant associations with tumor mutation burden, microsatellite instability, and immune cell infiltration across various cancers. Experiments confirmed that KIF7 was upregulated in CC and its knockdown reduced cell proliferation, migration, and invasion. CONCLUSION The CRG prognostic signature can effectively predict overall survival, immune microenvironment and chemotherapy response in CC. KIF7, as a potential prognostic marker, has significant potential for the prediction and treatment of CC.
Collapse
Affiliation(s)
- Hua Li
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan 2nd Road, Baise, Guangxi, 533000, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, Guangxi, China
| | - Jingying Chen
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan 2nd Road, Baise, Guangxi, 533000, China
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zhengxian Liu
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan 2nd Road, Baise, Guangxi, 533000, China
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Lujuan Pan
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xiaoling Lan
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, Guangxi, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise, Guangxi, 533000, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, Fuzhou, Fujian, China.
| | - Fuda Huang
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan 2nd Road, Baise, Guangxi, 533000, China.
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, Guangxi, China.
| |
Collapse
|
15
|
Yu H, Xiao G, Gu M, Zhang L, Xia M, Mo S, Zhao Y, Wei C. pERK transition-induced directional mode switching promotes epithelial tumor cell migration. Proc Natl Acad Sci U S A 2024; 121:e2318871121. [PMID: 39671185 DOI: 10.1073/pnas.2318871121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Increasing evidence suggests that tumor cells exhibit extreme plasticity in migration modes in order to adapt to microenvironments. However, the underlying mechanism for governing the migration mode switching is still unclear. Here, we revealed that epithelial tumor cells could develop a stable directional mode driven by hyperactivated ERK activity. This highly activated and dynamically changing ERK activity, called pERK transition, is crucial for inducing the switch from pauses state to directional movement and is also necessary for maintaining epithelial tumor cells in the directional mode. PERK transition integrated pERK surf, the dynamic and localized ERK activity at the leading edge. The sequential activation of RhoA and Rac1 by pERK transition played critical roles in generation of pERK surf activity through a movement feedback mechanism. PERK transition activity converted the orderly collective migration into the disordered dispersal movement, enhanced the invasiveness of epithelial tumor cells, and promoted their metastasis in immune-deficient mice. These findings revealed that the exquisite spatiotemporal organization of ERK activity orchestrates migration and invasion of tumor cells and provide evidence for the mechanism underlying migration mode switching in epithelial tumor cells.
Collapse
Affiliation(s)
- Huijing Yu
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Guanli Xiao
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingyao Gu
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Liting Zhang
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Xia
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shimin Mo
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yuying Zhao
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Chaoliang Wei
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- PKU- Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing, Jiangsu 210031, China
| |
Collapse
|
16
|
Jiang Y, El Khoury E, Pezacki AT, Qian N, Oi M, Torrente L, Miller SG, Ralle M, DeNicola GM, Min W, Chang CJ. An Activity-Based Sensing Approach to Multiplex Mapping of Labile Copper Pools by Stimulated Raman Scattering. J Am Chem Soc 2024; 146:33324-33337. [PMID: 39586074 DOI: 10.1021/jacs.4c06296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Molecular imaging with analyte-responsive probes offers a powerful chemical approach to studying biological processes. Many reagents for bioimaging employ a fluorescence readout, but the relatively broad emission bands of this modality and the need to alter the chemical structure of the fluorophore for different signal colors can potentially limit multiplex imaging. Here, we report a generalizable approach to multiplex analyte imaging by leveraging the comparably narrow spectral signatures of stimulated Raman scattering (SRS) in activity-based sensing (ABS) mode. We illustrate this concept with two copper Raman probes (CRPs), CRP2181 and CRP2153.2, that react selectively with loosely bound Cu(I/II) and Cu(II) ions, respectively, termed the labile copper pool, through copper-directed acyl imidazole (CDAI) chemistry. These reagents label proximal proteins in a copper-dependent manner using a dye scaffold bearing a 13C≡N or 13C≡15N isotopic SRS tag with nearly identical physiochemical properties in terms of shape and size. SRS imaging with the CRP reagents enables duplex monitoring of changes in intracellular labile Cu(I) and Cu(II) pools upon exogenous copper supplementation or copper depletion or genetic perturbations to copper transport proteins. Moreover, CRP imaging reveals reciprocal increases in labile Cu(II) pools upon decreases in activity of the antioxidant response nuclear factor-erythroid 2-related factor 2 (NRF2) in cellular models of lung adenocarcinoma. By showcasing the use of narrow-bandwidth ABS probes for multiplex imaging of copper pools in different oxidation states and identifying alterations in labile metal nutrient pools in cancer, this work establishes a foundation for broader SRS applications in analyte-responsive imaging in biological systems.
Collapse
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Aidan T Pezacki
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Miku Oi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Sophia G Miller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Christopher J Chang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Bhatnagar K, Jha K, Dalal N, Patki N, Gupta G, Kumar A, Kumar A, Chaudhary S. Exploring micronutrients and microbiome synergy: pioneering new paths in cancer therapy. Front Immunol 2024; 15:1442788. [PMID: 39676876 PMCID: PMC11638209 DOI: 10.3389/fimmu.2024.1442788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The human microbiome is the complex ecosystem consisting of trillions of microorganisms that play a key role in developing the immune system and nutrient metabolism. Alterations in the gut microbiome have been linked to cancer initiation, progression, metastasis, and response to treatment. Accumulating evidence suggests that levels of vitamins and minerals influence the gut environment and may have implications for cancer risk and progression. Bifidobacterium has been reported to reduce the colorectal cancer risk by binding to free iron. Additionally, zinc ions have been shown to activate the immune cells and enhance the effectiveness of immunotherapy. Higher selenium levels have been associated with a reduced risk of several cancers, including colorectal cancer. In contrast, enhanced copper uptake has been implicated in promoting cancer progression, including colon cancer. The interaction between cancer and gut bacteria, as well as dysbiosis impact has been studied in animal models. The interplay between prebiotics, probiotics, synbiotics, postbiotics and gut bacteria in cancer offers the diverse physiological benefits. We also explored the particular probiotic formulations like VSL#3, Prohep, Lactobacillus rhamnosus GG (LGG), etc., for their ability to modulate immune responses and reduce tumor burden in preclinical models. Targeting the gut microbiome through antibiotics, bacteriophage, microbiome transplantation-based therapies will offer a new perspective in cancer research. Hence, to understand this interplay, we outline the importance of micronutrients with an emphasis on the immunomodulatory function of the microbiome and highlight the microbiome's potential as a target for precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Garima Gupta
- Biological Engineering and Sciences, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
18
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612106. [PMID: 39314281 PMCID: PMC11419079 DOI: 10.1101/2024.09.09.612106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that was associated with a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 KO cells revealed simultaneous upregulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7a flx/Y :: Vil1 Cre/+ mice identified upregulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | | | | | - Anne M. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Felix G Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| |
Collapse
|
19
|
Cheng Z, Wang T, Luo M, Wu S, Hua S, Li Y, Yang Y, Zou L, Wei J, Li P. A new luminescent nickel nanocluster with solvent and ion induced emission enhancement toward heavy metal analysis. Biosens Bioelectron 2024; 264:116660. [PMID: 39142230 DOI: 10.1016/j.bios.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Expanding the family of fluorescent metal clusters beyond gold, silver, and copper has always been an issue for researchers to solve. In this study, a novel type of cysteine-capped nickel nanoclusters (Cys-Ni NCs) with bright turquoise emission was developed. The as-synthesized Ni NCs showed aggregation-induced emission enhancement (AIEE) properties across Cd2+ and various polar organic solvents. Concurrently, solvents with different viscosities were used to explore the principle of solvent-induced AIEE of Cys-Ni NCs, revealing a positive correlation between fluorescence intensity and solution viscosity. In addition, the concentration of Cd2+ that induced the AIEE effect was reduced by nearly two orders of magnitude in highly viscous solvents, indicating the possibility of Cys-Ni NCs as a promising nanomaterial platform for Cd2+ sensing analysis. Moreover, we propose a novel fluorescent sensing method for rapid detection of Cu2+ based on the carboxyl group of Cys-Ni NCs coupling with Cu2+. Further, validation of Cu2+ detecting methodologies in environmental water samples with the accuracy up to 93.94% underscores their potential as robust and efficient sensing platforms. This study expands the repertoire of fluorescent metal nanoclusters for highly sensitive and selective sensing of hazardous ions and paves the way for further exploration and wide applications in Cu2+ detection in biological and medicine fields.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; School of Pharmaceutical Sciences, Liaoning University, Shenyang, Liaoning 110036, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Sijia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yuqing Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
20
|
Liu YT, Chen L, Li SJ, Wang WY, Wang YY, Yang QC, Song A, Zhang MJ, Mo WT, Li H, Hu CY, Sun ZJ. Dysregulated Wnt/β-catenin signaling confers resistance to cuproptosis in cancer cells. Cell Death Differ 2024; 31:1452-1466. [PMID: 38987382 PMCID: PMC11520902 DOI: 10.1038/s41418-024-01341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/β-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/β-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/β-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the β-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/β-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/β-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Shu-Jin Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wu-Yin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Yuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - An Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Tao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Zhang L, Xie A, Ma J, Liu H, Zeng C. Unveiling Cuproptosis: Mechanistic insights, roles, and leading advances in oncology. Biochim Biophys Acta Rev Cancer 2024; 1879:189180. [PMID: 39276875 DOI: 10.1016/j.bbcan.2024.189180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Copper, a vital micronutrient, performs essential functions in numerous biological settings. Its disrupted metabolism is implicated in both the initiation of tumors and therapeutic interventions for cancer, underscoring the critical necessity of preserving copper homeostasis. Cuproptosis, a regulated cell death (RCD) modulated by copper, is activated in response to elevated copper concentrations, prompting an investigation into its implication in oncogenesis. Within this review, an exploration is conducted into copper dynamics and homeostasis maintenance within cells. Furthermore, it delves into the mechanisms underlying cuproptosis and its interplay with signaling pathways implicated in cancer. The potential synergy between cuproptosis and ferroptosis and its impact on tumor immunomodulation is discussed. Additionally, promising avenues for addressing cuproptosis in cancer involve assessing the utility of copper chelators and ionophores. By addressing pressing questions surrounding cuproptosis and outlining its pivotal role in cancer pathogenesis and treatment, this review propounds targeting cuproptosis as a promising frontier in antitumor therapy, potentially revolutionizing cancer treatment strategies.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Aihui Xie
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Jingxian Ma
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Huilin Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
22
|
Huang J, Campian JL, DeWees TA, Skrott Z, Mistrik M, Johanns TM, Ansstas G, Butt O, Leuthardt E, Dunn GP, Zipfel GJ, Osbun JW, Abraham C, Badiyan S, Schwetye K, Cairncross JG, Rubin JB, Kim AH, Chheda MG. A Phase 1/2 Study of Disulfiram and Copper With Concurrent Radiation Therapy and Temozolomide for Patients With Newly Diagnosed Glioblastoma. Int J Radiat Oncol Biol Phys 2024; 120:738-749. [PMID: 38768767 DOI: 10.1016/j.ijrobp.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE This phase 1/2 study aimed to evaluate the safety and preliminary efficacy of combining disulfiram and copper (DSF/Cu) with radiation therapy (RT) and temozolomide (TMZ) in patients with newly diagnosed glioblastoma (GBM). METHODS AND MATERIALS Patients received standard RT and TMZ with DSF (250-375 mg/d) and Cu, followed by adjuvant TMZ plus DSF (500 mg/d) and Cu. Pharmacokinetic analyses determined drug concentrations in plasma and tumors using high-performance liquid chromatography-mass spectrometry. RESULTS Thirty-three patients, with a median follow-up of 26.0 months, were treated, including 12 IDH-mutant, 9 NF1-mutant, 3 BRAF-mutant, and 9 other IDH-wild-type cases. In the phase 1 arm, 18 patients were treated; dose-limiting toxicity probabilities were 10% (95% CI, 3%-29%) at 250 mg/d and 21% (95% CI, 7%-42%) at 375 mg/d. The phase 2 arm treated 15 additional patients at 250 mg/d. No significant difference in overall survival or progression-free survival was noted between IDH- and NF1-mutant cohorts compared with institutional counterparts treated without DSF/Cu. However, extended remission occurred in 3 BRAF-mutant patients. Diethyl-dithiocarbamate-copper, the proposed active metabolite of DSF/Cu, was detected in plasma but not in tumors. CONCLUSIONS The maximum tolerated dose of DSF with RT and TMZ is 375 mg/d. DSF/Cu showed limited clinical efficacy for most patients. However, promising efficacy was observed in BRAF-mutant GBM, warranting further investigation.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri; Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri.
| | - Jian L Campian
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Todd A DeWees
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri; Department of Computational and Quantitative Medicine, Radiation Oncology, Surgery, Division of Biostatistics, City of Hope, Duarte, California
| | - Zdenek Skrott
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Tanner M Johanns
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - George Ansstas
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Omar Butt
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric Leuthardt
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Gavin P Dunn
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Gregory J Zipfel
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Joshua W Osbun
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Christopher Abraham
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri; Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Shahed Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Katherine Schwetye
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - J Gregory Cairncross
- Clark H. Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri
| | - Albert H Kim
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Milan G Chheda
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
23
|
Wang J, Wang J, Yu J, Chen D. Copper and Melanoma Risk: Results from NHANES 2007-2018 and Mendelian Randomization Analyses. Biol Trace Elem Res 2024; 202:4909-4922. [PMID: 38374330 DOI: 10.1007/s12011-024-04072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Copper is an essential trace element obtained from food. There is a paucity of observational or prospective studies that have investigated the relationship between copper and melanoma risk. Copper serves as a cofactor for pivotal enzymes involved in mitochondrial respiration, antioxidant defense, and neurotransmitter synthesis. Undoubtedly, copper plays an indispensable role in the initiation and progression of tumors, particularly melanoma; however, further investigations are warranted to elucidate the underlying mechanisms linking copper and melanoma risk. Given the availability of dietary copper and serum copper data in the NHANES database, we conducted an investigation into the association between dietary copper intake and serum copper levels with melanoma risk. We enrolled 26,401 individuals with dietary copper data in the 2007-2018 NHANES database. To mitigate confounding variables, a propensity score matching (PSM) was performed. To assess the association between dietary copper intake and melanoma risk, we employed a multivariate logistic regression analysis before and after PSM. The restricted cubic spline analysis was utilized to determine whether there is a non-linear relationship between dietary copper intake and melanoma risk, with subgroup analysis conducted to determine beneficiaries. Then, those with blood copper data from the enrolled population with dietary copper intake were screened out, and subsequently, multivariate logistic regression models were subsequently constructed to investigate the association between serum copper levels and melanoma risk after PSM. Mendelian analysis was further utilized to validate the results of the NHANES database using serum copper as the exposure factor and melanoma as the outcome variable. The study found that melanoma risk was associated with dietary copper intake before and after PSM, demonstrated by multiple logistic regression. The relationship between dietary copper intake and melanoma risk was non-linear, with a reduced risk observed above approximately 2.5 mg/day, as shown by the RCS. The evidence suggests that an increased intake of copper is linked to a decreased risk of melanoma. To clarify the mechanism behind the increased risk of melanoma due to higher dietary copper intake, we analyzed the population data from the NHANES database on serum copper and dietary copper intake. Our results indicated that there is no causal relationship between serum copper and melanoma risk. Mendelian randomization analysis of multi-database data sources confirmed the conclusion of the NHANES database analysis. Dietary copper is a protective factor against melanoma, and serum copper or blood copper is not associated with melanoma risk. This suggests that serum or blood copper is not responsible for the protective effect of dietary copper intake on melanoma risk, and the mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Jia Wang
- Shantou University Medical College, Shantou, 515041, Guangdong Province, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Juan Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Jinming Yu
- Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
24
|
Wang J, Sun X, Zhao Z, Wang G, Wang D, Li Y. Confined copper depletion via a hydrogel platform for reversing dabrafenib/cetuximab resistance in BRAF V600E-mutant colorectal cancer. J Control Release 2024; 375:643-653. [PMID: 39306044 DOI: 10.1016/j.jconrel.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BRAFV600E-mutant colorectal cancer (CRC) is resistant to most first-line therapeutics, including the BRAF inhibitor dabrafenib and epidermal growth factor receptor (EGFR) inhibitor cetuximab. Although copper depletion shows promise in reversing dabrafenib/cetuximab resistance in BRAFV600E-mutant CRC, its application is limited by the potential for excessive copper depletion in non-tumor objects. In this study, we have developed a hydrogel platform for confined copper depletion in BRAFV600E-mutant CRC cells, which effectively reverses dabrafenib/cetuximab resistance and enhancing therapeutic efficiency. The hydrogel platform enables precise intracellular copper depletion through localized administration, acidity-triggered drug release, and oxidized activation of a copper prochelator. The dosage of this prochelator is 37.5 μg/kg in mouse models, which is significantly lower than the commonly used tetrathiomolybdate. Furthermore, both dabrafenib and the prochelator are preloaded into acid-responsive nanoparticles before being embedded in the hydrogel matrix to facilitate efficient endocytosis and acid-activatable drug release. Confined copper depletion inhibits MEK1 signaling and suppresses the MAPK signaling pathway when combined with BRAF and EGFR inhibitors. Moreover, the hydrogel platform inhibits tumor growth and prolongs survival in subcutaneous and postsurgical models of BRAFV600E-mutant CRC. This study provides an innovative strategy for overcoming dabrafenib/cetuximab resistance in BRAFV600E-mutant CRC through precise intracellular copper depletion.
Collapse
Affiliation(s)
- Jue Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangshi Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanru Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dangge Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong 264117, China.
| |
Collapse
|
25
|
Palanivel C, Somers TN, Gabler BM, Chen Y, Zeng Y, Cox JL, Seshacharyulu P, Dong J, Yan Y, Batra SK, Ouellette MM. Rac1 GTPase Regulates the βTrCP-Mediated Proteolysis of YAP Independently of the LATS1/2 Kinases. Cancers (Basel) 2024; 16:3605. [PMID: 39518045 PMCID: PMC11545309 DOI: 10.3390/cancers16213605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Oncogenic mutations in the KRAS gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic KRAS drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC. In Ras-driven tumors, YAP can also substitute for oncogenic KRAS to drive tumor survival after the repression of the oncogene. Ras oncoproteins exert their transforming properties through their downstream effectors, including the PI3K kinase, Rac1 GTPase, and MAPK pathways. Methods: To identify Ras effectors that regulate YAP, YAP levels were measured in PC cells exposed to inhibitors of oncogenic K-Ras and its effectors. Results: In PC cells, the inhibition of Rac1 leads to a time-dependent decline in YAP protein, which could be blocked by proteosome inhibitor MG132. This YAP degradation after Rac1 inhibition was observed in a range of cell lines using different Rac1 inhibitors, Rac1 siRNA, or expression of dominant negative Rac1T17N mutant. Several E3 ubiquitin ligases, including SCFβTrCP, regulate YAP protein stability. To be recognized by this ligase, the βTrCP degron of YAP (amino acid 383-388) requires its phosphorylation by casein kinase 1 at Ser384 and Ser387, but these events must first be primed by the phosphorylation of Ser381 by LATS1/2. Using Flag-tagged mutants of YAP, we show that YAP degradation after Rac1 inhibition requires the integrity of this degron and is blocked by the silencing of βTrCP1/2 and by the inhibition of casein kinase 1. Unexpectedly, YAP degradation after Rac1 inhibition was still observed after the silencing of LATS1/2 or in cells carrying a LATS1/2 double knockout. Conclusions: These results reveal Rac1 as an oncogenic KRAS effector that contributes to YAP stabilization in PC cells. They also show that this regulation of YAP by Rac1 requires the SCFβTrCP ligase but occurs independently of the LATS1/2 kinases.
Collapse
Affiliation(s)
- Chitra Palanivel
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Tabbatha N. Somers
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Bailey M. Gabler
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
| | - Yuanhong Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Yongji Zeng
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Jesse L. Cox
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Jixin Dong
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (Y.C.); (Y.Z.); (J.D.)
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| | - Michel M. Ouellette
- Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (T.N.S.); (B.M.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.S.); (S.K.B.)
| |
Collapse
|
26
|
Wang J, Ren J, Tu X, Yuan H, Ye Z, Wang X, Cui J, Wang J, Tang Y, Han P, Bai Y. ARNTL2 facilitates bladder cancer progression through potentiating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Life Sci 2024; 355:122974. [PMID: 39147318 DOI: 10.1016/j.lfs.2024.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Basic helix-loop-helix ARNT like 2 (ARNTL2) is a transcription factor that controls the circadian rhythm. Amounts of studies have demonstrated the carcinogenic function of ARNTL2 in human malignant tumors albeit the underlying mechanisms remain poorly understood. We aimed to study the significance of ARNTL2 in bladder cancer (BLCA). METHODS Immunohistochemical staining, immunoblotting and the database from TCGA were used to analyze the clinical relevance of ARNTL2, enolase 1 (ENO1) and solute carrier family 31 member 1 (SLC31A1) in BLCA. The function of ARNTL2 was explored by cell proliferation assay, apoptosis, colony formation and xenografted tumorigenesis. The molecular mechanisms of ARNTL2-driving BLCA development were investigated by RT-qPCR, immunoblotting and luciferase assays. Glycolysis was checked by measuring glucose consumption and lactate production. ENO1 activity was assessed by using indicated assay kit. RESULTS Overexpression of ARNTL2 facilitates the proliferation and tumorigenesis of BLCA cells through suppression of apoptosis and enhancement of glycolysis. Up-regulation of SLC31A1, ENO1, and enhancement of SLC31A1-mediated ENO1 activity were critical for ARNTL2-triggered glycolysis and malignant growth in BLCA cells. ARNTL2 was positively correlated with SLC31A1 and ENO1 in BLCA patients. High expression of ARNTL2, SLC31A1 or ENO1 predicted the poor prognosis of BLCA patients. Depletion of SLC31A1 and inhibition of glycolysis completely blunted the growth ability of BLCA cells. CONCLUSION In summary, ARNTL2 facilitates the progression of BLCA via activating ENO1-mediated glycolysis in a SLC31A1-independent and -dependent manner. Inhibiting SLC31A1 and glycolysis may be an aspirational approach for the treatment of BLCA patients with overexpression of ARNTL2.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junwei Ren
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Tu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haichao Yuan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhenyang Ye
- Department of Urology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoming Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianwei Cui
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Tang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Han
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunjin Bai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Luo ZH, Zhou B, Yu JY, Li H, Li Z, Ma SQ. Role of SLC31A1 in prognosis and immune infiltration in breast cancer: a novel insight. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:329-345. [PMID: 39544714 PMCID: PMC11558315 DOI: 10.62347/loyi1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Copper, an essential metal element for humans, plays vital functions in cancer prognosis and immunity. SLC31A1, a high-affinity copper transporter, helps regulate copper homeostasis and has been implicated in tumor prognosis through mechanisms such as drug resistance, autophagy, ferroptosis, and cuproptosis. However, the role of SLC31A1 in breast cancer (BRCA) and its association with tumor immune infiltration has not been fully elucidated. This study aimed to investigate the expression pattern of SLC31A1, its clinical significance, and its effect on tumor immune infiltration in BRCA. METHODS We comprehensively analyzed multiple datasets, including Gene Expression Profiling Interaction Analysis (GEPIA), Tumor Immune Estimation Resource (TIMER), UALCAN, and Kaplan-Meier (KM) plotter, to assess the expression of SLC31A1 and its prognostic value in BRCA. Additionally, TIMER and TISIDB were used to explore the correlation between SLC31A1 expression and the extent of tumor immune infiltration. RESULTS SLC31A1 was significantly upregulated in BRCA tissues compared to adjacent non-tumor tissues. Higher SLC31A1 expression levels were associated with poorer clinical outcome. Multivariate Cox regression analysis confirmed that SLC31A1 served as an independent prognostic indicator. Furthermore, SLC31A1 expression showed significant associations with various immunomodulators, chemokines, chemokine receptors, and tumor-infiltrating lymphocytes (TILs), including CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), follicular helper T cells (Tfh), neutrophils, M2 macrophages, tumor-associated macrophages (TAMs), and monocytes. These findings suggest that SLC31A1 may regulate macrophage polarization and T cell exhaustion in BRCA, contributing to immune evasion and poor prognosis. CONCLUSION Our study underscores the importance of further research to explore the therapeutic potential of targeting SLC31A1 and to uncover its additional roles in BRCA beyond the known mechanisms of drug resistance, autophagy, ferroptosis, and cuproptosis.
Collapse
Affiliation(s)
- Zhen-Hua Luo
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Bo Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Jun-Yi Yu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - He Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
- Hunan Provincial Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, Changsha Medical UniversityChangsha 410219, Hunan, The People’s Republic of China
| | - Zan Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410008, Hunan, The People’s Republic of China
| | - Si-Qing Ma
- Department of Pharmacy, Hunan Chest HospitalChangsha 4100013, Hunan, The People’s Republic of China
| |
Collapse
|
28
|
Lin Y, Lin W, Lai Y, Chen Y. Trends of Copper Homeostasis in Neoplasms: A Systemic Bibliometric from 2013 to 2023. Biol Trace Elem Res 2024:10.1007/s12011-024-04413-z. [PMID: 39379668 DOI: 10.1007/s12011-024-04413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
Copper dysregulation is pivotal in tumorigenesis. This study aimed to elucidate the knowledge framework of copper homeostasis within neoplasms utilizing bibliometric analysis. Publications about copper homeostasis in neoplasms from 2013 to 2023 were retrieved from the Web of Science Core Collection and PubMed databases. The bibliometric analysis was conducted using the RStudio, the CiteSpace software, the VOSviewer software, and a bibliometric analysis platform. A total of 1701 articles were indexed from 73 countries and regions. China has emerged as the leading country with a publication proportion of 32.45%, followed by the USA (10.35%) and India (8.41%). Significant collaborations have been conducted among Chinese academic institutions. The Journal of Inorganic Biochemistry emerged as the most prominent journal. Among the 4841 keywords extracted from 671 journals, concepts of cell death, positron emission tomography, and tumor microenvironment emerged as the most significant hotspots. This bibliometric study reviewed significant academic development and synthesized research trends on copper homeostasis in neoplasms, providing a valuable reference for scholars.
Collapse
Affiliation(s)
- Yuhai Lin
- Department of General Surgery, Shantou Central Hospital, Shantou, China
| | - Wenhao Lin
- Department of Part-Time Master of Business Administration, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China
| | - Yucheng Lai
- Department of Anesthesiology, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-Sen University, Nanning, China
| | - Yuqiang Chen
- Department of General Surgery, Gaozhou People's Hospital, Gaozhou, China.
| |
Collapse
|
29
|
Zhao Z, Zhang Y, Fan Y, Cui C, Guo Y, Zhu J, Lv Z, Li M, Chen Y, Shi H. Mitochondrial Sulfenated-Protein-Targeted Covalent Immobilization Boosting Efficient Copper(II) Depletion for Enhanced Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51783-51797. [PMID: 39291812 DOI: 10.1021/acsami.4c11112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Copper plays a vital role in cellular metabolism and oxidative stress regulation. Visualizing and controlling the copper level in mitochondrion have been proven to be promising and efficient strategies for the diagnosis and treatment of triple-negative breast cancer (TNBC). However, developing an advanced probe for simultaneous visualization and depletion of mitochondrial copper remains a huge challenge. Herein, we for the first time report a mitochondria-anchorable, copper-responsive, and depleting probe d-IR-DPA and evaluate its potential for quantitative visualization of intratumoral copper(II) and anti-TNBC in vivo. Taking advantage of the mitochondrion-targeting and sulfenated-protein-mediated covalent immobilization characteristics, this probe not only enables the quantitative detection of Cu2+ levels in various types of tumors through ratiometric photoacoustic (PA680 nm/PA800 nm) imaging but also scavenges the mitochondrial Cu2+, simultaneously igniting increased oxidative stress and mitochondrial membrane damage and eventually leading to severe TNBC cell apoptosis. More notably, the depletion of Cu2+ by d-IR-DPA can alter the cellular metabolic pathway from oxidative phosphorylation to glycolysis, inducing energy deprivation and significant suppression of TNBC tumor in living mice. Our probe may provide a valuable and powerful means for the effective treatment of TNBC as well as other copper-associated diseases.
Collapse
Affiliation(s)
- Zhongsheng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yurong Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chaoxiang Cui
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yirui Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome 00133, Italy
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Miao Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
30
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
31
|
Qian J, Zhao L, Xu L, Zhao J, Tang Y, Yu M, Lin J, Ding L, Cui Q. Cell Death: Mechanisms and Potential Targets in Breast Cancer Therapy. Int J Mol Sci 2024; 25:9703. [PMID: 39273650 PMCID: PMC11395276 DOI: 10.3390/ijms25179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) has become the most life-threatening cancer to women worldwide, with multiple subtypes, poor prognosis, and rising mortality. The molecular heterogeneity of BC limits the efficacy and represents challenges for existing therapies, mainly due to the unpredictable clinical response, the reason for which probably lies in the interactions and alterations of diverse cell death pathways. However, most studies and drugs have focused on a single type of cell death, while the therapeutic opportunities related to other cell death pathways are often neglected. Therefore, it is critical to identify the predominant type of cell death, the transition to different cell death patterns during treatment, and the underlying regulatory mechanisms in BC. In this review, we summarize the characteristics of various forms of cell death, including PANoptosis (pyroptosis, apoptosis, necroptosis), autophagy, ferroptosis, and cuproptosis, and discuss their triggers and signaling cascades in BC, which may provide a reference for future pathogenesis research and allow for the development of novel targeted therapeutics in BC.
Collapse
Affiliation(s)
- Jiangying Qian
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Linna Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ling Xu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jin Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongxu Tang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
32
|
Piccardo A, Bottoni G, Puppo C, Massollo M, Ugolini M, Shoushtari Zadeh Naseri M, Melani E, Tomasello L, Boitano M, DeCensi A, Sambucco B, Campodonico F, Altrinetti V, Ennas M, Urru A, Negro CLA, Timossi L, Treglia G, Introini C, Fiz F. Role of 64CuCl 2 PET/CT in Detecting and Staging Muscle-Invasive Bladder Cancer: Comparison with Contrast-Enhanced CT and 18F-FDG PET/CT. J Nucl Med 2024; 65:1357-1363. [PMID: 39054284 DOI: 10.2967/jnumed.124.267474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Molecular imaging of muscle-invasive bladder cancer (MBC) is restricted to its locoregional and distant metastases, since most radiopharmaceuticals have a urinary excretion that limits the visualization of the primary tumor. 64CuCl2 , a positron-emitting radiotracer with nearly exclusive biliary elimination, could be well suited to exploring urinary tract neoplasms. In this study, we evaluated the feasibility of 64CuCl2-based staging of patients with MBC; furthermore, we compared the diagnostic capability of this method with those of the current gold standards, that is, contrast-enhanced CT (ceCT) and 18F-FDG PET/CT. Methods: We prospectively enrolled patients referred to our institution for pathology-confirmed MBC staging/restaging between September 2021 and January 2023. All patients underwent ceCT, 18F-FDG, and 64CuCl2 PET/CT within 2 wk. Patient-based analysis and lesion-based analysis were performed for all of the potentially affected districts (overall, bladder wall, lymph nodes, skeleton, liver, lung, and pelvic soft tissue). Results: Forty-two patients (9 women) were enrolled. Thirty-six (86%) had evidence of disease, with a total of 353 disease sites. On patient-based analysis, ceCT and 64CuCl2 PET/CT showed higher sensitivity than 18F-FDG PET/CT in detecting the primary tumor (P < 0.001); moreover, 64CuCl2 PET/CT was slightly more sensitive than 18F-FDG PET/CT in disclosing soft-tissue lesions (P < 0.05). Both PET methods were more specific and accurate than ceCT in classifying nodal lesions (P < 0.05). On lesion-based analysis, 64CuCl2 PET/CT outperformed 18F-FDG PET/CT and ceCT in detecting disease localizations overall (P < 0.001), in the lymph nodes (P < 0.01), in the skeleton (P < 0.001), and in the soft tissue (P < 0.05). Conclusion: 64CuCl2 PET/CT appears to be a sensitive modality for staging/restaging of MBC and might represent a "one-stop shop" diagnostic method in these scenarios.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- S.C. di Medicina Nucleare, E.O. Ospedali Galliera, Genova, Italy
| | - Gianluca Bottoni
- S.C. di Medicina Nucleare, E.O. Ospedali Galliera, Genova, Italy
| | - Cristina Puppo
- S.C. Radiodiagnostica, E.O. Ospedali Galliera, Genova, Italy
| | - Michela Massollo
- S.C. di Medicina Nucleare, E.O. Ospedali Galliera, Genova, Italy
| | - Martina Ugolini
- S.C. di Medicina Nucleare, E.O. Ospedali Galliera, Genova, Italy
| | | | - Enrico Melani
- S.C. Radiodiagnostica, E.O. Ospedali Galliera, Genova, Italy
| | - Laura Tomasello
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Monica Boitano
- S.C. Oncologia Medica, E.O. Ospedali Galliera, Genova, Italy
| | - Andrea DeCensi
- S.C. Oncologia Medica, E.O. Ospedali Galliera, Genova, Italy
| | - Beatrice Sambucco
- Department of Health Sciences (DISSAL)-Radiology Section, University of Genoa, Genoa, Italy
| | | | - Vania Altrinetti
- S.C. di Medicina Nucleare, E.O. Ospedali Galliera, Genova, Italy
| | - Marco Ennas
- S.C. di Urologia, E.O. Ospedali Galliera, Genova, Italy
| | - Alessia Urru
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Genoa, Italy
| | | | - Luca Timossi
- S.S.A. Urologia dell'Ospedale Evangelico Internazionale, Genova, Italy
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; and
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Francesco Fiz
- S.C. di Medicina Nucleare, E.O. Ospedali Galliera, Genova, Italy;
| |
Collapse
|
33
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA, Zischka H. Deadly excess copper. Redox Biol 2024; 75:103256. [PMID: 38959622 PMCID: PMC11269798 DOI: 10.1016/j.redox.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.
Collapse
Affiliation(s)
- Judith Sailer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian T Jauch
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Jonas Engler
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
34
|
Lai Y, Gao FF, Ge RT, Liu R, Ma S, Liu X. Metal ions overloading and cell death. Cell Biol Toxicol 2024; 40:72. [PMID: 39162885 PMCID: PMC11335907 DOI: 10.1007/s10565-024-09910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Cell death maintains cell morphology and homeostasis during development by removing damaged or obsolete cells. The concentration of metal ions whithin cells is regulated by various intracellular transporters and repositories to maintain dynamic balance. External or internal stimuli might increase the concentration of metal ions, which results in ions overloading. Abnormal accumulation of large amounts of metal ions can lead to disruption of various signaling in the cell, which in turn can produce toxic effects and lead to the occurrence of different types of cell deaths. In order to further study the occurrence and development of metal ions overloading induced cell death, this paper reviewed the regulation of Ca2+, Fe3+, Cu2+ and Zn2+ metal ions, and the internal mechanism of cell death induced by overloading. Furthermore, we found that different metal ions possess a synergistic and competitive relationship in the regulation of cell death. And the enhanced level of oxidative stress was present in all the processes of cell death due to metal ions overloading, which possibly due to the combination of factors. Therefore, this review offers a theoretical foundation for the investigation of the toxic effects of metal ions, and presents innovative insights for targeted regulation and therapeutic intervention. HIGHLIGHTS: • Metal ions overloading disrupts homeostasis, which in turn affects the regulation of cell death. • Metal ions overloading can cause cell death via reactive oxygen species (ROS). • Different metal ions have synergistic and competitive relationships for regulating cell death.
Collapse
Affiliation(s)
- Yun Lai
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Fen Fen Gao
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Ruo Ting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Rui Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
35
|
Zhang C, Huang T, Li L. Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:68. [PMID: 39152464 PMCID: PMC11328505 DOI: 10.1186/s13045-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tingting Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
36
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
37
|
Zhang S, Yu H, Sun S, Fan X, Bi W, Li S, Wang W, Fang Z, Chen X. Copper Homeostasis Based on Cuproptosis-Related Signature Optimizes Molecular Subtyping and Treatment of Glioma. Mol Neurobiol 2024; 61:4962-4975. [PMID: 38151613 DOI: 10.1007/s12035-023-03893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Copper is essential in living organisms and crucial to various physiological processes. Normal physiological conditions are in a state of copper homeostasis to ensure normal biochemical and metabolic processes. Dysregulation of copper homeostasis has been associated with multiple diseases, especially cancer. Cuproptosis is a copper-dependent cell death mediated by excess copper or homeostasis dysregulation. Elesclomol is a common inducer of cuproptosis, carrying copper into the cell and producing excess copper. Cuproptosis modulates tumor proliferation-related signaling pathways and is closely associated with remodeling the tumor microenvironment. In gliomas, the role of cuproptosis and copper homeostasis needs to be better characterized. This study systematically analyzed cuproptosis-related genes (CRGs) and constructed a cuproptosis signature for gliomas. The signature closely links the subtypes and clinical features of glioma patients. The results showed a greater tendency toward dysregulation of copper homeostasis as the malignant grade of glioma patients increased. In addition, CRGs-signature effectively predicted the sensitivity of glioma cells to elesclomol and verified that elesclomol inhibited glioma mainly through inducing cellular cuproptosis. In summary, we found different copper homeostatic features in gliomas and verified the anticancer mechanism of elesclomol, which provides a theoretical basis for developing novel therapeutic strategies for gliomas.
Collapse
Affiliation(s)
- Siyu Zhang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Huihan Yu
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Suling Sun
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Xiaoqing Fan
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lu Jiang Road, Hefei, 230001, Anhui, China
| | - Wenxu Bi
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Shuyang Li
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Wei Wang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiyou Fang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.
| | - Xueran Chen
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.
| |
Collapse
|
38
|
Lei R, Liu X, Wu J. Nutrition and melanoma: the contribution of trace elements in onset, progression, and treatment of melanoma. Nutr Rev 2024; 82:1138-1149. [PMID: 37702535 DOI: 10.1093/nutrit/nuad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Melanoma is a highly malignant and drug-resistant disease that imposes a substantial economic burden on the world. There are many studies linking trace elements to diverse types of cancers, including melanoma. This review elucidates the relationship between trace elements exposure and melanoma. It was identified that copper, manganese, selenium, zinc, iron, and many other trace elements were associated with melanoma in humans. In terms of epidemiology, different elements have different correlations with melanoma. These trace elements affect the occurrence and development of melanoma through various mechanisms, such as oxidative stress and the MAPK pathway. The literature on the role of trace elements in the pathogenesis and treatment of melanoma depicts promising prospects for this field.
Collapse
Affiliation(s)
- Rui Lei
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Snyman M, Walsdorf RE, Wix SN, Gill JG. The metabolism of melanin synthesis-From melanocytes to melanoma. Pigment Cell Melanoma Res 2024; 37:438-452. [PMID: 38445351 PMCID: PMC11178461 DOI: 10.1111/pcmr.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Melanin synthesis involves the successful coordination of metabolic pathways across multiple intracellular compartments including the melanosome, mitochondria, ER/Golgi, and cytoplasm. While pigment production offers a communal protection from UV damage, the process also requires anabolic and redox demands that must be carefully managed by melanocytes. In this report we provide an updated review on melanin metabolism, including recent data leveraging new techniques, and technologies in the field of metabolism. We also discuss the many aspects of melanin synthesis that intersect with metabolic pathways known to impact melanoma phenotypes and behavior. By reviewing the metabolism of melanin synthesis, we hope to highlight outstanding questions and opportunities for future research that could improve patient outcomes in pigmentary and oncologic disease settings.
Collapse
Affiliation(s)
- Marelize Snyman
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Rachel E. Walsdorf
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Sophia N. Wix
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Jennifer G. Gill
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| |
Collapse
|
40
|
Zhang X, Han X. Targeting cuproptosis for cancer therapy: Focus on the anti-tumor immune system. CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
41
|
Yanjun Y, Jing Z, Yifei S, Gangzhao G, Chenxin Y, Qiang W, Qiang Y, Shuwen H. Trace elements in pancreatic cancer. Cancer Med 2024; 13:e7454. [PMID: 39015024 PMCID: PMC11252496 DOI: 10.1002/cam4.7454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PCA) is an extremely aggressive malignant cancer with an increasing incidence and a low five-year survival rate. The main reason for this high mortality is that most patients are diagnosed with PCA at an advanced stage, missing early treatment options and opportunities. As important nutrients of the human body, trace elements play an important role in maintaining normal physiological functions. Moreover, trace elements are closely related to many diseases, including PCA. REVIEW This review systematically summarizes the latest research progress on selenium, copper, arsenic, and manganese in PCA, elucidates their application in PCA, and provides a new reference for the prevention, diagnosis and treatment of PCA. CONCLUSION Trace elements such as selenium, copper, arsenic and manganese are playing an important role in the risk, pathogenesis, diagnosis and treatment of PCA. Meanwhile, they have a certain inhibitory effect on PCA, the mechanism mainly includes: promoting ferroptosis, inducing apoptosis, inhibiting metastasis, and inhibiting excessive proliferation.
Collapse
Affiliation(s)
- Yao Yanjun
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Gu Gangzhao
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Yan Chenxin
- Shulan International Medical schoolZhejiang Shuren UniversityHangzhouChina
| | - Wei Qiang
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Yan Qiang
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Huzhou HospitalZhejiang University School of MedicineHuzhouChina
- Institut Catholique de Lille, Junia (ICL), Université Catholique de Lille, Laboratoire Interdisciplinaire des Transitions de Lille (LITL)LilleFrance
| |
Collapse
|
42
|
Huang XY, Shen JY, Huang K, Wang L, Sethi G, Ma Z. Cuproptosis in cancers: Function and implications from bench to bedside. Biomed Pharmacother 2024; 176:116874. [PMID: 38850661 DOI: 10.1016/j.biopha.2024.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Copper, an indispensable micronutrient, is implicated in numerous vital biological processes and is essential for all physiological activities. Recently, the discovery of a novel type of copper-dependent cell death, known as cuproptosis, has shed light on its role in cancer development. Extensive research is currently underway to unravel the mechanisms underlying cuproptosis and its correlation with various cancer types. In this review, we summarize the findings regarding the roles and mechanisms of cuproptosis in various cancer types, including colorectal cancer, lung cancer, gastric cancer, breast cancer, liver cancer and cutaneous melanoma. Furthermore, the effects of copper-related agents such as copper chelators and copper ionophores on cell proliferation, apoptosis, angiogenesis, tumor immunity, and chemotherapy resistance have been explored in cancer preclinical and clinical trials. These insights provide promising avenues for the development of prospective anticancer drugs aimed at inducing cuproptosis.
Collapse
Affiliation(s)
- Xin-Yi Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Jia-Yang Shen
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Ke Huang
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China.
| |
Collapse
|
43
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
44
|
Kuchur O, Pogodaeva S, Shcherbakova A, Tsymbal S. Atox1-cyclin D1 loop activity is critical for survival of tumor cells with inactivated TP53. Biosci Rep 2024; 44:BSR20240389. [PMID: 38813981 PMCID: PMC11166628 DOI: 10.1042/bsr20240389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
The search for relevant molecular targets is one of the main tasks of modern tumor chemotherapy. To successfully achieve this, it is necessary to have the most complete understanding of the functioning of a transcriptional apparatus of the cell, particularly related to proliferation. The p53 protein plays an important role in regulating processes such as apoptosis, repair, and cell division, and the loss of its functionality often accompanies various types of tumors and contributes to the development of chemoresistance. Additionally, the proliferative activity of tumor cells is closely related to the metabolism of transition metals. For example, the metallochaperone Atox1 - a copper transporter protein - acts as a transcription activator for cyclin D1, promoting progression through the G1/S phase of the cell cycle. On the other hand, p53 suppresses cyclin D1 at the transcriptional level, thereby these proteins have divergent effects on cell cycle progression. However, the contribution of the interaction between these proteins to cell survival is poorly understood. This work demonstrates that not only exists a positive feedback loop between Atox1 and cyclin D1 but also that the activity of this loop depends on the status of the TP53 gene. Upon inactivation of TP53 in A549 and HepG2 cell lines, the expression of ATOX1 and CCND1 genes is enhanced, and their suppression in these cells leads to pronounced apoptosis. This fundamental observation may be useful in selecting more precise interventions for combined therapy of p53-negative tumors.
Collapse
Affiliation(s)
- Oleg A. Kuchur
- National Research University ITMO, 197101 St. Petersburg, Russia
| | | | | | | |
Collapse
|
45
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
46
|
Bonet-Aleta J, Encinas-Gimenez M, Oi M, Pezacki AT, Sebastian V, de Martino A, Martín-Pardillos A, Martin-Duque P, Hueso JL, Chang CJ, Santamaria J. Nanomedicine Targeting Cuproplasia in Cancer: Labile Copper Sequestration Using Polydopamine Particles Blocks Tumor Growth In Vivo through Altering Metabolism and Redox Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29844-29855. [PMID: 38829261 PMCID: PMC11181271 DOI: 10.1021/acsami.4c04336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Miguel Encinas-Gimenez
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Miku Oi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Aidan T. Pezacki
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Alba de Martino
- Instituto
Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria Aragón (IIS-Aragón), Edificio CIBA. Avenida San Juan
Bosco 13, planta 1, 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Pilar Martin-Duque
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
- Departamento
de Desarrollo de Medicamentos y Terapias Avanzadas, Instituto de Salud Carlos III, Ctra. de Pozuelo, 28, 28222, Majadahonda Madrid, Spain
| | - Jose L. Hueso
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Christopher J. Chang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Helen
Willis Neuroscience Institute, University
of California, Berkeley, California 94720, United States
| | - Jesus Santamaria
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| |
Collapse
|
47
|
Wang Y, Pei P, Yang K, Guo L, Li Y. Copper in colorectal cancer: From copper-related mechanisms to clinical cancer therapies. Clin Transl Med 2024; 14:e1724. [PMID: 38804588 PMCID: PMC11131360 DOI: 10.1002/ctm2.1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Copper, a trace element and vital cofactor, plays a crucial role in the maintenance of biological functions. Recent evidence has established significant correlations between copper levels, cancer development and metastasis. The strong redox-active properties of copper offer both benefits and disadvantages to cancer cells. The intestinal tract, which is primarily responsible for copper uptake and regulation, may suffer from an imbalance in copper homeostasis. Colorectal cancer (CRC) is the most prevalent primary cancer of the intestinal tract and is an aggressive malignant disease with limited therapeutic options. Current research is primarily focused on the relationship between copper and CRC. Innovative concepts, such as cuproplasia and cuproptosis, are being explored to understand copper-related cellular proliferation and death. Cuproplasia is the regulation of cell proliferation that is mediated by both enzymatic and nonenzymatic copper-modulated activities. Whereas, cuproptosis refers to cell death induced by excess copper via promoting the abnormal oligomerisation of lipoylated proteins within the tricarboxylic acid cycle, as well as by diminishing the levels of iron-sulphur cluster proteins. A comprehensive understanding of copper-related cellular proliferation and death mechanisms offers new avenues for CRC treatment. In this review, we summarise the evolving molecular mechanisms, ranging from abnormal intracellular copper concentrations to the copper-related proteins that are being discovered, and discuss the role of copper in the pathogenesis, progression and potential therapies for CRC. Understanding the relationship between copper and CRC will help provide a comprehensive theoretical foundation for innovative treatment strategies in CRC management.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Kai Yang
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionSchool of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD‐X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Lingchuan Guo
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuan Li
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
48
|
Ai L, Yi N, Qiu C, Huang W, Zhang K, Hou Q, Jia L, Li H, Liu L. Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review). Int J Oncol 2024; 64:46. [PMID: 38456493 PMCID: PMC11000534 DOI: 10.3892/ijo.2024.5634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Breast cancer arises from the malignant transformation of mammary epithelial cells under the influence of various carcinogenic factors, leading to a gradual increase in its prevalence. This disease has become the leading cause of mortality among female malignancies, posing a significant threat to the health of women. The timely identification of breast cancer remains challenging, often resulting in diagnosis at the advanced stages of the disease. Conventional therapeutic approaches, such as surgical excision, chemotherapy and radiotherapy, exhibit limited efficacy in controlling the progression and metastasis of the disease. Regulated cell death (RCD), a process essential for physiological tissue cell renewal, occurs within the body independently of external influences. In the context of cancer, research on RCD primarily focuses on cuproptosis, ferroptosis and pyroptosis. Mounting evidence suggests a marked association between these specific forms of RCD, and the onset and progression of breast cancer. For example, a cuproptosis vector can effectively bind copper ions to induce cuproptosis in breast cancer cells, thereby hindering their proliferation. Additionally, the expression of ferroptosis‑related genes can enhance the sensitivity of breast cancer cells to chemotherapy. Likewise, pyroptosis‑related proteins not only participate in pyroptosis, but also regulate the tumor microenvironment, ultimately leading to the death of breast cancer cells. The present review discusses the unique regulatory mechanisms of cuproptosis, ferroptosis and pyroptosis in breast cancer, and the mechanisms through which they are affected by conventional cancer drugs. Furthermore, it provides a comprehensive overview of the significance of these forms of RCD in modulating the efficacy of chemotherapy and highlights their shared characteristics. This knowledge may provide novel avenues for both clinical interventions and fundamental research in the context of breast cancer.
Collapse
Affiliation(s)
- Leyu Ai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Na Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Chunhan Qiu
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Wanyi Huang
- Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Keke Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Qiulian Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Long Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| | - Ling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
| |
Collapse
|
49
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
50
|
Tomasello B, Bellia F, Naletova I, Magrì A, Tabbì G, Attanasio F, Tomasello MF, Cairns WRL, Fortino M, Pietropaolo A, Greco V, La Mendola D, Sciuto S, Arena G, Rizzarelli E. BDNF- and VEGF-Responsive Stimulus to an NGF Mimic Cyclic Peptide with Copper Ionophore Capability and Ctr1/CCS-Driven Signaling. ACS Chem Neurosci 2024; 15:1755-1769. [PMID: 38602894 DOI: 10.1021/acschemneuro.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, Catania 95125, Italy
| | - Francesco Bellia
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Irina Naletova
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Antonio Magrì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | - Giovanni Tabbì
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
| | | | | | - Warren R L Cairns
- Istituto di Scienze Polari (ISP), c/o Campus Scientifico, Università Ca' Foscari Venezia Via Torino, Venezia Mestre 155-30170, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Diego La Mendola
- Department of Pharmaceutical Sciences, University of Pisa, Bonanno Pisano 12, Pisa 56126, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, CNR, P. Gaifami 18, Catania 95126, Italy
- Department of Chemical Sciences, University of Catania, A. Doria 6, Catania 95125, Italy
| |
Collapse
|