1
|
Lin TH, Lee CCD, Fernández-Quintero ML, Ferguson JA, Han J, Zhu X, Yu W, Guthmiller JJ, Krammer F, Wilson PC, Ward AB, Wilson IA. Structurally convergent antibodies derived from different vaccine strategies target the influenza virus HA anchor epitope with a subset of V H3 and V K3 genes. Nat Commun 2025; 16:1268. [PMID: 39894881 PMCID: PMC11788443 DOI: 10.1038/s41467-025-56496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
H1N1 influenza viruses are responsible for both seasonal and pandemic influenza. The continual antigenic shift and drift of these viruses highlight the urgent need for a universal influenza vaccine to elicit broadly neutralizing antibodies (bnAbs). Identification and characterization of bnAbs elicited in natural infection and immunization to influenza virus hemagglutinin (HA) can provide insights for development of a universal influenza vaccine. Here, we structurally and biophysically characterize four antibodies that bind to a conserved region on the HA membrane-proximal region known as the anchor epitope. Despite some diversity in their VH and VK genes, the antibodies interact with the HA through germline-encoded residues in HCDR2 and LCDR3. Somatic mutations on HCDR3 also contribute hydrophobic interactions with the conserved HA epitope. This convergent binding mode provides extensive neutralization breadth against H1N1 viruses and suggests possible countermeasures against H1N1 viruses.
Collapse
MESH Headings
- Influenza Vaccines/immunology
- Epitopes/immunology
- Epitopes/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Humans
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Animals
Collapse
Affiliation(s)
- Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chang-Chun David Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Monica L Fernández-Quintero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Florian Krammer
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ignaz Semmelweis Institute, Medical University of Vienna, Vienna, Austria
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Kirby MB, Petersen BM, Faris JG, Kells SP, Sprenger KG, Whitehead TA. Retrospective SARS-CoV-2 human antibody development trajectories are largely sparse and permissive. Proc Natl Acad Sci U S A 2025; 122:e2412787122. [PMID: 39841142 PMCID: PMC11789010 DOI: 10.1073/pnas.2412787122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025] Open
Abstract
Immunological interventions, like vaccinations, are enabled by the predictive control of humoral responses to novel antigens. While the development trajectories for many broadly neutralizing antibodies (bnAbs) have been measured, it is less established how human subtype-specific antibodies develop from their precursors. In this work, we evaluated the retrospective development trajectories for eight anti-SARS-CoV-2 Spike human antibodies (Abs). To mimic the immunological process of BCR selection during affinity maturation in germinal centers (GCs), we performed deep mutational scanning on anti-S1 molecular Fabs using yeast display coupled to fluorescence-activated cell sorting. Focusing only on changes in affinity upon mutation, we found that human Ab development pathways have few mutations which impart changes in monovalent binding dissociation constants and that these mutations can occur in nearly any order. Maturation pathways of two bnAbs showed that while they are only slightly less permissible than subtype-specific Abs, more development steps on average are needed to reach the same level of affinity. Many of the subtype-specific Abs had inherent affinity for antigen, and these results were robust against different potential inferred precursor sequences. To evaluate the effect of differential affinity for precursors on GC outcomes, we adapted a coarse-grained affinity maturation model. This model showed that antibody precursors with minimal affinity advantages rapidly outcompete competitors to become the dominant clonotype.
Collapse
Affiliation(s)
- Monica B. Kirby
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Brian M. Petersen
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Jonathan G. Faris
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Siobhan P. Kells
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Kayla G. Sprenger
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO80305
| |
Collapse
|
3
|
Deng W, Niu X, He P, Yan Q, Liang H, Wang Y, Ning L, Lin Z, Zhang Y, Zhao X, Feng L, Qu L, Chen L. An allelic atlas of immunoglobulin heavy chain variable regions reveals antibody binding epitope preference resilient to SARS-CoV-2 mutation escape. Front Immunol 2025; 15:1471396. [PMID: 39840032 PMCID: PMC11746035 DOI: 10.3389/fimmu.2024.1471396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Background Although immunoglobulin (Ig) alleles play a pivotal role in the antibody response to pathogens, research to understand their role in the humoral immune response is still limited. Methods We retrieved the germline sequences for the IGHV from the IMGT database to illustrate the amino acid polymorphism present within germline sequences of IGHV genes. We aassembled the sequences of IgM and IgD repertoire from 130 people to investigate the genetic variations in the population. A dataset comprising 10,643 SARS-CoV-2 spike-specific antibodies, obtained from COV-AbDab, was compiled to assess the impact of SARS-CoV-2 infection on allelic gene utilization. Binding affinity and neutralizing activity were determined using bio-layer interferometry and pseudovirus neutralization assays. Primary docking was performed using ZDOCK (3.0.2) to generate the initial conformation of the antigen-antibody complex, followed by simulations of the complete conformations using Rosetta SnugDock software. The original and simulated structural conformations were visualized and presented using ChimeraX (v1.5). Results We present an allelic atlas of immunoglobulin heavy chain (IgH) variable regions, illustrating the diversity of allelic variants across 33 IGHV family germline sequences by sequencing the IgH repertoire of in the population. Our comprehensive analysis of SARS-CoV-2 spike-specific antibodies revealed the preferential use of specific Ig alleles among these antibodies. We observed an association between Ig alleles and antibody binding epitopes. Different allelic genotypes binding to the same RBD epitope on the spike show different neutralizing potency and breadth. We found that antibodies carrying the IGHV1-69*02 allele tended to bind to the RBD E2.2 epitope. The antibodies carrying G50 and L55 amino acid residues exhibit potential enhancements in binding affinity and neutralizing potency to SARS-CoV-2 variants containing the L452R mutation on RBD, whereas R50 and F55 amino acid residues tend to have reduced binding affinity and neutralizing potency. IGHV2-5*02 antibodies using the D56 allele bind to the RBD D2 epitope with greater binding and neutralizing potency due to the interaction between D56 on HCDR2 and K444 on RBD of most Omicron subvariants. In contrast, IGHV2-5*01 antibodies using the N56 allele show increased binding resistance to the K444T mutation on RBD. Discussion This study provides valuable insights into humoral immune responses from the perspective of Ig alleles and population genetics. These findings underscore the importance of Ig alleles in vaccine design and therapeutic antibody development.
Collapse
Affiliation(s)
- Weiqi Deng
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Science, Beijing, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongping Wang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Science, Beijing, China
| | - Lishan Ning
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Science, Beijing, China
| | - Zihan Lin
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Science, Beijing, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwei Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Ataca S, Sangesland M, de Paiva Fróes Rocha R, Torrents de la Peña A, Ronsard L, Boyoglu-Barnum S, Gillespie RA, Tsybovsky Y, Stephens T, Moin SM, Lederhofer J, Creanga A, Andrews SF, Barnes RM, Rohrer D, Lonberg N, Graham BS, Ward AB, Lingwood D, Kanekiyo M. Modulating the immunodominance hierarchy of immunoglobulin germline-encoded structural motifs targeting the influenza hemagglutinin stem. Cell Rep 2024; 43:114990. [PMID: 39580804 PMCID: PMC11672684 DOI: 10.1016/j.celrep.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Antibodies targeting epitopes through germline-encoded motifs can be found in different individuals. While these public antibodies are often beneficial, they also pose hurdles for subdominant antibodies to emerge. Here, we use transgenic mice that reproduce the human IGHV1-69∗01 germline-encoded antibody response to the conserved stem epitope on group 1 hemagglutinin (HA) of influenza A virus to show that this germline-endowed response can be overridden by a subdominant yet cross-group reactive public antibody response. Immunization with a non-cognate group 2 HA stem enriched B cells harboring the IGHD3-9 gene, thereby switching from IGHV1-69- to IGHD3-9-encoded motif-dependent epitope recognition. These IGHD3-9 antibodies bound, neutralized, and conferred cross-group protection in mice against influenza A viruses. A cryoelectron microscopy (cryo-EM) structure of an IGHD3-9 antibody resembled the human broadly neutralizing antibody FI6v3, which uses IGHD3-9. Together, our findings offer insights into vaccine regimens that engage an immunoglobulin repertoire with broader cross-reactivity to influenza A viruses.
Collapse
Affiliation(s)
- Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | - Larance Ronsard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Nils Lonberg
- Bristol-Myers Squibb, Redwood City, CA 94063, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Ward
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Stein SC, Hansen G, Ssebyatika G, Ströh LJ, Ochulor O, Herold E, Schwarzloh B, Mutschall D, Zischke J, Cordes AK, Schneider T, Hinrichs I, Blasczyk R, Kleine-Weber H, Hoffmann M, Klein F, Kaiser FK, Gonzalez-Hernandez M, Armando F, Ciurkiewicz M, Beythien G, Pöhlmann S, Baumgärtner W, Osterhaus A, Schulz TF, Krey T. A human monoclonal antibody neutralizing SARS-CoV-2 Omicron variants containing the L452R mutation. J Virol 2024; 98:e0122324. [PMID: 39494911 DOI: 10.1128/jvi.01223-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The effectiveness of SARS-CoV-2 therapeutic antibodies targeting the spike (S) receptor-binding domain (RBD) has been hampered by the emergence of variants of concern (VOCs), which have acquired mutations to escape neutralizing antibodies (nAbs). These mutations are not evenly distributed on the RBD surface but cluster on several distinct surfaces, suggesting an influence of the targeted epitope on the capacity to neutralize a broad range of VOCs. Here, we identified a potent nAb from convalescent patients targeting the receptor-binding domain of a broad range of SARS-CoV-2 VOCs. Except for the Lambda and BA.2.86 variants, this nAb efficiently inhibited the entry of most tested VOCs, including Omicron subvariants BA.1, BA.2, XBB.1.5, and EG.5.1 and to a limited extent also BA.4/5, BA.4.6, and BQ.1.1. It bound recombinant S protein with picomolar affinity, reduced the viral load in the lung of infected hamsters, and prevented the severe lung pathology typical for SARS-CoV-2 infections. An X-ray structure of the nAb-RBD complex revealed an epitope that does not fall into any of the conventional classes and provided insights into its broad neutralization properties. Our findings highlight a conserved epitope within the SARS-CoV-2 RBD that should be preferably targeted by therapeutic antibodies and inform rational vaccine development.IMPORTANCETherapeutic antibodies are effective in preventing severe disease from SARS-CoV-2 infection and constitute an important option in pandemic preparedness, but mutations within the S protein of virus variants (e.g., a mutation of L452) confer resistance to many of such antibodies. Here, we identify a human antibody targeting the S protein receptor-binding domain (RBD) with an elevated escape barrier and characterize its interaction with the RBD functionally and structurally at the atomic level. A direct comparison with reported antibodies targeting the same epitope illustrates important differences in the interface, providing insights into the breadth of antibody binding. These findings highlight the relevance of an extended neutralization profiling in combination with biochemical and structural characterization of the antibody-RBD interaction for the selection of future therapeutic antibodies, which may accelerate the control of potential future pandemics.
Collapse
Affiliation(s)
- Saskia C Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - George Ssebyatika
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Britta Schwarzloh
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Doris Mutschall
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
| | - Anne K Cordes
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Talia Schneider
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Imke Hinrichs
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Hannah Kleine-Weber
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mariana Gonzalez-Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Stefan Pöhlmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- Global Virus Network, Center of Excellence, University of Veterinary Medicine, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hannover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
6
|
Marsden AA, Corcoran M, Hedestam GK, Garrett N, Karim SSA, Moore PL, Kitchin D, Morris L, Scheepers C. Novel polymorphic and copy number diversity in the antibody IGH locus of South African individuals. Immunogenetics 2024; 77:6. [PMID: 39627383 PMCID: PMC11615098 DOI: 10.1007/s00251-024-01363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
The heavy chain of an antibody is crucial for mediating antigen binding. IGHV genes, which partially encode the heavy chain of antibodies, exhibit vast genetic diversity largely through polymorphism and copy number variation (CNV). These genetic variations impact population-level expression levels. In this study, we analyzed expressed antibody transcriptomes and matched germline IGHV genes from donors from KwaZulu-Natal, South Africa. Amplicon NGS targeting germline IGHV sequences was performed on genomic DNA from 70 participants, eight of whom had matched datasets of expressed antibody transcriptomes. Germline IGHV sequencing identified 161 unique IGHV alleles, of which 32 were novel. A further 21 novel IGHV alleles were detected in the expressed transcriptomes of these donors. We also examined the datasets for CNV, uncovering gene duplications of 10 IGHV genes from germline sequencing and 33 genes in the expressed transcriptomes. Many of the IGHV gene duplications have not been described in other populations. This study expands our understanding of genetic differences in distinct populations and suggests the potential impact of genetic diversity on immune responses.
Collapse
Affiliation(s)
- Alaine A Marsden
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, HIV Virology Section, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, Columbia, NY, USA
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, HIV Virology Section, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Dale Kitchin
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, HIV Virology Section, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Lynn Morris
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Cathrine Scheepers
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
7
|
Wang Y, Lv H, Teo QW, Lei R, Gopal AB, Ouyang WO, Yeung YH, Tan TJC, Choi D, Shen IR, Chen X, Graham CS, Wu NC. An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies. Immunity 2024; 57:2453-2465.e7. [PMID: 39163866 PMCID: PMC11464180 DOI: 10.1016/j.immuni.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely based on its sequence. Two major obstacles are the lack of appropriate models and the inaccessibility of datasets for model training. In this study, we curated >5,000 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which revealed many distinct sequence features between antibodies to HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM could identify key sequence features of HA stem antibodies. Additionally, by applying mBLM to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem antibodies. Overall, this study not only advances our molecular understanding of the antibody response to the influenza virus but also provides a valuable resource for applying deep learning to antibody research.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Qi Wen Teo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Akshita B Gopal
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuen-Hei Yeung
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivana R Shen
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire S Graham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
8
|
Paparoditis PCG, Fruehwirth A, Bevc K, Low JS, Jerak J, Terzaghi L, Foglierini M, Fernandez B, Jarrossay D, Corti D, Sallusto F, Lanzavecchia A, Cassotta A. Site-specific serology unveils cross-reactive monoclonal antibodies targeting influenza A hemagglutinin epitopes. Eur J Immunol 2024; 54:e2451045. [PMID: 39031535 DOI: 10.1002/eji.202451045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Efficient identification of human monoclonal antibodies targeting specific antigenic sites is pivotal for advancing vaccines and immunotherapies against infectious diseases and cancer. Existing screening techniques, however, limit our ability to discover monoclonal antibodies with desired specificity. In this study, we introduce a novel method, blocking of binding (BoB) enzyme-linked immunoassay (ELISA), enabling the detection of high-avidity human antibodies directed to defined epitopes. Leveraging BoB-ELISA, we analyzed the antibody response to known epitopes of influenza A hemagglutinin (HA) in the serum of vaccinated donors. Our findings revealed that serum antibodies targeting head epitopes were immunodominant, whereas antibodies against the stem epitope, although subdominant, were highly prevalent. Extending our analysis across multiple HA strains, we examined the cross-reactive antibody response targeting the stem epitope. Importantly, employing BoB-ELISA we identified donors harboring potent heterosubtypic antibodies targeting the HA stem. B-cell clonal analysis of these donors revealed three novel, genealogically independent monoclonal antibodies with broad cross-reactivity to multiple HAs. In summary, we demonstrated that BoB-ELISA is a sensitive technique for measuring B-cell epitope immunogenicity, enabling the identification of novel monoclonal antibodies with implications for enhanced vaccine development and immunotherapies.
Collapse
Affiliation(s)
- Philipp C G Paparoditis
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Alexander Fruehwirth
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Kajetana Bevc
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Laura Terzaghi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Blanca Fernandez
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
- National Institute of Molecular Genetics, Milano, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
9
|
Montiel-Armendariz A, Roe K, Lagos-Orellana J, MartinezCastro LV, Lacy-Hulbert A, Acharya M. B cell αv integrin regulates germinal center derived lung-resident IgA B cell responses following influenza virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587969. [PMID: 39386536 PMCID: PMC11463618 DOI: 10.1101/2024.04.03.587969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Emerging studies have highlighted the importance of tissue-resident B cells in the lungs, for protective immunity against respiratory viruses. However, the mechanisms controlling generation and maintenance of such tissue-resident B cells at respiratory sites remain obscure. We have previously shown that αv integrins limit B cell responses to antigens containing Toll-like receptor ligands, and that deletion of B cell αv integrins, in mice, enhances germinal center (GC)-derived long-lived B cell responses after systemic immunization with viral antigens. Here we investigated whether αv also regulates B cell responses at the respiratory tract during viral infection. Our data show that αv integrin restricts tissue-resident B cell responses in the airway, and that deletion of B cell αv promotes generation of lung-resident IgA B cell responses following influenza A virus (IAV) infection. Investigating the mechanism for this, we found that loss of B cell αv, promotes persistence of GC reactions locally in the lungs, which leads to increases in lung-resident IgA+ memory B cells, cross-reactive to antigenic variants. Thus, these studies reveal how IgA B cells are maintained in the lungs and point to a new strategy to improve the durability of lung-resident IgA B cell responses for IAV vaccine efficacy.
Collapse
Affiliation(s)
| | - Kelsey Roe
- Seattle Children’s Research Institute, Seattle, WA
| | | | | | | | - Mridu Acharya
- Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Deguine J, Xavier RJ. B cell tolerance and autoimmunity: Lessons from repertoires. J Exp Med 2024; 221:e20231314. [PMID: 39093312 PMCID: PMC11296956 DOI: 10.1084/jem.20231314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive immune cell function is regulated by a highly diverse receptor recombined from variable germline-encoded segments that can recognize an almost unlimited array of epitopes. While this diversity enables the recognition of any pathogen, it also poses a risk of self-recognition, leading to autoimmunity. Many layers of regulation are present during both the generation and activation of B cells to prevent this phenomenon, although they are evidently imperfect. In recent years, our ability to analyze immune repertoires at scale has drastically increased, both through advances in sequencing and single-cell analyses. Here, we review the current knowledge on B cell repertoire analyses, focusing on their implication for autoimmunity. These studies demonstrate that a failure of tolerance occurs at multiple independent checkpoints in different autoimmune contexts, particularly during B cell maturation, plasmablast differentiation, and within germinal centers. These failures are marked by distinct repertoire features that may be used to identify disease- or patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Deguine
- Immunology Program, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, MA, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School , Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Yan Q, Gao X, Liu B, Hou R, He P, Ma Y, Zhang Y, Zhang Y, Li Z, Chen Q, Wang J, Huang X, Liang H, Zheng H, Yao Y, Chen X, Niu X, He J, Chen L, Zhao J, Xiong X. Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants. Nat Commun 2024; 15:7585. [PMID: 39217172 PMCID: PMC11366018 DOI: 10.1038/s41467-024-51770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Continued evolution of SARS-CoV-2 generates variants to challenge antibody immunity established by infection and vaccination. A connection between population immunity and genesis of virus variants has long been suggested but its molecular basis remains poorly understood. Here, we identify a class of SARS-CoV-2 neutralizing public antibodies defined by their shared usage of VL6-57 light chains. Although heavy chains of diverse genotypes are utilized, convergent HCDR3 rearrangements have been observed among these public antibodies to cooperate with germline VL6-57 LCDRs to target a convergent epitope defined by RBD residues S371-S373-S375. Antibody repertoire analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-2-naive individuals and is clonally expanded in most COVID-19 patients. We confirm that Omicron-specific substitutions at S371, S373 and S375 mediate escape of antibodies of the VL6-57 class. These findings support that this class of public antibodies constitutes a potential immune pressure promoting the introduction of S371L/F-S373P-S375F in Omicron variants. The results provide further molecular evidence to support that antigenic evolution of SARS-CoV-2 is driven by antibody mediated population immunity.
Collapse
Affiliation(s)
- Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruitian Hou
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, China
| | - Yong Ma
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Jingjing Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiran Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichen Yao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xianying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
12
|
Ouyang WO, Lv H, Liu W, Mou Z, Lei R, Pholcharee T, Wang Y, Dailey KE, Gopal AB, Choi D, Ardagh MR, Talmage L, Rodriguez LA, Dai X, Wu NC. Rapid synthesis and screening of natively paired antibodies against influenza hemagglutinin stem via oPool + display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610421. [PMID: 39257766 PMCID: PMC11383711 DOI: 10.1101/2024.08.30.610421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Antibody discovery is crucial for developing therapeutics and vaccines as well as understanding adaptive immunity. However, the lack of approaches to synthesize antibodies with defined sequences in a high-throughput manner represents a major bottleneck in antibody discovery. Here, we presented oPool+ display, which combines oligo pool synthesis and mRNA display to construct and characterize many natively paired antibodies in parallel. As a proof-of-concept, we applied oPool+ display to rapidly screen the binding activity of >300 natively paired influenza hemagglutinin (HA) antibodies against the conserved HA stem domain. Structural analysis of 16.ND.92, one of the identified HA stem antibodies, revealed a unique binding mode distinct from other known broadly neutralizing HA stem antibodies with convergent sequence features. Yet, despite such differences, 16.ND.92 remained broadly reactive and conferred in vivo protection. Overall, this study not only established an experimental platform that can be applied in both research and therapeutics to accelerate antibody discovery, but also provides molecular insights into antibody responses to the influenza HA stem, which is a major target for universal influenza vaccine development.
Collapse
Affiliation(s)
- Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenkan Liu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tossapol Pholcharee
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katrine E. Dailey
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Akshita B. Gopal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Madison R. Ardagh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan Talmage
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lucia A. Rodriguez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
McIntire KM, Meng H, Lin TH, Kim W, Moore NE, Han J, McMahon M, Wang M, Malladi SK, Mohammed BM, Zhou JQ, Schmitz AJ, Hoehn KB, Carreño JM, Yellin T, Suessen T, Middleton WD, Teefey SA, Presti RM, Krammer F, Turner JS, Ward AB, Wilson IA, Kleinstein SH, Ellebedy AH. Maturation of germinal center B cells after influenza virus vaccination in humans. J Exp Med 2024; 221:e20240668. [PMID: 38935072 PMCID: PMC11211068 DOI: 10.1084/jem.20240668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Germinal centers (GC) are microanatomical lymphoid structures where affinity-matured memory B cells and long-lived bone marrow plasma cells are primarily generated. It is unclear how the maturation of B cells within the GC impacts the breadth and durability of B cell responses to influenza vaccination in humans. We used fine needle aspiration of draining lymph nodes to longitudinally track antigen-specific GC B cell responses to seasonal influenza vaccination. Antigen-specific GC B cells persisted for at least 13 wk after vaccination in two out of seven individuals. Monoclonal antibodies (mAbs) derived from persisting GC B cell clones exhibit enhanced binding affinity and breadth to influenza hemagglutinin (HA) antigens compared with related GC clonotypes isolated earlier in the response. Structural studies of early and late GC-derived mAbs from one clonal lineage in complex with H1 and H5 HAs revealed an altered binding footprint. Our study shows that inducing sustained GC reactions after influenza vaccination in humans supports the maturation of responding B cells.
Collapse
Affiliation(s)
- Katherine M. McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Ting-Hui Lin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Nina E. Moore
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Wang
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Bassem M. Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlene A. Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M. Presti
- Department of Internal Medicine-Infectious Diseases, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
14
|
Das S, Stamnaes J, Høydahl LS, Skagen C, Lundin KEA, Jahnsen J, Sollid LM, Iversen R. Selective activation of naïve B cells with unique epitope specificity shapes autoantibody formation in celiac disease. J Autoimmun 2024; 146:103241. [PMID: 38754235 DOI: 10.1016/j.jaut.2024.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Many antibody responses induced by infection, vaccination or autoimmunity show signs of convergence across individuals with epitope-dependent selection of particular variable region gene segments and complementarity determining region 3 properties. However, not much is known about the relationship between antigen-specific effector cells and antigen-specific precursors present in the naïve B-cell repertoire. Here, we sought to address this relationship in the context of celiac disease, where there is a stereotyped autoantibody response against the enzyme transglutaminase 2 (TG2). By generating TG2-specific monoclonal antibodies from both duodenal plasma cells and circulating naïve B cells, we demonstrate a discord between the naïve TG2-specific repertoire and the cells that are selected for autoantibody production. Hence, the naïve repertoire does not fully reflect the epitope preference and gene usage observed for memory B cells and plasma cells. Instead, distinct naïve B cells that target particular TG2 epitopes appear to be selectively activated at the expense of TG2-binding B cells targeting other epitopes.
Collapse
Affiliation(s)
- Saykat Das
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Jorunn Stamnaes
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Lene S Høydahl
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Christine Skagen
- Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| |
Collapse
|
15
|
Jacob-Dolan C, Lifton M, Powers OC, Miller J, Hachmann NP, Vu M, Surve N, Mazurek CR, Fisher JL, Rodrigues S, Patio RC, Anand T, Le Gars M, Sadoff J, Schmidt AG, Barouch DH. B cell somatic hypermutation following COVID-19 vaccination with Ad26.COV2.S. iScience 2024; 27:109716. [PMID: 38655202 PMCID: PMC11035370 DOI: 10.1016/j.isci.2024.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/02/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
The viral vector-based COVID-19 vaccine Ad26.COV2.S has been recommended by the WHO since 2021 and has been administered to over 200 million people. Prior studies have shown that Ad26.COV2.S induces durable neutralizing antibodies (NAbs) that increase in coverage of variants over time, even in the absence of boosting or infection. Here, we studied humoral responses following Ad26.COV2.S vaccination in individuals enrolled in the initial Phase 1/2a trial of Ad26.COV2.S in 2020. Through 8 months post vaccination, serum NAb responses increased to variants, including B.1.351 (Beta) and B.1.617.2 (Delta), without additional boosting or infection. The level of somatic hypermutation, measured by nucleotide changes in the VDJ region of the heavy and light antibody chains, increased in Spike-specific B cells. Highly mutated mAbs from these sequences neutralized more SARS-CoV-2 variants than less mutated comparators. These findings suggest that the increase in NAb breadth over time following Ad26.COV2.S vaccination is mediated by affinity maturation.
Collapse
Affiliation(s)
- Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Department of Microbiology, Boston, MA, USA
- Harvard Medical School, Department of Immunology, Boston, MA, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Olivia C. Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jessica Miller
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole P. Hachmann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mya Vu
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Nehalee Surve
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Camille R. Mazurek
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jana L. Fisher
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stefanie Rodrigues
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert C. Patio
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Trisha Anand
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mathieu Le Gars
- Janssen Vaccines and Prevention B.V., Leiden, the Netherlands
| | - Jerald Sadoff
- Janssen Vaccines and Prevention B.V., Leiden, the Netherlands
| | - Aaron G. Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Department of Microbiology, Boston, MA, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Department of Immunology, Boston, MA, USA
| |
Collapse
|
16
|
Reperant L, Russell CA, Osterhaus A. Scientific highlights of the 9th ESWI Influenza Conference. ONE HEALTH OUTLOOK 2024; 6:5. [PMID: 38561784 PMCID: PMC10986029 DOI: 10.1186/s42522-024-00099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The European Scientific Working Group on Influenza (ESWI) held the 9th ESWI Influenza Conference in Valencia from 17-20 September 2023. Here we provide a summary of twelve key presentations, covering major topics on influenza virus, respiratory syncytial virus (RSV) and SARS coronavirus 2 (SARS-CoV-2) including: infection processes beyond acute respiratory disease, long COVID, vaccines against influenza and RSV, the implications of the potential extinction of influenza B virus Yamagata lineage, and the threats posed by zoonotic highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
| | - Colin A Russell
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Osterhaus
- Center of Infection Medicine and Zoonosis Research and the University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
17
|
deCamp AC, Corcoran MM, Fulp WJ, Willis JR, Cottrell CA, Bader DLV, Kalyuzhniy O, Leggat DJ, Cohen KW, Hyrien O, Menis S, Finak G, Ballweber-Fleming L, Srikanth A, Plyler JR, Rahaman F, Lombardo A, Philiponis V, Whaley RE, Seese A, Brand J, Ruppel AM, Hoyland W, Mahoney CR, Cagigi A, Taylor A, Brown DM, Ambrozak DR, Sincomb T, Mullen TM, Maenza J, Kolokythas O, Khati N, Bethony J, Roederer M, Diemert D, Koup RA, Laufer DS, McElrath JM, McDermott AB, Karlsson Hedestam GB, Schief WR. Human immunoglobulin gene allelic variation impacts germline-targeting vaccine priming. NPJ Vaccines 2024; 9:58. [PMID: 38467663 PMCID: PMC11384754 DOI: 10.1038/s41541-024-00811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials.
Collapse
Grants
- UM1 AI144462 NIAID NIH HHS
- UM1 AI069481 NIAID NIH HHS
- UM1 AI068618 NIAID NIH HHS
- UM1 AI068635 NIAID NIH HHS
- U19 AI128914 NIAID NIH HHS
- P01 AI094419 NIAID NIH HHS
- Funding: This work was supported by the Bill and Melinda Gates Foundation Collaboration for AIDS Vaccine Discovery (CCVIMC INV-007371 to R.A.K., A.B.M., and M.J.M.; VISC INV-008017 and INV-032929 to A.C.D.; VxPDC INV-008352 and INV-007375 to IAVI; and NAC INV-007522 and INV-008813 to W.R.S.), IAVI (including IAVI 167627819 to M.J.M. and other support to W.R.S.), the IAVI Neutralizing Antibody Center (NAC) to W.R.S., National Institute of Allergy and Infectious Diseases (NIAID) P01 AI094419 (HIVRAD Optimizing HIV immunogen-BCR interactions for vaccine development") (to W.R.S.), UM1 Al100663 (Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery) and UM1 AI144462 (Scripps Consortium for HIV/AIDS Vaccine Development) (to W.R.S. and M.J.M.); and UM1AI069481 (Seattle-Lausanne CTU), U19AI128914 (HIPC), and UM1AI068618 (HVTN LC) to M.J.M.; by the Ragon Institute of MGH, MIT, and Harvard (to W.R.S.) and by the Swedish Research Council (grant #2017-00968) to GKH.
Collapse
Affiliation(s)
- Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - William J Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jordan R Willis
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher A Cottrell
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Daniel L V Bader
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oleksandr Kalyuzhniy
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - David J Leggat
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sergey Menis
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Abhinaya Srikanth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason R Plyler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farhad Rahaman
- IAVI, 125 Broad Street, 9th floor, New York, NY, 10004, USA
| | | | | | - Rachael E Whaley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexis M Ruppel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wesley Hoyland
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Celia R Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Taylor
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Brown
- The Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Troy Sincomb
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tina-Marie Mullen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Orpheus Kolokythas
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Nadia Khati
- Department of Radiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Jeffrey Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Diemert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dagna S Laufer
- IAVI, 125 Broad Street, 9th floor, New York, NY, 10004, USA
| | - Juliana M McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - William R Schief
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Moderna Inc., Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
Abu-Raya B, Esser MJ, Nakabembe E, Reiné J, Amaral K, Diks AM, Imede E, Way SS, Harandi AM, Gorringe A, Le Doare K, Halperin SA, Berkowska MA, Sadarangani M. Antibody and B-cell Immune Responses Against Bordetella Pertussis Following Infection and Immunization. J Mol Biol 2023; 435:168344. [PMID: 37926426 DOI: 10.1016/j.jmb.2023.168344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Mirjam J Esser
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eve Nakabembe
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Department of Obstetrics and Gynaecology, Makerere University College of Health Sciences, Upper Mulago Hill Road, Kampala, P.O. Box 7072, Uganda
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Kyle Amaral
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden ZA 2333, the Netherlands
| | - Esther Imede
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ali M Harandi
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Gorringe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Makerere University-Johns Hopkins University Research Collaboration, MU-JHU, Upper Mulago Hill, Kampala, P.O. Box 23491, Uganda
| | - Scott A Halperin
- Canadian Center for Vaccinology, Departments of Pediatrics and Microbiology and Immunology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Magdalena A Berkowska
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Korenkov M, Zehner M, Cohen-Dvashi H, Borenstein-Katz A, Kottege L, Janicki H, Vanshylla K, Weber T, Gruell H, Koch M, Diskin R, Kreer C, Klein F. Somatic hypermutation introduces bystander mutations that prepare SARS-CoV-2 antibodies for emerging variants. Immunity 2023; 56:2803-2815.e6. [PMID: 38035879 DOI: 10.1016/j.immuni.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Somatic hypermutation (SHM) drives affinity maturation and continues over months in SARS-CoV-2-neutralizing antibodies (nAbs). However, several potent SARS-CoV-2 antibodies carry no or only a few mutations, leaving the question of how ongoing SHM affects neutralization unclear. Here, we reverted variable region mutations of 92 antibodies and tested their impact on SARS-CoV-2 binding and neutralization. Reverting higher numbers of mutations correlated with decreasing antibody functionality. However, for some antibodies, including antibodies of the public clonotype VH1-58, neutralization of Wu01 remained unaffected. Although mutations were dispensable for Wu01-induced VH1-58 antibodies to neutralize Alpha, Beta, and Delta variants, they were critical for Omicron BA.1/BA.2 neutralization. We exploited this knowledge to convert the clinical antibody tixagevimab into a BA.1/BA.2 neutralizer. These findings broaden our understanding of SHM as a mechanism that not only improves antibody responses during affinity maturation but also contributes to antibody diversification, thus increasing the chances of neutralizing viral escape variants.
Collapse
Affiliation(s)
- Michael Korenkov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hadas Cohen-Dvashi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Aliza Borenstein-Katz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lisa Kottege
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
20
|
Mai G, Zhang C, Lan C, Zhang J, Wang Y, Tang K, Tang J, Zeng J, Chen Y, Cheng P, Liu S, Long H, Wen Q, Li A, Liu X, Zhang R, Xu S, Liu L, Niu Y, Yang L, Wang Y, Yin D, Sun C, Chen YQ, Shen W, Zhang Z, Du X. Characterizing the dynamics of BCR repertoire from repeated influenza vaccination. Emerg Microbes Infect 2023; 12:2245931. [PMID: 37542407 PMCID: PMC10438862 DOI: 10.1080/22221751.2023.2245931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Yearly epidemics of seasonal influenza cause an enormous disease burden around the globe. An understanding of the rules behind the immune response with repeated vaccination still presents a significant challenge, which would be helpful for optimizing the vaccination strategy. In this study, 34 healthy volunteers with 16 vaccinated were recruited, and the dynamics of the BCR repertoire for consecutive vaccinations in two seasons were tracked. In terms of diversity, length, network, V and J gene segments usage, somatic hypermutation (SHM) rate and isotype, it was found that the overall changes were stronger in the acute phase of the first vaccination than the second vaccination. However, the V gene segments of IGHV4-39, IGHV3-9, IGHV3-7 and IGHV1-69 were amplified in the acute phase of the first vaccination, with IGHV3-7 dominant. On the other hand, for the second vaccination, the changes were dominated by IGHV1-69, with potential for coding broad neutralizing antibody. Additional analysis indicates that the application of V gene segment for IGHV3-7 in the acute phase of the first vaccination was due to the elevated usage of isotypes IgM and IgG3. While for IGHV1-69 in the second vaccination, it was contributed by isotypes IgG1 and IgG2. Finally, 41 public BCR clusters were identified in the vaccine group, with both IGHV3-7 and IGHV1-69 were involved and representative complementarity determining region 3 (CDR3) motifs were characterized. This study provides insights into the immune response dynamics following repeated influenza vaccination in humans and can inform universal vaccine design and vaccine strategies in the future.
Collapse
Affiliation(s)
- Guoqin Mai
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chunhong Lan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Center for Precision Medicine, Guangdong Academy of Medical Sciences, Medical Research Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jie Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yilin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peiwen Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shuning Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qilan Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Aqin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xuan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ruitong Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shuyang Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lin Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yanlan Niu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yihan Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Di Yin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wei Shen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhenhai Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Center for Precision Medicine, Guangdong Academy of Medical Sciences, Medical Research Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
21
|
Teo QW, Wang Y, Lv H, Tan TJC, Lei R, Mao KJ, Wu NC. Stringent and complex sequence constraints of an IGHV1-69 broadly neutralizing antibody to influenza HA stem. Cell Rep 2023; 42:113410. [PMID: 37976161 PMCID: PMC10872586 DOI: 10.1016/j.celrep.2023.113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
IGHV1-69 is frequently utilized by broadly neutralizing influenza antibodies to the hemagglutinin (HA) stem. These IGHV1-69 HA stem antibodies have diverse complementarity-determining region (CDR) H3 sequences. Besides, their light chains have minimal to no contact with the epitope. Consequently, sequence determinants that confer IGHV1-69 antibodies with HA stem specificity remain largely elusive. Using high-throughput experiments, this study reveals the importance of light-chain sequence for the IGHV1-69 HA stem antibody CR9114, which is the broadest influenza antibody known to date. Moreover, we demonstrate that the CDR H3 sequences from many other IGHV1-69 antibodies, including those to the HA stem, are incompatible with CR9114. Along with mutagenesis and structural analysis, our results indicate that light-chain and CDR H3 sequences coordinately determine the HA stem specificity of IGHV1-69 antibodies. Overall, this work provides molecular insights into broadly neutralizing antibody responses to influenza virus, which have important implications for universal influenza vaccine development.
Collapse
Affiliation(s)
- Qi Wen Teo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin J Mao
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
22
|
Yuan M, Feng Z, Lv H, So N, Shen IR, Tan TJC, Teo QW, Ouyang WO, Talmage L, Wilson IA, Wu NC. Widespread impact of immunoglobulin V-gene allelic polymorphisms on antibody reactivity. Cell Rep 2023; 42:113194. [PMID: 37777966 PMCID: PMC10636607 DOI: 10.1016/j.celrep.2023.113194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
The ability of the human immune system to generate antibodies to any given antigen can be strongly influenced by immunoglobulin V-gene allelic polymorphisms. However, previous studies have provided only limited examples. Therefore, the prevalence of this phenomenon has been unclear. By analyzing >1,000 publicly available antibody-antigen structures, we show that many V-gene allelic polymorphisms in antibody paratopes are determinants for antibody binding activity. Biolayer interferometry experiments further demonstrate that paratope allelic polymorphisms on both heavy and light chains often abolish antibody binding. We also illustrate the importance of minor V-gene allelic polymorphisms with low frequency in several broadly neutralizing antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus. Overall, this study not only highlights the pervasive impact of V-gene allelic polymorphisms on antibody binding but also provides mechanistic insights into the variability of antibody repertoires across individuals, which in turn have important implications for vaccine development and antibody discovery.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivana R Shen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qi Wen Teo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan Talmage
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
23
|
Tng PYL, Al-Adwani L, Pauletto E, Hui JYK, Netherton CL. Capsid-Specific Antibody Responses of Domestic Pigs Immunized with Low-Virulent African Swine Fever Virus. Vaccines (Basel) 2023; 11:1577. [PMID: 37896980 PMCID: PMC10611099 DOI: 10.3390/vaccines11101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever (ASF) is a lethal disease in pigs that has grave socio-economic implications worldwide. For the development of vaccines against the African swine fever virus (ASFV), immunogenic antigens that generate protective immune responses need to be identified. There are over 150 viral proteins-many of which are uncharacterized-and humoral immunity to ASFV has not been closely examined. To profile antigen-specific antibody responses, we developed luciferase-linked antibody capture assays (LACAs) for a panel of ASFV capsid proteins and screened sera from inbred and outbred animals that were previously immunized with low-virulent ASFV before challenge with virulent ASFV. Antibodies to B646L/p72, D117L/p17, M1249L, and E120R/p14.5 were detected in this study; however, we were unable to detect B438L-specific antibodies. Anti-B646L/p72 and B602L antibodies were associated with recovery from disease after challenges with genotype I OUR T88/1 but not genotype II Georgia 2007/1. Antibody responses against M1249L and E120R/p14.5 were observed in animals with reduced clinical signs and viremia. Here, we present LACAs as a tool for the targeted profiling of antigen-specific antibody responses to inform vaccine development.
Collapse
Affiliation(s)
- Priscilla Y. L. Tng
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
| | - Laila Al-Adwani
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
| | - Egle Pauletto
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
- The Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Joshua Y. K. Hui
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
| | - Christopher L. Netherton
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (L.A.-A.); (E.P.); (J.Y.K.H.)
| |
Collapse
|
24
|
Kastenschmidt JM, Sureshchandra S, Jain A, Hernandez-Davies JE, de Assis R, Wagoner ZW, Sorn AM, Mitul MT, Benchorin AI, Levendosky E, Ahuja G, Zhong Q, Trask D, Boeckmann J, Nakajima R, Jasinskas A, Saligrama N, Davies DH, Wagar LE. Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids. Immunity 2023; 56:1910-1926.e7. [PMID: 37478854 PMCID: PMC10433940 DOI: 10.1016/j.immuni.2023.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Highly effective vaccines elicit specific, robust, and durable adaptive immune responses. To advance informed vaccine design, it is critical that we understand the cellular dynamics underlying responses to different antigen formats. Here, we sought to understand how antigen-specific B and T cells were activated and participated in adaptive immune responses within the mucosal site. Using a human tonsil organoid model, we tracked the differentiation and kinetics of the adaptive immune response to influenza vaccine and virus modalities. Each antigen format elicited distinct B and T cell responses, including differences in their magnitude, diversity, phenotype, function, and breadth. These differences culminated in substantial changes in the corresponding antibody response. A major source of antigen format-related variability was the ability to recruit naive vs. memory B and T cells to the response. These findings have important implications for vaccine design and the generation of protective immune responses in the upper respiratory tract.
Collapse
Affiliation(s)
- Jenna M Kastenschmidt
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Suhas Sureshchandra
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Aarti Jain
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Jenny E Hernandez-Davies
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Rafael de Assis
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Zachary W Wagoner
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Andrew M Sorn
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Mahina Tabassum Mitul
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Aviv I Benchorin
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Elizabeth Levendosky
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA
| | - Gurpreet Ahuja
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA 92868, USA; Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Qiu Zhong
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA 92868, USA; Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Douglas Trask
- Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Jacob Boeckmann
- Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Rie Nakajima
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Algimantas Jasinskas
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Naresha Saligrama
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA; Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA
| | - D Huw Davies
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Lisa E Wagar
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
25
|
McCraw DM, Myers ML, Gulati NM, Prabhakaran M, Brand J, Andrews S, Gallagher JR, Maldonado-Puga S, Kim AJ, Torian U, Syeda H, Boyoglu-Barnum S, Kanekiyo M, McDermott AB, Harris AK. Designed nanoparticles elicit cross-reactive antibody responses to conserved influenza virus hemagglutinin stem epitopes. PLoS Pathog 2023; 19:e1011514. [PMID: 37639457 PMCID: PMC10491405 DOI: 10.1371/journal.ppat.1011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/08/2023] [Accepted: 06/26/2023] [Indexed: 08/31/2023] Open
Abstract
Despite the availability of seasonal vaccines and antiviral medications, influenza virus continues to be a major health concern and pandemic threat due to the continually changing antigenic regions of the major surface glycoprotein, hemagglutinin (HA). One emerging strategy for the development of more efficacious seasonal and universal influenza vaccines is structure-guided design of nanoparticles that display conserved regions of HA, such as the stem. Using the H1 HA subtype to establish proof of concept, we found that tandem copies of an alpha-helical fragment from the conserved stem region (helix-A) can be displayed on the protruding spikes structures of a capsid scaffold. The stem region of HA on these designed chimeric nanoparticles is immunogenic and the nanoparticles are biochemically robust in that heat exposure did not destroy the particles and immunogenicity was retained. Furthermore, mice vaccinated with H1-nanoparticles were protected from lethal challenge with H1N1 influenza virus. By using a nanoparticle library approach with this helix-A nanoparticle design, we show that this vaccine nanoparticle construct design could be applicable to different influenza HA subtypes. Importantly, antibodies elicited by H1, H5, and H7 nanoparticles demonstrated homosubtypic and heterosubtypic cross-reactivity binding to different HA subtypes. Also, helix-A nanoparticle immunizations were used to isolate mouse monoclonal antibodies that demonstrated heterosubtypic cross-reactivity and provided protection to mice from viral challenge via passive-transfer. This tandem helix-A nanoparticle construct represents a novel design to display several hundred copies of non-trimeric conserved HA stem epitopes on vaccine nanoparticles. This design concept provides a new approach to universal influenza vaccine development strategies and opens opportunities for the development of nanoparticles with broad coverage over many antigenically diverse influenza HA subtypes.
Collapse
Affiliation(s)
- Dustin M. McCraw
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mallory L. Myers
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neetu M. Gulati
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Gallagher
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samantha Maldonado-Puga
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander J. Kim
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Udana Torian
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Audray K. Harris
- Structural Informatics Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
26
|
Tonouchi K, Adachi Y, Suzuki T, Kuroda D, Nishiyama A, Yumoto K, Takeyama H, Suzuki T, Hashiguchi T, Takahashi Y. Structural basis for cross-group recognition of an influenza virus hemagglutinin antibody that targets postfusion stabilized epitope. PLoS Pathog 2023; 19:e1011554. [PMID: 37556494 PMCID: PMC10411744 DOI: 10.1371/journal.ppat.1011554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Plasticity of influenza virus hemagglutinin (HA) conformation increases an opportunity to generate conserved non-native epitopes with unknown functionality. Here, we have performed an in-depth analysis of human monoclonal antibodies against a stem-helix region that is occluded in native prefusion yet exposed in postfusion HA. A stem-helix antibody, LAH31, provided IgG Fc-dependent cross-group protection by targeting a stem-helix kinked loop epitope, with a unique structure emerging in the postfusion state. The structural analysis and molecular modeling revealed key contact sites responsible for the epitope specificity and cross-group breadth that relies on somatically mutated light chain. LAH31 was inaccessible to the native prefusion HA expressed on cell surface; however, it bound to the HA structure present on infected cells with functional linkage to the Fc-mediated clearance. Our study uncovers a novel non-native epitope that emerges in the postfusion HA state, highlighting the utility of this epitope for a broadly protective antigen design.
Collapse
Affiliation(s)
- Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics research, National Institutes of Biomedical Innovation, Health and Nutrition; Saito-Asagi, Ibaraki City, Osaka, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Shinjuku, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| |
Collapse
|
27
|
Vieira MC, Palm AKE, Stamper CT, Tepora ME, Nguyen KD, Pham TD, Boyd SD, Wilson PC, Cobey S. Germline-encoded specificities and the predictability of the B cell response. PLoS Pathog 2023; 19:e1011603. [PMID: 37624867 PMCID: PMC10484431 DOI: 10.1371/journal.ppat.1011603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Antibodies result from the competition of B cell lineages evolving under selection for improved antigen recognition, a process known as affinity maturation. High-affinity antibodies to pathogens such as HIV, influenza, and SARS-CoV-2 are frequently reported to arise from B cells whose receptors, the precursors to antibodies, are encoded by particular immunoglobulin alleles. This raises the possibility that the presence of particular germline alleles in the B cell repertoire is a major determinant of the quality of the antibody response. Alternatively, initial differences in germline alleles' propensities to form high-affinity receptors might be overcome by chance events during affinity maturation. We first investigate these scenarios in simulations: when germline-encoded fitness differences are large relative to the rate and effect size variation of somatic mutations, the same germline alleles persistently dominate the response of different individuals. In contrast, if germline-encoded advantages can be easily overcome by subsequent mutations, allele usage becomes increasingly divergent over time, a pattern we then observe in mice experimentally infected with influenza virus. We investigated whether affinity maturation might nonetheless strongly select for particular amino acid motifs across diverse genetic backgrounds, but we found no evidence of convergence to similar CDR3 sequences or amino acid substitutions. These results suggest that although germline-encoded specificities can lead to similar immune responses between individuals, diverse evolutionary routes to high affinity limit the genetic predictability of responses to infection and vaccination.
Collapse
Affiliation(s)
- Marcos C. Vieira
- Department of Ecology and Evolution, University of Chicago, Chicago, United States of America
| | - Anna-Karin E. Palm
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States of America
| | - Christopher T. Stamper
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Committee on Immunology, University of Chicago, Chicago, United States of America
| | - Micah E. Tepora
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States of America
| | - Khoa D. Nguyen
- Department of Pathology, Stanford University School of Medicine, Stanford, United States of America
| | - Tho D. Pham
- Department of Pathology, Stanford University School of Medicine, Stanford, United States of America
| | - Scott D. Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, United States of America
| | - Patrick C. Wilson
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States of America
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York City, United States of America
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, United States of America
| |
Collapse
|
28
|
Martínez-Riaño A, Wang S, Boeing S, Minoughan S, Casal A, Spillane KM, Ludewig B, Tolar P. Long-term retention of antigens in germinal centers is controlled by the spatial organization of the follicular dendritic cell network. Nat Immunol 2023; 24:1281-1294. [PMID: 37443283 PMCID: PMC7614842 DOI: 10.1038/s41590-023-01559-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Germinal centers (GCs) require sustained availability of antigens to promote antibody affinity maturation against pathogens and vaccines. A key source of antigens for GC B cells are immune complexes (ICs) displayed on follicular dendritic cells (FDCs). Here we show that FDC spatial organization regulates antigen dynamics in the GC. We identify heterogeneity within the FDC network. While the entire light zone (LZ) FDC network captures ICs initially, only the central cells of the network function as the antigen reservoir, where different antigens arriving from subsequent immunizations colocalize. Mechanistically, central LZ FDCs constitutively express subtly higher CR2 membrane densities than peripheral LZ FDCs, which strongly increases the IC retention half-life. Even though repeated immunizations gradually saturate central FDCs, B cell responses remain efficient because new antigens partially displace old ones. These results reveal the principles shaping antigen display on FDCs during the GC reaction.
Collapse
Affiliation(s)
- Ana Martínez-Riaño
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Sophie Minoughan
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
| | - Antonio Casal
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK.
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
29
|
Capella-Pujol J, de Gast M, Radić L, Zon I, Chumbe A, Koekkoek S, Olijhoek W, Schinkel J, van Gils MJ, Sanders RW, Sliepen K. Signatures of V H1-69-derived hepatitis C virus neutralizing antibody precursors defined by binding to envelope glycoproteins. Nat Commun 2023; 14:4036. [PMID: 37419906 PMCID: PMC10328973 DOI: 10.1038/s41467-023-39690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
An effective preventive vaccine for hepatitis C virus (HCV) remains a major unmet need. Antigenic region 3 (AR3) on the E1E2 envelope glycoprotein complex overlaps with the CD81 receptor binding site and represents an important epitope for broadly neutralizing antibodies (bNAbs) and is therefore important for HCV vaccine design. Most AR3 bNAbs utilize the VH1-69 gene and share structural features that define the AR3C-class of HCV bNAbs. In this work, we identify recombinant HCV glycoproteins based on a permuted E2E1 trimer design that bind to the inferred VH1-69 germline precursors of AR3C-class bNAbs. When presented on nanoparticles, these recombinant E2E1 glycoproteins efficiently activate B cells expressing inferred germline AR3C-class bNAb precursors as B cell receptors. Furthermore, we identify critical signatures in three AR3C-class bNAbs that represent two subclasses of AR3C-class bNAbs that will allow refined protein design. These results provide a framework for germline-targeting vaccine design strategies against HCV.
Collapse
Affiliation(s)
- Joan Capella-Pujol
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Marlon de Gast
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Laura Radić
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands.
| |
Collapse
|
30
|
Teo QW, Wang Y, Lv H, Tan TJ, Lei R, Mao KJ, Wu NC. Stringent and complex sequence constraints of an IGHV1-69 broadly neutralizing antibody to influenza HA stem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547908. [PMID: 37461670 PMCID: PMC10350038 DOI: 10.1101/2023.07.06.547908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
IGHV1-69 is frequently utilized by broadly neutralizing influenza antibodies to the hemagglutinin (HA) stem. These IGHV1-69 HA stem antibodies have diverse complementarity-determining region (CDR) H3 sequences. Besides, their light chains have minimal to no contact with the epitope. Consequently, sequence determinants that confer IGHV1-69 antibodies with HA stem specificity remain largely elusive. Using high-throughput experiments, this study revealed the importance of light chain sequence for the IGHV1-69 HA stem antibody CR9114, which is the broadest influenza antibody known to date. Moreover, we demonstrated that the CDR H3 sequences from many other IGHV1-69 antibodies, including those to HA stem, were incompatible with CR9114. Along with mutagenesis and structural analysis, our results indicate that light chain and CDR H3 sequences coordinately determine the HA stem specificity of IGHV1-69 antibodies. Overall, this work provides molecular insights into broadly neutralizing antibody responses to influenza virus, which have important implications for universal influenza vaccine development.
Collapse
Affiliation(s)
- Qi Wen Teo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin J. Mao
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
31
|
Basu M, Fucile C, Piepenbrink MS, Bunce CA, Man LX, Liesveld J, Rosenberg AF, Keefer MC, Kobie JJ. Mixed Origins: HIV gp120-Specific Memory Develops from Pre-Existing Memory and Naive B Cells Following Vaccination in Humans. AIDS Res Hum Retroviruses 2023; 39:350-366. [PMID: 36762930 PMCID: PMC10398743 DOI: 10.1089/aid.2022.0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The most potent and broad HIV envelope (Env)-specific antibodies often when reverted to their inferred germline versions representing the naive B cell receptor, fail to bind Env, suggesting that the initial responding B cell population not only exclusively comprises a naive population, but also a pre-existing cross-reactive antigen-experienced B cell pool that expands following Env exposure. Previously we isolated gp120-reactive monoclonal antibodies (mAbs) from participants in HVTN 105, an HIV vaccine trial. Using deep sequencing, focused on immunoglobulin G (IgG), IgA, and IgM, VH-lineage tracking, we identified four of these mAb lineages in pre-immune peripheral blood. We also looked through the ∼7 month postvaccination bone marrow, and interestingly, several of these lineages that were found in prevaccination blood were still persistent in the postvaccination bone marrow, including the CD138+ long-lived plasma cell compartment. The majority of the pre-immune lineage members included IgM, however, IgG and IgA members were also prevalent and exhibited somatic hypermutation. These results suggest that vaccine-induced gp120-specific antibody lineages originate from both naive and cross-reactive memory B cells. ClinicalTrials.gov NCT02207920.
Collapse
Affiliation(s)
- Madhubanti Basu
- Infectious Diseases Division and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Fucile
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael S. Piepenbrink
- Infectious Diseases Division and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Catherine A. Bunce
- Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - Li-Xing Man
- Department of Otolaryngology Head and Neck Surgery, and University of Rochester, Rochester, New York, USA
| | - Jane Liesveld
- Division of Hematology/Oncology, University of Rochester, Rochester, New York, USA
| | - Alexander F. Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael C. Keefer
- Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - James J. Kobie
- Infectious Diseases Division and University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Stass R, Engdahl TB, Chapman NS, Wolters RM, Handal LS, Diaz SM, Crowe JE, Bowden TA. Mechanistic basis for potent neutralization of Sin Nombre hantavirus by a human monoclonal antibody. Nat Microbiol 2023:10.1038/s41564-023-01413-y. [PMID: 37322112 DOI: 10.1038/s41564-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Rodent-borne hantaviruses are prevalent worldwide and upon spillover to human populations, cause severe disease for which no specific treatment is available. A potent antibody response is key for recovery from hantavirus infection. Here we study a highly neutralizing human monoclonal antibody, termed SNV-42, which was derived from a memory B cell isolated from an individual with previous Sin Nombre virus (SNV) infection. Crystallographic analysis demonstrates that SNV-42 targets the Gn subcomponent of the tetrameric (Gn-Gc)4 glycoprotein assembly that is relevant for viral entry. Integration of our 1.8 Å structure with the (Gn-Gc)4 ultrastructure arrangement indicates that SNV-42 targets the membrane-distal region of the virus envelope. Comparison of the SNV-42 paratope encoding variable genes with inferred germline gene segments reveals high sequence conservation, suggesting that germline-encoded antibodies inhibit SNV. Furthermore, mechanistic assays reveal that SNV-42 interferes with both receptor recognition and fusion during host-cell entry. This work provides a molecular-level blueprint for understanding the human neutralizing antibody response to hantavirus infection.
Collapse
Affiliation(s)
- Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Taylor B Engdahl
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael M Wolters
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Summer M Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Yuan M, Feng Z, Lv H, So N, Shen IR, Tan TJ, WenTeo Q, Ouyang WO, Talmage L, Wilson IA, Wu NC. Widespread impact of immunoglobulin V gene allelic polymorphisms on antibody reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543969. [PMID: 37333077 PMCID: PMC10274783 DOI: 10.1101/2023.06.06.543969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The ability of human immune system to generate antibodies to any given antigen can be strongly influenced by immunoglobulin V gene (IGV) allelic polymorphisms. However, previous studies have provided only a limited number of examples. Therefore, the prevalence of this phenomenon has been unclear. By analyzing >1,000 publicly available antibody-antigen structures, we show that many IGV allelic polymorphisms in antibody paratopes are determinants for antibody binding activity. Biolayer interferometry experiment further demonstrates that paratope allelic mutations on both heavy and light chain often abolish antibody binding. We also illustrate the importance of minor IGV allelic variants with low frequency in several broadly neutralizing antibodies to SARS-CoV-2 and influenza virus. Overall, this study not only highlights the pervasive impact of IGV allelic polymorphisms on antibody binding, but also provides mechanistic insights into the variability of antibody repertoires across individuals, which in turn have important implications for vaccine development and antibody discovery.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, LaJolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, LaJolla, CA 92037, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivana R. Shen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
| | - Qi WenTeo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan Talmage
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, LaJolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Oh J, Park U, Kim J, Jeon K, Kim C, Cho NH, Choi YS. Enhancing immune protection against MERS-CoV: the synergistic effect of proteolytic cleavage sites and the fusion peptide and RBD domain targeting VLP immunization. Front Immunol 2023; 14:1201136. [PMID: 37275866 PMCID: PMC10235442 DOI: 10.3389/fimmu.2023.1201136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a zoonotic infectious virus that has caused significant outbreaks in the Middle East and beyond. Due to a highly mortality rate, easy transmission, and rapid spread of the MERS-CoV, it remains as a significant public health treat. There is currently no licensed vaccine available to protect against MERS-CoV. Methods In this study, we investigated whether the proteolytic cleavage sites and fusion peptide domain of the MERS-CoV spike (S) protein could be a vaccine target to elicit the MERS-CoV S protein-specific antibody responses and confer immune protection against MERS-CoV infection. Our results demonstrate that immunization of the proteolytic cleavage sites and the fusion peptide domain using virus-like particle (VLP) induced the MERS-CoV S protein-specific IgG antibodies with capacity to neutralize pseudotyped MERS-CoV infection in vitro. Moreover, proteolytic cleavage sites and the fusion peptide VLP immunization showed a synergistic effect on the immune protection against MERS-CoV infection elicited by immunization with VLP expressing the receptor binding domain (RBD) of the S protein. Additionally, immune evasion of MERS-CoV RBD variants from anti-RBD sera was significantly controlled by anti-proteolytic cleavage sites and the fusion peptide sera. Conclusion and discussion Our study demonstrates the potential of VLP immunization targeting the proteolytic cleavage sites and the fusion peptide and RBD domains of the MERS-CoV S protein for the development of effective treatments and vaccines against MERS-CoV and related variants.
Collapse
Affiliation(s)
- Jeein Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Uni Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juhyung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyeongseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chulwoo Kim
- Deparatment of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
35
|
Chen EC, Gilchuk P, Zost SJ, Ilinykh PA, Binshtein E, Huang K, Myers L, Bonissone S, Day S, Kona CR, Trivette A, Reidy JX, Sutton RE, Gainza C, Diaz S, Williams JK, Selverian CN, Davidson E, Saphire EO, Doranz BJ, Castellana N, Bukreyev A, Carnahan RH, Crowe JE. Systematic analysis of human antibody response to ebolavirus glycoprotein shows high prevalence of neutralizing public clonotypes. Cell Rep 2023; 42:112370. [PMID: 37029928 PMCID: PMC10556194 DOI: 10.1016/j.celrep.2023.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Understanding the human antibody response to emerging viral pathogens is key to epidemic preparedness. As the size of the B cell response to a pathogenic-virus-protective antigen is poorly defined, we perform deep paired heavy- and light-chain sequencing in Ebola virus glycoprotein (EBOV-GP)-specific memory B cells, allowing analysis of the ebolavirus-specific antibody repertoire both genetically and functionally. This approach facilitates investigation of the molecular and genetic basis for the evolution of cross-reactive antibodies by elucidating germline-encoded properties of antibodies to EBOV and identification of the overlap between antibodies in the memory B cell and serum repertoire. We identify 73 public clonotypes of EBOV, 20% of which encode antibodies with neutralization activity and capacity to protect mice in vivo. This comprehensive analysis of the public and private antibody repertoire provides insight into the molecular basis of the humoral immune response to EBOV GP, which informs the design of vaccines and improved therapeutics.
Collapse
Affiliation(s)
- Elaine C Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Philipp A Ilinykh
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kai Huang
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Samuel Day
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chandrahaas R Kona
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christopher Gainza
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Summer Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Alexander Bukreyev
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
36
|
Andrews SF, Cominsky LY, Shimberg GD, Gillespie RA, Gorman J, Raab JE, Brand J, Creanga A, Gajjala SR, Narpala S, Cheung CSF, Harris DR, Zhou T, Gordon I, Holman L, Mendoza F, Houser KV, Chen GL, Mascola JR, Graham BS, Kwong PD, Widge A, Dropulic LK, Ledgerwood JE, Kanekiyo M, McDermott AB. An influenza H1 hemagglutinin stem-only immunogen elicits a broadly cross-reactive B cell response in humans. Sci Transl Med 2023; 15:eade4976. [PMID: 37075126 DOI: 10.1126/scitranslmed.ade4976] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Current yearly seasonal influenza vaccines primarily induce an antibody response directed against the immunodominant but continually diversifying hemagglutinin (HA) head region. These antibody responses provide protection against the vaccinating strain but little cross-protection against other influenza strains or subtypes. To focus the immune response on subdominant but more conserved epitopes on the HA stem that might protect against a broad range of influenza strains, we developed a stabilized H1 stem immunogen lacking the immunodominant head displayed on a ferritin nanoparticle (H1ssF). Here, we evaluated the B cell response to H1ssF in healthy adults ages 18 to 70 in a phase 1 clinical trial (NCT03814720). We observed both a strong plasmablast response and sustained elicitation of cross-reactive HA stem-specific memory B cells after vaccination with H1ssF in individuals of all ages. The B cell response was focused on two conserved epitopes on the H1 stem, with a highly restricted immunoglobulin repertoire unique to each epitope. On average, two-thirds of the B cell and serological antibody response recognized a central epitope on the H1 stem and exhibited broad neutralization across group 1 influenza virus subtypes. The remaining third recognized an epitope near the viral membrane anchor and was largely limited to H1 strains. Together, we demonstrate that an H1 HA immunogen lacking the immunodominant HA head produces a robust and broadly neutralizing HA stem-directed B cell response.
Collapse
Affiliation(s)
- Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lauren Y Cominsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Geoffrey D Shimberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Suprabhath R Gajjala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Crystal S F Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - LaSonji Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Floreliz Mendoza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Katherine V Houser
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Grace L Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Alicia Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Lesia K Dropulic
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20902, USA
| |
Collapse
|
37
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
38
|
Engdahl TB, Binshtein E, Brocato RL, Kuzmina NA, Principe LM, Kwilas SA, Kim RK, Chapman NS, Porter MS, Guardado-Calvo P, Rey FA, Handal LS, Diaz SM, Zagol-Ikapitte IA, Tran MH, McDonald WH, Meiler J, Reidy JX, Trivette A, Bukreyev A, Hooper JW, Crowe JE. Antigenic mapping and functional characterization of human New World hantavirus neutralizing antibodies. eLife 2023; 12:e81743. [PMID: 36971354 PMCID: PMC10115451 DOI: 10.7554/elife.81743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Taylor B Engdahl
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Natalia A Kuzmina
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
| | - Lucia M Principe
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Robert K Kim
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Monique S Porter
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | | | - Félix A Rey
- Institut Pasteur, Université Paris CitéParisFrance
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Summer M Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Irene A Zagol-Ikapitte
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Minh H Tran
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
- Department of Microbiology and Immunology, University of Texas Medical BranchGalvestonUnited States
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Pediatrics, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
39
|
deCamp AC, Corcoran MM, Fulp WJ, Willis JR, Cottrell CA, Bader DLV, Kalyuzhniy O, Leggat DJ, Cohen KW, Hyrien O, Menis S, Finak G, Ballweber-Fleming L, Srikanth A, Plyler JR, Rahaman F, Lombardo A, Philiponis V, Whaley RE, Seese A, Brand J, Ruppel AM, Hoyland W, Mahoney CR, Cagigi A, Taylor A, Brown DM, Ambrozak DR, Sincomb T, Mullen TM, Maenza J, Kolokythas O, Khati N, Bethony J, Roederer M, Diemert D, Koup RA, Laufer DS, McElrath JM, McDermott AB, Hedestam GBK, Schief WR. Human immunoglobulin gene allelic variation impacts germline-targeting vaccine priming. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.10.23287126. [PMID: 36993183 PMCID: PMC10055468 DOI: 10.1101/2023.03.10.23287126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Vaccine priming immunogens that activate germline precursors for broadly neutralizing antibodies (bnAbs) have promise for development of precision vaccines against major human pathogens. In a clinical trial of the eOD-GT8 60mer germline-targeting immunogen, higher frequencies of vaccine-induced VRC01-class bnAb-precursor B cells were observed in the high dose compared to the low dose group. Through immunoglobulin heavy chain variable (IGHV) genotyping, statistical modeling, quantification of IGHV1-2 allele usage and B cell frequencies in the naive repertoire for each trial participant, and antibody affinity analyses, we found that the difference between dose groups in VRC01-class response frequency was best explained by IGHV1-2 genotype rather than dose and was most likely due to differences in IGHV1-2 B cell frequencies for different genotypes. The results demonstrate the need to define population-level immunoglobulin allelic variations when designing germline-targeting immunogens and evaluating them in clinical trials. One-Sentence Summary Human genetic variation can modulate the strength of vaccine-induced broadly neutralizing antibody precursor B cell responses.
Collapse
|
40
|
Son S, Ahn SB, Kim G, Jang Y, Ko C, Kim M, Kim SJ. Identification of broad-spectrum neutralizing antibodies against influenza A virus and evaluation of their prophylactic efficacy in mice. Antiviral Res 2023; 213:105591. [PMID: 37003306 DOI: 10.1016/j.antiviral.2023.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Influenza A virus continuously infects humans, and the antigenic shifts of this respiratory virus enable it to cross the species barrier, threatening public health with the risk of pandemics. Broadly neutralizing antibodies (bnAbs) that target the antigenic surface glycoprotein, hemagglutinin (HA), of influenza A virus protect against various subtypes of the virus. Here, we screened a human scFv library, through phage display and panning against recombinant HA proteins, to discover human monoclonal antibodies (mAbs) that are broadly active. Consequently, two human mAbs, named G1 and G2, were identified, which target the HA proteins of the H1N1 and H3N2 subtypes, respectively. G1, was shown to have broad binding ability to different HA subtypes of group 1. By contrast, G2 had higher binding affinity but sensed exclusively H3 subtype-derived HAs. In a cell culture-based virus-neutralizing assay, both G1 and G2 efficiently suppressed infection of the parental influenza A viruses of H1N1 and H3N2 subtypes. Mode-of-action studies showed that the G1 antibody blocked HA2-mediated membrane fusion. Meanwhile, G2 inhibited HA1-mediated viral attachment to host cells. It is noteworthy that both antibodies elicited antibody-dependent cellular cytotoxicity (ADCC) activities by recruiting FcγRIIIA-expressing effector cells. In mouse challenge models, single-shot, intraperitoneal administration of chimeric G1 and G2 antibodies with the mouse IgG constant region completely protected mice from viral infections at doses above 10 and 1 mg/kg, respectively. The newly identified bnAbs, G1 and G2, could provide insight into the development of broad-spectrum antivirals against future pandemic influenza A virus involving group 1- or H3-subtyped strains.
Collapse
Affiliation(s)
- Sumin Son
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Soo Bin Ahn
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Geonyeong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Chunkyu Ko
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
41
|
Phillips AM, Maurer DP, Brooks C, Dupic T, Schmidt AG, Desai MM. Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody. eLife 2023; 12:83628. [PMID: 36625542 PMCID: PMC9995116 DOI: 10.7554/elife.83628] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) that neutralize diverse variants of a particular virus are of considerable therapeutic interest. Recent advances have enabled us to isolate and engineer these antibodies as therapeutics, but eliciting them through vaccination remains challenging, in part due to our limited understanding of how antibodies evolve breadth. Here, we analyze the landscape by which an anti-influenza receptor binding site (RBS) bnAb, CH65, evolved broad affinity to diverse H1 influenza strains. We do this by generating an antibody library of all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the affinity-matured CH65 antibody and measure the affinity of each intermediate to three distinct H1 antigens. We find that affinity to each antigen requires a specific set of mutations - distributed across the variable light and heavy chains - that interact non-additively (i.e., epistatically). These sets of mutations form a hierarchical pattern across the antigens, with increasingly divergent antigens requiring additional epistatic mutations beyond those required to bind less divergent antigens. We investigate the underlying biochemical and structural basis for these hierarchical sets of epistatic mutations and find that epistasis between heavy chain mutations and a mutation in the light chain at the VH-VL interface is essential for binding a divergent H1. Collectively, this is the first work to comprehensively characterize epistasis between heavy and light chain mutations and shows that such interactions are both strong and widespread. Together with our previous study analyzing a different class of anti-influenza antibodies, our results implicate epistasis as a general feature of antibody sequence-affinity landscapes that can potentiate and constrain the evolution of breadth.
Collapse
Affiliation(s)
- Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
| | - Daniel P Maurer
- Ragon Institute of MGH, MIT, and HarvardCambridgeUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Caelan Brooks
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and HarvardCambridgeUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
| |
Collapse
|
42
|
Pennell M, Rodriguez OL, Watson CT, Greiff V. The evolutionary and functional significance of germline immunoglobulin gene variation. Trends Immunol 2023; 44:7-21. [PMID: 36470826 DOI: 10.1016/j.it.2022.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci. We discuss why the extreme diversity in IG loci remains a mystery, why resolving this is important for the design of more effective vaccines and therapeutics, and how recent evidence from multiple lines of inquiry may help us do so.
Collapse
Affiliation(s)
- Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
43
|
Yan Q, Hou R, Huang X, Zhang Y, He P, Zhang Y, Liu B, Wang Q, Rao H, Chen X, Zhao X, Niu X, Zhao J, Xiong X, Chen L. Shared IGHV1-69-encoded neutralizing antibodies contribute to the emergence of L452R substitution in SARS-CoV-2 variants. Emerg Microbes Infect 2022; 11:2749-2761. [PMID: 36288106 PMCID: PMC9662066 DOI: 10.1080/22221751.2022.2140611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2 variants continue to emerge facing established herd immunity. L452R, previously featured in the Delta variant, quickly emerged in Omicron subvariants, including BA.4/BA.5, implying a continued selection pressure on this residue. The underlying links between spike mutations and their selective pressures remain incompletely understood. Here, by analyzing 221 structurally characterized antibodies, we found that IGHV1-69-encoded antibodies preferentially contact L452 using germline-encoded hydrophobic residues at the tip of HCDR2 loop. Whereas somatic hypermutations or VDJ rearrangements are required to acquire L452-contacting hydrophobic residues for non-IGHV1-69 encoded antibodies. Antibody repertoire analysis revealed that IGHV1-69 L452-contacting antibody lineages are commonly induced among COVID-19 convalescents but non-IGHV1-69 encoded antibodies exhibit limited prevalence. In addition, we experimentally demonstrated that L452R renders most published IGHV1-69 antibodies ineffective. Furthermore, we found that IGHV1-69 L452-contacting antibodies are enriched in convalescents experienced Omicron BA.1 (without L452R) breakthrough infections but rarely found in Delta (with L452R) breakthrough infections. Taken together, these findings support that IGHV1-69 population antibodies contribute to selection pressure for L452 substitution. This study thus provides a better understanding of SARS-CoV-2 variant genesis and immune evasion.
Collapse
Affiliation(s)
- Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ruitian Hou
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- Savaid Medical School, University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- Savaid Medical School, University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- Savaid Medical School, University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- Savaid Medical School, University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Haiyue Rao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xianying Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xinwei Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
44
|
Jeong SL, Zhang H, Yamaki S, Yang C, McKemy D, Lieber M, Pham P, Goodman M. Immunoglobulin somatic hypermutation in a defined biochemical system recapitulates affinity maturation and permits antibody optimization. Nucleic Acids Res 2022; 50:11738-11754. [PMID: 36321646 PMCID: PMC9723645 DOI: 10.1093/nar/gkac995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
We describe a purified biochemical system to produce monoclonal antibodies (Abs) in vitro using activation-induced deoxycytidine deaminase (AID) and DNA polymerase η (Polη) to diversify immunoglobulin variable gene (IgV) libraries within a phage display format. AID and Polη function during B-cell affinity maturation by catalyzing somatic hypermutation (SHM) of immunoglobulin variable genes (IgV) to generate high-affinity Abs. The IgV mutational motif specificities observed in vivo are conserved in vitro. IgV mutations occurred in antibody complementary determining regions (CDRs) and less frequently in framework (FW) regions. A unique feature of our system is the use of AID and Polη to perform repetitive affinity maturation on libraries reconstructed from a preceding selection step. We have obtained scFv Abs against human glucagon-like peptide-1 receptor (GLP-1R), a target in the treatment of type 2 diabetes, and VHH nanobodies targeting Fatty Acid Amide Hydrolase (FAAH), involved in chronic pain, and artemin, a neurotropic factor that regulates cold pain. A round of in vitro affinity maturation typically resulted in a 2- to 4-fold enhancement in Ab-Ag binding, demonstrating the utility of the system. We tested one of the affinity matured nanobodies and found that it reduced injury-induced cold pain in a mouse model.
Collapse
Affiliation(s)
- Soo Lim Jeong
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hongyu Zhang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shanni Yamaki
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chenyu Yang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - David D McKemy
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Myron F Goodman
- To whom correspondence should be addressed. Tel: +1 213 740 5190; Fax: +1 213 821 1138;
| |
Collapse
|
45
|
Sangesland M, Torrents de la Peña A, Boyoglu-Barnum S, Ronsard L, Mohamed FAN, Moreno TB, Barnes RM, Rohrer D, Lonberg N, Ghebremichael M, Kanekiyo M, Ward A, Lingwood D. Allelic polymorphism controls autoreactivity and vaccine elicitation of human broadly neutralizing antibodies against influenza virus. Immunity 2022; 55:1693-1709.e8. [PMID: 35952670 PMCID: PMC9474600 DOI: 10.1016/j.immuni.2022.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 07/13/2022] [Indexed: 01/18/2023]
Abstract
Human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin stalk of group 1 influenza A viruses (IAVs) are biased for IGHV1-69 alleles that use phenylalanine (F54) but not leucine (L54) within their CDRH2 loops. Despite this, we demonstrated that both alleles encode for human IAV bnAbs that employ structurally convergent modes of contact to the same epitope. To resolve differences in lineage expandability, we compared F54 versus L54 as substrate within humanized mice, where antibodies develop with human-like CDRH3 diversity but are restricted to single VH genes. While both alleles encoded for bnAb precursors, only F54 IGHV1-69 supported elicitation of heterosubtypic serum bnAbs following immunization with a stalk-only nanoparticle vaccine. L54 IGHV1-69 was unproductive, co-encoding for anergic B cells and autoreactive stalk antibodies that were cleared from B cell memory. Moreover, human stalk antibodies also demonstrated L54-dependent autoreactivity. Therefore, IGHV1-69 polymorphism, which is skewed ethnically, gates tolerance and vaccine expandability of influenza bnAbs.
Collapse
Affiliation(s)
- Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Faez Amokrane Nait Mohamed
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Ralston M Barnes
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA 94063-2478, USA
| | - Daniel Rohrer
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA 94063-2478, USA
| | - Nils Lonberg
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA 94063-2478, USA
| | - Musie Ghebremichael
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | - Andrew Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Biavasco R, De Giovanni M. The Relative Positioning of B and T Cell Epitopes Drives Immunodominance. Vaccines (Basel) 2022; 10:vaccines10081227. [PMID: 36016115 PMCID: PMC9413633 DOI: 10.3390/vaccines10081227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/05/2022] Open
Abstract
Humoral immunity is crucial for protection against invading pathogens. Broadly neutralizing antibodies (bnAbs) provide sterilizing immunity by targeting conserved regions of viral variants and represent the goal of most vaccination approaches. While antibodies can be selected to bind virtually any region of a given antigen, the consistent induction of bnAbs in the context of influenza and HIV has represented a major roadblock. Many possible explanations have been considered; however, none of the arguments proposed to date seem to fully recapitulate the observed counter-selection for broadly protective antibodies. Antibodies can influence antigen presentation by enhancing the processing of CD4 epitopes adjacent to the binding region while suppressing the overlapping ones. We analyze the relative positioning of dominant B and T cell epitopes in published antigens that elicit strong and poor humoral responses. In strong immunogenic antigens, regions bound by immunodominant antibodies are frequently adjacent to CD4 epitopes, potentially boosting their presentation. Conversely, poorly immunogenic regions targeted by bnAbs in HIV and influenza overlap with clusters of dominant CD4 epitopes, potentially conferring an intrinsic disadvantage for bnAb-bearing B cells in germinal centers. Here, we propose the theory of immunodominance relativity, according to which the relative positioning of immunodominant B and CD4 epitopes within a given antigen drives immunodominance. Thus, we suggest that the relative positioning of B-T epitopes may be one additional mechanism that cooperates with other previously described processes to influence immunodominance. If demonstrated, this theory can improve the current understanding of immunodominance, provide a novel explanation for HIV and influenza escape from humoral responses, and pave the way for a new rational design of universal vaccines.
Collapse
Affiliation(s)
- Riccardo Biavasco
- Department of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Marco De Giovanni
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
47
|
Young C, Lau AWY, Burnett DL. B cells in the balance: Offsetting self-reactivity avoidance with protection against foreign. Front Immunol 2022; 13:951385. [PMID: 35967439 PMCID: PMC9364820 DOI: 10.3389/fimmu.2022.951385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Antibodies are theoretically limitless in their diversity and specificity to foreign antigens; however they are constrained by the need to avoid binding to self. Germinal centers (GC) allow diversification and maturation of the antibody response towards the foreign antigen. While self-tolerance mechanisms controlling self-reactivity during B cell maturation are well recognized, the mechanisms by which GCs balance self-tolerance and foreign binding especially in the face of cross-reactivity between self and foreign, remain much less well defined. In this review we explore the extent to which GC self-tolerance restricts affinity maturation. We present studies suggesting that the outcome is situationally dependent, affected by affinity and avidity to self-antigen, and the extent to which self-binding and foreign-binding are interdependent. While auto-reactive GC B cells can mutate away from self while maturing towards the foreign antigen, if no mutational trajectories allow for self-reactive redemption, self-tolerance prevails and GC responses to the foreign pathogen are restricted, except when self-tolerance checkpoints are relaxed. Finally, we consider whether polyreactivity is subject to the same level of restriction in GC responses, especially if polyreactivity is linked to an increase in foreign protection, as occurs in certain broadly neutralizing antibodies. Overall, the outcomes for GC B cells that bind self-antigen can range from redemption, transient relaxation in self-tolerance or restriction of the antibody response to the foreign pathogen.
Collapse
Affiliation(s)
- Clara Young
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Clara Young, ; Deborah L. Burnett,
| | - Angelica W. Y. Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Deborah L. Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Clara Young, ; Deborah L. Burnett,
| |
Collapse
|
48
|
Clonal structure, stability and dynamics of human memory B cells and circulating plasmablasts. Nat Immunol 2022; 23:1076-1085. [PMID: 35761085 PMCID: PMC9276532 DOI: 10.1038/s41590-022-01230-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022]
Abstract
Memory B cells persist for a lifetime and rapidly differentiate into antibody-producing plasmablasts and plasma cells upon antigen re-encounter. The clonal relationship and evolution of memory B cells and circulating plasmablasts is not well understood. Using single-cell sequencing combined with isolation of specific antibodies, we found that in two healthy donors, the memory B cell repertoire was dominated by large IgM, IgA and IgG2 clonal families, whereas IgG1 families, including those specific for recall antigens, were of small size. Analysis of multiyear samples demonstrated stability of memory B cell clonal families and revealed that a large fraction of recently generated plasmablasts was derived from long-term memory B cell families and was found recurrently. Collectively, this study provides a systematic description of the structure, stability and dynamics of the human memory B cell pool and suggests that memory B cells may be active at any time point in the generation of plasmablasts.
Collapse
|
49
|
Jing Z, McCarron MJ, Dustin ML, Fooksman DR. Germinal center expansion but not plasmablast differentiation is proportional to peptide-MHCII density via CD40-CD40L signaling strength. Cell Rep 2022; 39:110763. [PMID: 35508132 PMCID: PMC9178878 DOI: 10.1016/j.celrep.2022.110763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
T follicular helper (TFH) cells promote expansion of germinal center (GC) B cells and plasma cell differentiation. Whether cognate peptide-MHCII (pMHCII) density instructs selection and cell fate decisions in a quantitative manner remains unclear. Using αDEC205-OVA to differentially deliver OVA peptides to GC B cells on the basis of DEC205 allelic copy number, we find DEC205+/+ B cells take up 2-fold more antigen than DEC205+/- cells, leading to proportional TFH cell help and B cell expansion. To validate these results, we establish a caged OVA peptide, which is readily detected by OVA-specific TFH cells after photo-uncaging. In situ uncaging of peptides leads to multiple serial B-T contacts and cell activation. Differential CD40 signaling, is both necessary and sufficient to mediate 2-fold differences in B cell expansion. While plasmablast numbers are increased, pMHCII density does not directly control the output or quality of plasma cells. Thus, we distinguish the roles TFH cells play in expansion versus differentiation.
Collapse
Affiliation(s)
- Zhixin Jing
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark J McCarron
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3-7FY, UK
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
50
|
Unique binding pattern for a lineage of human antibodies with broad reactivity against influenza A virus. Nat Commun 2022; 13:2378. [PMID: 35501328 PMCID: PMC9061721 DOI: 10.1038/s41467-022-29950-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/06/2022] [Indexed: 01/04/2023] Open
Abstract
Most structurally characterized broadly neutralizing antibodies (bnAbs) against influenza A viruses (IAVs) target the conserved conformational epitopes of hemagglutinin (HA). Here, we report a lineage of naturally occurring human antibodies sharing the same germline gene, VH3-48/VK1-12. These antibodies broadly neutralize the major circulating strains of IAV in vitro and in vivo mainly by binding a contiguous epitope of H3N2 HA, but a conformational epitope of H1N1 HA, respectively. Our structural and functional studies of antibody 28-12 revealed that the continuous amino acids in helix A, particularly N49HA2 of H3 HA, are critical to determine the binding feature with 28-12. In contrast, the conformational epitope feature is dependent on the discontinuous segments involving helix A, the fusion peptide, and several HA1 residues within H1N1 HA. We report that this antibody was initially selected by H3 (group 2) viruses and evolved via somatic hypermutation to enhance the reactivity to H3 and acquire cross-neutralization to H1 (group 1) virus. These findings enrich our understanding of different antigenic determinants of heterosubtypic influenza viruses for the recognition of bnAbs and provide a reference for the design of influenza vaccines and more effective antiviral drugs. While most broadly neutralizing antibodies (bnAb) against Influenza virus target conserved conformational epitopes of the glycoprotein hemagglutinin (HA), Sun et al. characterize a lineage of bnAbs that neutralize group 1 and 2 strains. Structural characterization shows that antibody 28-12 binds a continuous epitope within H3 (group 2) but requires a conformational epitope for H1 (group 1) binding. Comparison of germline-reverted Ab and intermediate mutants provides evidence for an evolutionary adaptation from group 2 to group 1 strain.
Collapse
|