1
|
Ma D, Le JQ, Dai X, Díaz MM, Abruzzi KC, Rosbash M. Transcriptomic DN3 clock neuron subtypes regulate Drosophila sleep. SCIENCE ADVANCES 2025; 11:eadr4580. [PMID: 39752484 PMCID: PMC11698076 DOI: 10.1126/sciadv.adr4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Circadian neurons within animal brains orchestrate myriad physiological processes and behaviors, but the contribution of these neurons to the regulation of sleep is not well understood. To address this deficiency, we leveraged single-cell RNA sequencing to generate a comprehensive census of transcriptomic cell types of Drosophila clock neurons. We focused principally on the enigmatic DN3s, which constitute most fly brain clock neurons and were previously almost completely uncharacterized. These DN3s are organized into 12 clusters with unusual gene expression features compared to the more well-studied clock neurons. We further show that previously uncharacterized DN3 subtypes promote sleep through a G protein-coupled receptor, TrissinR. Our findings indicate an intricate regulation of sleep behavior by clock neurons and highlight their remarkable diversity in gene expression and functional properties.
Collapse
Affiliation(s)
- Dingbang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Xihuimin Dai
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Madelen M. Díaz
- Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Katharine C. Abruzzi
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453, USA
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
2
|
Chong B, Kumar V, Nguyen DL, Hopkins MA, Ferry FS, Spera LK, Paul EM, Hutson AN, Tabuchi M. Neuropeptide-dependent spike time precision and plasticity in circadian output neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616871. [PMID: 39411164 PMCID: PMC11476009 DOI: 10.1101/2024.10.06.616871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In Drosophila, an important set of circadian output neurons are called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters. The neuropeptide diuretic hormones 31 (Dh31) and 44 (Dh44) are the insect neuropeptides known to activate PI neurons to control activity rhythms. However, the neurophysiological basis of how Dh31 and Dh44 affect circadian clock neural coding mechanisms underlying sleep in Drosophila is not well understood. Here, we identify Dh31/Dh44-dependent spike time precision and plasticity in PI neurons. We first find that a mixture of Dh31 and Dh44 enhanced the firing of PI neurons, compared to the application of Dh31 alone and Dh44 alone. We next find that the application of synthesized Dh31 and Dh44 affects membrane potential dynamics of PI neurons in the precise timing of the neuronal firing through their synergistic interaction, possibly mediated by calcium-activated potassium channel conductance. Further, we characterize that Dh31/Dh44 enhances postsynaptic potentials in PI neurons. Together, these results suggest multiplexed neuropeptide-dependent spike time precision and plasticity as circadian clock neural coding mechanisms underlying sleep in Drosophila.
Collapse
Affiliation(s)
- Bryan Chong
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Vipin Kumar
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Dieu Linh Nguyen
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Makenzie A. Hopkins
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Faith S. Ferry
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lucia K. Spera
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth M. Paul
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Anelise N. Hutson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
3
|
Boffi JC, Bathellier B, Asari H, Prevedel R. Noisy neuronal populations effectively encode sound localization in the dorsal inferior colliculus of awake mice. eLife 2024; 13:RP97598. [PMID: 39585736 PMCID: PMC11588337 DOI: 10.7554/elife.97598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Sound location coding has been extensively studied at the central nucleus of the mammalian inferior colliculus (CNIC), supporting a population code. However, this population code has not been extensively characterized on the single-trial level with simultaneous recordings or at other anatomical regions like the dorsal cortex of inferior colliculus (DCIC), which is relevant for learning-induced experience dependent plasticity. To address these knowledge gaps, here we made in two complementary ways large-scale recordings of DCIC populations from awake mice in response to sounds delivered from 13 different frontal horizontal locations (azimuths): volumetric two-photon calcium imaging with ~700 cells simultaneously recorded at a relatively low temporal resolution, and high-density single-unit extracellular recordings with ~20 cells simultaneously recorded at a high temporal resolution. Independent of the method, the recorded DCIC population responses revealed substantial trial-to-trial variation (neuronal noise) which was significantly correlated across pairs of neurons (noise correlations) in the passively listening condition. Nevertheless, decoding analysis supported that these noisy response patterns encode sound location on the single-trial basis, reaching errors that match the discrimination ability of mice. The detected noise correlations contributed to minimize the error of the DCIC population code of sound azimuth. Altogether these findings point out that DCIC can encode sound location in a similar format to what has been proposed for CNIC, opening exciting questions about how noise correlations could shape this code in the context of cortico-collicular input and experience-dependent plasticity.
Collapse
Affiliation(s)
- Juan Carlos Boffi
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l’Audition, IHU reConnectParisFrance
| | - Hiroki Asari
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Epigenetics and Neurobiology Unit, European Molecular Biology LaboratoryMonterotondoItaly
- Developmental Biology Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership Unit, European Molecular Biology LaboratoryHeidelbergGermany
- Interdisciplinary Center for Neurosciences, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
4
|
Dai X, Le JQ, Ma D, Rosbash M. Four SpsP neurons are an integrating sleep regulation hub in Drosophila. SCIENCE ADVANCES 2024; 10:eads0652. [PMID: 39576867 PMCID: PMC11584021 DOI: 10.1126/sciadv.ads0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Sleep is essential and highly conserved, yet its regulatory mechanisms remain largely unknown. To identify sleep drive neurons, we imaged Drosophila brains with calcium-modulated photoactivatable ratiometric integrator (CaMPARI). The results indicate that the activity of the protocerebral bridge (PB) correlates with sleep drive. We further identified a key three-layer PB circuit, EPG-SpsP-PEcG, in which the four SpsP neurons in the PB respond to ellipsoid body (EB) signals from EPG neurons and send signals back to the EB through PEcG neurons. This circuit is strengthened by sleep deprivation, indicating a plasticity response to sleep drive. SpsP neurons also receive inputs from the sensorimotor brain region, suggesting that they may encode sleep drive by integrating sensorimotor and navigation cues. Together, our experiments show that the four SpsP neurons and their sleep regulatory circuit play an important and dynamic role in sleep regulation.
Collapse
Affiliation(s)
- Xihuimin Dai
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| | - Dingbang Ma
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| |
Collapse
|
5
|
Sitaraman D, Vecsey CG, Koochagian C. Activity Monitoring for Analysis of Sleep in Drosophila melanogaster. Cold Spring Harb Protoc 2024; 2024:pdb.top108095. [PMID: 38336390 DOI: 10.1101/pdb.top108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep is important for survival, and the need for sleep is conserved across species. In the past two decades, the fruit fly Drosophila melanogaster has emerged as a promising system in which to study the genetic, neural, and physiological bases of sleep. Through significant advances in our understanding of the regulation of sleep in flies, the field is poised to address several open questions about sleep, such as how the need for sleep is encoded, how molecular regulators of sleep are situated within brain networks, and what the functions of sleep are. Here, we describe key findings, open questions, and commonly used methods that have been used to inform existing theories and develop new ways of thinking about the function, regulation, and adaptability of sleep behavior.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University, Hayward, California 94542, USA
| | | | - Casey Koochagian
- Neuroscience Program, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
6
|
Turi GF, Teng S, Chen X, Lim ECY, Dias C, Hu R, Wang R, Zhen F, Peng Y. Serotonin modulates infraslow oscillation in the dentate gyrus during Non-REM sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540575. [PMID: 38854102 PMCID: PMC11160574 DOI: 10.1101/2023.05.12.540575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01 - 0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by 5-HT1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.
Collapse
Affiliation(s)
- Gergely F. Turi
- New York State Psychiatric Institute, Division of Systems Neuroscience New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sasa Teng
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Xinyue Chen
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emily CY Lim
- Columbia College, Columbia University, New York, NY 10027, USA
| | - Carla Dias
- New York State Psychiatric Institute, Division of Systems Neuroscience New York, NY 10032, USA
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ruining Hu
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ruizhi Wang
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fenghua Zhen
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Present address: National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20894, USA
| | - Yueqing Peng
- Institute for Genomic Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Deneubourg C, Dafsari HS, Lowe S, Martinez-Cotrina A, Mazaud D, Park SH, Vergani V, Almacellas Barbanoj A, Maroofian R, Averdunk L, Ghayoor-Karimiani E, Jayawant S, Mignot C, Keren B, Peters R, Kamath A, Mattas L, Verma S, Silwal A, Distelmaier F, Houlden H, Lignani G, Antebi A, Jepson J, Jungbluth H, Fanto M. Epg5 links proteotoxic stress due to defective autophagic clearance and epileptogenesis in Drosophila and Vici syndrome patients. Autophagy 2024:1-13. [PMID: 39342484 DOI: 10.1080/15548627.2024.2405956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Epilepsy is a common neurological condition that arises from dysfunctional neuronal circuit control due to either acquired or innate disorders. Autophagy is an essential neuronal housekeeping mechanism, which causes severe proteotoxic stress when impaired. Autophagy impairment has been associated to epileptogenesis through a variety of molecular mechanisms. Vici Syndrome (VS) is the paradigmatic congenital autophagy disorder in humans due to recessive variants in the ectopic P-granules autophagy tethering factor 5 (EPG5) gene that is crucial for autophagosome-lysosome fusion and autophagic clearance. Here, we used Drosophila melanogaster to study the importance of Epg5 in development, aging, and seizures. Our data indicate that proteotoxic stress due to impaired autophagic clearance and seizure-like behaviors correlate and are commonly regulated, suggesting that seizures occur as a direct consequence of proteotoxic stress and age-dependent neurodegenerative progression. We provide complementary evidence from EPG5-mutated patients demonstrating an epilepsy phenotype consistent with Drosophila predictions.Abbreviations: AD: Alzheimer's disease; ALS-FTD: Amyotrophic Lateral Sclerosis-FrontoTemoporal Dementia; DART: Drosophila Arousal Tracking; ECoG: electrocorticogram; EEG: electroencephalogram; EPG5: ectopic P-granules 5 autophagy tethering factor; KA: kainic acid; MBs: mushroom bodies; MRI magnetic resonance imaging; MTOR: mechanistic target of rapamycin kinase; PD: Parkinson's disease; TSC: TSC complex; VS: Vici syndrome.
Collapse
Affiliation(s)
- Celine Deneubourg
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Hormos Salimi Dafsari
- Department of Paediatric Neurology, Evelina's London Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max-Planck-Institute for Biology of Ageing and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - Simon Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Aitana Martinez-Cotrina
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - David Mazaud
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Seo Hyun Park
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Virginia Vergani
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Amanda Almacellas Barbanoj
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Ehsan Ghayoor-Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, United Kingdom
| | - Sandeep Jayawant
- Department of Paediatric Neurology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Cyril Mignot
- Département de Génétique, Unité Fonctionnelle de Génomique du Développement, Hôpital Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Département de Génétique, Unité Fonctionnelle de Génomique du Développement, Hôpital Pitié-Salpêtrière, Paris, France
| | - Renate Peters
- Department of Pediatrics, Christliches Kinderhospital Osnabrück, Osnabrück, Germany
| | - Arveen Kamath
- All Wales Medical Genomics Service (AWMGS), University Hospital of Wales, Cardiff, United Kingdom
| | - Lauren Mattas
- Neurology and Neurological Sciences, Pediatrics, Division of Medical Genetics, Stanford University and Lucile Packard Children's Hospital, Palo Alto, USA
| | - Sumit Verma
- Department of Neurology, Emory University School of Medicine, Georgia, Atlanta, USA
| | - Arpana Silwal
- Department of Paediatric Neurology, The Royal London Hospital, London, United Kingdom
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, University Hospital, Düsseldorf, Germany
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Adam Antebi
- Max-Planck-Institute for Biology of Ageing and Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - James Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Evelina's London Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King's College London, London, United Kingdom
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Saurabh S, Meier RJ, Pireva LM, Mirza RA, Cavanaugh DJ. Overlapping Central Clock Network Circuitry Regulates Circadian Feeding and Activity Rhythms in Drosophila. J Biol Rhythms 2024; 39:440-462. [PMID: 39066485 DOI: 10.1177/07487304241263734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The circadian system coordinates multiple behavioral outputs to ensure proper temporal organization. Timing information underlying circadian regulation of behavior depends on a molecular circadian clock that operates within clock neurons in the brain. In Drosophila and other organisms, clock neurons can be divided into several molecularly and functionally discrete subpopulations that form an interconnected central clock network. It is unknown how circadian signals are coherently generated by the clock network and transmitted across output circuits that connect clock cells to downstream neurons that regulate behavior. Here, we have exhaustively investigated the contribution of clock neuron subsets to the control of two prominent behavioral outputs in Drosophila: locomotor activity and feeding. We have used cell-specific manipulations to eliminate molecular clock function or induce electrical silencing either broadly throughout the clock network or in specific subpopulations. We find that clock cell manipulations produce similar changes in locomotor activity and feeding, suggesting that overlapping central clock circuitry regulates these distinct behavioral outputs. Interestingly, the magnitude and nature of the effects depend on the clock subset targeted. Lateral clock neuron manipulations profoundly degrade the rhythmicity of feeding and activity. In contrast, dorsal clock neuron manipulations only subtly affect rhythmicity but produce pronounced changes in the distribution of activity and feeding across the day. These experiments expand our knowledge of clock regulation of activity rhythms and offer the first extensive characterization of central clock control of feeding rhythms. Despite similar effects of central clock cell disruptions on activity and feeding, we find that manipulations that prevent functional signaling in an identified output circuit preferentially degrade locomotor activity rhythms, leaving feeding rhythms relatively intact. This demonstrates that activity and feeding are indeed dissociable behaviors, and furthermore suggests that differential circadian control of these behaviors diverges in output circuits downstream of the clock network.
Collapse
Affiliation(s)
- Sumit Saurabh
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Ruth J Meier
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Liliya M Pireva
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Rabab A Mirza
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | |
Collapse
|
9
|
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Yu SC, McKellar CE, Sterling A, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GSXE, Murthy M, Bidaye SS, Hampel S, Seeds AM, Scott K. A Drosophila computational brain model reveals sensorimotor processing. Nature 2024; 634:210-219. [PMID: 39358519 PMCID: PMC11446845 DOI: 10.1038/s41586-024-07763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/27/2024] [Indexed: 10/04/2024]
Abstract
The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain1,2. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity3, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation4. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing5-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes6-10. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.
Collapse
Affiliation(s)
- Philip K Shiu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
- Eon Systems, San Francisco, CA, USA.
| | - Gabriella R Sterne
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
- University of Rochester Medical Center, Department of Biomedical Genetics, New York, NY, USA
| | - Nico Spiller
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Andrea Sandoval
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joie Zhou
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Neha Simha
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chan Hyuk Kang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Seongbong Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jinseop S Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Gregory S X E Jefferis
- Department of Zoology, University of Cambridge, Cambridge, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Salil S Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Iyer AR, Scholz-Carlson E, Bell E, Biondi G, Richhariya S, Fernandez MP. The Circadian Neuropeptide PDF has Sexually Dimorphic Effects on Activity Rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578273. [PMID: 38352594 PMCID: PMC10862788 DOI: 10.1101/2024.01.31.578273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The circadian system regulates the timing of multiple molecular, physiological, metabolic, and behavioral phenomena. In Drosophila as in other species, most of the research on how the timekeeping system in the brain controls timing of behavioral outputs has been conducted in males, or sex was not included as a biological variable. The main circadian pacemaker neurons in Drosophila release the neuropeptide Pigment Dispersing Factor (PDF), which functions as a key synchronizing factor in the network with complex effects on other clock neurons. Lack of Pdf or its receptor, PdfR, results in most flies displaying arrhythmicity in activity-rest cycles under constant conditions. However, our results show that female circadian rhythms are less affected by mutations in both Pdf and PdfR. Crispr-Cas9 mutagenesis of Pdf specifically in the ventral lateral neurons (LNvs) also has a greater effect on male rhythms. We tested the influence of the M-cells over the circadian network and show that speeding up the molecular clock specifically in the M-cells leads to sexually dimorphic phenotypes, with a more pronounced effect on male rhythmic behavior. Our results suggest that the female circadian system is more resilient to manipulations of the PDF pathway and that circadian timekeeping is more distributed across the clock neuron network in females.
Collapse
|
11
|
Woodling N. Sex- and strain-dependent effects of ageing on sleep and activity patterns in Drosophila. PLoS One 2024; 19:e0308652. [PMID: 39150918 PMCID: PMC11329114 DOI: 10.1371/journal.pone.0308652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/27/2024] [Indexed: 08/18/2024] Open
Abstract
The fruit fly Drosophila is a major discovery platform in the biology of ageing due to its balance of relatively short lifespan and relatively complex physiology and behaviour. Previous studies have suggested that some important phenotypes of ageing, for instance increasingly fragmented sleep, are shared from humans to Drosophila and can be useful measures of behavioural change with age: these phenotypes therefore hold potential as readouts of healthy ageing for genetic or pharmacological interventions aimed at the underpinning biology of ageing. However, some age-related phenotypes in Drosophila show differing results among studies, leading to questions regarding the source of discrepancies among experiments. In this study, I have tested females and males from three common laboratory strains of Drosophila to determine the extent to which sex and background strain influence age-related behavioural changes in sleep and activity patterns. Surprisingly, I find that some phenotypes-including age-related changes in total activity, total sleep, and sleep fragmentation-depend strongly on sex and strain, to the extent that some phenotypes show opposing age-related changes in different sexes or strains. Conversely, I identify other phenotypes, including age-related decreases in morning and evening anticipation, that are more uniform across sexes and strains. These results reinforce the importance of controlling for background strain in both behavioural and ageing experiments, and they imply that caution should be used when drawing conclusions from studies on a single sex or strain of Drosophila. At the same time, these findings also offer suggestions for behavioural measures that merit further investigation as potentially more consistent phenotypes of ageing.
Collapse
Affiliation(s)
- Nathan Woodling
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Yoshii T, Saito A, Yokosako T. A four-oscillator model of seasonally adapted morning and evening activities in Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:527-534. [PMID: 37217625 PMCID: PMC11226490 DOI: 10.1007/s00359-023-01639-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
The fruit fly Drosophila melanogaster exhibits two activity peaks, one in the morning and another in the evening. Because the two peaks change phase depending on the photoperiod they are exposed to, they are convenient for studying responses of the circadian clock to seasonal changes. To explain the phase determination of the two peaks, Drosophila researchers have employed the two-oscillator model, in which two oscillators control the two peaks. The two oscillators reside in different subsets of neurons in the brain, which express clock genes, the so-called clock neurons. However, the mechanism underlying the activity of the two peaks is complex and requires a new model for mechanistic exploration. Here, we hypothesize a four-oscillator model that controls the bimodal rhythms. The four oscillators that reside in different clock neurons regulate activity in the morning and evening and sleep during the midday and at night. In this way, bimodal rhythms are formed by interactions among the four oscillators (two activity and two sleep oscillators), which may judiciously explain the flexible waveform of activity rhythms under different photoperiod conditions. Although still hypothetical, this model would provide a new perspective on the seasonal adaptation of the two activity peaks.
Collapse
Affiliation(s)
- Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1, Kita-ku, Okayama, 700-8530, Japan.
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1, Kita-ku, Okayama, 700-8530, Japan
| | - Tatsuya Yokosako
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
13
|
Deluca A, Bascom B, Key Planas DA, Kocher MA, Torres M, Arbeitman MN. Contribution of neurons that express fruitless and Clock transcription factors to behavioral rhythms and courtship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598537. [PMID: 38915619 PMCID: PMC11195222 DOI: 10.1101/2024.06.12.598537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Animals need to integrate information across neuronal networks that direct reproductive behaviors and circadian rhythms. In Drosophila, the master regulatory transcription factors that direct courtship behaviors and circadian rhythms are co-expressed in a small set of neurons. In this study we investigate the role of these neurons in both males and females. We find sex-differences in the number of these fruitless and Clock -expressing neurons ( fru ∩ Clk neurons) that is regulated by male-specific Fru. We assign the fru ∩ Clk neurons to the electron microscopy connectome that provides high resolution structural information. We also discover sex-differences in the number of fru -expressing neurons that are post-synaptic targets of Clk -expressing neurons, with more post-synaptic targets in males. When fru ∩ Clk neurons are activated or silenced, males have a shorter period length. Activation of fru ∩ Clk neurons also changes the rate a courtship behavior is performed. We find that activation and silencing fru ∩ Clk neurons impacts the molecular clock in the sLNv master pacemaker neurons, in a cell-nonautonomous manner. These results reveal how neurons that subserve the two processes, reproduction and circadian rhythms, can impact behavioral outcomes in a sex-specific manner.
Collapse
|
14
|
Pierre-Ferrer S, Collins B, Lukacsovich D, Wen S, Cai Y, Winterer J, Yan J, Pedersen L, Földy C, Brown SA. A phosphate transporter in VIPergic neurons of the suprachiasmatic nucleus gates locomotor activity during the light/dark transition in mice. Cell Rep 2024; 43:114220. [PMID: 38735047 DOI: 10.1016/j.celrep.2024.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.
Collapse
Affiliation(s)
- Sara Pierre-Ferrer
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Ben Collins
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Biology, Sacred Heart University, 5151 Park Ave., Fairfield, CT 06825, USA
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Shao'Ang Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuchen Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lene Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, Faculties of Medicine and Science, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
15
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
16
|
Mao R, Yu J, Deng B, Dai X, Du Y, Du S, Zhang W, Rao Y. Conditional chemoconnectomics (cCCTomics) as a strategy for efficient and conditional targeting of chemical transmission. eLife 2024; 12:RP91927. [PMID: 38686992 PMCID: PMC11060718 DOI: 10.7554/elife.91927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.
Collapse
Affiliation(s)
- Renbo Mao
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
- National Institute of Biological Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jianjun Yu
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Bowen Deng
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Xihuimin Dai
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Yuyao Du
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Sujie Du
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Yi Rao
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
17
|
Schwarz JE, Sengupta A, Guevara C, Barber AF, Hsu CT, Zhang SL, Weljie A, Sehgal A. Age-regulated cycling metabolites are relevant for behavior. Aging Cell 2024; 23:e14082. [PMID: 38204362 PMCID: PMC11019118 DOI: 10.1111/acel.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Circadian cycles of sleep:wake and gene expression change with age in all organisms examined. Metabolism is also under robust circadian regulation, but little is known about how metabolic cycles change with age and whether these contribute to the regulation of behavioral cycles. To address this gap, we compared cycling of metabolites in young and old Drosophila and found major age-related variations. A significant model separated the young metabolic profiles by circadian timepoint, but could not be defined for the old metabolic profiles due to the greater variation in this dataset. Of the 159 metabolites measured in fly heads, we found 17 that cycle by JTK analysis in young flies and 17 in aged. Only four metabolites overlapped in the two groups, suggesting that cycling metabolites are distinct in young and old animals. Among our top cyclers exclusive to young flies were components of the pentose phosphate pathway (PPP). As the PPP is important for buffering reactive oxygen species, and overexpression of glucose-6-phosphate dehydrogenase (G6PD), a key component of the PPP, was previously shown to extend lifespan in Drosophila, we asked if this manipulation also affects sleep:wake cycles. We found that overexpression in circadian clock neurons decreases sleep in association with an increase in cellular calcium and mitochondrial oxidation, suggesting that altering PPP activity affects neuronal activity. Our findings elucidate the importance of metabolic regulation in maintaining patterns of neural activity, and thereby sleep:wake cycles.
Collapse
Affiliation(s)
- Jessica E. Schwarz
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Camilo Guevara
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Annika F. Barber
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
Waksman Institute and Department of Molecular Biology and Biochemistry, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| | - Cynthia T. Hsu
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shirley L. Zhang
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
Department of Cell BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Aalim Weljie
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
18
|
Jameson AT, Spera LK, Nguyen DL, Paul EM, Tabuchi M. Membrane-coated glass electrodes for stable, low-noise electrophysiology recordings in Drosophila central neurons. J Neurosci Methods 2024; 404:110079. [PMID: 38340901 PMCID: PMC11034715 DOI: 10.1016/j.jneumeth.2024.110079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Electrophysiological recording with glass electrodes is one of the best techniques to measure membrane potential dynamics and ionic currents of voltage-gated channels in neurons. However, artifactual variability of the biophysical state variables that determine recording quality can be caused by insufficient affinity between the electrode and cell membrane during the recording. NEW METHOD We introduce a phospholipid membrane coating on glass electrodes to improve intracellular electrophysiology recording quality. Membrane-coated electrodes were prepared with a tip-dip protocol for perforated-patch, sharp-electrode current-clamp, and cell-attached patch-clamp recordings from specific circadian clock neurons in Drosophila. We perform quantitative comparisons based on the variability of functional biophysical parameters used in various electrophysiological methods, and advanced statistical comparisons based on the degree of stationariness and signal-to-noise ratio. RESULTS Results indicate a dramatic reduction in artifactual variabilities of functional parameters from enhanced stability. We also identify significant exclusions of a statistically estimated noise component in a time series of membrane voltage signals, improving signal-to-noise ratio. COMPARISON WITH EXISTING METHODS Compared to standard glass electrodes, using membrane-coated glass electrodes achieves improved recording quality in intracellular electrophysiology. CONCLUSIONS Electrophysiological recordings from Drosophila central neurons can be technically challenging, however, membrane-coated electrodes will possibly be beneficial for reliable data acquisition and improving the technical feasibility of axonal intracellular activities measurements and single-channel recordings. The improved electrical stability of the recordings should also contribute to increased mechanical stability, thus facilitating long-term stable measurements of neural activity. Therefore, it is possible that membrane-coated electrodes will be useful for any model system.
Collapse
Affiliation(s)
- Angelica T Jameson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lucia K Spera
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Dieu Linh Nguyen
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth M Paul
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
19
|
Merrill CB, Titos I, Pabon MA, Montgomery AB, Rodan AR, Rothenfluh A. Iterative assay for transposase-accessible chromatin by sequencing to isolate functionally relevant neuronal subtypes. SCIENCE ADVANCES 2024; 10:eadi4393. [PMID: 38536919 PMCID: PMC10971406 DOI: 10.1126/sciadv.adi4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/21/2024] [Indexed: 04/18/2024]
Abstract
The Drosophila brain contains tens of thousands of distinct cell types. Thousands of different transgenic lines reproducibly target specific neuron subsets, yet most still express in several cell types. Furthermore, most lines were developed without a priori knowledge of where the transgenes would be expressed. To aid in the development of cell type-specific tools for neuronal identification and manipulation, we developed an iterative assay for transposase-accessible chromatin (ATAC) approach. Open chromatin regions (OCRs) enriched in neurons, compared to whole bodies, drove transgene expression preferentially in subsets of neurons. A second round of ATAC-seq from these specific neuron subsets revealed additional enriched OCR2s that further restricted transgene expression within the chosen neuron subset. This approach allows for continued refinement of transgene expression, and we used it to identify neurons relevant for sleep behavior. Furthermore, this approach is widely applicable to other cell types and to other organisms.
Collapse
Affiliation(s)
- Collin B. Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
| | - Iris Titos
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
| | - Miguel A. Pabon
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Aylin R. Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Abhilash L, Shafer OT. A two-process model of Drosophila sleep reveals an inter-dependence between circadian clock speed and the rate of sleep pressure decay. Sleep 2024; 47:zsad277. [PMID: 37930351 PMCID: PMC11275470 DOI: 10.1093/sleep/zsad277] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Sleep is controlled by two processes-a circadian clock that regulates its timing and a homeostat that regulates the drive to sleep. Drosophila has been an insightful model for understanding both processes. For four decades, Borbély and Daan's two-process model has provided a powerful framework for understanding sleep regulation. However, the field of fly sleep has not employed such a model as a framework for the investigation of sleep. To this end, we have adapted the two-process model to the fly and established its utility by showing that it can provide empirically testable predictions regarding the circadian and homeostatic control of fly sleep. We show that the ultradian rhythms previously reported for loss-of-function clock mutants in the fly are robustly detectable and a predictable consequence of a functional sleep homeostat in the absence of a functioning circadian system. We find that a model in which the circadian clock speed and homeostatic rates act without influencing each other provides imprecise predictions regarding how clock speed influences the strength of sleep rhythms and the amount of daily sleep. We also find that quantitatively good fits between empirical values and model predictions were achieved only when clock speeds were positively correlated with rates of decay of sleep pressure. Our results indicate that longer sleep bouts better reflect the homeostatic process than the current definition of sleep as any inactivity lasting 5 minutes or more. This two-process model represents a powerful framework for work on the molecular and physiological regulation of fly sleep.
Collapse
Affiliation(s)
- Lakshman Abhilash
- The Advanced Science Research Center, The City University of New York, New York, NY, USA
| | - Orie Thomas Shafer
- The Advanced Science Research Center, The City University of New York, New York, NY, USA
| |
Collapse
|
21
|
Tabuchi M. Dynamic neuronal instability generates synaptic plasticity and behavior: Insights from Drosophila sleep. Neurosci Res 2024; 198:1-7. [PMID: 37385545 PMCID: PMC11033711 DOI: 10.1016/j.neures.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
How do neurons encode the information that underlies cognition, internal states, and behavior? This review focuses on the neural circuit mechanisms underlying sleep in Drosophila and, to illustrate the power of addressing neural coding in this system, highlights a specific circuit mediating the circadian regulation of sleep quality. This circuit exhibits circadian cycling of sleep quality, which depends solely on the pattern (not the rate) of spiking. During the night, the stability of spike waveforms enhances the reliability of spike timing in these neurons to promote sleep quality. During the day, instability of the spike waveforms leads to uncertainty of spike timing, which remarkably produces synaptic plasticity to induce arousal. Investigation of the molecular and biophysical basis of these changes was greatly facilitated by its study in Drosophila, revealing direct connections between genes, molecules, spike biophysical properties, neural codes, synaptic plasticity, and behavior. Furthermore, because these patterns of neural activity change with aging, this model system holds promise for understanding the interplay between the circadian clock, aging, and sleep quality. It is proposed here that neurophysiological investigations of the Drosophila brain present an exceptional opportunity to tackle some of the most challenging questions related to neural coding.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
22
|
Zhao X, Yang X, Lv P, Xu Y, Wang X, Zhao Z, Du J. Polycomb regulates circadian rhythms in Drosophila in clock neurons. Life Sci Alliance 2024; 7:e202302140. [PMID: 37914396 PMCID: PMC10620068 DOI: 10.26508/lsa.202302140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Circadian rhythms are essential physiological feature for most living organisms. Previous studies have shown that epigenetic regulation plays a crucial role. There is a knowledge gap in the chromatin state of some key clock neuron clusters. In this study, we show that circadian rhythm is affected by the epigenetic regulator Polycomb (Pc) within the Drosophila clock neurons. To investigate the molecular mechanisms underlying the roles of Pc in these clock neuron clusters, we use targeted DamID (TaDa) to identify genes significantly bound by Pc in the neurons marked by C929-Gal4 (including l-LNvs cluster), R6-Gal4 (including s-LNvs cluster), R18H11-Gal4 (including DN1 cluster), and DVpdf-Gal4, pdf-Gal80 (including LNds cluster). It shows that Pc binds to the genes involved in the circadian rhythm pathways, arguing a direct role for Pc in regulating circadian rhythms through specific clock genes. This study shows the identification of Pc targets in the clock neuron clusters, providing potential resource for understanding the regulatory mechanisms of circadian rhythms by the PcG complex. Thus, this study provided an example for epigenetic regulation of adult behavior.
Collapse
Affiliation(s)
- Xianguo Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xingzhuo Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuetong Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
24
|
Wu L, Liu C. Integrated neural circuits of sleep and memory regulation in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101105. [PMID: 37625641 DOI: 10.1016/j.cois.2023.101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Sleep and memory are highly intertwined, yet the integrative neural network of these two fundamental physiological behaviors remains poorly understood. Multiple cell types and structures of the Drosophila brain have been shown involved in the regulation of sleep and memory, and recent efforts are focusing on bridging them at molecular and circuit levels. Here, we briefly review 1) identified neurons as key nodes of olfactory-associative memory circuits involved in different memory processes; 2) how neurons of memory circuits participate in sleep regulation; and 3) other cell types and circuits besides the mushroom body in linking sleep and memory. We also attempt to provide the remaining gaps of circuitry integration of sleep and memory, which may spark some new thinking for future efforts.
Collapse
Affiliation(s)
- Litao Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China.
| |
Collapse
|
25
|
De J, Wu M, Lambatan V, Hua Y, Joiner WJ. Re-examining the role of the dorsal fan-shaped body in promoting sleep in Drosophila. Curr Biol 2023; 33:3660-3668.e4. [PMID: 37552985 PMCID: PMC10573663 DOI: 10.1016/j.cub.2023.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/10/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The needs fulfilled by sleep are unknown, though the effects of insufficient sleep are manifold. To better understand how the need to sleep is sensed and discharged, much effort has gone into identifying the neural circuits involved in regulating arousal, especially those that promote sleep. In prevailing models, the dorsal fan-shaped body (dFB) plays a central role in this process in the fly brain. In the present study we manipulated various properties of the dFB including its electrical activity, synaptic output, and endogenous gene expression. In each of these experimental contexts we were unable to identify any effect on sleep that could be unambiguously mapped to the dFB. Furthermore, we found evidence that sleep phenotypes previously attributed to the dFB were caused by genetic manipulations that inadvertently targeted the ventral nerve cord. We also examined expression of two genes whose purported effects have been attributed to functions within a specific subpopulation of dFB neurons. In both cases we found little to no expression in the expected cells. Collectively, our results cast doubt on the prevailing hypothesis that the dFB plays a central role in promoting sleep.
Collapse
Affiliation(s)
- Joydeep De
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vanessa Lambatan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yue Hua
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - William J Joiner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Kobayashi R, Nakane S, Tomita J, Funato H, Yanagisawa M, Kume K. A phosphorylation-deficient mutant of Sik3, a homolog of Sleepy, alters circadian sleep regulation by PDF neurons in Drosophila. Front Neurosci 2023; 17:1181555. [PMID: 37662102 PMCID: PMC10469759 DOI: 10.3389/fnins.2023.1181555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Sleep behavior has been observed from non-vertebrates to humans. Sleepy mutation in mice resulted in a notable increase in sleep and was identified as an exon-skipping mutation of the salt-inducible kinase 3 (Sik3) gene, conserved among animals. The skipped exon includes a serine residue that is phosphorylated by protein kinase A. Overexpression of a mutant gene with the conversion of this serine into alanine (Sik3-SA) increased sleep in both mice and the fruit fly Drosophila melanogaster. However, the mechanism by which Sik3-SA increases sleep remains unclear. Here, we found that Sik3-SA overexpression in all neurons increased sleep under both light-dark (LD) conditions and constant dark (DD) conditions in Drosophila. Additionally, overexpression of Sik3-SA only in PDF neurons, which are a cluster of clock neurons regulating the circadian rhythm, increased sleep during subjective daytime while decreasing the amplitude of circadian rhythm. Furthermore, suppressing Sik3-SA overexpression specifically in PDF neurons in flies overexpressing Sik3-SA in all neurons reversed the sleep increase during subjective daytime. These results indicate that Sik3-SA alters the circadian function of PDF neurons and leads to an increase in sleep during subjective daytime under constant dark conditions.
Collapse
Affiliation(s)
- Riho Kobayashi
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shin Nakane
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- School of Medicine, Toho University, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
27
|
Goda T, Umezaki Y, Hamada FN. Molecular and Neural Mechanisms of Temperature Preference Rhythm in Drosophila melanogaster. J Biol Rhythms 2023; 38:326-340. [PMID: 37222551 PMCID: PMC10330063 DOI: 10.1177/07487304231171624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Temperature influences animal physiology and behavior. Animals must set an appropriate body temperature to maintain homeostasis and maximize survival. Mammals set their body temperatures using metabolic and behavioral strategies. The daily fluctuation in body temperature is called the body temperature rhythm (BTR). For example, human body temperature increases during wakefulness and decreases during sleep. BTR is controlled by the circadian clock, is closely linked with metabolism and sleep, and entrains peripheral clocks located in the liver and lungs. However, the underlying mechanisms of BTR are largely unclear. In contrast to mammals, small ectotherms, such as Drosophila, control their body temperatures by choosing appropriate environmental temperatures. The preferred temperature of Drosophila increases during the day and decreases at night; this pattern is referred to as the temperature preference rhythm (TPR). As flies are small ectotherms, their body temperature is close to that of the surrounding environment. Thus, Drosophila TPR produces BTR, which exhibits a pattern similar to that of human BTR. In this review, we summarize the regulatory mechanisms of TPR, including recent studies that describe neuronal circuits relaying ambient temperature information to dorsal neurons (DNs). The neuropeptide diuretic hormone 31 (DH31) and its receptor (DH31R) regulate TPR, and a mammalian homolog of DH31R, the calcitonin receptor (CALCR), also plays an important role in mouse BTR regulation. In addition, both fly TPR and mammalian BTR are separately regulated from another clock output, locomotor activity rhythms. These findings suggest that the fundamental mechanisms of BTR regulation may be conserved between mammals and flies. Furthermore, we discuss the relationships between TPR and other physiological functions, such as sleep. The dissection of the regulatory mechanisms of Drosophila TPR could facilitate an understanding of mammalian BTR and the interaction between BTR and sleep regulation.
Collapse
Affiliation(s)
- Tadahiro Goda
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Yujiro Umezaki
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| | - Fumika N. Hamada
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, Davis, California
| |
Collapse
|
28
|
Lange AP, Wolf FW. Alcohol sensitivity and tolerance encoding in sleep regulatory circadian neurons in Drosophila. Addict Biol 2023; 28:e13304. [PMID: 37500483 PMCID: PMC10911855 DOI: 10.1111/adb.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 05/30/2023] [Indexed: 07/29/2023]
Abstract
Alcohol tolerance is a simple form of behavioural and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is a useful model for determining the molecular and circuit encoding mechanisms in detail. Rapid tolerance, measured after the first alcohol exposure is completely metabolized, is localized to specific brain regions that are not interconnected in an obvious way. We used a forward neuroanatomical screen to identify three new neural sites for rapid tolerance encoding. One of these was composed of two groups of neurons, the DN1a and DN1p glutamatergic neurons, that are part of the Drosophila circadian clock. We localized rapid tolerance to the two DN1a neurons that regulate arousal by light at night, temperature-dependent sleep timing, and night-time sleep. Two clock neurons that regulate evening activity, LNd6 and the 5th LNv, are postsynaptic to the DN1as, and they promote rapid tolerance via the metabotropic glutamate receptor. Thus, rapid tolerance to alcohol overlaps with sleep regulatory neural circuitry, suggesting a mechanistic link.
Collapse
Affiliation(s)
- Anthony P. Lange
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| |
Collapse
|
29
|
Richhariya S, Shin D, Le JQ, Rosbash M. Dissecting neuron-specific functions of circadian genes using modified cell-specific CRISPR approaches. Proc Natl Acad Sci U S A 2023; 120:e2303779120. [PMID: 37428902 PMCID: PMC10629539 DOI: 10.1073/pnas.2303779120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023] Open
Abstract
Circadian behavioral rhythms in Drosophila melanogaster are regulated by about 75 pairs of brain neurons. They all express the core clock genes but have distinct functions and gene expression profiles. To understand the importance of these distinct molecular programs, neuron-specific gene manipulations are essential. Although RNAi based methods are standard to manipulate gene expression in a cell-specific manner, they are often ineffective, especially in assays involving smaller numbers of neurons or weaker Gal4 drivers. We and others recently exploited a neuron-specific CRISPR-based method to mutagenize genes within circadian neurons. Here, we further explore this approach to mutagenize three well-studied clock genes: the transcription factor gene vrille, the photoreceptor gene Cryptochrome (cry), and the neuropeptide gene Pdf (pigment dispersing factor). The CRISPR-based strategy not only reproduced their known phenotypes but also assigned cry function for different light-mediated phenotypes to discrete, different subsets of clock neurons. We further tested two recently published methods for temporal regulation in adult neurons, inducible Cas9 and the auxin-inducible gene expression system. The results were not identical, but both approaches successfully showed that the adult-specific knockout of the neuropeptide Pdf reproduces the canonical loss-of-function mutant phenotypes. In summary, a CRISPR-based strategy is a highly effective, reliable, and general method to temporally manipulate gene function in specific adult neurons.
Collapse
|
30
|
Landis JE, Sungu K, Sipe H, Copeland JM. RNAi of Complex I and V of the electron transport chain in glutamate neurons extends life span, increases sleep, and decreases locomotor activity in Drosophila melanogaster. PLoS One 2023; 18:e0286828. [PMID: 37319260 PMCID: PMC10270625 DOI: 10.1371/journal.pone.0286828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
RNAi targeting the electron transport chain has been proven to prolong life span in many different species, and experiments specifically with Drosophila melanogaster and Caenorhabditis elegans have shown a distinct role for neurons. To determine which subset of neurons is implicated in this life span extension, we used the GAL4/UAS system to activate RNAi against genes of Complex I and Complex V. We found life span extension of 18-24% with two glutamate neuron (D42 and VGlut) GAL4 lines. We used the GAL80 system to determine if the overlapping set of glutamate neurons in these two GAL4 lines imparts the life span extension. Limiting GAL4 activity to non-VGlut glutamate neurons in the D42 background failed to extend life span, suggesting that glutamate neurons have an important role in aging. Interestingly, RNAi of the electron transport chain in D42 glutamate neurons also caused an increase in daytime and nighttime sleep and a decrease in nighttime locomotor activity. Changes to sleep patterns and prolonged life span were not accompanied by any changes in female fertility or response to starvation. Our findings demonstrate that a small subset of neurons can control life span, and further studies can look into the contributions made by glutamate neurons.
Collapse
Affiliation(s)
- Jessie E. Landis
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States of America
| | - Kevin Sungu
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States of America
| | - Hannah Sipe
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States of America
| | - Jeffrey M. Copeland
- Department of Biology, Eastern Mennonite University, Harrisonburg, VA, United States of America
| |
Collapse
|
31
|
Roach ST, Ford MC, Simhambhatla V, Loutrianakis V, Farah H, Li Z, Periandri EM, Abdalla D, Huang I, Kalra A, Shaw PJ. Sleep deprivation, sleep fragmentation, and social jet lag increase temperature preference in Drosophila. Front Neurosci 2023; 17:1175478. [PMID: 37274220 PMCID: PMC10237294 DOI: 10.3389/fnins.2023.1175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Despite the fact that sleep deprivation substantially affects the way animals regulate their body temperature, the specific mechanisms behind this phenomenon are not well understood. In both mammals and flies, neural circuits regulating sleep and thermoregulation overlap, suggesting an interdependence that may be relevant for sleep function. To investigate this relationship further, we exposed flies to 12 h of sleep deprivation, or 48 h of sleep fragmentation and evaluated temperature preference in a thermal gradient. Flies exposed to 12 h of sleep deprivation chose warmer temperatures after sleep deprivation. Importantly, sleep fragmentation, which prevents flies from entering deeper stages of sleep, but does not activate sleep homeostatic mechanisms nor induce impairments in short-term memory also resulted in flies choosing warmer temperatures. To identify the underlying neuronal circuits, we used RNAi to knock down the receptor for Pigment dispersing factor, a peptide that influences circadian rhythms, temperature preference and sleep. Expressing UAS-PdfrRNAi in subsets of clock neurons prevented sleep fragmentation from increasing temperature preference. Finally, we evaluated temperature preference after flies had undergone a social jet lag protocol which is known to disrupt clock neurons. In this protocol, flies experience a 3 h light phase delay on Friday followed by a 3 h light advance on Sunday evening. Flies exposed to social jet lag exhibited an increase in temperature preference which persisted for several days. Our findings identify specific clock neurons that are modulated by sleep disruption to increase temperature preference. Moreover, our data indicate that temperature preference may be a more sensitive indicator of sleep disruption than learning and memory.
Collapse
Affiliation(s)
- S. Tanner Roach
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Melanie C. Ford
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vikram Simhambhatla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vasilios Loutrianakis
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Hamza Farah
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhaoyi Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica M. Periandri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Dina Abdalla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Irene Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Arjan Kalra
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
32
|
Segu A, Kannan NN. The duration of caffeine treatment plays an essential role in its effect on sleep and circadian rhythm. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad014. [PMID: 37193284 PMCID: PMC10108652 DOI: 10.1093/sleepadvances/zpad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Sleep is regulated by the homeostatic system and the circadian clock. Caffeine intake promotes wakefulness in Drosophila. In humans, caffeine is consumed on a daily basis and hence it is important to understand the effect of prolonged caffeine intake on both circadian and homeostatic regulation of sleep. Furthermore, sleep changes with age and the impact of caffeine on age-dependent sleep fragmentation are yet to be understood. Hence in the present study, we examined the effect of short exposure to caffeine on homeostatic sleep and age-dependent sleep fragmentation in Drosophila. We further assessed the effect of prolonged exposure to caffeine on homeostatic sleep and circadian clock. The results of our study showed that short exposure to caffeine reduces sleep and food intake in mature flies. It also enhances sleep fragmentation with increasing age. However, we have not assessed the effect of caffeine on food intake in older flies. On the other hand, prolonged caffeine exposure did not exert any significant effect on the duration of sleep and food intake in mature flies. Nevertheless, prolonged caffeine ingestion decreased the morning and evening anticipatory activity in these flies indicating that it affects the circadian rhythm. These flies also exhibited phase delay in the clock gene timeless transcript oscillation and exhibited either behavioral arrhythmicity or a longer free-running period under constant darkness. In summary, the results of our studies showed that short exposure to caffeine increases the sleep fragmentation with age whereas prolonged caffeine exposure disrupts the circadian clock.
Collapse
Affiliation(s)
- Aishwarya Segu
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, India
| |
Collapse
|
33
|
Lange AP, Wolf FW. Alcohol tolerance encoding in sleep regulatory circadian neurons in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526363. [PMID: 36778487 PMCID: PMC9915517 DOI: 10.1101/2023.01.30.526363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alcohol tolerance is a simple form of behavioral and neural plasticity that occurs with the first drink. Neural plasticity in tolerance is likely a substrate for longer term adaptations that can lead to alcohol use disorder. Drosophila develop tolerance with characteristics similar to vertebrates, and it is useful model for determining the molecular and circuit encoding mechanisms in detail. Rapid tolerance, measured after the first alcohol exposure is completely metabolized, is localized to specific brain regions that are not interconnected in an obvious way. We used a forward neuroanatomical screen to identify three new neural sites for rapid tolerance encoding. One of these was comprised of two groups of neurons, the DN1a and DN1p glutamatergic neurons, that are part of the Drosophila circadian clock. We localized rapid tolerance to the two DN1a neurons that regulate arousal by light at night, temperature-dependent sleep timing, and night-time sleep. Two clock neurons that regulate evening activity, LNd6 and the 5th LNv, are postsynaptic to the DN1as and they promote rapid tolerance via the metabotropic glutamate receptor. Thus, rapid tolerance to alcohol overlaps with sleep regulatory neural circuitry, suggesting a mechanistic link.
Collapse
Affiliation(s)
- Anthony P. Lange
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343
| | - Fred W. Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
| |
Collapse
|
34
|
Palmateer CM, Artikis C, Brovero SG, Friedman B, Gresham A, Arbeitman MN. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. eLife 2023; 12:e78511. [PMID: 36724009 PMCID: PMC9891730 DOI: 10.7554/elife.78511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.
Collapse
Affiliation(s)
- Colleen M Palmateer
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Catherina Artikis
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Savannah G Brovero
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Benjamin Friedman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Alexis Gresham
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
- Program of Neuroscience, Florida State UniversityTallahasseeUnited States
| |
Collapse
|
35
|
Bansal S, Lin S. Transcriptional Genetically Encoded Calcium Indicators in Drosophila. Cold Spring Harb Protoc 2023; 2023:8-18. [PMID: 36167674 DOI: 10.1101/pdb.top107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Knowing which neurons are active during behavior is a crucial step toward understanding how nervous systems work. Neuronal activation is generally accompanied by an increase in intracellular calcium levels. Therefore, intracellular calcium levels are widely used as a proxy for neuronal activity. Many types of synthetic components and bioluminescent or fluorescent proteins that report transient and long-term changes in intracellular calcium levels have been developed over the past 60 years. Calcium indicators that enable imaging of the dynamic activity of a large ensemble of neurons in behaving animals have revolutionized the field of neuroscience. Among these, transcription-based genetically encoded calcium indicators (transcriptional GECIs) have proven easy to use and do not depend on sophisticated imaging systems, offering unique advantages over other types of calcium indicators. Here, we describe the two currently available fly transcriptional GECIs-calcium-dependent nuclear import of LexA (CaLexA) and transcriptional reporter of intracellular calcium (TRIC)-and review studies that have used them. In the accompanying protocol, we present step-by-step details for generating CaLexA- and TRIC-ready flies and for imaging CaLexA and TRIC signals in dissected brains after experimental manipulations of intact free-moving flies.
Collapse
Affiliation(s)
- Sonia Bansal
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
36
|
Song Y, Lian J, Wang K, Wen J, Luo Y. Changes in the cortical network during sleep stage transitions. J Neurosci Res 2023; 101:20-33. [PMID: 36148534 DOI: 10.1002/jnr.25125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022]
Abstract
Sleep state transitions are closely related to insomnia, drowsiness, and sleep maintenance. However, how the cortical network varies during such a transition process remains unclear. Changes in the cortical interaction during the short-term process of sleep stage transitions were investigated. In all, 40 healthy young participants underwent overnight polysomnography. The phase transfer entropy of six frequency bands was obtained from 16 electroencephalography channels to assess the strength and direction of information flow between the cortical regions. Differences in the cortical network between the first and the last 10 s in a 40-s transition period across wakefulness, N1, N2, N3, and rapid eye movement were, respectively, studied. Various frequency bands exhibited different patterns during the sleep stage transitions. It was found that the mutual transitions between the sleep stages were not necessarily the opposite. More significant changes were observed in the sleep deepening process than in the process of sleep awakening. During sleep stage transitions, changes in the inflow and outflow strength of various cortical regions led to regional differences, but for the entire sleep progress, such an imbalance did not intensify, and a dynamic balance was instead observed. The detailed findings of variations in cortical interactions during sleep stage transition promote understanding of sleep mechanism, sleep process, and sleep function. Additionally, it is expected to provide helpful clues for sleep improvement, like reducing the time required to fall asleep and maintaining sleep depth.
Collapse
Affiliation(s)
- Yingjie Song
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiakai Lian
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kejie Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Wen
- Psychology Department, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Ren M, Yang Y, Heng KHY, Ng LY, Chong CYY, Ng YT, Gorur-Shandilya S, Lee RMQ, Lim KL, Zhang J, Koh TW. MED13 and glycolysis are conserved modifiers of α-synuclein-associated neurodegeneration. Cell Rep 2022; 41:111852. [PMID: 36543134 DOI: 10.1016/j.celrep.2022.111852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein (α-syn) is important in synucleinopathies such as Parkinson's disease (PD). While genome-wide association studies (GWASs) of synucleinopathies have identified many risk loci, the underlying genes have not been shown for most loci. Using Drosophila, we screened 3,471 mutant chromosomes for genetic modifiers of α-synuclein and identified 12 genes. Eleven modifiers have human orthologs associated with diseases, including MED13 and CDC27, which lie within PD GWAS loci. Drosophila Skd/Med13 and glycolytic enzymes are co-upregulated by α-syn-associated neurodegeneration. While elevated α-syn compromises mitochondrial function, co-expressing skd/Med13 RNAi and α-syn synergistically increase the ratio of oxidized-to-reduced glutathione. The resulting neurodegeneration can be suppressed by overexpressing a glycolytic enzyme or treatment with deferoxamine, suggesting that compensatory glycolysis is neuroprotective. In addition, the functional relationship between α-synuclein, MED13, and glycolytic enzymes is conserved between flies and mice. We propose that hypoxia-inducible factor and MED13 are part of a druggable pathway for PD.
Collapse
Affiliation(s)
- Mengda Ren
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Ying Yang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | | | - Lu Yi Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Yan Ting Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; China National Health and Disease Human Brain Tissue Resource Center, Hangzhou, Zhejiang 310002, China
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
38
|
Lee H, Lim C. Circadian gating of light-induced arousal in Drosophila sleep. J Neurogenet 2022:1-11. [DOI: 10.1080/01677063.2022.2151596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hoyeon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
39
|
Damulewicz M, Tyszka A, Pyza E. Light exposure during development affects physiology of adults in Drosophila melanogaster. Front Physiol 2022; 13:1008154. [PMID: 36505068 PMCID: PMC9732085 DOI: 10.3389/fphys.2022.1008154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Light is one of most important factors synchronizing organisms to day/night cycles in the environment. In Drosophila it is received through compound eyes, Hofbauer-Buchner eyelet, ocelli, using phospholipase C-dependent phototransduction and by deep brain photoreceptors, like Cryptochrome. Even a single light pulse during early life induces larval-time memory, which synchronizes the circadian clock and maintains daily rhythms in adult flies. In this study we investigated several processes in adult flies after maintaining their embryos, larvae and pupae in constant darkness (DD) until eclosion. We found that the lack of external light during development affects sleep time, by reduction of night sleep, and in effect shift to the daytime. However, disruption of internal CRY- dependent photoreception annuls this effect. We also observed changes in the expression of genes encoding neurotransmitters and their receptors between flies kept in different light regime. In addition, the lack of light during development results in decreasing size of mushroom bodies, involved in sleep regulation. Taking together, our results show that presence of light during early life plays a key role in brain development and affects adult behavior.
Collapse
|
40
|
Abstract
Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such as light, humidity, and temperature. Among environmental cues, temperature plays an important role in the regulation of sleep. This review presents an overview of thermoreception in animals and the neural circuits that link this process to sleep. Understanding the influence of temperature on sleep can provide insight into basic physiologic processes that are required for survival and guide strategies to manage sleep disorders.
Collapse
|
41
|
Delventhal R, Barber AF. Sensory integration: Time and temperature regulate fly siesta. Curr Biol 2022; 32:R1020-R1022. [PMID: 36220091 DOI: 10.1016/j.cub.2022.08.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Temperatures outside the preferred range require flies to acutely adjust their behavior. A new study finds that heat-sensing neurons provide input to fly circadian clock neurons to extend the daytime siesta, allowing flies to sleep through excessive daytime heat.
Collapse
Affiliation(s)
- Rebecca Delventhal
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL 60045, USA
| | - Annika F Barber
- Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, 190 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
Dopamine and GPCR-mediated modulation of DN1 clock neurons gates the circadian timing of sleep. Proc Natl Acad Sci U S A 2022; 119:e2206066119. [PMID: 35969763 PMCID: PMC9407311 DOI: 10.1073/pnas.2206066119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuromodulation is essential for adaptive animal behaviors among other physiological processes. It is essential to reliably manipulate neuromodulator pathways to understand their functions in animal physiology. In this study, we generated a CRISPR-Cas9-based guide library to target every G-Protein Coupled Receptor (GPCR) in the Drosophila genome and applied it to the well-studied clock neuron network. Notably, these GPCRs are highly enriched and differentially expressed in this small network, making it an ideal candidate to investigate their function. We cell-type specifically mutated GPCRs highly efficiently with no background gene editing detected. Applying this strategy to a specific node of the clock network revealed a role for dopamine in prolonging daytime sleep, suggesting network-specific functions of dopamine receptors in sleep-wake regulation. The metronome-like circadian regulation of sleep timing must still adapt to an uncertain environment. Recent studies in Drosophila indicate that neuromodulation not only plays a key role in clock neuron synchronization but also affects interactions between the clock network and brain sleep centers. We show here that the targets of neuromodulators, G Protein Coupled Receptors (GPCRs), are highly enriched in the fly brain circadian clock network. Single-cell sequencing indicates that they are not only enriched but also differentially expressed and contribute to clock neuron identity. We generated a comprehensive guide library to mutagenize individual GPCRs in specific neurons and verified the strategy by introducing a targeted sequencing approach. Combined with a behavioral screen, the mutagenesis strategy revealed a role of dopamine in sleep regulation by identifying two dopamine receptors and a clock neuron subpopulation that gate the timing of sleep.
Collapse
|
43
|
Chen X, Li J, Gao Z, Yang Y, Kuang W, Dong Y, Chua GH, Huang X, Jiang B, Tian H, Wang Y, Huang X, Li Y, Lam SM, Shui G. Endogenous ceramide phosphoethanolamine modulates circadian rhythm via neural-glial coupling in Drosophila. Natl Sci Rev 2022; 9:nwac148. [PMID: 36713590 PMCID: PMC9875363 DOI: 10.1093/nsr/nwac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
While endogenous lipids are known to exhibit rhythmic oscillations, less is known about how specific lipids modulate circadian behavior. Through a series of loss-of-function and gain-of-function experiments on ceramide phosphoethanolamine (CPE) synthase of Drosophila, we demonstrated that pan-glial-specific deficiency in membrane CPE, the structural analog of mammalian sphingomyelin (SM), leads to arrhythmic locomotor behavior and shortens lifespan, while the reverse is true for increasing CPE. Comparative proteomics uncovered dysregulated synaptic glutamate utilization and transport in CPE-deficient flies. An extensive genetic screen was conducted to verify the role of differentially expressed proteins in circadian regulation. Arrhythmic locomotion under cpes1 mutant background was rescued only by restoring endogenous CPE or SM through expressing their respective synthases. Our results underscore the essential role of CPE in maintaining synaptic glutamate homeostasis and modulating circadian behavior in Drosophila. The findings suggest that region-specific elevations of functional membrane lipids can benefit circadian regulation.
Collapse
Affiliation(s)
| | | | - Zhongbao Gao
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Kuang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou213022, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Binhua Jiang
- LipidALL Technologies Company Limited, Changzhou213022, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
44
|
Nässel DR, Zandawala M. Endocrine cybernetics: neuropeptides as molecular switches in behavioural decisions. Open Biol 2022; 12:220174. [PMID: 35892199 PMCID: PMC9326288 DOI: 10.1098/rsob.220174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plasticity in animal behaviour relies on the ability to integrate external and internal cues from the changing environment and hence modulate activity in synaptic circuits of the brain. This context-dependent neuromodulation is largely based on non-synaptic signalling with neuropeptides. Here, we describe select peptidergic systems in the Drosophila brain that act at different levels of a hierarchy to modulate behaviour and associated physiology. These systems modulate circuits in brain regions, such as the central complex and the mushroom bodies, which supervise specific behaviours. At the top level of the hierarchy there are small numbers of large peptidergic neurons that arborize widely in multiple areas of the brain to orchestrate or modulate global activity in a state and context-dependent manner. At the bottom level local peptidergic neurons provide executive neuromodulation of sensory gain and intrinsically in restricted parts of specific neuronal circuits. The orchestrating neurons receive interoceptive signals that mediate energy and sleep homeostasis, metabolic state and circadian timing, as well as external cues that affect food search, aggression or mating. Some of these cues can be triggers of conflicting behaviours such as mating versus aggression, or sleep versus feeding, and peptidergic neurons participate in circuits, enabling behaviour choices and switches.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland Würzburg 97074, Germany
| |
Collapse
|
45
|
Shafer OT, Gutierrez GJ, Li K, Mildenhall A, Spira D, Marty J, Lazar AA, Fernandez MDLP. ---Connectomic analysis of the Drosophila lateral neuron clock cells reveals the synaptic basis of functional pacemaker classes. eLife 2022; 11:79139. [PMID: 35766361 PMCID: PMC9365390 DOI: 10.7554/elife.79139] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The circadian clock orchestrates daily changes in physiology and behavior to ensure internal temporal order and optimal timing across the day. In animals, a central brain clock coordinates circadian rhythms throughout the body and is characterized by a remarkable robustness that depends on synaptic connections between constituent neurons. The clock neuron network of Drosophila, which shares network motifs with clock networks in the mammalian brain yet is built of many fewer neurons, offers a powerful model for understanding the network properties of circadian timekeeping. Here, we report an assessment of synaptic connectivity within a clock network, focusing on the critical lateral neuron (LN) clock neuron classes within the Janelia hemibrain dataset. Our results reveal that previously identified anatomical and functional subclasses of LNs represent distinct connectomic types. Moreover, we identify a small number of non-clock cell subtypes representing highly synaptically coupled nodes within the clock neuron network. This suggests that neurons lacking molecular timekeeping likely play integral roles within the circadian timekeeping network. To our knowledge, this represents the first comprehensive connectomic analysis of a circadian neuronal network. Most organisms on Earth possess an internal timekeeping system which ensures that bodily processes such as sleep, wakefulness or digestion take place at the right time. These precise daily rhythms are kept in check by a master clock in the brain. There, thousands of neurons – some of which carrying an internal ‘molecular clock’ – connect to each other through structures known as synapses. Exactly how the resulting network is organised to support circadian timekeeping remains unclear. To explore this question, Shafer, Gutierrez et al. focused on fruit flies, as recent efforts have systematically mapped every neuron and synaptic connection in the brain of this model organism. Analysing available data from the hemibrain connectome project at Janelia revealed that that the neurons with the most important timekeeping roles were in fact forming the fewest synapses within the network. In addition, neurons without internal molecular clocks mediated strong synaptic connections between those that did, suggesting that ‘clockless’ cells still play an integral role in circadian timekeeping. With this research, Shafer, Gutierrez et al. provide unexpected insights into the organisation of the master body clock. Better understanding the networks that underpin circadian rhythms will help to grasp how and why these are disrupted in obesity, depression and Alzheimer’s disease.
Collapse
Affiliation(s)
- Orie T Shafer
- Advanced Science Research Center, City University of New York, New York, United States
| | - Gabrielle J Gutierrez
- Center for Theoretical Neuroscience, Columbia University, New York City, United States
| | - Kimberly Li
- Department of Neuroscience and Behavior, Barnard College, New York, United States
| | - Amber Mildenhall
- Department of Neuroscience and Behavior, Barnard College, New York, United States
| | - Daphna Spira
- Center for Theoretical Neuroscience, Columbia University, New York City, United States
| | - Jonathan Marty
- Department of Electrical Engineering, Columbia University, New York, United States
| | - Aurel A Lazar
- Department of Electrical Engineering, Columbia University, New York, United States
| | | |
Collapse
|
46
|
Andreani T, Rosensweig C, Sisobhan S, Ogunlana E, Kath W, Allada R. Circadian programming of the ellipsoid body sleep homeostat in Drosophila. eLife 2022; 11:e74327. [PMID: 35735904 PMCID: PMC9270026 DOI: 10.7554/elife.74327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Homeostatic and circadian processes collaborate to appropriately time and consolidate sleep and wake. To understand how these processes are integrated, we scheduled brief sleep deprivation at different times of day in Drosophila and find elevated morning rebound compared to evening. These effects depend on discrete morning and evening clock neurons, independent of their roles in circadian locomotor activity. In the R5 ellipsoid body sleep homeostat, we identified elevated morning expression of activity dependent and presynaptic gene expression as well as the presynaptic protein BRUCHPILOT consistent with regulation by clock circuits. These neurons also display elevated calcium levels in response to sleep loss in the morning, but not the evening consistent with the observed time-dependent sleep rebound. These studies reveal the circuit and molecular mechanisms by which discrete circadian clock neurons program a homeostatic sleep center.
Collapse
Affiliation(s)
- Tomas Andreani
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Shiju Sisobhan
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Emmanuel Ogunlana
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - William Kath
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Ravi Allada
- Department of Neurobiology, Northwestern UniversityChicagoUnited States
| |
Collapse
|
47
|
Neural Control of Action Selection Among Innate Behaviors. Neurosci Bull 2022; 38:1541-1558. [PMID: 35633465 DOI: 10.1007/s12264-022-00886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Collapse
|
48
|
Omond SET, Hale MW, Lesku JA. Neurotransmitters of sleep and wakefulness in flatworms. Sleep 2022; 45:zsac053. [PMID: 35554581 PMCID: PMC9216492 DOI: 10.1093/sleep/zsac053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Indexed: 12/02/2022] Open
Abstract
STUDY OBJECTIVES Sleep is a prominent behavioral and biochemical state observed in all animals studied, including platyhelminth flatworms. Investigations into the biochemical mechanisms associated with sleep-and wakefulness-are important for understanding how these states are regulated and how that regulation changed with the evolution of new types of animals. Unfortunately, beyond a handful of vertebrates, such studies on invertebrates are rare. METHODS We investigated the effect of seven neurotransmitters, and one pharmacological compound, that modulate either sleep or wakefulness in mammals, on flatworms (Girardia tigrina). Flatworms were exposed via ingestion and diffusion to four neurotransmitters that promote wakefulness in vertebrates (acetylcholine, dopamine, glutamate, histamine), and three that induce sleep (adenosine, GABA, serotonin) along with the H1 histamine receptor antagonist pyrilamine. Compounds were administered over concentrations spanning three to five orders of magnitude. Flatworms were then transferred to fresh water and video recorded for analysis. RESULTS Dopamine and histamine decreased the time spent inactive and increased distance traveled, consistent with their wake-promoting effect in vertebrates and fruit flies; pyrilamine increased restfulness and GABA showed a nonsignificant trend towards promoting restfulness in a dose-dependent manner, in agreement with their sleep-inducing effect in vertebrates, fruit flies, and Hydra. Similar to Hydra, acetylcholine, glutamate, and serotonin, but also adenosine, had no apparent effect on flatworm behavior. CONCLUSIONS These data demonstrate the potential of neurotransmitters to regulate sleep and wakefulness in flatworms and highlight the conserved action of some neurotransmitters across species.
Collapse
Affiliation(s)
- Shauni E T Omond
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| |
Collapse
|
49
|
Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol 2022; 32:1895-1908.e5. [PMID: 35303417 PMCID: PMC9090989 DOI: 10.1016/j.cub.2022.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
A precise balance between sleep and wakefulness is essential to sustain a good quality of life and optimal brain function. GABA is known to play a key and conserved role in sleep control, and GABAergic tone should, therefore, be tightly controlled in sleep circuits. Here, we examined the role of the astrocytic GABA transporter (GAT) in sleep regulation using Drosophila melanogaster. We found that a hypomorphic gat mutation (gat33-1) increased sleep amount, decreased sleep latency, and increased sleep consolidation at night. Interestingly, sleep defects were suppressed when gat33-1 was combined with a mutation disrupting wide-awake (wake), a gene that regulates the cell-surface levels of the GABAA receptor resistance to dieldrin (RDL) in the wake-promoting large ventral lateral neurons (l-LNvs). Moreover, RNAi knockdown of rdl and its modulators dnlg4 and wake in these circadian neurons also suppressed gat33-1 sleep phenotypes. Brain immunohistochemistry showed that GAT-expressing astrocytes were located near RDL-positive l-LNv cell bodies and dendritic processes. We concluded that astrocytic GAT decreases GABAergic tone and RDL activation in arousal-promoting LNvs, thus determining proper sleep amount and quality in Drosophila.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tobias Stork
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chunyan Yuan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
50
|
Recurrent circadian circuitry regulates central brain activity to maintain sleep. Neuron 2022; 110:2139-2154.e5. [PMID: 35525241 DOI: 10.1016/j.neuron.2022.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
Animal brains have discrete circadian neurons, but little is known about how they are coordinated to influence and maintain sleep. Here, through a systematic optogenetic screening, we identified a subtype of uncharacterized circadian DN3 neurons that is strongly sleep promoting in Drosophila. These anterior-projecting DN3s (APDN3s) receive signals from DN1 circadian neurons and then output to newly identified noncircadian "claw" neurons (CLs). CLs have a daily Ca2+ cycle, which peaks at night and correlates with DN1 and DN3 Ca2+ cycles. The CLs feedback onto a subset of DN1s to form a positive recurrent loop that maintains sleep. Using trans-synaptic photoactivatable green fluorescent protein (PA-GFP) tracing and functional in vivo imaging, we demonstrated that the CLs drive sleep by interacting with and releasing acetylcholine onto the mushroom body γ lobe. Taken together, the data identify a novel self-reinforcing loop within the circadian network and a new sleep-promoting neuropile that are both essential for maintaining normal sleep.
Collapse
|