1
|
Meltzer HC, Goodwin JL, Fowler LA, Britt TW, Pirrallo RG, Grier JT. Severe acute respiratory syndrome coronavirus 2-reactive salivary antibody detection in South Carolina emergency healthcare workers, September 2019-March 2020. Epidemiol Infect 2024; 152:e102. [PMID: 39320488 PMCID: PMC11427973 DOI: 10.1017/s0950268824000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
On 19 January 2020, the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was identified in the United States, with the first cases in South Carolina confirmed on 06 March 2020. Due to initial limited testing capabilities and potential for asymptomatic transmission, it is possible that SARS-CoV-2 may have been present earlier than previously thought, while the immune status of at-risk populations was unknown. Saliva from 55 South Carolina emergency healthcare workers (EHCWs) was collected from September 2019 to March 2020, pre- and post-healthcare shifts, and stored frozen. To determine the presence of SARS-CoV-2-reactive antibodies, saliva-acquired post-shift was analysed by enzyme-linked immunosorbent assay (ELISA) with a repeat of positive or inconclusive results and follow-up testing of pre-shift samples. Two participants were positive for SARS-CoV-2 N/S1-reactive IgG, confirmed by follow-up testing, with S1 receptor binding domain (RBD)-specific IgG present in one individual. Positive samples were collected from medical students working in emergency medical services (EMSs) in October or November 2019. The presence of detectable anti-SARS-CoV-2 antibodies in 2019 suggests that immune responses to the virus existed in South Carolina, and the United States, in a small percentage of EHCWs prior to the earliest documented coronavirus disease 2019 (COVID-19) cases. These findings suggest the feasibility of saliva as a noninvasive tool for surveillance of emerging outbreaks, and EHCWs represent a high-risk population that should be the focus of infectious disease surveillance.
Collapse
Affiliation(s)
- Haley C Meltzer
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Jane L Goodwin
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Lauren A Fowler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Charlotte, NC, USA
| | - Thomas W Britt
- Department of Psychology, Clemson University, Clemson, SC, USA
| | - Ronald G Pirrallo
- Department of Emergency Medicine, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Jennifer T Grier
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| |
Collapse
|
2
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Brisse M, Ly H. Retroactive blood-borne pathogens detection of archival clotting factor concentrates throughout the 1970s and 1980s highlights virus contaminations. J Med Virol 2024; 96:e29907. [PMID: 39223958 DOI: 10.1002/jmv.29907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Morgan Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
4
|
McClure CP, Kean K, Reid K, Mayne R, Fu MX, Rajendra P, Gates S, Breuer J, Harvala H, Golubchik T, Tarr AW, Irving WL, Makris M, Simmonds P. Reconstruction of the historic time course of blood-borne virus contamination of clotting factor concentrates, 1974-1992. J Med Virol 2024; 96:e29774. [PMID: 38953434 DOI: 10.1002/jmv.29774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Factor VIII and IX clotting factor concentrates manufactured from pooled plasma have been identified as potent sources of virus infection in persons with hemophilia (PWHs) in the 1970s and 1980s. To investigate the range and diversity of viruses over this period, we analysed 24 clotting factor concentrates for several blood-borne viruses. Nucleic acid was extracted from 14 commercially produced clotting factors and 10 from nonremunerated donors, preserved in lyophilized form (expiry dates: 1974-1992). Clotting factors were tested by commercial and in-house quantitative PCRs for blood-borne viruses hepatitis A, B, C and E viruses (HAV, HBV, HCV, HEV), HIV- types 1/2, parvoviruses B19V and PARV4, and human pegiviruses types 1 and 2 (HPgV-1,-2). HCV and HPgV-1 were the most frequently detected viruses (both 14/24 tested) primarily in commercial clotting factors, with frequently extremely high viral loads in the late 1970s-1985 and a diverse range of HCV genotypes. Detection frequencies sharply declined following introduction of virus inactivation. HIV-1, HBV, and HAV were less frequently detected (3/24, 1/24, and 1/24 respectively); none were positive for HEV. Contrastingly, B19V and PARV4 were detected throughout the study period, even after introduction of dry heat treatment, consistent with ongoing documented transmission to PWHs into the early 1990s. While hemophilia treatment is now largely based on recombinant factor VIII/IX in the UK and elsewhere, the comprehensive screen of historical plasma-derived clotting factors reveals extensive exposure of PWHs to blood-borne viruses throughout 1970s-early 1990s, and the epidemiological and manufacturing parameters that influenced clotting factor contamination.
Collapse
Affiliation(s)
- C Patrick McClure
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Kai Kean
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Kaitlin Reid
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Richard Mayne
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Michael X Fu
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Piya Rajendra
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Shannah Gates
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Judy Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Heli Harvala
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Microbiology Services, National Health Service (NHS) Blood and Transplant, London, UK
| | - Tanya Golubchik
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Big Data Institute, Nuffield Department of Medicine, Universtiy of Oxford, Oxford, UK
| | - Alexander W Tarr
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - William L Irving
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Michael Makris
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Neufeld B, Munyuza C, Reimer A, Capiña R, Lee ER, Becker M, Sandstrom P, Ji H, Cholette F. A validated in-house assay for HIV drug resistance mutation surveillance from dried blood spot specimens. J Virol Methods 2024; 327:114939. [PMID: 38604585 DOI: 10.1016/j.jviromet.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Despite increasing scale-up of antiretroviral therapy (ART) coverage, challenges related to adherence and HIV drug resistance (HIVDR) remain. The high cost of HIVDR surveillance is a persistent challenge with implementation in resource-constrained settings. Dried blood spot (DBS) specimens have been demonstrated to be a feasible alternative to plasma or serum for HIVDR genotyping and are more suitable for lower resource settings. There is a need for affordable HIVDR genotyping assays which can amplify HIV-1 sequences from DBS specimens, particularly those with low viral loads, at a low cost. Here, we present an in-house assay capable of reliably amplifying HIV-1 protease and partial reverse transcriptase genes from DBS specimens, which covers the complete World Health Organization 2009 list of drug resistance mutations under surveillance. DBS specimens were prepared using whole blood spiked with HIV-1 at concentrations of 10,000, 5000, 1000, and 500 copies/mL (n=30 for each concentration). Specimens were tested in triplicate. A two-step approach was used consisting of cDNA synthesis followed by nested PCR. The limit of detection of the assay was calculated to be approximately 5000 (95% CI: 3200-10,700) copies/mL for the protease gene and 3600 (95% CI: 2200-10,000) copies/mL for reverse transcriptase. The assay was observed to be most sensitive with higher viral load specimens (97.8% [95% CI: 92.2-99.7]) for both protease and reverse transcriptase at 10,000 copies/mL with performance decreasing with the use of specimens with lower viral loads (46.7% [36.1-57.5] and 60.0% [49.1-70.2] at 500 copies/mL for protease and reverse transcriptase, respectively). Ultimately, this assay presents a promising opportunity for use in resource-constrained settings. Future work should involve validation under field conditions including sub-optimal storage conditions and preparation of DBS with fingerprick blood in order to accurately reflect real-world collection scenarios.
Collapse
Affiliation(s)
- Bronwyn Neufeld
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada.
| | - Chantal Munyuza
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Alexandria Reimer
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Rupert Capiña
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Emma R Lee
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Marissa Becker
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Sandstrom
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Hezhao Ji
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - François Cholette
- National Sexually Transmitted and Blood-Borne Infections Laboratory, J.C. Wilt Infectious Diseases Research Centre at the National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Thompson A, Liebeskind BJ, Scully EJ, Landis MJ. Deep Learning and Likelihood Approaches for Viral Phylogeography Converge on the Same Answers Whether the Inference Model Is Right or Wrong. Syst Biol 2024; 73:183-206. [PMID: 38189575 PMCID: PMC11249978 DOI: 10.1093/sysbio/syad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024] Open
Abstract
Analysis of phylogenetic trees has become an essential tool in epidemiology. Likelihood-based methods fit models to phylogenies to draw inferences about the phylodynamics and history of viral transmission. However, these methods are often computationally expensive, which limits the complexity and realism of phylodynamic models and makes them ill-suited for informing policy decisions in real-time during rapidly developing outbreaks. Likelihood-free methods using deep learning are pushing the boundaries of inference beyond these constraints. In this paper, we extend, compare, and contrast a recently developed deep learning method for likelihood-free inference from trees. We trained multiple deep neural networks using phylogenies from simulated outbreaks that spread among 5 locations and found they achieve close to the same levels of accuracy as Bayesian inference under the true simulation model. We compared robustness to model misspecification of a trained neural network to that of a Bayesian method. We found that both models had comparable performance, converging on similar biases. We also implemented a method of uncertainty quantification called conformalized quantile regression that we demonstrate has similar patterns of sensitivity to model misspecification as Bayesian highest posterior density (HPD) and greatly overlap with HPDs, but have lower precision (more conservative). Finally, we trained and tested a neural network against phylogeographic data from a recent study of the SARS-Cov-2 pandemic in Europe and obtained similar estimates of region-specific epidemiological parameters and the location of the common ancestor in Europe. Along with being as accurate and robust as likelihood-based methods, our trained neural networks are on average over 3 orders of magnitude faster after training. Our results support the notion that neural networks can be trained with simulated data to accurately mimic the good and bad statistical properties of the likelihood functions of generative phylogenetic models.
Collapse
Affiliation(s)
- Ammon Thompson
- Participant in an Education Program Sponsored by U.S. Department of Defense (DOD) at the National Geospatial-Intelligence Agency, Springfield, VA 22150, USA
| | | | - Erik J Scully
- National Geospatial-Intelligence Agency, Springfield, VA 22150, USA
| | - Michael J Landis
- Department of Biology, Washington University in St. Louis, Rebstock Hall, St. Louis, MO 63130, USA
| |
Collapse
|
7
|
Müller NF, Bouckaert RR, Wu CH, Bedford T. MASCOT-Skyline integrates population and migration dynamics to enhance phylogeographic reconstructions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583734. [PMID: 38496513 PMCID: PMC10942421 DOI: 10.1101/2024.03.06.583734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The spread of infectious diseases is shaped by spatial and temporal aspects, such as host population structure or changes in the transmission rate or number of infected individuals over time. These spatiotemporal dynamics are imprinted in the genome of pathogens and can be recovered from those genomes using phylodynamics methods. However, phylodynamic methods typically quantify either the temporal or spatial transmission dynamics, which leads to unclear biases, as one can potentially not be inferred without the other. Here, we address this challenge by introducing a structured coalescent skyline approach, MASCOT-Skyline that allows us to jointly infer spatial and temporal transmission dynamics of infectious diseases using Markov chain Monte Carlo inference. To do so, we model the effective population size dynamics in different locations using a non-parametric function, allowing us to approximate a range of population size dynamics. We show, using a range of different viral outbreak datasets, potential issues with phylogeographic methods. We then use these viral datasets to motivate simulations of outbreaks that illuminate the nature of biases present in the different phylogeographic methods. We show that spatial and temporal dynamics should be modeled jointly even if one seeks to recover just one of the two. Further, we showcase conditions under which we can expect phylogeographic analyses to be biased, particularly different subsampling approaches, as well as provide recommendations of when we can expect them to perform well. We implemented MASCOT-Skyline as part of the open-source software package MASCOT for the Bayesian phylodynamics platform BEAST2.
Collapse
Affiliation(s)
- Nicola F. Müller
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Remco R. Bouckaert
- Centre for Computational Evolution, The University of Auckland, New Zealand
| | - Chieh-Hsi Wu
- School of Mathematical Sciences, University of Southampton, UK
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- Howard Hughes Medical Institute, Seattle, USA
| |
Collapse
|
8
|
Grasso G, Bianciotto V, Marmeisse R. Paleomicrobiology: Tracking the past microbial life from single species to entire microbial communities. Microb Biotechnol 2024; 17:e14390. [PMID: 38227345 PMCID: PMC10832523 DOI: 10.1111/1751-7915.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Abstract
By deciphering information encoded in degraded ancient DNA extracted from up to million-years-old samples, molecular paleomicrobiology enables to objectively retrace the temporal evolution of microbial species and communities. Assembly of full-length genomes of ancient pathogen lineages allows not only to follow historical epidemics in space and time but also to identify the acquisition of genetic features that represent landmarks in the evolution of the host-microbe interaction. Analysis of microbial community DNA extracted from essentially human paleo-artefacts (paleofeces, dental calculi) evaluates the relative contribution of diet, lifestyle and geography on the taxonomic and functional diversity of these guilds in which have been identified species that may have gone extinct in today's human microbiome. As for non-host-associated environmental samples, such as stratified sediment cores, analysis of their DNA illustrates how and at which pace microbial communities are affected by local or widespread environmental disturbance. Description of pre-disturbance microbial diversity patterns can aid in evaluating the relevance and effectiveness of remediation policies. We finally discuss how recent achievements in paleomicrobiology could contribute to microbial biotechnology in the fields of medical microbiology and food science to trace the domestication of microorganisms used in food processing or to illustrate the historic evolution of food processing microbial consortia.
Collapse
Affiliation(s)
- Gianluca Grasso
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità degli Studi of TurinTurinItaly
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Valeria Bianciotto
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Roland Marmeisse
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| |
Collapse
|
9
|
Techera C, Tomás G, Grecco S, Williman J, Hernández M, Olivera V, Banda A, Vagnozzi A, Panzera Y, Marandino A, Pérez R. A rapid and affordable amplicon-based method for next-generation genome sequencing of the infectious bursal disease virus. J Virol Methods 2023; 322:114807. [PMID: 37683937 DOI: 10.1016/j.jviromet.2023.114807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The infectious bursal disease virus (IBDV) causes a severe immunosuppressive disorder in young chickens. IBDV evolution resulted in the emergence of strains with divergent genetic, antigenic, and pathogenic characteristics. Genetic classification is typically performed by sequencing the coding region of the most immunogenic region of the viral protein 2 (VP2). Sequencing both double-stranded RNA genome segments is essential to achieve a more comprehensive IBDV classification that can detect recombinants and reassortments. Here, we report the development and standardization of a tiled PCR amplicon protocol for the direct and cost-effective genome sequencing of global IBDV strains using next-generation technology. Primers for tiled PCR were designed with adapters to bypass expensive and time-consuming library preparation steps. Sequencing was performed on Illumina MiniSeq equipment, and fourteen complete genomes of field strains were assembled using reference sequences. The PCR-enrichment step was used to obtain genomes from low-titer biological samples that were difficult to amplify using traditional sequencing. Phylogenetic analyses of the obtained genomes confirmed previous strain classification. By combining the enrichment methodology with massive sequencing, it is possible to obtain IBDV genomic sequences in a fast and affordable manner. This procedure can be a valuable tool to better understand virus epidemiology.
Collapse
Affiliation(s)
- Claudia Techera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Joaquín Williman
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Martín Hernández
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Valeria Olivera
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, 1712 Buenos Aires, Argentina
| | - Alejandro Banda
- Poultry Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Pearl, MS, United States
| | - Ariel Vagnozzi
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, 1712 Buenos Aires, Argentina
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
10
|
Guzmán-Solís AA, Navarro MA, Ávila-Arcos MC, Blanco-Melo D. A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History. Annu Rev Virol 2023; 10:49-75. [PMID: 37268008 DOI: 10.1146/annurev-virology-111821-123859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history.
Collapse
Affiliation(s)
- Axel A Guzmán-Solís
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Alejandro Navarro
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| |
Collapse
|
11
|
Ladner JT, Sahl JW. Towards a post-pandemic future for global pathogen genome sequencing. PLoS Biol 2023; 21:e3002225. [PMID: 37527248 PMCID: PMC10393143 DOI: 10.1371/journal.pbio.3002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Pathogen genome sequencing has become a routine part of our response to active outbreaks of infectious disease and should be an important part of our preparations for future epidemics. In this Essay, we discuss the innovations that have enabled routine pathogen genome sequencing, as well as how genome sequences can be used to understand and control the spread of infectious disease. We also explore the impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic on the field of pathogen genomics and outline the challenges we must address to further improve the utility of pathogen genome sequencing in the future.
Collapse
Affiliation(s)
- Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
12
|
Mármol-Sánchez E, Fromm B, Oskolkov N, Pochon Z, Kalogeropoulos P, Eriksson E, Biryukova I, Sekar V, Ersmark E, Andersson B, Dalén L, Friedländer MR. Historical RNA expression profiles from the extinct Tasmanian tiger. Genome Res 2023; 33:1299-1316. [PMID: 37463752 PMCID: PMC10552650 DOI: 10.1101/gr.277663.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Paleogenomics continues to yield valuable insights into the evolution, population dynamics, and ecology of our ancestors and other extinct species. However, DNA sequencing cannot reveal tissue-specific gene expression, cellular identity, or gene regulation, which are only attainable at the transcriptional level. Pioneering studies have shown that useful RNA can be extracted from ancient specimens preserved in permafrost and historical skins from extant canids, but no attempts have been made so far on extinct species. We extract, sequence, and analyze historical RNA from muscle and skin tissue of a ∼130-year-old Tasmanian tiger (Thylacinus cynocephalus) preserved in desiccation at room temperature in a museum collection. The transcriptional profiles closely resemble those of extant species, revealing specific anatomical features such as slow muscle fibers or blood infiltration. Metatranscriptomic analysis, RNA damage, tissue-specific RNA profiles, and expression hotspots genome-wide further confirm the thylacine origin of the sequences. RNA sequences are used to improve protein-coding and noncoding annotations, evidencing missing exonic loci and the location of ribosomal RNA genes while increasing the number of annotated thylacine microRNAs from 62 to 325. We discover a thylacine-specific microRNA isoform that could not have been confirmed without RNA evidence. Finally, we detect traces of RNA viruses, suggesting the possibility of profiling viral evolution. Our results represent the first successful attempt to obtain transcriptional profiles from an extinct animal species, providing thought-to-be-lost information on gene expression dynamics. These findings hold promising implications for the study of RNA molecules across the vast collections of natural history museums and from well-preserved permafrost remains.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
| | - Bastian Fromm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, 223 62 Lund, Sweden
| | - Zoé Pochon
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, 106 91 Stockholm, Sweden
| | - Panagiotis Kalogeropoulos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Eli Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Inna Biryukova
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Vaishnovi Sekar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology (CMB), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden;
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, 114 18 Stockholm, Sweden;
| |
Collapse
|
13
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Hill V, Githinji G, Vogels CBF, Bento AI, Chaguza C, Carrington CVF, Grubaugh ND. Toward a global virus genomic surveillance network. Cell Host Microbe 2023; 31:861-873. [PMID: 36921604 PMCID: PMC9986120 DOI: 10.1016/j.chom.2023.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The COVID-19 pandemic galvanized the field of virus genomic surveillance, demonstrating its utility for public health. Now, we must harness the momentum that led to increased infrastructure, training, and political will to build a sustainable global genomic surveillance network for other epidemic and endemic viruses. We suggest a generalizable modular sequencing framework wherein users can easily switch between virus targets to maximize cost-effectiveness and maintain readiness for new threats. We also highlight challenges associated with genomic surveillance and when global inequalities persist. We propose solutions to mitigate some of these issues, including training and multilateral partnerships. Exploring alternatives to clinical sequencing can also reduce the cost of surveillance programs. Finally, we discuss how establishing genomic surveillance would aid control programs and potentially provide a warning system for outbreaks, using a global respiratory virus (RSV), an arbovirus (dengue virus), and a regional zoonotic virus (Lassa virus) as examples.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Ana I Bento
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA; The Rockefeller Foundation, New York, NY, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Yale Institute for Global Health, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
15
|
de-Dios T, Scheib CL, Houldcroft CJ. An Adagio for Viruses, Played Out on Ancient DNA. Genome Biol Evol 2023; 15:evad047. [PMID: 36930529 PMCID: PMC10063219 DOI: 10.1093/gbe/evad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Studies of ancient DNA have transformed our understanding of human evolution. Paleogenomics can also reveal historic and prehistoric agents of disease, including endemic, epidemic, and pandemic pathogens. Viruses-and in particular those with single- or double-stranded DNA genomes-are an important part of the paleogenomic revolution, preserving within some remains or environmental samples for tens of thousands of years. The results of these studies capture the public imagination, as well as giving scientists a unique perspective on some of the more slowly evolving viruses which cause disease. In this review, we revisit the first studies of historical virus genetic material in the 1990s, through to the genomic revolution of recent years. We look at how paleogenomics works for viral pathogens, such as the need for careful precautions against modern contamination and robust computational pipelines to identify and analyze authenticated viral sequences. We discuss the insights into virus evolution which have been gained through paleogenomics, concentrating on three DNA viruses in particular: parvovirus B19, herpes simplex virus 1, and smallpox. As we consider recent worldwide transmission of monkeypox and synthetic biology tools that allow the potential reconstruction of extinct viruses, we show that studying historical and ancient virus evolution has never been more topical.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Genomics, University of Tartu, Estonia
| | - Christiana L Scheib
- Institute of Genomics, University of Tartu, Estonia
- St. John's College, University of Cambridge, United Kingdom
| | | |
Collapse
|
16
|
Segura J, Ireland J, Zou Z, Roth G, Buchwald J, Shen TJ, Fischer E, Moir S, Chun TW, Sun PD. HIV-1 release requires Nef-induced caspase activation. PLoS One 2023; 18:e0281087. [PMID: 36780482 PMCID: PMC9925082 DOI: 10.1371/journal.pone.0281087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
HIV infection remains incurable to date and there are no compounds targeted at the viral release. We show here HIV viral release is not spontaneous, rather requires caspases activation and shedding of its adhesion receptor, CD62L. Blocking the caspases activation caused virion tethering by CD62L and the release of deficient viruses. Not only productive experimental HIV infections require caspases activation for viral release, HIV release from both viremic and aviremic patient-derived CD4 T cells also require caspase activation, suggesting HIV release from cellular viral reservoirs depends on apoptotic shedding of the adhesion receptor. Further transcriptomic analysis of HIV infected CD4 T cells showed a direct contribution of HIV accessory gene Nef to apoptotic caspases activation. Current HIV cure focuses on the elimination of latent cellular HIV reservoirs that are resistant to infection-induced cell death. This has led to therapeutic strategies to stimulate T cell apoptosis in a "kick and kill" approach. Our current work has shifted the paradigm on HIV-induced apoptosis and suggests such approach would risk to induce HIV release and thus be counter-productive. Instead, our study supports targeting of viral reservoir release by inhibiting of caspases activation.
Collapse
Affiliation(s)
- Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Julianna Buchwald
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas J. Shen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Elizabeth Fischer
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Bondaryuk AN, Kulakova NV, Belykh OI, Bukin YS. Dates and Rates of Tick-Borne Encephalitis Virus-The Slowest Changing Tick-Borne Flavivirus. Int J Mol Sci 2023; 24:2921. [PMID: 36769238 PMCID: PMC9917962 DOI: 10.3390/ijms24032921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the temporal signal and substitution rate of tick-borne encephalitis virus (TBEV) using 276 complete open reading frame (ORF) sequences with known collection dates. According to a permutation test, the TBEV Siberian subtype (TBEV-S) data set has no temporal structure and cannot be applied for substitution rate estimation without other TBEV subtypes. The substitution rate obtained suggests that the common clade of TBEV (TBEV-common), including all TBEV subtypes and louping-ill virus (LIV), is characterized by the lowest rate (1.87 × 10-5 substitutions per site per year (s/s/y) or 1 nucleotide substitution per ORF per 4.9 years; 95% highest posterior density (HPD) interval, 1.3-2.4 × 10-5 s/s/y) among all tick-borne flaviviruses previously assessed. Within TBEV-common, the TBEV European subtype (TBEV-E) has the lowest substitution rate (1.3 × 10-5 s/s/y or 1 nucleotide substitution per ORF per 7.5 years; 95% HPD, 1.0-1.8 × 10-5 s/s/y) as compared with TBEV Far-Eastern subtype (3.0 × 10-5 s/s/y or 1 nucleotide substitution per ORF per 3.2 years; 95% HPD, 1.6-4.5 × 10-5 s/s/y). TBEV-common representing the species tick-borne encephalitis virus diverged 9623 years ago (95% HPD interval, 6373-13,208 years). The TBEV Baikalian subtype is the youngest one (489 years; 95% HPD, 291-697 years) which differs significantly by age from TBEV-E (848 years; 95% HPD, 596-1112 years), LIV (2424 years; 95% HPD, 1572-3400 years), TBEV-FE (1936 years, 95% HPD, 1344-2598 years), and the joint clade of TBEV-S (2505 years, 95% HPD, 1700-3421 years) comprising Vasilchenko, Zausaev, and Baltic lineages.
Collapse
Affiliation(s)
- Artem N. Bondaryuk
- Laboratory of Natural Focal Viral Infections, Irkutsk Antiplague Research Institute of Siberia and the Far East, 664047 Irkutsk, Russia
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Nina V. Kulakova
- Department of Biodiversity and Biological Resources, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Olga I. Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Yurij S. Bukin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| |
Collapse
|
18
|
Abstract
Tracing the history of evolution across time is a primary goal of evolutionary biology. The 2006 publication of a landmark study on relaxed phylogenetics in PLOS Biology enabled biologists to shed light on evolution's tempo and shaped the future of evolutionary studies.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (JLS); (AR)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JLS); (AR)
| |
Collapse
|
19
|
Cholette F, Lazarus L, Macharia P, Thompson LH, Githaiga S, Mathenge J, Walimbwa J, Kuria I, Okoth S, Wambua S, Albert H, Mwangi P, Adhiambo J, Kasiba R, Juma E, Battacharjee P, Kimani J, Sandstrom P, Meyers AFA, Joy JB, Thomann M, McLaren PJ, Shaw S, Mishra S, Becker ML, McKinnon L, Lorway R. Community Insights in Phylogenetic HIV Research: The CIPHR Project Protocol. Glob Public Health 2023; 18:2269435. [PMID: 37851872 DOI: 10.1080/17441692.2023.2269435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Inferring HIV transmission networks from HIV sequences is gaining popularity in the field of HIV molecular epidemiology. However, HIV sequences are often analyzed at distance from those affected by HIV epidemics, namely without the involvement of communities most affected by HIV. These remote analyses often mean that knowledge is generated in absence of lived experiences and socio-economic realities that could inform the ethical application of network-derived information in 'real world' programmes. Procedures to engage communities are noticeably absent from the HIV molecular epidemiology literature. Here we present our team's protocol for engaging community activists living in Nairobi, Kenya in a knowledge exchange process - The CIPHR Project (Community Insights in Phylogenetic HIV Research). Drawing upon a community-based participatory approach, our team will (1) explore the possibilities and limitations of HIV molecular epidemiology for key population programmes, (2) pilot a community-based HIV molecular study, and (3) co-develop policy guidelines on conducting ethically safe HIV molecular epidemiology. Critical dialogue with activist communities will offer insight into the potential uses and abuses of using such information to sharpen HIV prevention programmes. The outcome of this process holds importance to the development of policy frameworks that will guide the next generation of the global response.
Collapse
Affiliation(s)
- François Cholette
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Sexually Transmitted and Blood-Borne Infections, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Lisa Lazarus
- Institute for Global Public Health, Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Pascal Macharia
- Health Options for Young Men on HIV/AIDS and STIs (HOYMAS), Nairobi, Kenya
| | - Laura H Thompson
- Sexually Transmitted and Blood-Borne Infections Surveillance Division, Centre for Communicable Diseases and Infection Control, Public Health Agency of Canada, Ottawa, Canada
| | - Samuel Githaiga
- Health Options for Young Men on HIV/AIDS and STIs (HOYMAS), Nairobi, Kenya
| | - John Mathenge
- Health Options for Young Men on HIV/AIDS and STIs (HOYMAS), Nairobi, Kenya
| | | | - Irene Kuria
- Key Population Consortium of Kenya, Nairobi, Kenya
| | - Silvia Okoth
- Bar Hostess Empowerment and Support Programme, Nairobi, Kenya
| | | | - Harrison Albert
- Health Options for Young Men on HIV/AIDS and STIs (HOYMAS), Nairobi, Kenya
| | - Peninah Mwangi
- Bar Hostess Empowerment and Support Programme, Nairobi, Kenya
| | - Joyce Adhiambo
- Partners for Health Development in Africa (PHDA), Nairobi, Kenya
- Sex Worker Outreach Programme (SWOP), Nairobi, Kenya
| | | | - Esther Juma
- Sex Worker Outreach Programme (SWOP), Nairobi, Kenya
| | | | - Joshua Kimani
- Sex Worker Outreach Programme (SWOP), Nairobi, Kenya
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Paul Sandstrom
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Sexually Transmitted and Blood-Borne Infections, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Adrienne F A Meyers
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Sexually Transmitted and Blood-Borne Infections, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS (BCCfE), St. Paul's Hospital, Vancouver, Canada
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada
- Bioinformatics Programme, University of British Columbia, Vancouver, Canada
| | - Matthew Thomann
- Department of Anthropology, University of Maryland, College Park, MD, USA
| | - Paul J McLaren
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Sexually Transmitted and Blood-Borne Infections, National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Souradet Shaw
- Institute for Global Public Health, Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sharmistha Mishra
- MAP Centre for Urban Health Solutions, St. Michael's Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Marissa L Becker
- Institute for Global Public Health, Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Lyle McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Robert Lorway
- Institute for Global Public Health, Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
20
|
Mackie J, Kinoti WM, Chahal SI, Lovelock DA, Campbell PR, Tran-Nguyen LTT, Rodoni BC, Constable FE. Targeted Whole Genome Sequencing (TWG-Seq) of Cucumber Green Mottle Mosaic Virus Using Tiled Amplicon Multiplex PCR and Nanopore Sequencing. PLANTS (BASEL, SWITZERLAND) 2022; 11:2716. [PMID: 36297740 PMCID: PMC9607580 DOI: 10.3390/plants11202716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Rapid and reliable detection tools are essential for disease surveillance and outbreak management, and genomic data is essential to determining pathogen origin and monitoring of transmission pathways. Low virus copy number and poor RNA quality can present challenges for genomic sequencing of plant viruses, but this can be overcome by enrichment of target nucleic acid. A targeted whole genome sequencing (TWG-Seq) approach for the detection of cucumber green mottle mosaic virus (CGMMV) has been developed where overlapping amplicons generated using two multiplex RT-PCR assays are then sequenced using the Oxford Nanopore MinION. Near complete coding region sequences were assembled with ≥100× coverage for infected leaf tissue dilution samples with RT-qPCR cycle quantification (Cq) values from 11.8 to 38 and in seed dilution samples with Cq values 13.8 to 27. Consensus sequences assembled using this approach showed greater than 99% nucleotide similarity when compared to genomes produced using metagenomic sequencing. CGMMV could be confidently detected in historical seed isolates with degraded RNA. Whilst limited access to, and costs associated with second-generation sequencing platforms can influence diagnostic outputs, the portable Nanopore technology offers an affordable high throughput sequencing alternative when combined with TWG-Seq for low copy or degraded samples.
Collapse
Affiliation(s)
- Joanne Mackie
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Melbourne, VIC 3083, Australia
| | - Wycliff M. Kinoti
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Sumit I. Chahal
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| | - David A. Lovelock
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Paul R. Campbell
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, Ecosciences Precinct, Brisbane, QLD 4102, Australia
| | | | - Brendan C. Rodoni
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Melbourne, VIC 3083, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Melbourne, VIC 3083, Australia
| |
Collapse
|
21
|
Hassler GW, Magee A, Zhang Z, Baele G, Lemey P, Ji X, Fourment M, Suchard MA. Data integration in Bayesian phylogenetics. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION 2022; 10:353-377. [PMID: 38774036 PMCID: PMC11108065 DOI: 10.1146/annurev-statistics-033021-112532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Researchers studying the evolution of viral pathogens and other organisms increasingly encounter and use large and complex data sets from multiple different sources. Statistical research in Bayesian phylogenetics has risen to this challenge. Researchers use phylogenetics not only to reconstruct the evolutionary history of a group of organisms, but also to understand the processes that guide its evolution and spread through space and time. To this end, it is now the norm to integrate numerous sources of data. For example, epidemiologists studying the spread of a virus through a region incorporate data including genetic sequences (e.g. DNA), time, location (both continuous and discrete) and environmental covariates (e.g. social connectivity between regions) into a coherent statistical model. Evolutionary biologists routinely do the same with genetic sequences, location, time, fossil and modern phenotypes, and ecological covariates. These complex, hierarchical models readily accommodate both discrete and continuous data and have enormous combined discrete/continuous parameter spaces including, at a minimum, phylogenetic tree topologies and branch lengths. The increased size and complexity of these statistical models have spurred advances in computational methods to make them tractable. We discuss both the modeling and computational advances below, as well as unsolved problems and areas of active research.
Collapse
Affiliation(s)
- Gabriel W Hassler
- Department of Computational Medicine, University of California, Los Angeles, USA, 90095
| | - Andrew Magee
- Department of Biostatistics, University of California, Los Angeles, USA, 90095
| | - Zhenyu Zhang
- Department of Biostatistics, University of California, Los Angeles, USA, 90095
| | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium, 3000
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium, 3000
| | - Xiang Ji
- Department of Mathematics, Tulane University, New Orleans, USA, 70118
| | - Mathieu Fourment
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo NSW, Australia, 2007
| | - Marc A Suchard
- Department of Computational Medicine, University of California, Los Angeles, USA, 90095
- Department of Biostatistics, University of California, Los Angeles, USA, 90095
- Department of Human Genetics, University of California, Los Angeles, USA, 90095
| |
Collapse
|
22
|
Speer KA, Hawkins MTR, Flores MFC, McGowen MR, Fleischer RC, Maldonado JE, Campana MG, Muletz-Wolz CR. A comparative study of RNA yields from museum specimens, including an optimized protocol for extracting RNA from formalin-fixed specimens. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.953131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal specimens in natural history collections are invaluable resources in examining the historical context of pathogen dynamics in wildlife and spillovers to humans. For example, natural history specimens may reveal new associations between bat species and coronaviruses. However, RNA viruses are difficult to study in historical specimens because protocols for extracting RNA from these specimens have not been optimized. Advances have been made in our ability to recover nucleic acids from formalin-fixed paraffin-embedded samples (FFPE) commonly used in human clinical studies, yet other types of formalin preserved samples have received less attention. Here, we optimize the recovery of RNA from formalin-fixed ethanol-preserved museum specimens in order to improve the usability of these specimens in surveys for zoonotic diseases. We provide RNA quality and quantity measures for replicate tissues subsamples of 22 bat specimens from five bat genera (Rhinolophus, Hipposideros, Megareops, Cynopterus, and Nyctalus) collected in China and Myanmar from 1886 to 2003. As tissues from a single bat specimen were preserved in a variety of ways, including formalin-fixed (8 bats), ethanol-preserved and frozen (13 bats), and flash frozen (2 bats), we were able to compare RNA quality and yield across different preservation methods. RNA extracted from historical museum specimens is highly fragmented, but usable for short-read sequencing and targeted amplification. Incubation of formalin-fixed samples with Proteinase-K following thorough homogenization improves RNA yield. This optimized protocol extends the types of data that can be derived from existing museum specimens and facilitates future examinations of host and pathogen RNA from specimens.
Collapse
|
23
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|
24
|
Zakotnik S, Knap N, Bogovič P, Zorec TM, Poljak M, Strle F, Avšič-Županc T, Korva M. Complete Genome Sequencing of Tick-Borne Encephalitis Virus Directly from Clinical Samples: Comparison of Shotgun Metagenomic and Targeted Amplicon-Based Sequencing. Viruses 2022; 14:v14061267. [PMID: 35746738 PMCID: PMC9231111 DOI: 10.3390/v14061267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical presentation of tick-borne encephalitis virus (TBEV) infection varies from asymptomatic to severe meningoencephalitis or meningoencephalomyelitis. The TBEV subtype has been suggested as one of the most important risk factors for disease severity, but TBEV genetic characterization is difficult. Infection is usually diagnosed in the post-viremic phase, and so relevant clinical samples of TBEV are extremely rare and, when present, are associated with low viral loads. To date, only two complete TBEV genomes sequenced directly from patient clinical samples are publicly available. The aim of this study was to develop novel protocols for the direct sequencing of the TBEV genome, enabling studies of viral genetic determinants that influence disease severity. We developed a novel oligonucleotide primer scheme for amplification of the complete TBEV genome. The primer set was tested on 21 clinical samples with various viral loads and collected over a 15-year period using the two most common sequencing platforms. The amplicon-based strategy was compared to direct shotgun sequencing. Using the novel primer set, we successfully obtained nearly complete TBEV genomes (>90% of genome) from all clinical samples, including those with extremely low viral loads. Comparison of consensus sequences of the TBEV genome generated using the novel amplicon-based strategy and shotgun sequencing showed no difference. We conclude that the novel primer set is a powerful tool for future studies on genetic determinants of TBEV that influence disease severity and will lead to a better understanding of TBE pathogenesis.
Collapse
Affiliation(s)
- Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Petra Bogovič
- Department of Infectious Diseases, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Franc Strle
- Department of Infectious Diseases, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
- Correspondence:
| |
Collapse
|
25
|
Chrzastek K, Tennakoon C, Bialy D, Freimanis G, Flannery J, Shelton H. A random priming amplification method for whole genome sequencing of SARS-CoV-2 virus. BMC Genomics 2022; 23:406. [PMID: 35644636 PMCID: PMC9148844 DOI: 10.1186/s12864-022-08563-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-targeted whole genome sequencing is a powerful tool to comprehensively identify constituents of microbial communities in a sample. There is no need to direct the analysis to any identification before sequencing which can decrease the introduction of bias and false negatives results. It also allows the assessment of genetic aberrations in the genome (e.g., single nucleotide variants, deletions, insertions and copy number variants) including in noncoding protein regions. METHODS The performance of four different random priming amplification methods to recover RNA viral genetic material of SARS-CoV-2 were compared in this study. In method 1 (H-P) the reverse transcriptase (RT) step was performed with random hexamers whereas in methods 2-4 RT incorporating an octamer primer with a known tag. In methods 1 and 2 (K-P) sequencing was applied on material derived from the RT-PCR step, whereas in methods 3 (SISPA) and 4 (S-P) an additional amplification was incorporated before sequencing. RESULTS The SISPA method was the most effective and efficient method for non-targeted/random priming whole genome sequencing of SARS-CoV-2 that we tested. The SISPA method described in this study allowed for whole genome assembly of SARS-CoV-2 and influenza A(H1N1)pdm09 in mixed samples. We determined the limit of detection and characterization of SARS-CoV-2 virus which was 103 pfu/ml (Ct, 22.4) for whole genome assembly and 101 pfu/ml (Ct, 30) for metagenomics detection. CONCLUSIONS The SISPA method is predominantly useful for obtaining genome sequences from RNA viruses or investigating complex clinical samples as no prior sequence information is needed. It might be applied to monitor genomic virus changes, virus evolution and can be used for fast metagenomics detection or to assess the general picture of different pathogens within the sample.
Collapse
Affiliation(s)
| | | | - Dagmara Bialy
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
| | | | - John Flannery
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, Surrey, UK.
| |
Collapse
|
26
|
HIV / AIDS as a model for emerging infectious disease: origin, dating and circumstances of an emblematic epidemiological success. Presse Med 2022; 51:104128. [PMID: 35623545 DOI: 10.1016/j.lpm.2022.104128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
In June 1981, the Centers for Disease Control (CDC) "Morbidity and Mortality Weekly Report" described the first cases of what was to be known as the Acquired Immunodeficiency Syndrome (AIDS). Two years later, the agent responsible for the disease, the human immunodeficiency virus (HIV), was identified. Since then, according to the World Health Organization an estimated 40 million people have died from the disease. Where does this virus come from, and why such an emergence in the late 20th century? These are the questions that it is now possible to answer in large part thanks to the numerous studies published over a little more than three decades. As with other emerging infectious diseases, initial cross-species transmission from an animal reservoir and subsequent favorable sociological factors associated with the evolution of human societies have led to the spread of a dramatic disease, for which no vaccine is presently available.
Collapse
|
27
|
Neto Z, Martinez PA, Hill SC, Jandondo D, Thézé J, Mirandela M, Aguiar RS, Xavier J, dos Santos Sebastião C, Cândido ALM, Vaz F, Castro GR, Paixão JP, Loman NJ, Lemey P, Pybus OG, Vasconcelos J, Faria NR, de Morais J. Molecular and genomic investigation of an urban outbreak of dengue virus serotype 2 in Angola, 2017-2019. PLoS Negl Trop Dis 2022; 16:e0010255. [PMID: 35584153 PMCID: PMC9166355 DOI: 10.1371/journal.pntd.0010255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/03/2022] [Accepted: 02/11/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The transmission patterns and genetic diversity of dengue virus (DENV) circulating in Africa remain poorly understood. Circulation of the DENV serotype 1 (DENV1) in Angola was detected in 2013, while DENV serotype 2 (DENV2) was detected in 2018. Here, we report results from molecular and genomic investigations conducted at the Ministry of Health national reference laboratory (INIS) in Angola on suspected dengue cases detected between January 2017 and February 2019. METHODS A total of 401 serum samples from dengue suspected cases were collected in 13 of the 18 provinces in Angola. Of those, 351 samples had complete data for demographic and epidemiological analysis, including age, gender, province, type of residence, clinical symptoms, as well as dates of onset of symptoms and sample collection. RNA was extracted from residual samples and tested for DENV-RNA using two distinct real time RT-PCR protocols. On-site whole genome nanopore sequencing was performed on RT-PCR+ samples. Bayesian coalescent models were used to estimate date and origin of outbreak emergence, as well as population growth rates. RESULTS Molecular screening showed that 66 out of 351 (19%) suspected cases were DENV-RNA positive across 5 provinces in Angola. DENV RT-PCR+ cases were detected more frequently in urban sites compared to rural sites. Of the DENV RT-PCR+ cases most were collected within 6 days of symptom onset. 93% of infections were confirmed by serotype-specific RT-PCR as DENV2 and 1 case (1.4%) was confirmed as DENV1. Six CHIKV RT-PCR+ cases were also detected during the study period, including 1 co-infection of CHIKV with DENV1. Most cases (87%) were detected in Luanda during the rainy season between April and October. Symptoms associated with severe dengue were observed in 11 patients, including 2 with a fatal outcome. On-site nanopore genome sequencing followed by genetic analysis revealed an introduction of DENV2 Cosmopolitan genotype (also known as DENV2-II genotype) possibly from India in or around October 2015, at least 1 year before its detection in the country. Coalescent models suggest relatively moderately rapid epidemic growth rates and doubling times, and a moderate expansion of DENV2 in Angola during the studied period. CONCLUSION This study describes genomic, epidemiological and demographic characteristic of predominately urban transmission of DENV2 in Angola. We also find co-circulation of DENV2 with DENV1 and CHIKV and report several RT-PCR confirmed severe dengue cases in the country. Increasing dengue awareness in healthcare professional, expanding the monitorization of arboviral epidemics across the country, identifying most common mosquito breeding sites in urban settings, implementing innovative vector control interventions and dengue vaccination campaigns could help to reduce vector presence and DENV transmission in Angola.
Collapse
Affiliation(s)
- Zoraima Neto
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
| | - Pedro A. Martinez
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
| | - Sarah C. Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Domingos Jandondo
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
| | - Julien Thézé
- Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Marinela Mirandela
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
| | - Renato Santana Aguiar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joilson Xavier
- Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Filipa Vaz
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
- World Health Organization Angola, Luanda, Angola
| | - Gisel Reyes Castro
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
| | - Joana Paula Paixão
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
| | - Nicholas J. Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Jocelyne Vasconcelos
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
| | - Nuno Rodrigues Faria
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, United Kingdom
| | - Joana de Morais
- Instituto Nacional de Investigação em Saúde (INIS), Ministry of Health, Luanda, Angola
| |
Collapse
|
28
|
Whole-genome sequencing and genetic characteristics of representative porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Korea. Virol J 2022; 19:66. [PMID: 35410421 PMCID: PMC8996673 DOI: 10.1186/s12985-022-01790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a macrophage-tropic arterivirus with extremely high genetic and pathogenic heterogeneity that causes significant economic losses in the swine industry worldwide. PRRSV can be divided into two species [PRRSV1 (European) and PRRSV2 (North American)] and is usually diagnosed and genetically differentiated into several lineages based on the ORF5 gene, which constitutes only 5% of the whole genome. This study was conducted to achieve nonselective amplification and whole-genome sequencing (WGS) based on a simplified sequence-independent, single-primer amplification (SISPA) technique with next-generation sequencing (NGS), and to genetically characterize Korean PRRSV field isolates at the whole genome level. Methods The SISPA-NGS method coupled with a bioinformatics pipeline was utilized to retrieve full length PRRSV genomes of 19 representative Korean PRRSV strains by de novo assembly. Phylogenetic analysis, analysis of the insertion and deletion (INDEL) pattern of nonstructural protein 2 (NSP2), and recombination analysis were conducted. Results Nineteen complete PRRSV genomes were obtained with a high depth of coverage by the SISPA-NGS method. Korean PRRSV1 belonged to the Korean-specific subtype 1A and vaccine-related subtype 1C lineages, showing no evidence of recombination and divergent genetic heterogeneity with conserved NSP2 deletion patterns. Among Korean PRRSV2 isolates, modified live vaccine (MLV)-related lineage 5 viruses, lineage 1 viruses, and nation-specific Korean lineages (KOR A, B and C) could be identified. The NSP2 deletion pattern of the Korean lineages was consistent with that of the MN-184 strain (lineage 1), which indicates the common ancestor and independent evolution of Korean lineages. Multiple recombination signals were detected from Korean-lineage strains isolated in the 2010s, suggesting natural interlineage recombination between circulating KOR C and MLV strains. Interestingly, the Korean strain GGYC45 was identified as a recombinant KOR C and MLV strain harboring the KOR B ORF5 gene and might be the ancestor of currently circulating KOR B strains. Additionally, two novel lineage 1 recombinants of NADC30-like and NADC34-like viruses were detected. Conclusion Genome-wide analysis of Korean PRRSV isolates retrieved by the SISPA-NGS method and de novo assembly, revealed complex evolution and recombination in the field. Therefore, continuous surveillance of PRRSV at the whole genome level should be conducted, and new vaccine strategies for more efficient control of the virus are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01790-6.
Collapse
|
29
|
Arantes I, Gräf T, Andrade P, Oliveira Chaves Y, Guimarães ML, Bello G. Dissemination Dynamics of HIV-1 Subtype B Pandemic and Non-pandemic Lineages Circulating in Amazonas, Brazil. Front Microbiol 2022; 13:835443. [PMID: 35330760 PMCID: PMC8940292 DOI: 10.3389/fmicb.2022.835443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
The HIV-1 epidemic in the Amazonas state, as in most of Brazil, is dominated by subtype B. The state, nonetheless, is singular for its significant co-circulation of the variants BCAR, which can mostly be found in the Caribbean region, and BPAN, a clade that emerged in the United States and aggregates almost the totality of subtype B infections world-wide. The Amazonian HIV-1 epidemic provides a unique scenario to compare the epidemic potential of BPAN and BCAR clades spreading in the same population. To reconstruct the spatiotemporal dynamic and demographic history of both subtype B lineages circulating in Amazonas, we analyzed 1,272 HIV-1 pol sequences sampled in that state between 2009 and 2018. Our phylogeographic analyses revealed that while most BCAR infections resulted from a single successful founder event that took place in the Amazonas state around the late 1970s, most BPAN infections resulted from the expansion of multiple clusters seeded in the state since the late 1980s. Our data support the existence of at least four large clusters of the pandemic form in Amazonas, two of them nested in Brazil’s largest known subtype B cluster (BBR–I), and two others resulting from new introductions detected here. The reconstruction of the demographic history of the most prevalent BPAN (n = 4) and BCAR (n = 1) clades identified in Amazonas revealed that all clades displayed a continuous expansion [effective reproductive number (Re) > 1] until most recent times. During the period of co-circulation from the late 1990s onward, the Re of Amazonian BPAN and BCAR clusters behaved quite alike, fluctuating between 2.0 and 3.0. These findings support that the BCAR and BPAN variants circulating in the Brazilian state of Amazonas displayed different evolutionary histories, but similar epidemic trajectories and transmissibility over the last two decades, which is consistent with the notion that both subtype B variants display comparable epidemic potential. Our findings also revealed that despite significant advances in the treatment of HIV infections in the Amazonas state, BCAR and BPAN variants continue to expand and show no signs of the epidemic stabilization observed in other parts of the country.
Collapse
Affiliation(s)
- Ighor Arantes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Paula Andrade
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Yury Oliveira Chaves
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Arizmendi Cárdenas YO, Neuenschwander S, Malaspinas AS. Benchmarking metagenomics classifiers on ancient viral DNA: a simulation study. PeerJ 2022; 10:e12784. [PMID: 35356467 PMCID: PMC8958974 DOI: 10.7717/peerj.12784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Owing to technological advances in ancient DNA, it is now possible to sequence viruses from the past to track down their origin and evolution. However, ancient DNA data is considerably more degraded and contaminated than modern data making the identification of ancient viral genomes particularly challenging. Several methods to characterise the modern microbiome (and, within this, the virome) have been developed; in particular, tools that assign sequenced reads to specific taxa in order to characterise the organisms present in a sample of interest. While these existing tools are routinely used in modern data, their performance when applied to ancient microbiome data to screen for ancient viruses remains unknown. In this work, we conducted an extensive simulation study using public viral sequences to establish which tool is the most suitable to screen ancient samples for human DNA viruses. We compared the performance of four widely used classifiers, namely Centrifuge, Kraken2, DIAMOND and MetaPhlAn2, in correctly assigning sequencing reads to the corresponding viruses. To do so, we simulated reads by adding noise typical of ancient DNA to a set of publicly available human DNA viral sequences and to the human genome. We fragmented the DNA into different lengths, added sequencing error and C to T and G to A deamination substitutions at the read termini. Then we measured the resulting sensitivity and precision for all classifiers. Across most simulations, more than 228 out of the 233 simulated viruses were recovered by Centrifuge, Kraken2 and DIAMOND, in contrast to MetaPhlAn2 which recovered only around one third. Overall, Centrifuge and Kraken2 had the best performance with the highest values of sensitivity and precision. We found that deamination damage had little impact on the performance of the classifiers, less than the sequencing error and the length of the reads. Since Centrifuge can handle short reads (in contrast to DIAMOND and Kraken2 with default settings) and since it achieve the highest sensitivity and precision at the species level across all the simulations performed, it is our recommended tool. Regardless of the tool used, our simulations indicate that, for ancient human studies, users should use strict filters to remove all reads of potential human origin. Finally, we recommend that users verify which species are present in the database used, as it might happen that default databases lack sequences for viruses of interest.
Collapse
Affiliation(s)
- Yami Ommar Arizmendi Cárdenas
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Samuel Neuenschwander
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
31
|
Piterskiy MV, Gusev AG, Khodakov OA, Zakharova YA, Semenov AV. HIV-1 subtype diversity, phylogenetic analysis and study of drug resistance in strains circulating in the Ural Federal District. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction. Ural Federal District (UFD) has been one of the most HIV-affected areas in the Russian Federation during past 20 years. The total number of people living with HIV/AIDS (PLWH) and receiving antiretroviral therapy (ART) exceeds 100,000 (61.7% of all PLWH in the UFD), which creates opportunities for the wide spread of resistant HIV strains.Research aim was to determine the distribution of HIV-1 subtypes, evaluate the genetic heterogeneity of HIV-1 strains, and analyze the prevalence of HIV-1 drug resistance mutations (DRM) and the incidence of acquired resistance to antiretroviral drugs (ARVDs) in PLWH receiving ART in the UFD.Materials and methods. 223 patients receiving ART at stage III–IV of HIV infection living in the UFD were examined. To determine the subtypes and the DRM in the HIV-1 pol gene, molecular genetic studies were performed using the AmpliSense® HIV-Resist-Seq kit by Sanger sequencing on the Applied Biosystems 3500 Genetic Analyzer. The genetic heterogeneity was evaluated by calculating the identity of the genome region of the isolated strains in comparison with the genomes of foreign HIV strains, as well as using phylogenetic analysis.Results. In the studied group of patients, 5 subtypes of HIV-1 were identified: subtype A6 prevalence was 91.03%, that of subtype B was 2.69%, 3 recombinant subtypes (CRF03_A6B, CRF02_AG, CRF63_02A6) accounted for 6.28%. Among analyzed HIV-1 strains, 43.9% had a significant genetic similarity (identity of at least 97%) with the strains isolated from patients from neighboring countries (Belarus, Kazakhstan, Kyrgyzstan, Uzbekistan, Lithuania), 35.9% were similar to the strains isolated from patients from far-abroad countries (USA, China, South Korea, Australia, Sweden, Germany). A high heterogeneity of the circulating genetic variants of HIV-1 strains in the territory of the UFD region was established, which is an unfavorable factor for the diagnosis and treatment of HIV. The most common DRMs to both nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) were detected in 81 specimens (36.3%). NRTI resistance-forming M184V DRM was more common than any other DRM with statistical significance (p = 0,0008) and was detected in 88 specimens (39.5%).Conclusion. In the subtype structure of HIV-1, the dominant subtype was subtype A6, the most common in the countries that were formerly part of the USSR. The heterogeneity of the HIV-1 strains circulating in the UFD suggests that HIV-1 infection continues to be introduced into the UFD from populations outside the Russian Federation. The findings confirm the high prevalence of DRMs (62.8%) and secondary drug resistance of HIV-1 (60.1%) among PLWH in the territory of the UFD. At the same time, high-level resistance was detected in 56.5% of patients, which requires increasing the coverage of HIV resistance testing, including the introduction of monitoring for primary resistance, in order to optimize first-line ART regimens.
Collapse
|
32
|
Paixao J, Galangue M, Gaston C, Carralero R, Lino C, Júlio G, David Z, Francisco M, Sebastião CS, Sacomboio ENM, Morais J, Francisco NM. Early Evidence of Circulating SARS-CoV-2 in Unvaccinated and Vaccinated Measles Patients, September 2019–February 2020. Infect Drug Resist 2022; 15:533-544. [PMID: 35221698 PMCID: PMC8865870 DOI: 10.2147/idr.s344437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Background The global emergence of coronavirus disease 2019 (COVID-19) has challenged healthcare and rapidly spread over the globe. Early detection of new infections is crucial in the control of emerging diseases. Evidence of early recorded COVID-19 cases outside China has been documented in various countries. In this study, we aimed to identify the time of SARS-CoV-2 infection circulation by retrospectively analyzing sera of measles patients, weeks before the reported first COVID-19 cases in Angola. Materials and Methods We examined the humoral response against SARS-CoV-2 by using an enzyme-linked immunosorbent assay (ELISA)-based assay on a combined two-step sandwich enzyme immunoassay method. In total, we received 568 study patients with blood specimens collected from 23 September 2019 to 28 February 2020, 442 sera samples that met the criteria of the study were withdrawn and selected from the overall 568 received samples. In this study, we considered seropositives, patients who tested positive for SARS-CoV-2 immunoglobulin G (IgG) and M (IgM) antibodies with the index value >1. Results Of the 442 sera samples that met the criteria of the study, 204 were measles seropositive. Forty out of 204 were confirmed reactive to SARS-CoV-2 viral proteins using IgG and IgM more than 2 weeks before the first reported case in Angola. The humoral response analysis showed significant differences (p = 0.01) between the IgG and IgM indexes in the unvaccinated measles patients. Similarly, a significant difference (p = 0.001) was seen between the IgG and IgM indexes in the vaccinated measles patients. Conclusion Here, using the humoral response analysis, we report the identification of early circulation SARS-CoV-2 infection weeks before the first recognized cases in the Republic of Angola.
Collapse
Affiliation(s)
- Joana Paixao
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
- Unidade de Ensino e Investigação de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria Galangue
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Celestina Gaston
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Raísa Carralero
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Celestina Lino
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Gracieth Júlio
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Zinga David
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Moises Francisco
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
| | - Cruz S Sebastião
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
- Centro de Investigação em Saúde de Angola, Luanda, Angola
- Instituto Superior de Ciências de Saúde, Universidade Agostinho Neto, Luanda, Angola
| | - Euclides N M Sacomboio
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
- Instituto Superior de Ciências de Saúde, Universidade Agostinho Neto, Luanda, Angola
| | - Joana Morais
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Ngiambudulu M Francisco
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, Angola
- Correspondence: Ngiambudulu M Francisco, Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Rua: Amílcar Cabral, No. 96, por trás do Hospital Josina Machel, P.O. Box: 3635, Luanda, Angola, Tel +244 931 36 1717, Email
| |
Collapse
|
33
|
|
34
|
Phylogeography and Re-Evaluation of Evolutionary Rate of Powassan Virus Using Complete Genome Data. BIOLOGY 2021; 10:biology10121282. [PMID: 34943197 PMCID: PMC8698833 DOI: 10.3390/biology10121282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The evolution of human pathogenic viruses is one of the pressing problems of modern biology and directly relevant to public health. Many important aspects of virus evolution (e.g., evolutionary rate, population size, and migration history) are ‘hidden’ from the naked eye of a researcher. Modern bioinformatics methods make it possible to evaluate and visualize such evolutionary particularities of viruses. In this paper, we reconstructed the migration history and estimated the evolutionary rate of one of the most dangerous neuroinvasive and neurotropic tick-borne flaviviruses—Powassan virus (POWV)—distributed in North America and the Far East of Russia. Using the dates obtained, we hypothesized that the divergence of the most recent common ancestor of POWV into two independent genetic lineages most likely occurred because of the melting of glaciers that began at 11.72 Kya in the Holocene due to the climate warming-caused flooding of the isthmus between Eurasia and North America. Abstract In this paper, we revealed the genetic structure and migration history of the Powassan virus (POWV) reconstructed based on 25 complete genomes available in NCBI and ViPR databases (accessed in June 2021). The usage of this data set allowed us to perform a more precise assessment of the evolutionary rate of this virus. In addition, we proposed a simple Bayesian technique for the evaluation and visualization of ‘temporal signal dynamics’ along the phylogenetic tree. We showed that the evolutionary rate value of POWV is 3.3 × 10−5 nucleotide substitution per site per year (95% HPD, 2.0 × 10−5–4.7 × 10−5), which is lower than values reported in the previous studies. Divergence of the most recent common ancestor (MRCA) of POWV into two independent genetic lineages most likely occurred in the period between 2600 and 6030 years ago. We assume that the divergence of the virus lineages happened due to the melting of glaciers about 12,000 years ago, which led to the disappearance of the Bering Land Bridge between Eurasia and North America (the modern Alaskan territory) and spatial division of the viral areal into two parts. Genomic data provide evidence of the virus migrations between two continents. The mean migration rate detected from the Far East of Russia to North America was one event per 1750 years. The migration to the opposite direction occurred approximately once per 475 years.
Collapse
|
35
|
Abstract
HIV-prevention program planning, implementation, and evaluation began in the United States shortly after reports of a mysterious, apparently acquired, immune deficiency syndrome appeared in summer 1981. In San Francisco, New York City, and elsewhere, members of LGBT communities responded by providing accurate information, giving support, and raising money. During the first decade of the AIDS pandemic (1981-1990), social and behavioral scientists contributed by designing theory-based and practical interventions, combining interventions into programs, and measuring impact on behavior change and HIV incidence. In the second decade (1991-2000), federal, state, and local agencies and organizations played a more prominent role in establishing policies and procedures, funding research and programs, and determining the direction of intervention efforts. In the third decade (2001-2010), biomedical interventions were prioritized over behavioral interventions and have dominated attempts in the fourth decade (2011-2020) to integrate biomedical, behavioral, and structural interventions into coherent, efficient, and cost-effective programs to end AIDS.
Collapse
Affiliation(s)
- William W Darrow
- Behavioral Research and Evaluation Consultants, LLC, 4552 Post Avenue, Miami Beach, Florida, FL, 33140, USA.
| |
Collapse
|
36
|
Calvignac-Spencer S, Düx A, Gogarten JF, Patrono LV. Molecular archeology of human viruses. Adv Virus Res 2021; 111:31-61. [PMID: 34663498 DOI: 10.1016/bs.aivir.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolution of human-virus associations is usually reconstructed from contemporary patterns of genomic diversity. An intriguing, though still rarely implemented, alternative is to search for the genetic material of viruses in archeological and medical archive specimens to document evolution as it happened. In this chapter, we present lessons from ancient DNA research and incorporate insights from virology to explore the potential range of applications and likely limitations of archeovirological approaches. We also highlight the numerous questions archeovirology will hopefully allow us to tackle in the near future, and the main expected roadblocks to these avenues of research.
Collapse
Affiliation(s)
- Sébastien Calvignac-Spencer
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany.
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany
| | - Jan F Gogarten
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany; Viral Evolution, Robert Koch-Institute, Berlin, Germany
| | - Livia V Patrono
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
37
|
Wang Y, Zhou J, Peng H, Ma J, Li H, Li L, Li T, Fang Z, Ma A, Fu L. High-Throughput Identification of Allergens in a Food System via Hybridization Probe Cluster-Targeted Next-Generation Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11992-12001. [PMID: 34498855 DOI: 10.1021/acs.jafc.1c03595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food allergies (FAs) are a crucial public health problem and a severe food safety issue, resulting in an urgent need for an accurate method to detect all of the hidden allergens that exist in food systems. Current methods for detecting allergens typically utilize ELISA, PCR, or LC-MS, which are suitable for the confirmatory analysis of allergens from ingredients rather than unintended contaminants. In this study, we demonstrate a hybridization probe cluster-targeted next-generation sequencing (HPC-NGS) platform for high-throughput screening of potential allergens in food systems. The HPC-NGS successfully captured target DNA fragments and identified 19 allergenic ingredients in a complex food system. Additionally, the HPC-NGS provided expected allergenic species matching rates of 94.24-100% in single food materials and 99.87-99.98% in processed food products. Thus, HPC-NGS enables the accurate characterization of allergenic ingredients and unintended allergenic contaminants in foods. Our results provide new perspectives on the use of HPC-NGS in the accuracy of high-throughput detection technologies for allergens imposed by the complex matrix effect.
Collapse
Affiliation(s)
- Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan 430056, Hubei, P. R. China
| | - Junjie Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| | - Lun Li
- Institute for Systems Biology, Jianghan University, Wuhan 430056, Hubei, P. R. China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan 430056, Hubei, P. R. China
| | - Zhiwei Fang
- Institute for Systems Biology, Jianghan University, Wuhan 430056, Hubei, P. R. China
| | - Aijin Ma
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou 310018, Zhejiang, P. R. China
| |
Collapse
|
38
|
Bukin YS, Bondaryuk AN, Kulakova NV, Balakhonov SV, Dzhioev YP, Zlobin VI. Phylogenetic reconstruction of the initial stages of the spread of the SARS-CoV-2 virus in the Eurasian and American continents by analyzing genomic data. Virus Res 2021; 305:198551. [PMID: 34454972 PMCID: PMC8388146 DOI: 10.1016/j.virusres.2021.198551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
Samples from complete genomes of SARS-CoV-2 isolated during the first wave (December 2019–July 2020) of the global COVID-19 pandemic from 21 countries (Asia, Europe, Middle East and America) around the world, were analyzed using the phylogenetic method with molecular clock dating. Results showed that the first cases of COVID-19 in the human population appeared in the period between July and November 2019 in China. The spread of the virus into other countries of the world began in the autumn of 2019. In mid-February 2020, the virus appeared in all the countries we analyzed. During this time, the global population of SARS-CoV-2 was characterized by low levels of the genetic polymorphism, making it difficult to accurately assess the pathways of infection. The rate of evolution of the coding region of the SARS-CoV-2 genome equal to 7.3 × 10−4 (5.95 × 10−4–8.68 × 10−4) nucleotide substitutions per site per year is comparable to those of other human RNA viruses (Measles morbillivirus, Rubella virus, Enterovirus C). SARS-CoV-2 was separated from its known close relative, the bat coronavirus RaTG13 of the genus Betacoronavirus, approximately 15–43 years ago (the end of the 20th century).
Collapse
Affiliation(s)
- Yu S Bukin
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya str., 3, Irkutsk 664033, Russia.
| | - A N Bondaryuk
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya str., 3, Irkutsk 664033, Russia; Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser str., 78, Irkutsk 664047, Russia
| | - N V Kulakova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya str., 3, Irkutsk 664033, Russia
| | - S V Balakhonov
- Irkutsk Antiplague Research Institute of Siberia and Far East, Trilisser str., 78, Irkutsk 664047, Russia
| | - Y P Dzhioev
- Irkutsk State Medical University, Krasnogo Vosstaniya str., 1, Irkutsk 664003, Russia
| | - V I Zlobin
- Irkutsk State Medical University, Krasnogo Vosstaniya str., 1, Irkutsk 664003, Russia
| |
Collapse
|
39
|
Basavaraju SV, Patton ME, Grimm K, Rasheed MAU, Lester S, Mills L, Stumpf M, Freeman B, Tamin A, Harcourt J, Schiffer J, Semenova V, Li H, Alston B, Ategbole M, Bolcen S, Boulay D, Browning P, Cronin L, David E, Desai R, Epperson M, Gorantla Y, Jia T, Maniatis P, Moss K, Ortiz K, Park SH, Patel P, Qin Y, Steward-Clark E, Tatum H, Vogan A, Zellner B, Drobeniuc J, Sapiano MRP, Havers F, Reed C, Gerber S, Thornburg NJ, Stramer SL. Serologic Testing of US Blood Donations to Identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-Reactive Antibodies: December 2019-January 2020. Clin Infect Dis 2021; 72:e1004-e1009. [PMID: 33252659 PMCID: PMC7799215 DOI: 10.1093/cid/ciaa1785] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Background SARS-CoV-2, the virus that causes COVID-19 disease, was first identified in Wuhan, China in December 2019, with subsequent worldwide spread. The first U.S. cases were identified in January 2020. Methods To determine if SARS-CoV-2 reactive antibodies were present in sera prior to the first identified case in the U.S. on January 19, 2020, residual archived samples from 7,389 routine blood donations collected by the American Red Cross from December 13, 2019 to January 17, 2020, from donors resident in nine states (California, Connecticut, Iowa, Massachusetts, Michigan, Oregon, Rhode Island, Washington, and Wisconsin) were tested at CDC for anti-SARS-CoV-2 antibodies. Specimens reactive by pan-immunoglobulin (pan Ig) enzyme linked immunosorbent assay (ELISA) against the full spike protein were tested by IgG and IgM ELISAs, microneutralization test, Ortho total Ig S1 ELISA, and receptor binding domain / Ace2 blocking activity assay. Results Of the 7,389 samples, 106 were reactive by pan Ig. Of these 106 specimens, 90 were available for further testing. Eighty four of 90 had neutralizing activity, 1 had S1 binding activity, and 1 had receptor binding domain / Ace2 blocking activity >50%, suggesting the presence of anti-SARS-CoV-2-reactive antibodies. Donations with reactivity occurred in all nine states. Conclusions These findings suggest that SARS-CoV-2 may have been introduced into the United States prior to January 19, 2020.
Collapse
Affiliation(s)
| | - Monica E Patton
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kacie Grimm
- American Red Cross, Scientific Affairs, Gaithersburg, Maryland, USA
| | | | - Sandra Lester
- American Red Cross, Scientific Affairs, Gaithersburg, Maryland, USA
| | - Lisa Mills
- Synergy America, Inc, Atlanta, Georgia, USA
| | | | - Brandi Freeman
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Azaibi Tamin
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jarad Schiffer
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vera Semenova
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Han Li
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Shanna Bolcen
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Darbi Boulay
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Peter Browning
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Li Cronin
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Rita Desai
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Monica Epperson
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Tao Jia
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | - So Hee Park
- Eagle Global Scientific, Atlanta, Georgia, USA
| | - Palak Patel
- CFD Research Corporation, Huntsville, Alabama, USA
| | - Yunlong Qin
- Eagle Global Scientific, Atlanta, Georgia, USA
| | | | | | | | - Briana Zellner
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jan Drobeniuc
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Fiona Havers
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carrie Reed
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan Gerber
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Susan L Stramer
- American Red Cross, Scientific Affairs, Gaithersburg, Maryland, USA
| |
Collapse
|
40
|
Bennedbæk M, Zhukova A, Tang MHE, Bennet J, Munderi P, Ruxrungtham K, Gisslen M, Worobey M, Lundgren JD, Marvig RL. Phylogenetic analysis of HIV-1 shows frequent cross-country transmission and local population expansions. Virus Evol 2021; 7:veab055. [PMID: 34532059 PMCID: PMC8438898 DOI: 10.1093/ve/veab055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding of pandemics depends on the characterization of pathogen collections from well-defined and demographically diverse cohorts. Since its emergence in Congo almost a century ago, Human Immunodeficiency Virus Type 1 (HIV-1) has geographically spread and genetically diversified into distinct viral subtypes. Phylogenetic analysis can be used to reconstruct the ancestry of the virus to better understand the origin and distribution of subtypes. We sequenced two 3.6-kb amplicons of HIV-1 genomes from 3,197 participants in a clinical trial with consistent and uniform sampling at sites across 35 countries and analyzed our data with another 2,632 genomes that comprehensively reflect the HIV-1 genetic diversity. We used maximum likelihood phylogenetic analysis coupled with geographical information to infer the state of ancestors. The majority of our sequenced genomes (n = 2,501) were either pure subtypes (A-D, F, and G) or CRF01_AE. The diversity and distribution of subtypes across geographical regions differed; USA showed the most homogenous subtype population, whereas African samples were most diverse. We delineated transmission of the four most prevalent subtypes in our dataset (A, B, C, and CRF01_AE), and our results suggest both continuous and frequent transmission of HIV-1 over country borders, as well as single transmission events being the seed of endemic population expansions. Overall, we show that coupling of genetic and geographical information of HIV-1 can be used to understand the origin and spread of pandemic pathogens.
Collapse
Affiliation(s)
| | - Anna Zhukova
- Unité Bioinformatique Evolutive, Hub Bioinformatique et Biostatistique, USR3756 (C3BI//DBC), Institut Pasteur and CNRS, 25-28 Rue du Dr Roux, 75015 Paris, France
| | | | | | - Paula Munderi
- MRC Uganda Research Unit on AIDS, UVRI P.O.Box 49, Plot 51-59 Nakiwogo Road, Entebbe-Uganda
| | - Kiat Ruxrungtham
- HIV-NAT, Thai Red Cross AIDS Research Center, and School of Global Health, Faculty Medicine, Chulalongkorn University, Chamchuri 5 Bld. 6th Fl., Phayathai Rd., Wangmai, Pathumwan Bangkok 10330, Thailand
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Universitetsplatsen 1, 405 30 Gothenburg, Sweden,Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Universitetsplatsen 1, 405 30 Gothenburg, Sweden
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Biological Sciences West, Rm. 324 Tucson, AZ 85721, USA
| | | | | |
Collapse
|
41
|
Guo H, Gao J, Qian Y, Wang H, Liu J, Peng Q, Zhou Y, Wang K. miR-125b-5p inhibits cell proliferation by targeting ASCT2 and regulating the PI3K/AKT/mTOR pathway in an LPS-induced intestinal mucosa cell injury model. Exp Ther Med 2021; 22:838. [PMID: 34149884 PMCID: PMC8210225 DOI: 10.3892/etm.2021.10270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal barrier injury is an important cause of death in patients with acquired immune deficiency syndrome (AIDS). Therefore, it is of great significance to identify a therapeutic target for intestinal barrier injury to delay the progression of AIDS. microRNA (miRNA/miR)-125b-5p has an extensive role in cancer and controlling intestinal epithelial barrier function, but its role in human immunodeficiency virus-related intestinal mucosal damage remains unknown. The present study was designed to explore the effects of miR-125b-5p on lipopolysaccharide (LPS)-induced intestinal mucosal injury and the underlying mechanism. The expression of miR-125b-5p and ASCT2 mRNA was detected in colon biopsy samples of 10 patients with AIDS and 10 control healthy subjects. Human intestinal embryonic mucosa cells (CCC-HIE-2) were used to establish an LPS-induced intestinal mucosa cell injury model in vitro. Cell proliferation and apoptosis were determined by MTT assays and flow cytometry, respectively. miR-125b-5p levels and ASCT2 mRNA and protein expression levels in the LPS-induced intestinal mucosa cell injury model were detected by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The interaction between miR-125b-5p and ASCT2 was analyzed using a dual luciferase reporter assay. The results demonstrated that miR-125b-5p levels were increased and ASCT2 mRNA expression levels were decreased in colon samples from patients with AIDS and in LPS-induced intestinal mucosa cells. In the LPS-induced intestinal mucosa cell injury model, transfection with miR-125b-5p mimic inhibited cell proliferation and promoted cell apoptosis, while transfection with a miR-125b-5p inhibitor increased cell proliferation and attenuated cell apoptosis. Furthermore, miR-125b-5p mimic transfection resulted in a decrease of ASCT2 mRNA and protein expression, whereas the inhibitor increased ASCT2 mRNA and protein expression. Dual luciferase reporter assays suggested that ASCT2 was a direct target of miR-125b-5p, and its restoration weakened the effect of miR-125b-5p on LPS-induced intestinal mucosa cell injury. Transfection with the miR-125b-5p mimic also exhibited a suppressive effect on the PI3K/AKT/mTOR pathway in the LPS-induced intestinal mucosal cell injury model. Overall, the present study indicated that miR-125b-5p accelerated LPS-induced intestinal mucosa cell injury by targeting ASCT2 and upregulating the PI3K/AKT/mTOR pathway. The current findings may provide novel targets for the treatment of intestinal barrier injury in patients with AIDS.
Collapse
Affiliation(s)
- Huiming Guo
- Department of Gynaecology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jianyuan Gao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Qian
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Huawei Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiang Liu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qingyan Peng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China.,The Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yong Zhou
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China.,The Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
42
|
Ellwanger JH, Chies JAB. Zoonotic spillover: Understanding basic aspects for better prevention. Genet Mol Biol 2021; 44:e20200355. [PMID: 34096963 PMCID: PMC8182890 DOI: 10.1590/1678-4685-gmb-2020-0355] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/05/2021] [Indexed: 01/07/2023] Open
Abstract
The transmission of pathogens from wild animals to humans is called “zoonotic spillover”. Most human infectious diseases (60-75%) are derived from pathogens that originally circulated in non-human animal species. This demonstrates that spillover has a fundamental role in the emergence of new human infectious diseases. Understanding the factors that facilitate the transmission of pathogens from wild animals to humans is essential to establish strategies focused on the reduction of the frequency of spillover events. In this context, this article describes the basic aspects of zoonotic spillover and the main factors involved in spillover events, considering the role of the inter-species interactions, phylogenetic distance between host species, environmental drivers, and specific characteristics of the pathogens, animals, and humans. As an example, the factors involved in the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic are discussed, indicating what can be learned from this public health emergency, and what can be applied to the Brazilian scenario. Finally, this article discusses actions to prevent or reduce the frequency of zoonotic spillover events.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| | - José Artur Bogo Chies
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| |
Collapse
|
43
|
Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, Crispim MAE, Sales FCS, Hawryluk I, McCrone JT, Hulswit RJG, Franco LAM, Ramundo MS, de Jesus JG, Andrade PS, Coletti TM, Ferreira GM, Silva CAM, Manuli ER, Pereira RHM, Peixoto PS, Kraemer MUG, Gaburo N, Camilo CDC, Hoeltgebaum H, Souza WM, Rocha EC, de Souza LM, de Pinho MC, Araujo LJT, Malta FSV, de Lima AB, Silva JDP, Zauli DAG, Ferreira ACDS, Schnekenberg RP, Laydon DJ, Walker PGT, Schlüter HM, Dos Santos ALP, Vidal MS, Del Caro VS, Filho RMF, Dos Santos HM, Aguiar RS, Proença-Modena JL, Nelson B, Hay JA, Monod M, Miscouridou X, Coupland H, Sonabend R, Vollmer M, Gandy A, Prete CA, Nascimento VH, Suchard MA, Bowden TA, Pond SLK, Wu CH, Ratmann O, Ferguson NM, Dye C, Loman NJ, Lemey P, Rambaut A, Fraiji NA, Carvalho MDPSS, Pybus OG, Flaxman S, Bhatt S, Sabino EC. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021; 372:815-821. [PMID: 33853970 PMCID: PMC8139423 DOI: 10.1126/science.abh2644] [Citation(s) in RCA: 905] [Impact Index Per Article: 301.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.
Collapse
Affiliation(s)
- Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Zoology, University of Oxford, Oxford, UK
| | - Thomas A Mellan
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - Ingra M Claro
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Darlan da S Candido
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Zoology, University of Oxford, Oxford, UK
| | - Swapnil Mishra
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - Myuki A E Crispim
- Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, Brazil
| | - Flavia C S Sales
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Iwona Hawryluk
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - John T McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ruben J G Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lucas A M Franco
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariana S Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jaqueline G de Jesus
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pamela S Andrade
- Departamento de Epidemiologia, Faculdade de Saúde Pública da Universidade de São Paulo, Sao Paulo, Brazil
| | - Thais M Coletti
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Giulia M Ferreira
- Laboratório de Virologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Camila A M Silva
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Erika R Manuli
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Pedro S Peixoto
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - William M Souza
- Virology Research Centre, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Esmenia C Rocha
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leandro M de Souza
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariana C de Pinho
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo J T Araujo
- Laboratory of Quantitative Pathology, Center of Pathology, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | | | | | | | | | - Daniel J Laydon
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - Patrick G T Walker
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | | | | | | | | | | | | | - Renato S Aguiar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José L Proença-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Bruce Nelson
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - James A Hay
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mélodie Monod
- Department of Mathematics, Imperial College London, London, UK
| | | | - Helen Coupland
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - Raphael Sonabend
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - Michaela Vollmer
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - Axel Gandy
- Department of Mathematics, Imperial College London, London, UK
| | - Carlos A Prete
- Departamento de Engenharia de Sistemas Eletrônicos, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil
| | - Vitor H Nascimento
- Departamento de Engenharia de Sistemas Eletrônicos, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil
| | - Marc A Suchard
- Department of Biomathematics, Department of Biostatistics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - Chieh-Hsi Wu
- Mathematical Sciences, University of Southampton, Southampton, UK
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, UK
| | - Neil M Ferguson
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | | | - Nick J Loman
- Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Nelson A Fraiji
- Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, Brazil
- Diretoria Clínica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Maria do P S S Carvalho
- Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, Brazil
- Diretoria da Presidência, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Seth Flaxman
- Department of Mathematics, Imperial College London, London, UK
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ester C Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Frutos R, Gavotte L, Devaux CA. Understanding the origin of COVID-19 requires to change the paradigm on zoonotic emergence from the spillover to the circulation model. INFECTION GENETICS AND EVOLUTION 2021; 95:104812. [PMID: 33744401 PMCID: PMC7969828 DOI: 10.1016/j.meegid.2021.104812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
While the COVID-19 pandemic continues to spread with currently more than 117 million cumulated cases and 2.6 million deaths worldwide as per March 2021, its origin is still debated. Although several hypotheses have been proposed, there is still no clear explanation about how its causative agent, SARS-CoV-2, emerged in human populations. Today, scientifically-valid facts that deserve to be debated still coexist with unverified statements blurring thus the knowledge on the origin of COVID-19. Our retrospective analysis of scientific data supports the hypothesis that SARS-CoV-2 is indeed a naturally occurring virus. However, the spillover model considered today as the main explanation to zoonotic emergence does not match the virus dynamics and somehow misguided the way researches were conducted. We conclude this review by proposing a change of paradigm and model and introduce the circulation model for explaining the various aspects of the dynamic of SARS-CoV-2 emergence in humans.
Collapse
|
45
|
Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S, Crispim MAE, Sales FC, Hawryluk I, McCrone JT, Hulswit RJG, Franco LAM, Ramundo MS, de Jesus JG, Andrade PS, Coletti TM, Ferreira GM, Silva CAM, Manuli ER, Pereira RHM, Peixoto PS, Kraemer MU, Gaburo N, Camilo CDC, Hoeltgebaum H, Souza WM, Rocha EC, de Souza LM, de Pinho MC, Araujo LJT, Malta FSV, de Lima AB, Silva JDP, Zauli DAG, de S. Ferreira AC, Schnekenberg RP, Laydon DJ, Walker PGT, Schlüter HM, dos Santos ALP, Vidal MS, Del Caro VS, Filho RMF, dos Santos HM, Aguiar RS, Modena JLP, Nelson B, Hay JA, Monod M, Miscouridou X, Coupland H, Sonabend R, Vollmer M, Gandy A, Suchard MA, Bowden TA, Pond SLK, Wu CH, Ratmann O, Ferguson NM, Dye C, Loman NJ, Lemey P, Rambaut A, Fraiji NA, Carvalho MDPSS, Pybus OG, Flaxman S, Bhatt S, Sabino EC. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.26.21252554. [PMID: 33688664 PMCID: PMC7941639 DOI: 10.1101/2021.02.26.21252554] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4-2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.
Collapse
Affiliation(s)
- Nuno R. Faria
- Department of Infectious Disease Epidemiology, Imperial College London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Zoology, University of Oxford, UK
| | - Thomas A. Mellan
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Charles Whittaker
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Ingra M. Claro
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Darlan da S. Candido
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Zoology, University of Oxford, UK
| | - Swapnil Mishra
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Myuki A. E. Crispim
- Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, Brazil
| | - Flavia C. Sales
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Iwona Hawryluk
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - John T. McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ruben J. G. Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Lucas A. M. Franco
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariana S. Ramundo
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jaqueline G. de Jesus
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pamela S. Andrade
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thais M. Coletti
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Giulia M. Ferreira
- Laboratório de Virologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Camila A. M. Silva
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Erika R. Manuli
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Pedro S. Peixoto
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - William M. Souza
- Virology Research Centre, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Esmenia C. Rocha
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leandro M. de Souza
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariana C. de Pinho
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo J. T Araujo
- Laboratory of Quantitative Pathology, Center of Pathology, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | | | | | | | | | - Daniel J. Laydon
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | | | | | | | | | | | | | | | - Renato S. Aguiar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José L. P. Modena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Bruce Nelson
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - James A. Hay
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- Center for Communicable Disease Dynamics, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Melodie Monod
- Department of Mathematics, Imperial College London, UK
| | | | - Helen Coupland
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Raphael Sonabend
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Michaela Vollmer
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Axel Gandy
- Department of Mathematics, Imperial College London, UK
| | - Marc A. Suchard
- Department of Biomathematics, Department of Biostatistics and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sergei L. K. Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, USA
| | - Chieh-Hsi Wu
- Mathematical Sciences, University of Southampton, Southampton, UK
| | | | - Neil M. Ferguson
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | | | - Nick J. Loman
- Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Nelson A. Fraiji
- Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, Brazil
- Diretoria Clínica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Maria do P. S. S. Carvalho
- Fundação Hospitalar de Hematologia e Hemoterapia, Manaus, Brazil
- Diretoria da Presidência, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Seth Flaxman
- Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, Imperial College London, UK
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Denmark
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Maljkovic Berry I, Melendrez MC, Bishop-Lilly KA, Rutvisuttinunt W, Pollett S, Talundzic E, Morton L, Jarman RG. Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J Infect Dis 2021; 221:S292-S307. [PMID: 31612214 DOI: 10.1093/infdis/jiz286] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Next generation sequencing (NGS) combined with bioinformatics has successfully been used in a vast array of analyses for infectious disease research of public health relevance. For instance, NGS and bioinformatics approaches have been used to identify outbreak origins, track transmissions, investigate epidemic dynamics, determine etiological agents of a disease, and discover novel human pathogens. However, implementation of high-quality NGS and bioinformatics in research and public health laboratories can be challenging. These challenges mainly include the choice of the sequencing platform and the sequencing approach, the choice of bioinformatics methodologies, access to the appropriate computation and information technology infrastructure, and recruiting and retaining personnel with the specialized skills and experience in this field. In this review, we summarize the most common NGS and bioinformatics workflows in the context of infectious disease genomic surveillance and pathogen discovery, and highlight the main challenges and considerations for setting up an NGS and bioinformatics-focused infectious disease research public health laboratory. We describe the most commonly used sequencing platforms and review their strengths and weaknesses. We review sequencing approaches that have been used for various pathogens and study questions, as well as the most common difficulties associated with these approaches that should be considered when implementing in a public health or research setting. In addition, we provide a review of some common bioinformatics tools and procedures used for pathogen discovery and genome assembly, along with the most common challenges and solutions. Finally, we summarize the bioinformatics of advanced viral, bacterial, and parasite pathogen characterization, including types of study questions that can be answered when utilizing NGS and bioinformatics.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Kimberly A Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Eldin Talundzic
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, Maryland
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
47
|
Strathdee SA, Martin NK, Pitpitan EV, Stockman JK, Smith DM. What the HIV Pandemic Experience Can Teach the United States About the COVID-19 Response. J Acquir Immune Defic Syndr 2021; 86:1-10. [PMID: 33027152 PMCID: PMC7727321 DOI: 10.1097/qai.0000000000002520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Steffanie A. Strathdee
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA; and
| | - Natasha K. Martin
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA; and
| | | | - Jamila K. Stockman
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA; and
| | - Davey M. Smith
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA; and
| |
Collapse
|
48
|
Rasmussen DA, Grünwald NJ. Phylogeographic Approaches to Characterize the Emergence of Plant Pathogens. PHYTOPATHOLOGY 2021; 111:68-77. [PMID: 33021879 DOI: 10.1094/phyto-07-20-0319-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phylogeography combines geographic information with phylogenetic and population genomic approaches to infer the evolutionary history of a species or population in a geographic context. This approach has been instrumental in understanding the emergence, spread, and evolution of a range of plant pathogens. In particular, phylogeography can address questions about where a pathogen originated, whether it is native or introduced, and when and how often introductions occurred. We review the theory, methods, and approaches underpinning phylogeographic inference and highlight applications providing novel insights into the emergence and spread of select pathogens. We hope that this review will be useful in assessing the power, pitfalls, and opportunities presented by various phylogeographic approaches.
Collapse
Affiliation(s)
- David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | - Niklaus J Grünwald
- Horticultural Crops Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR
| |
Collapse
|
49
|
Country Level Diversity of the HIV-1 Pandemic between 1990 and 2015. J Virol 2020; 95:JVI.01580-20. [PMID: 33087461 DOI: 10.1128/jvi.01580-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
The global diversity of HIV forms a major challenge to the development of an HIV vaccine, as well as diagnostic, drug resistance, and viral load assays, which are essential to reaching the UNAIDS 90:90:90 targets. We sought to determine country level HIV-1 diversity globally between 1990 and 2015. We assembled a global HIV-1 molecular epidemiology database through a systematic literature search and a global survey. We searched PubMed, EMBASE (Ovid), CINAHL (Ebscohost), and Global Health (Ovid) for HIV-1 subtyping studies published from 1 January 1990 to 31 December 2015. We collected additional unpublished data through a global survey of experts. Prevalence studies with original HIV-1 subtyping data collected between 1990 and 2015 were included. This resulted in a database with 383,519 subtyped HIV-1 samples from 116 countries over four time periods (1990 to 1999, 2000 to 2004, 2005 to 2009, and 2010 to 2015). We analyzed country-specific numbers of distinct HIV-1 subtypes, circulating recombinant forms (CRFs), and unique recombinant forms (URFs) in each time period. We also analyzed country-specific proportions of infections due to HIV-1 recombinants, CRFs, and URFs and calculated the Shannon diversity index for each country. Finally, we analyzed global temporal trends in each of these measures of HIV-1 diversity. We found extremely wide variation in complexity of country level HIV diversity around the world. Central African countries such as Chad, Democratic Republic of the Congo, Angola, and Republic of the Congo have the most diverse HIV epidemics. The number of distinct HIV-1 subtypes and recombinants was greatest in Western Europe (Spain and France) and North America (United States) (up to 39 distinct HIV-1 variants in Spain). The proportion of HIV-1 infections due to recombinants was highest in Southeast Asia (>95% of infections in Viet Nam, Cambodia, and Thailand), China, and West and Central Africa, mainly due to high proportions of CRF01_AE and CRF02_AG. Other CRFs played major roles (>75% of HIV-1 infections) in Estonia (CRF06_cpx), Iran (CRF35_AD), and Algeria (CRF06_cpx). The highest proportions of URFs (>30%) were found in Myanmar, Republic of the Congo, and Argentina. Global temporal analysis showed consistent increases over time in country level numbers of distinct HIV-1 variants and proportions of CRFs and URFs, leading to increases in country level HIV-1 diversity. Our study provides epidemiological evidence that the HIV pandemic is diversifying at country level and highlights the increasing challenge to prevention and treatment efforts. HIV-1 molecular epidemiological surveillance needs to be continued and improved.IMPORTANCE This is the first study to analyze global country level HIV-1 diversity from 1990 to 2015. We found extremely wide variation in complexity of country level HIV diversity around the world. Central African countries have the most diverse HIV epidemics. The number of distinct HIV-1 subtypes and recombinants was greatest in Western Europe and North America. The proportion of HIV-1 infections due to recombinants was highest in South-East Asia, China, and West and Central Africa. The highest proportions of URFs were found in Myanmar, Republic of the Congo, and Argentina. Our study provides epidemiological evidence that the HIV pandemic is diversifying at country level and highlights the increasing challenge to HIV vaccine development and diagnostic, drug resistance, and viral load assays.
Collapse
|
50
|
Anis E, Ilha MRS, Engiles JB, Wilkes RP. Evaluation of targeted next-generation sequencing for detection of equine pathogens in clinical samples. J Vet Diagn Invest 2020; 33:227-234. [PMID: 33305693 DOI: 10.1177/1040638720978381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Equine infectious disease outbreaks may have profound economic impact, resulting in losses of millions of dollars of revenue as a result of horse loss, quarantine, and cancelled events. Early and accurate diagnosis is essential to limit the spread of infectious diseases. However, laboratory detection of infectious agents, especially the simultaneous detection of multiple agents, can be challenging to the clinician and diagnostic laboratory. Next-generation sequencing (NGS), which allows millions of DNA templates to be sequenced simultaneously in a single reaction, is an ideal technology for comprehensive testing. We conducted a proof-of-concept study of targeted NGS to detect 62 common equine bacterial, viral, and parasitic pathogens in clinical samples. We designed 264 primers and constructed a bioinformatics tool for the detection of targeted pathogens. The designed primers were able to specifically detect the intended pathogens. Results of testing 27 clinical samples with our targeted NGS assay compared with results of routine tests (assessed as a group) yielded positive percent agreement of 81% and negative percent agreement of 83%, overall agreement of 81%, and kappa of 0.56 (moderate agreement). This moderate agreement was likely the result of low sensitivity of some primers. However, our NGS assay successfully detected multiple pathogens in the clinical samples, including some pathogens missed by routine techniques.
Collapse
Affiliation(s)
- Eman Anis
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA.,Department of Virology, Faculty of Veterinary Medicine, University of Sadat, El Beheira Governorate, Sadat City, Egypt
| | - Marcia R S Ilha
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA
| | - Julie B Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA
| | - Rebecca P Wilkes
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| |
Collapse
|