1
|
Krupke H, Zoratto N, Rabut L, Gao D, Paunović N, Cerrejon DK, Dehapiot B, Leroux JC. A biodegradable suction patch for sustainable transbuccal peptide delivery. J Control Release 2025:113947. [PMID: 40513668 DOI: 10.1016/j.jconrel.2025.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 06/03/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
Despite considerable advances in the systemic delivery of peptides, their susceptibility to gastrointestinal degradation and high molecular weight, which restricts permeability across biological barriers, remain obstacles to oral administration. As a result, most peptide therapies rely on injections to achieve therapeutic effects. Recent studies on a bioinspired suction patch demonstrated positive effects in vivo with three peptides - desmopressin, semaglutide, and teriparatide - yet materials used for patch fabrication were non-degradable. In this work, a more sustainable patch alternative is introduced by replacing previously used materials with biodegradable polymers, aiming for degradation of the patch after removal to reduce environmental impact. A scalable mold casting process was employed to thermally crosslink synthesized and functionalized copolyesters, yielding the desired devices. Mechanical testing across various materials and shapes identified the best-performing polymer, while its degradation was confirmed in both aqueous medium and simulated waste. An ex vivo model using porcine buccal tissue validated the functionality of biodegradable patches, showing enhanced permeation of a poorly permeable dye when combined with a chemical permeation enhancer. In beagle dogs, the bioavailability of semaglutide (4.11 kDa) was substantially improved compared to the commercially available tablet, with an application time of only 10 min. Additionally, the patch achieved a relative bioavailability of 26 % for bremelanotide (1.03 kDa) compared to subcutaneous administration. This work underscores the potential of replacing silicone devices with biodegradable alternatives, providing a more sustainable approach for peptide delivery via the buccal suction patch.
Collapse
Affiliation(s)
- Hanna Krupke
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lucie Rabut
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Gao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Nevena Paunović
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - David Klein Cerrejon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Benoit Dehapiot
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
2
|
Langer R. My Struggles and Dreams as a Chemical Engineer. Annu Rev Chem Biomol Eng 2025; 16:1-22. [PMID: 40030148 DOI: 10.1146/annurev-chembioeng-082223-110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
My career has not been straightforward. Although I am a chemical engineer, and I'm proud of that, I took a path from chemistry and engineering to one that also involved experimental biology and medicine. This was very unusual many decades ago. In so doing, I met with rejection and ridicule early in my career. However, by going down that path, I was able to make discoveries and inventions that I hope have saved and improved lives, and I've been able to train a great number of people who are going down the road I began traveling over many years ago.
Collapse
Affiliation(s)
- Robert Langer
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
3
|
Ding X, Gantumur N, Lee BP, Chen YG. Photocurable and 3D Printable Functional Polyesters to Engineer Elastomeric Scaffolds for Biomedical Applications. Macromol Biosci 2025:e00189. [PMID: 40448292 DOI: 10.1002/mabi.202500189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/01/2025] [Indexed: 06/02/2025]
Abstract
Photocurable functional block copolyesters are reported to engineer elastomeric scaffolds for biomedical applications. The polymer backbone is organized by soft and stiff blocks. The functional prepolymer is readily crosslinked by thiol-yne click chemistry under ulraviolet light in the presence of a photo-initiator to form a robust elastomer. The elastomers bear both chemical crosslinks and crystal-domain crosslinks to simultaneously tune the materials' properties, such as mechanical properties and degradation rates. The dual crosslinks can more efficiently tune the mechanical properties compared to the chemical crosslink alone. More importantly, the functional prepolymer is photo-printable to construct elastomeric scaffolds with precise control of pore sizes using the state-of-the-art digital light processing technique. With hydroxyls pendant on the backbone, human umbilical vein endothelial cells prefer to grow on the elastomer surface compared to that of a poly(caprolactone) film. It is believed that these functional photo-polyesters will be useful to construct medical devices for bioengineering research.
Collapse
Affiliation(s)
- Xiaochu Ding
- Health Research Institute, Michigan Technological University, H-STEM 238, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Narangerel Gantumur
- Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
- Cardiovascular Institute, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, H-STEM 337, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Ying Grace Chen
- Department of Biomedical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
- Cardiovascular Institute, Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| |
Collapse
|
4
|
Jia Y, Xu X, Lu H, Fatima K, Zhang Y, Du H, Yang J, Zhou X, Sui X, Hou L, Pang Y, He C. A super soft thermoplastic biodegradable elastomer with high elasticity for arterial regeneration. Biomaterials 2025; 316:122985. [PMID: 39637585 DOI: 10.1016/j.biomaterials.2024.122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Elastomers with innovative performance will provide new opportunities for solving problems in soft tissue repair, such as arterial regeneration. Herein, we present a thermoplastic biodegradable elastomer (PPS) that differs from the rigid, low-elastic traditional ones. It shows super softness (0.41 ± 0.052 MPa), high stretchability (3239 ± 357 %), and viscoelasticity similar to natural soft tissues. In addition, it also has good processability and appropriate degradability, estimated at 4-8 months for complete degradation in vivo. This excellent overall performance makes it a great support material for soft tissue repair and a powerful modifying agent for improving existing materials. For example, introducing it into poly(l-lactide) scaffolds through thermally induced phase separation can create a unique microporous structure with interconnected large pores (diameter >10 μm), demonstrating high efficiency in inducing cell infiltration. Blending it with poly(ε-caprolactone) through electrospinning can produce a composite fibrous film with significantly improved comprehensive performance, displaying artery-matched mechanical properties. Building on the above, we constructed a tri-layer tissue-engineered vascular graft for arterial regeneration, exhibiting promising remodeling outcomes in rabbits.
Collapse
Affiliation(s)
- Yating Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China; Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Xu
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Hao Lu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kanwal Fatima
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yali Zhang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Du
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaofeng Sui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Hou
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Yanan Pang
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China; Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
5
|
Yoon S, Chen B. Biomimetic Elastomer-Clay Nanocomposite Hydrogels with Control of Biological Chemicals for Soft Tissue Engineering and Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:2492-2505. [PMID: 39976353 PMCID: PMC11921026 DOI: 10.1021/acsabm.4c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Resilient hydrogels are of great interest in soft tissue applications, such as soft tissue engineering and wound healing, with their biomimetic mechanical and hydration properties. A critical aspect in designing hydrogels for healthcare is their functionalities to control the surrounding biological environments to optimize the healing process. Herein, we have created an elastomer-clay nanocomposite hydrogel system with biomimetic mechanical behavior and sustained drug delivery of bioactive components and malodorous diamine-controlling properties. These hydrogels were prepared by a combined approach of melt intercalation of poly(ethylene glycol) and montmorillonite clay, followed by in situ cross-linking with a branched poly(glycerol sebacate) prepolymer. The hydration, vapor transmission, and surface wettability of the hydrogels were readily controlled by varying the clay content. Their mechanical properties were also modulated to mimic the Young's moduli (ranging between 12.6 and 105.2 kPa), as well as good flexibility and stretchability of soft tissues. A porous scaffold with interconnected pore structures as well as full and instant shape recovery was fabricated from a selected nanocomposite to demonstrate its potential applications as soft tissue scaffolds and wound healing materials. Biodegradability and biocompatibility were tested in vitro, showing controllable degradation kinetics with clay and no evidence of cytotoxicity. With the high surface area and absorption capacity of the clay, sustained drug delivery of a proangiogenic agent of 17β-estradiol as a model drug and the ability to control the malodorous diamines were both achieved. This elastomer-clay nanocomposite hydrogel system with a three-dimensional interconnected porous scaffold architecture and controllable hydration, mechanical, and biodegradable properties, as well as good biocompatibility and the ability to control the biological chemical species of the surrounding environments, has great potential in soft tissue engineering and wound healing.
Collapse
Affiliation(s)
- Sungkwon Yoon
- School of
Mechanical and Aerospace Engineering, Queen’s
University Belfast, Stranmillis Road, Belfast BT9 5AH, United Kingdom
- Department
of Materials Science and Engineering, University
of Sheffield, Mappin
Street, Sheffield S1 3JD, United Kingdom
| | - Biqiong Chen
- School of
Mechanical and Aerospace Engineering, Queen’s
University Belfast, Stranmillis Road, Belfast BT9 5AH, United Kingdom
| |
Collapse
|
6
|
Khan A, Ding Y, Fu R, Wang X, Mendez-Santos M, Adepu S, Sun C, Ameer GA. Highly Elastic, Biodegradable Polyester-Based Citrate Rubber for 3D Printing in Regenerative Engineering. ACS Biomater Sci Eng 2025; 11:1571-1582. [PMID: 39928332 PMCID: PMC11897938 DOI: 10.1021/acsbiomaterials.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Highly elastic and 3D-printable degradable elastomers are advantageous for many biomedical applications. Herein, we report the synthesis of a biodegradable citrate rubber poly(tetrahydrofuran-co-citrate-co-hydroxyl telechelic natural rubber) (PTCR) using citric acid, poly(tetrahydrofuran), and hydroxyl telechelic natural rubber. The citrate rubber PTCR is methacrylated to synthesize a prepolymer methacrylated-PTCR (mPTCR) that can be used to fabricate bioresorbable scaffolds via 3D printing using micro-continuous liquid interface production. Polymers were chemically characterized via NMR spectroscopy, FTIR spectroscopy, DSC, and TGA and mechanically characterized via tensile testing and crimping. The addition of rubber improved the elasticity of PTCR (658 ± 68% for dry and 415 ± 45% for swollen films) significantly compared with its nonrubber-based citrate copolymer, i.e., poly(tetrahydrofuran-co-citrate) (PTC) (550 ± 51% for dry and 88 ± 10% for swollen films). Also, the mechanical strength of PTCR reached as high as 0.8 ± 0.06 MPa after the successful addition of rubber into PTC, which had a tensile strength of 0.55 ± 0.04 MPa. Notably, the 3D-printed vascular scaffold of mPTCR demonstrated excellent mechanical competence in crimping and expansion, which is necessary for clinical use. The percent diameter recovery of mPTCR vascular scaffolds (89.4 ± 1.1%) was higher than that of its nonrubber version, i.e., methacrylated-poly(tetrahydrofuran-co-citrate) (mPTC) (77.2 ± 6.7%), illustrating the contribution of rubber in mPTCR. In vitro degradation studies showed rapid hydrolytic degradation of the PTCR elastomer in 6 weeks, whereas 3D-printed scaffolds of mPTCR degraded slowly due to its improved stability after methacrylation. The cytocompatibility and cell attachment on the vascular scaffold surfaces were successfully demonstrated by using L929 mouse myoblasts. To conclude, this study reports a citrate-based rubber that should help meet some of the scaffold mechanical requirements for tissue-engineering applications.
Collapse
Affiliation(s)
- Amir Khan
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Yonghui Ding
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Rao Fu
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Xinlong Wang
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Maria Mendez-Santos
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Shivakalyani Adepu
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Cheng Sun
- Department
of Mechanical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Guillermo A. Ameer
- Center
for Advanced Regenerative Engineering (CARE), Northwestern University, Evanston, Illinois 60208, United States
- Department
of Biomedical Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Querrey
Simpson Institute for Bioelectronics, Northwestern
University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Tang L, He X, Huang R. Advancements and Perspectives in Biodegradable Polyester Elastomers: Toward Sustainable and High-Performance Materials. Int J Mol Sci 2025; 26:727. [PMID: 39859438 PMCID: PMC11765570 DOI: 10.3390/ijms26020727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
While the traditional rubber industry faces the severe pressure of environmental pollution and carbon emissions, bio-based and biodegradable elastomers have become a hot topic in the field and drawn intensive research interest. Inspired by polyester resin, incorporating polyol or polycarboxylic acid as a branching unit into aliphatic polyester and/or introducing a monomer with a C=C bond to provide open-bond cross-linking in the fashion of common vulcanization to form three-dimensional network structures are two mainstream strategies for designing biodegradable polyester elastomers (BPEs). Both methods encounter more or fewer problems, such as poor mechanical and thermal properties due to the easy hydrolysis of the ester bond and space hinderance, or the potential harm of the remaining degraded small molecules with olefin bonds. This article provides an overview of recent endeavors aimed at addressing these challenges and prospects the probable future advancements in the field.
Collapse
Affiliation(s)
- Lisheng Tang
- Academy for Engineering and Technology, Yiwu Research Institute, Zhuhai Fudan Innovation Institute, Fudan University, Shanghai 200433, China; (L.T.); (X.H.)
| | - Xiaoyan He
- Academy for Engineering and Technology, Yiwu Research Institute, Zhuhai Fudan Innovation Institute, Fudan University, Shanghai 200433, China; (L.T.); (X.H.)
| | - Ran Huang
- Academy for Engineering and Technology, Yiwu Research Institute, Zhuhai Fudan Innovation Institute, Fudan University, Shanghai 200433, China; (L.T.); (X.H.)
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou 318000, China
| |
Collapse
|
8
|
Nam KS, Kim Y, Park G, Hwang K, Kim M, Chong J, Jeon J, Yang C, Lu YH, Paniccia C, Choi J, Kim DG, Lee H, Oh SW, Kim S, Rhyu JW, Kang J, Hyun JK, Karp JM, Lee Y, Yuk H, Park S. A Pressure-Sensitive, Repositionable Bioadhesive for Instant, Atraumatic Surgical Application on Internal Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2407116. [PMID: 39148184 DOI: 10.1002/adma.202407116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Pressure-sensitive adhesives are widely utilized due to their instant and reversible adhesion to various dry substrates. Though offering intuitive and robust attachment of medical devices on skin, currently available clinical pressure-sensitive adhesives do not attach to internal organs, mainly due to the presence of interfacial water on the tissue surface that acts as a barrier to adhesion. In this work, a pressure-sensitive, repositionable bioadhesive (PSB) that adheres to internal organs by synergistically combining the characteristic viscoelastic properties of pressure-sensitive adhesives and the interfacial behavior of hydrogel bioadhesives, is introduced. Composed of a viscoelastic copolymer, the PSB absorbs interfacial water to enable instant adhesion on wet internal organs, such as the heart and lungs, and removal after use without causing any tissue damage. The PSB's capabilities in diverse on-demand surgical and analytical scenarios including tissue stabilization of soft organs and the integration of bioelectronic devices in rat and porcine models, are demonstrated.
Collapse
Affiliation(s)
- Kum Seok Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonho Park
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kiwook Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minyoung Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jooyeun Chong
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jooik Jeon
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yung Hsiang Lu
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christian Paniccia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeongwon Choi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dong Geun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haeseung Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Won Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Wook Rhyu
- Department of Cardiovascular Surgery, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jiheong Kang
- Department of Material Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea
| | - Jung Keun Hyun
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon, 34141, Republic of Korea
| |
Collapse
|
9
|
Bice MLL, Yu MH, Ortega VL, Hsu CC, McHugh KJ. Methacrylated poly(glycerol sebacate) as a photocurable, biocompatible, and biodegradable polymer with tunable degradation and drug release kinetics. Drug Deliv Transl Res 2024:10.1007/s13346-024-01762-z. [PMID: 39702689 DOI: 10.1007/s13346-024-01762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Poly(glycerol sebacate) (PGS) is a biodegradable, elastomeric polymer that has been explored for applications including tissue engineering, drug delivery, and wound repair. Despite its promise, its biomedical utility is limited by its rapid, and largely fixed, degradation rate. Additionally, its preparation requires prolonged curing at high temperatures, rendering it incompatible with heat-sensitive molecules, complex device geometries, and high-throughput production. In this study, we synthesized methacrylated PGS (PGS-M), imparting the ability to rapidly photocross-link the polymer. Increasing the degree of methacrylation was found to slow PGS-M degradation; PGS-M (5.5 kDa) disks with 21% methacrylation lost 40.1 ± 11.8% of their mass over 11 weeks in vivo whereas 47% methacrylated disks lost just 14.3 ± 1.4% of their mass over the period. Daunorubicin release from PGS-M occurred in a linear fashion without a substantial initial burst. Further, increasing the degree of methacrylation extended the release of encapsulated drug. After 60 days, 21%, 27%, and 47% methacrylated disks with the same drug loading (w/w) released 56.8 ± 5.4%, 15.1 ± 0.4%, and 15.4 ± 0.3% of encapsulated drug, respectively. Importantly, the 27% and 47% methacrylated disks consistently released ~ 0.25% (w/w) of encapsulated drug per day with no burst release. Histological evaluation also suggested that PGS-M is biocompatible, eliciting limited inflammation and fibrous encapsulation when implanted subcutaneously. This report presents the first long-term in vitro studies and first in vivo studies using PGS-M and demonstrates the ability to tune PGS-M degradation rate, use PGS-M to encapsulate drug, and obtain sustained drug release over months.
Collapse
Affiliation(s)
- Mei-Li L Bice
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Marina H Yu
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - Valentina L Ortega
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - Chia-Chien Hsu
- Department of Chemistry, Rice University, 6500 Main Street, Houston, TX, 77030, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX, 77030, USA.
- Department of Chemistry, Rice University, 6500 Main Street, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Beilharz S, Debnath MK, Vinella D, Shoffstall AJ, Karayilan M. Advances in Injectable Polymeric Biomaterials and Their Contemporary Medical Practices. ACS APPLIED BIO MATERIALS 2024; 7:8076-8101. [PMID: 39471414 DOI: 10.1021/acsabm.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Injectable biomaterials have been engineered to operate within the human body, offering versatile solutions for minimally invasive therapies and meeting several stringent requirements such as biocompatibility, biodegradability, low viscosity for ease of injection, mechanical strength, rapid gelation postinjection, controlled release of therapeutic agents, hydrophobicity/hydrophilicity balance, stability under physiological conditions, and the ability to be sterilized. Their adaptability and performance in diverse clinical settings make them invaluable for modern medical treatments. This article reviews recent advancements in the design, synthesis, and characterization of injectable polymeric biomaterials, providing insights into their emerging applications. We discuss a broad spectrum of these materials, including natural, synthetic, hybrid, and composite types, that are being applied in targeted drug delivery, cell and protein transport, regenerative medicine, tissue adhesives, injectable implants, bioimaging, diagnostics, and 3D bioprinting. Ultimately, the review highlights the critical role of injectable polymeric biomaterials in shaping the future of medical treatments and improving patient outcomes across a wide range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sophia Beilharz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mithun Kumar Debnath
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Daniele Vinella
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Metin Karayilan
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Liu YY, Intini C, Dobricic M, O'Brien FJ, LLorca J, Echeverry-Rendon M. Collagen-based 3D printed poly (glycerol sebacate) composite scaffold with biomimicking mechanical properties for enhanced cartilage defect repair. Int J Biol Macromol 2024; 280:135827. [PMID: 39306177 DOI: 10.1016/j.ijbiomac.2024.135827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Cartilage defect repair with optimal efficiency remains a significant challenge due to the limited self-repair capability of native tissues. The development of bioactive scaffolds with biomimicking mechanical properties and degradation rates matched with cartilage regeneration while simultaneously driving chondrogenesis, plays a crucial role in enhancing cartilage defect repair. To this end, a novel composite scaffold with hierarchical porosity was manufactured by incorporating a pro-chondrogenic collagen type I/II-hyaluronic acid (CI/II-HyA) matrix to a 3D-printed poly(glycerol sebacate) (PGS) framework. Based on the mechanical enforcement of PGS framework, the composite scaffold exhibited a compressive modulus of 167.0 kPa, similar to that of native cartilage, as well as excellent fatigue resistance, similar to that of native joint tissue. In vitro degradation tests demonstrated that the composite scaffold maintained structural, mass, and mechanical stability during the initial cartilage regeneration period of 4 weeks, while degraded linearly over time. In vitro biological tests with rat-derived mesenchymal stem cell (MSC) revealed that, the composite scaffold displayed increased cell loading efficiency and improved overall cell viability due to the incorporation of CI/II-HyA matrix. Additionally, it also sustained an effective and high-quality MSC chondrogenesis and abundant de-novo cartilage-like matrix deposition up to day 28. Overall, the biomimetic composite scaffold with sufficient mechanical support, matched degradation rate with cartilage regeneration, and effective chondrogenesis stimulation shows great potential to be an ideal candidate for enhancing cartilage defect repair.
Collapse
Affiliation(s)
- Yu-Yao Liu
- IMDEA Materials Institute, 28906 Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Claudio Intini
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland
| | - Marko Dobricic
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and TCD, Dublin, Ireland.
| | - Javier LLorca
- IMDEA Materials Institute, 28906 Getafe, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | | |
Collapse
|
12
|
Rahmanudin A, Mohammadi M, Isacsson P, Li Y, Seufert L, Kim N, Mardi S, Engquist I, Crispin R, Tybrandt K. Stretchable and biodegradable plant-based redox-diffusion batteries. MATERIALS HORIZONS 2024; 11:4400-4412. [PMID: 38946626 DOI: 10.1039/d4mh00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The redox-diffusion (RD) battery concept introduces an environmentally friendly solution for stretchable batteries in autonomous wearable electronics. By utilising plant-based redox-active biomolecules and cellulose fibers for the electrode scaffold, separator membrane, and current collector, along with a biodegradable elastomer encapsulation, the battery design overcomes the reliance on unsustainable transition metal-based active materials and non-biodegradable elastomers used in existing stretchable batteries. Importantly, it addresses the drawback of limited attainable battery capacity, where increasing the active material loading often leads to thicker and stiffer electrodes with poor mechanical properties. The concept decouples the active material loading from the mechanical structure of the electrode, enabling high mass loadings, while retaining a skin-like young's modulus and stretchability. A stretchable ion-selective membrane facilitates the RD process, allowing two separate redox couples, while preventing crossovers. This results in a high-capacity battery cell that is both electrochemically and mechanically stable, engineered from sustainable plant-based materials. Notably, the battery components are biodegradable at the end of their life, addressing concerns of e-waste and resource depletion.
Collapse
Affiliation(s)
- Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Patrik Isacsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Ahlstrom Group Innovation, 38140 Apprieu, France
| | - Yuyang Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
| | - Laura Seufert
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Saeed Mardi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Ångström Laboratory, Department of Chemistry, Uppsala University, 751 21 Uppsala, Sweden
| | - Isak Engquist
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Reverant Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
13
|
Ramaraju H, Garcia-Gomez E, McAtee AM, Verga AS, Hollister SJ. Shape memory cycle conditions impact human bone marrow stromal cell binding to RGD- and YIGSR-conjugated poly (glycerol dodecanedioate). Acta Biomater 2024; 186:246-259. [PMID: 39111679 DOI: 10.1016/j.actbio.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Bioresorbable shape memory polymers (SMP) are an emerging class of polymers that can help address several challenges associated with minimally invasive surgery by providing a solution for structural tissue repair. Like most synthetic polymer networks, SMPs require additional biorelevance and modification for biomedical applications. Methodologies used to incorporate bioactive ligands must preserve SMP thermomechanics and ensure biofunctionality following in vivo delivery. We have previously described the development of a novel thermoresponsive bioresorbable SMP, poly (glycerol dodecanedioate) (PGD). In this study, cell-adhesive peptide sequences RGD and YIGSR were conjugated with PGD. We investigated 1) the impact of conjugated peptides on the fixity (Rf), recovery (Rr), and recovery rate (dRr/dT), 2) the impact of conjugated peptides on cell binding, and 3) the impact of the shape memory cycle (Tprog) on conjugated peptide functionality towards binding human bone marrow stromal cells (BMSC). Peptide conjugation conditions impact fixity but not the recovery or recovery rate (p < 0.01). Peptide-conjugated substrates increased cell attachment and proliferation compared with controls (p < 0.001). Using complementary integrin binding cell-adhesive peptides increased proliferation compared with using single peptides (p < 0.05). Peptides bound to PGD substrates exhibited specificity to their respective integrin targets. Following the shape memory cycle, peptides maintained functionality and specificity depending on the shape memory cycle conditions (p < 0.001). The dissipation of strain energy during recovery can drive differential arrangement of conjugated sequences impacting functionality, an important design consideration for functionalized SMPs. STATEMENT OF SIGNIFICANCE: Shape memory elastomers are an emerging class of polymers that are well-suited for minimally invasive repair of soft tissues. Tissue engineering approaches commonly utilize biodegradable scaffolds to deliver instructive cues, including cells and bioactive signals. Delivering these instructive cues on biodegradable shape memory elastomers requires modification with bioactive ligands. Furthermore, it is necessary to ensure the specificity of the ligands to their biological targets when conjugated to the polymer. Moreover, the bioactive ligand functionality must be conserved after completing the shape memory cycle, for applications in tissue engineering.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| | - Elisa Garcia-Gomez
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Annabel M McAtee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Adam S Verga
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Scott J Hollister
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
14
|
Chen YG, Dombaxe C, D'Amato AR, Van Herck S, Welch H, Fu Q, Zhang S, Wang Y. Transformation of metallo-elastomer grafts in a carotid artery interposition model over a year. Biomaterials 2024; 309:122598. [PMID: 38696943 DOI: 10.1016/j.biomaterials.2024.122598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Current vascular grafts, primarily Gore-Tex® and Dacron®, don't integrate with the host and have low patency in small-diameter vessels (<6 mm). Biomaterials that possess appropriate viscoelasticity, compliance, and high biocompatibility are essential for their application in small blood vessels. We have developed metal ion crosslinked poly(propanediol-co-(hydroxyphenyl methylene)amino-propanediol sebacate) (M-PAS), a biodegradable elastomer with a wide range of mechanical properties. We call these materials metallo-elastomers. An initial test on Zn-, Fe-, and Cu-PAS grafts reveals that Cu-PAS is the most suitable because of its excellent elastic recoil and well-balanced polymer degradation/tissue regeneration rate. Here we report host remodeling of Cu-PAS vascular grafts in rats over one year. 76 % of the grafts remain patent and >90 % of the synthetic polymer is degraded by 12 months. Extensive cell infiltration leads to a positive host remodeling. The remodeled grafts feature a fully endothelialized lumen. Circumferentially organized smooth muscle cells, elastin fibers, and widespread mature collagen give the neoarteries mechanical properties similar to native arteries. Proteomic analysis further reveals the presence of important vascular proteins in the neoarteries. Evidence suggests that Cu-PAS is a promising material for engineering small blood vessels.
Collapse
Affiliation(s)
- Ying Grace Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Catia Dombaxe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | | | - Simon Van Herck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Halle Welch
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14850, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14850, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
15
|
Chen X, Wong JW, Low JT, Lok TJ, Xue Y, Zeng Z, Zhang K, Shen Y, Li S, Zhou H, Zhao Q, Wong TW, Li T, Yang W. Intrinsic Permanent Shape Reconfigurable Semicrystalline Biopolyester Thermoset. ACS Macro Lett 2024; 13:1037-1042. [PMID: 39078044 DOI: 10.1021/acsmacrolett.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Catalyst-free, volatile organic solvent (VOC)-free synthesis of biobased cross-linked polymers is an important sustainable feature in polyesterification. To date, these polyesters have been extensively studied for their fundamental sustainability across various uses. The ultimate potential sustainability for these materials, however, is constrained to static structural parts due to their intractable rigid three-dimensional (3D) network. Here, we reveal intrinsic dynamic exchangeable bonds within this type of cross-linked semicrystalline network, poly(1,8-octanediol-co-1,12-docanedioate-co-citrate) (PODDC), enabling permanent shape reconfigurability. Annealing at slightly above melting-transition temperature (Tm) allows for shape reconfigurability up to nine times, comparable in performance to the existing bond-exchange systems. No reagents are involved from synthesis to shape reconfiguration, suggesting an exciting feature exhibited by this sustainable cross-linked material without the need for further chemical modification. We further extend this benefit of reconfigurability to enable flexible shape design in a smart shape-memory polymer (SMP), showing it as one of its potential applications. After its applications, it can undergo hydrolytic degradation. We envision that such multifaceted sustainability for the material will attract interest in environmentally friendly applications such as fabricating external part of soft robots and shape-morphing devices with reduced environmental impact.
Collapse
Affiliation(s)
- Xiangping Chen
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Jie-Wei Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Jia Tee Low
- Sustainable and Smart Materials Laboratory, Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310, Johor Malaysia
| | - Tow-Jie Lok
- Sustainable and Smart Materials Laboratory, Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310, Johor Malaysia
| | - Yaoting Xue
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Zehao Zeng
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Kaihang Zhang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Yifeng Shen
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Siyang Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Haofei Zhou
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
- Sustainable and Smart Materials Laboratory, Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310, Johor Malaysia
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Wei Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
16
|
Tan MWM, Thornton PM, Thangavel G, Bark H, Dauskardt R, Lee PS. Toughening Self-Healing Elastomers with Chain Mobility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308154. [PMID: 38867394 PMCID: PMC11321685 DOI: 10.1002/advs.202308154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/04/2024] [Indexed: 06/14/2024]
Abstract
Enhancing fracture toughness and self-healing within soft elastomers is crucial to prolonging the operational lifetimes of soft devices. Herein, it is revealed that tuning the polymer chain mobilities of carboxylated-functionalized polyurethane through incorporating plasticizers or thermal treatment can enhance these properties. Self-healing is promoted as polymer chains gain greater mobility toward the broken interface to reassociate their bonds. Raising the temperature from 80 to 120 °C, the recovered work of fracture is increased from 2.86 to 123.7 MJ m-3. Improved fracture toughness is realized through two effects. First, strong carboxyl hydrogen bonds dissipate large energies when broken. Second, chain mobilities enable the redistribution of localized stress concentrations to allow crack blunting, enlarging the size of dissipation zones. At optimal conditions of plasticizers (3 wt.%) or temperature (40 °C) to promote chain mobilities, fracture toughness improves from 16.3 to 19.9 and 25.6 kJ m-2, respectively. Insights of fracture properties at healed soft interfaces are revealed through double cantilever beam tests. These measurements indicate that fracture mechanics play a critical role in delaying complete failure at partial self-healing. By imparting optimal polymer chain mobilities within tough and self-healing elastomers, effective prevention against damage and better recovery are realized.
Collapse
Affiliation(s)
- Matthew Wei Ming Tan
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE)Singapore138602Singapore
| | | | - Gurunathan Thangavel
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Present address:
Advanced Materials Research CenterTechnology Innovation Institute (TII)Masdar CityAbu DhabiP.O Box 9639United Arab Emirates
| | - Hyunwoo Bark
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Reinhold Dauskardt
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Pooi See Lee
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR)Campus for Research Excellence and Technological Enterprise (CREATE)Singapore138602Singapore
| |
Collapse
|
17
|
Wang Z, Shi H, Silveira PA, Mithieux SM, Wong WC, Liu L, Pham NTH, Hawkett BS, Wang Y, Weiss AS. Tropoelastin modulates systemic and local tissue responses to enhance wound healing. Acta Biomater 2024; 184:54-67. [PMID: 38871204 DOI: 10.1016/j.actbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Wound healing is facilitated by biomaterials-based grafts and substantially impacted by orchestrated inflammatory responses that are essential to the normal repair process. Tropoelastin (TE) based materials are known to shorten the period for wound repair but the mechanism of anti-inflammatory performance is not known. To explore this, we compared the performance of the gold standard Integra Dermal Regeneration Template (Integra), polyglycerol sebacate (PGS), and TE blended with PGS, in a murine full-thickness cutaneous wound healing study. Systemically, blending with TE favorably increased the F4/80+ macrophage population by day 7 in the spleen and contemporaneously induced elevated plasma levels of anti-inflammatory IL-10. In contrast, the PGS graft without TE prompted prolonged inflammation, as evidenced by splenomegaly and greater splenic granulocyte and monocyte fractions at day 14. Locally, the inclusion of TE in the graft led to increased anti-inflammatory M2 macrophages and CD4+T cells at the wound site, and a rise in Foxp3+ regulatory T cells in the wound bed by day 7. We conclude that the TE-incorporated skin graft delivers a pro-healing environment by modulating systemic and local tissue responses. STATEMENT OF SIGNIFICANCE: Tropoelastin (TE) has shown significant benefits in promoting the repair and regeneration of damaged human tissues. In this study, we show that TE promotes an anti-inflammatory environment that facilitates cutaneous wound healing. In a mouse model, we find that inserting a TE-containing material into a full-thickness wound results in defined, pro-healing local and systemic tissue responses. These findings advance our understanding of TE's restorative value in tissue engineering and regenerative medicine, and pave the way for clinical applications.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Huaikai Shi
- Burns Research and Reconstructive Surgery, Anzac Research Institute, NSW 2139, Australia; Asbestos and Dust Disease Research Institute, Concord Hospital, Sydney, NSW 2139, Australia
| | - Pablo A Silveira
- Dendritic Cell Group, ANZAC Research Institute, Concord Hospital, Sydney, NSW 2139, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Wai Cheng Wong
- Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Brian S Hawkett
- Key Centre for Polymers and Colloids, School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Yiwei Wang
- Burns Research and Reconstructive Surgery, Anzac Research Institute, NSW 2139, Australia; Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Anthony S Weiss
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:10.1088/1741-2552/ad628d. [PMID: 38996412 PMCID: PMC11883895 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People’s Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People’s Republic of China
| |
Collapse
|
19
|
Qi X, Liu C, Si J, Yin B, Huang J, Wang X, Huang J, Sun H, Zhu C, Zhang W. A bioenergetically-active ploy (glycerol sebacate)-based multiblock hydrogel improved diabetic wound healing through revitalizing mitochondrial metabolism. Cell Prolif 2024; 57:e13613. [PMID: 38351579 PMCID: PMC11216945 DOI: 10.1111/cpr.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic wounds impose significant burdens on patients' quality of life and healthcare resources due to impaired healing potential. Factors like hyperglycemia, oxidative stress, impaired angiogenesis and excessive inflammation contribute to the delayed healing trajectory. Mounting evidence indicates a close association between impaired mitochondrial function and diabetic complications, including chronic wounds. Mitochondria are critical for providing energy essential to wound healing processes. However, mitochondrial dysfunction exacerbates other pathological factors, creating detrimental cycles that hinder healing. This study conducted correlation analysis using clinical specimens, revealing a positive correlation between mitochondrial dysfunction and oxidative stress, inflammatory response and impaired angiogenesis in diabetic wounds. Restoring mitochondrial function becomes imperative for developing targeted therapies. Herein, we synthesized a biodegradable poly (glycerol sebacate)-based multiblock hydrogel, named poly (glycerol sebacate)-co-poly (ethylene glycol)-co-poly (propylene glycol) (PEPGS), which can be degraded in vivo to release glycerol, a crucial component in cellular metabolism, including mitochondrial respiration. We demonstrate the potential of PEPGS-based hydrogels to improve outcomes in diabetic wound healing by revitalizing mitochondrial metabolism. Furthermore, we investigate the underlying mechanism through proteomics analysis, unravelling the regulation of ATP and nicotinamide adenine dinucleotide metabolic processes, biosynthetic process and generation during mitochondrial metabolism. These findings highlight the therapeutic potential of PEPGS-based hydrogels as advanced wound dressings for diabetic wound healing.
Collapse
Affiliation(s)
- Xin Qi
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenjun Liu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Bohao Yin
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingjing Huang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinghuan Huang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Sun
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Zhang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
20
|
Wu Y, Wagner WD. Syndecan-4 Functionalization Reduces the Thrombogenicity of Engineered Vascular Biomaterials. Ann Biomed Eng 2024; 52:1873-1882. [PMID: 37071281 PMCID: PMC11169030 DOI: 10.1007/s10439-023-03199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Blood-biomaterial compatibility is essential for tissue repair especially for endovascular biomaterials where small-diameter vessel patency and endothelium formation is crucial. To address this issue, a composite biomaterial termed PFC fabricated from poly (glycerol sebacate), silk fibroin, and collagen was used to determine if functionalization with syndecan-4 (SYN4) would reduce thrombogenesis through the action of heparan sulfate. The material termed, PFC_SYN4, has structure and composition similar to native arterial tissue and has been reported to facilitate the binding and differentiation of endothelial colony-forming cells (ECFCs). In this study, the hemocompatibility of PFC_SYN4 was evaluated and compared with non-functionalized PFC, electrospun collagen, ePTFE, and bovine pericardial patch (BPV). Ultrastructurally, platelets were less activated when cultured on PFC and PFC_SYN4 compared to collagen where extensive platelet degranulation was observed. Quantitatively, 31% and 44% fewer platelets adhered to PFC_SYN4 compared to non-functionalized PFC and collagen, respectively. Functionalization of PFC resulted in reduced levels of complement activation compared to PFC, collagen, and BPV. Whole blood clotting times indicated that PFC_SYN4 was less thrombogenic compared with PFC, collagen, and BPV. These results suggest that syndecan-4 functionalization of blood-contacting biomaterials provides a novel solution for generating a reduced thrombogenic surface.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Plastic & Reconstructive Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - William D Wagner
- Department of Plastic & Reconstructive Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, USA.
| |
Collapse
|
21
|
Luo B, Wang S, Song X, Chen S, Qi Q, Chen W, Deng X, Ni Y, Chu C, Zhou G, Qin X, Lei D, You Z. An Encapsulation-Free and Hierarchical Porous Triboelectric Scaffold with Dynamic Hydrophilicity for Efficient Cartilage Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401009. [PMID: 38548296 DOI: 10.1002/adma.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Tissue engineering and electrotherapy are two promising methods to promote tissue repair. However, their integration remains an underexplored area, because their requirements on devices are usually distinct. Triboelectric nanogenerators (TENGs) have shown great potential to develop self-powered devices. However, due to their susceptibility to moisture, TENGs have to be encapsulated in vivo. Therefore, existing TENGs cannot be employed as tissue engineering scaffolds, which require direct interaction with surrounding cells. Here, the concept of triboelectric scaffolds (TESs) is proposed. Poly(glycerol sebacate), a biodegradable and relatively hydrophobic elastomer, is selected as the matrix of TESs. Each hydrophobic micropore in multi-hierarchical porous TESs efficiently serves as a moisture-resistant working unit of TENGs. Integration of tons of micropores ensures the electrotherapy ability of TESs in vivo without encapsulation. Originally hydrophobic TESs are degraded by surface erosion and transformed into hydrophilic surfaces, facilitating their role as tissue engineering scaffolds. Notably, TESs seeded with chondrocytes obtain dense and large matured cartilages after subcutaneous implantation in nude mice. Importantly, rabbits with osteochondral defects receiving TES implantation show favorable hyaline cartilage regeneration and complete cartilage healing. This work provides a promising electronic biomedical device and will inspire a series of new in vivo applications.
Collapse
Affiliation(s)
- Bin Luo
- College of Textiles, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Sinan Wang
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xingqi Song
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shuo Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qiaoyu Qi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Wenyi Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoyuan Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaohong Qin
- College of Textiles, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Dong Lei
- Department of Plastic and Reconstructive Surgery, Department of Cardiology, Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
22
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
23
|
McCabe R, Eklund Thamdrup LH, Ghavami M, Boisen A. Fully Biodegradable Elastomer-Based Device for Oral Macromolecule Delivery. ACS APPLIED BIO MATERIALS 2024; 7:3777-3785. [PMID: 38754861 PMCID: PMC11186471 DOI: 10.1021/acsabm.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
Oral devices, such as foil-type devices, show great potential for the delivery of poorly permeable macromolecules by enabling unidirectional release of the loaded pharmaceutical composition in close proximity to the epithelium in the small intestine or colon. However, one of the primary concerns associated with the use of foil-type devices so far has been the utilization of nonbiodegradable elastomers in the fabrication of the devices. Therefore, research into biodegradable substitute materials with similar characteristics enables drug delivery in a sustainable and environmentally friendly manner. In this study, a biodegradable elastomer, polyoctanediol citrate (POC), was synthesized via a one-pot reaction, with subsequent purification and microscale pattern replication via casting. The microstructure geometry was designed to enable fabrication of foil-type devices with the selected elastomer, which has a high intrinsic surface free energy. The final elastomer was demonstrated to have an elastic modulus ranging up to 2.2 ± 0.1 MPa, with strain at failure up to 110.1 ± 1.5%. Devices were loaded with acetaminophen and enterically coated, demonstrating 100% release at 2.5 h, following dissolution for 1 h in 0.1 M hydrochloric acid and 1.5 h in pH 6.8 phosphate-buffered saline. The elastomer demonstrated promising properties based on mechanical testing, surface free energy evaluation, and degradation studies.
Collapse
Affiliation(s)
- Reece McCabe
- The Danish National Research
Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics (IDUN), Department
of Health Technology, Technical University
of Denmark, 2800 Kgs Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research
Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics (IDUN), Department
of Health Technology, Technical University
of Denmark, 2800 Kgs Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research
Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics (IDUN), Department
of Health Technology, Technical University
of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research
Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics (IDUN), Department
of Health Technology, Technical University
of Denmark, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
24
|
Davoy X, Devémy J, Garruchet S, Dequidt A, Hauret P, Malfreyt P. Toward a Better Understanding of the Poly(glycerol sebacate)-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11599-11609. [PMID: 38768448 DOI: 10.1021/acs.langmuir.4c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Molecular simulations were conducted to provide a better description of the poly(glycerol sebacate) (PGS)-water interface. The density and the glass-transition temperature as well as their dependencies on the degree of esterification were examined in close connection with the available experimental data. The work of adhesion and water contact angle were calculated as a function of the degree of esterification. A direct correlation was established between the strength of the hydrogen bond network in the interfacial region and the change in the water contact angle with respect to the degree of esterification. The interfacial region was described by local density profiles and orientations of the water molecules.
Collapse
Affiliation(s)
- Xavier Davoy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes, Clermont-Ferrand 63040, France
| | - Julien Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Sébastien Garruchet
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes, Clermont-Ferrand 63040, France
| | - Alain Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Patrice Hauret
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes, Clermont-Ferrand 63040, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
25
|
Kiratitanaporn W, Guan J, Berry DB, Lao A, Chen S. Multimodal Three-Dimensional Printing for Micro-Modulation of Scaffold Stiffness Through Machine Learning. Tissue Eng Part A 2024; 30:280-292. [PMID: 37747804 DOI: 10.1089/ten.tea.2023.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The ability to precisely control a scaffold's microstructure and geometry with light-based three-dimensional (3D) printing has been widely demonstrated. However, the modulation of scaffold's mechanical properties through prescribed printing parameters is still underexplored. This study demonstrates a novel 3D-printing workflow to create a complex, elastomeric scaffold with precision-engineered stiffness control by utilizing machine learning. Various printing parameters, including the exposure time, light intensity, printing infill, laser pump current, and printing speed were modulated to print poly (glycerol sebacate) acrylate (PGSA) scaffolds with mechanical properties ranging from 49.3 ± 3.3 kPa to 2.8 ± 0.3 MPa. This enables flexibility in spatial stiffness modulation in addition to high-resolution scaffold fabrication. Then, a neural network-based machine learning model was developed and validated to optimize printing parameters to yield scaffolds with user-defined stiffness modulation for two different vat photopolymerization methods: a digital light processing (DLP)-based 3D printer was utilized to rapidly fabricate stiffness-modulated scaffolds with features on the hundreds of micron scale and a two-photon polymerization (2PP) 3D printer was utilized to print fine structures on the submicron scale. A novel 3D-printing workflow was designed to utilize both DLP-based and 2PP 3D printers to create multiscale scaffolds with precision-tuned stiffness control over both gross and fine geometric features. The described workflow can be used to fabricate scaffolds for a variety of tissue engineering applications, specifically for interfacial tissue engineering for which adjacent tissues possess heterogeneous mechanical properties (e.g., muscle-tendon).
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - David B Berry
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Alison Lao
- Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Larijani G, Parivar K, Hayati Roodbari N, Yaghmaei P, Amini N. Fortified electrospun collagen utilizing biocompatible Poly Glycerol Sebacate prepolymer (PGSp) and zink oxide nanoparticles (ZnO NPs) for diabetics wound healing: Physical, biological and animal studies. Regen Ther 2024; 26:102-113. [PMID: 38872978 PMCID: PMC11170210 DOI: 10.1016/j.reth.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 06/15/2024] Open
Abstract
Collagen, a naturally occurring fibrous protein, is a potential resource of biological materials for tissue engineering and regenerative medicine because it is structurally biocompatible, has low immunogenicity, is biodegradable, and is biomimetic. Numerous studies have documented in the literature how Collagen nanofibers exhibit limited cell adhesion, poor viscosity, and no interior fibril structure. The biomedical industry is using Poly Glycerol Sebacate prepolymer(PGSp), a biodegradable and biocompatible polyester with high adhesion and very viscous appearance, more often. Here, unique electrospun Collagen/PGSp/ZnO/NPs blend nanofibers for skin tissue application were developed and described with varied PGSp percent. Additionally, when ternary blends of Collagen, PGSp, and Zink Oxide Nanoparticles (ZnO NPs) are used, the antibacterial properties of the scaffolds are improved. The bead-free electrospun nanofibers were produced by raising the PGSp concentration to 30%w/w. SEM, EDS, tensile, MTT, FTIR, SDS-page, swelling test, contact-angle, antimicrobial, biodegradation, XRD, and cell attachment procedures were used to characterize the crosslinked nanofibers. The ternary blend nanofibers with a weight ratio of Collagen/PGSp 30%/ZnONPs 1% had higher stress/strain strength (0.25 mm/mm), porosity (563), cell survival, and degradation time. Moreover, after applying for wound healing in diabetic rats, Collagen/PGSp 30%/could be show improving wound healing significantly compared to other groups.
Collapse
Affiliation(s)
- Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehr Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Rosalia M, Rubes D, Serra M, Genta I, Dorati R, Conti B. Polyglycerol Sebacate Elastomer: A Critical Overview of Synthetic Methods and Characterisation Techniques. Polymers (Basel) 2024; 16:1405. [PMID: 38794598 PMCID: PMC11124930 DOI: 10.3390/polym16101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Poly (glycerol sebacate) is a widely studied elastomeric copolymer obtained from the polycondensation of two bioresorbable monomers, glycerol and sebacic acid. Due to its biocompatibility and the possibility to tailor its biodegradability rate and mechanical properties, PGS has gained lots of interest in the last two decades, especially in the soft tissue engineering field. Different synthetic approaches have been proposed, ranging from classic thermal polyesterification and curing to microwave-assisted organic synthesis, UV crosslinking and enzymatic catalysis. Each technique, characterized by its advantages and disadvantages, can be tailored by controlling the crosslinking density, which depends on specific synthetic parameters. In this work, classic and alternative synthetic methods, as well as characterisation and tailoring techniques, are critically reviewed with the aim to provide a valuable tool for the reproducible and customized production of PGS for tissue engineering applications.
Collapse
Affiliation(s)
- Mariella Rosalia
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.R.); (M.S.); (I.G.); (R.D.); (B.C.)
| | | | | | | | | | | |
Collapse
|
28
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
29
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
30
|
Abdou SM, Moustafa A, Allam NK. Patterned PCL/PGS Nanofibrous Hyaluronic Acid-Coated Scaffolds Promote Cellular Response and Modulate Gene Expression Profiles. ACS APPLIED BIO MATERIALS 2024; 7:2569-2581. [PMID: 38570335 DOI: 10.1021/acsabm.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Chronic wounds impose a significant burden on individuals and healthcare systems, necessitating the development of advanced wound management strategies. Tissue engineering, with its ability to create scaffolds that mimic native tissue structures and promote cellular responses, offers a promising approach. Electrospinning, a widely used technique, can fabricate nanofibrous scaffolds for tissue regeneration. In this study, we developed patterned nanofibrous scaffolds using a blend of poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS), known for their biocompatibility and biodegradability. By employing a mesh collector, we achieved a unique fiber orientation pattern that emulated the natural tissue architecture. The average fiber diameter of PGS/PCL collected on aluminum foil and on mesh was found to be 665.2 ± 4 and 404.8 ± 16 nm, respectively. To enhance the scaffolds' bioactivity and surface properties, it was coated with hyaluronic acid (HA), a key component of the extracellular matrix known for its wound-healing properties. The HA coating improved the scaffold hydrophilicity and surface wettability, facilitating cell attachment, spreading, and migration. Furthermore, the HA-coated scaffold exhibited enhanced biocompatibility, promoting cell viability and proliferation. High-throughput RNA sequencing was performed to analyze the influence of the fabricated scaffold on the gene expression levels of endothelial cells. The top-upregulated biological processes and pathways include cell cycle regulation and cell proliferation. The results revealed significant alterations in gene expression profiles, indicating the scaffold's ability to modulate cellular functions and promote wound healing processes. The developed scaffold holds great promise for advanced wound management and tissue regeneration applications. By harnessing the advantages of aligned nanofibers, biocompatible polymers, and HA coating, this scaffold represents a potential solution for improving wound healing outcomes and improving the quality of life for individuals suffering from chronic wounds.
Collapse
Affiliation(s)
- Shrouk M Abdou
- Energy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Biology Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
31
|
Wang Z, Zhang M, Liu L, Mithieux SM, Weiss AS. Polyglycerol sebacate-based elastomeric materials for arterial regeneration. J Biomed Mater Res A 2024; 112:574-585. [PMID: 37345954 DOI: 10.1002/jbm.a.37583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Synthetic vascular grafts are commonly used in patients with severe occlusive arterial disease when autologous grafts are not an option. Commercially available synthetic grafts are confronted with challenging outcomes: they have a lower patency rate than autologous grafts and are currently unable to promote arterial regeneration. Polyglycerol sebacate (PGS), a non-toxic polymer with a tunable degradation profile, has shown promising results as a small-diameter vascular graft component that can support the formation of neoarteries. In this review, we first present an overview of the synthesis and modification of PGS followed by an examination of its mechanical properties. We then report on the performance, degradation, regeneration, and remodeling of PGS-based small-diameter vascular grafts, with a focus on efforts to reduce thrombosis, prevent dilation, and promote cellular residency and extracellular matrix regeneration that resembles the native artery in spatial distribution and organization. We also highlight recent advances in the incorporation of novel in situ cell sources for arterial regeneration and their potential application in PGS-based vascular grafts. Finally, we compare vascular grafts fabricated using PGS-based materials with other elastomeric alternatives.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Miao Zhang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney Nano Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
32
|
Axioti E, Dixon EG, Reynolds-Green M, Alexander ECH, Brugnoli B, Keddie DJ, Couturaud B, Suksiriworapong J, Swainson SME, Francolini I, Howdle SM, Jacob PL, Cavanagh RJ, Chauhan VM, Taresco V. Glycerol- and diglycerol-based polyesters: Evaluation of backbone alterations upon nano-formulation performance. Colloids Surf B Biointerfaces 2024; 236:113828. [PMID: 38452625 DOI: 10.1016/j.colsurfb.2024.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Despite the success of polyethylene glycol-based (PEGylated) polyesters in the drug delivery and biomedical fields, concerns have arisen regarding PEG's immunogenicity and limited biodegradability. In addition, inherent limitations, including limited chemical handles as well as highly hydrophobic nature, can restrict their effectiveness in physiological conditions of the polyester counterpart. To address these matters, an increasing amount of research has been focused towards identifying alternatives to PEG. One promising strategy involves the use of bio-derived polyols, such as glycerol. In particular, glycerol is a hydrophilic, non-toxic, untapped waste resource and as other polyols, can be incorporated into polyesters via enzymatic catalysis routes. In the present study, a systematic screening is conducted focusing on the incorporation of 1,6-hexanediol (Hex) (hydrophobic diol) into both poly(glycerol adipate) (PGA) and poly(diglycerol adipate) (PDGA) at different (di)glycerol:hex ratios (30:70; 50:50 and 70:30 mol/mol) and its effect on purification upon NPs formation. By varying the amphiphilicity of the backbone, we demonstrated that minor adjustments influence the NPs formation, NPs stability, drug encapsulation, and degradation of these polymers, despite the high chemical similarity. Moreover, the best performing materials have shown good biocompatibility in both in vitro and in vivo (whole organism) tests. As preliminary result, the sample containing diglycerol and Hex in a 70:30 ratio, named as PDGA-Hex 30%, has shown to be the most promising candidate in this small library analysed. It demonstrated comparable stability to the glycerol-based samples in various media but exhibited superior encapsulation efficiency of a model hydrophobic dye. This in-depth investigation provides new insights into the design and modification of biodegradable (di)glycerol-based polyesters, potentially paving the way for more effective and sustainable PEG-free drug delivery nano-systems in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Eleni Axioti
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Emily G Dixon
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | - Benedetta Brugnoli
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Daniel J Keddie
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Benoit Couturaud
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | | | - Sadie M E Swainson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Iolanda Francolini
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Steven M Howdle
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Philippa L Jacob
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Robert J Cavanagh
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Veeren M Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Vincenzo Taresco
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
33
|
Tang L, Jin Y, He X, Huang R. Biodegradable poly(ethylene glycol-glycerol-itaconate-sebacate) copolyester elastomer with significantly reinforced mechanical properties by in-situ construction of bacterial cellulose interpenetrating network. Sci Rep 2024; 14:7172. [PMID: 38531891 DOI: 10.1038/s41598-024-56534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
To address the concern that biodegradable elastomers are environmental-friendly but usually associated with poor properties for practical utilization, we report a star-crosslinked poly(ethylene glycol-glycerol-itaconate-sebacate) (PEGIS) elastomer synthesized by esterification, polycondensation and UV curing, and reinforced by bacterial cellulose (BC). The interpenetrating network of primary BC backbone and vulcanized elastomer is achieved by the "in-situ secondary network construction" strategy. With the well dispersion of BC without agglomeration, the mechanical properties of PEGIS are significantly enhanced in tensile strength, Young's modulus and elongation at break. The reinforcement strategy is demonstrated to be efficient and offers a route to the development of biodegradable elastomers for a variety of applications in the future.
Collapse
Affiliation(s)
- Lisheng Tang
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, 318000, Zhejiang, China
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Yuanyuan Jin
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, 318000, Zhejiang, China
| | - Xiaoyan He
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, 318000, Zhejiang, China.
| | - Ran Huang
- Academy for Engineering and Applied Technology; Yiwu Research Institute; Zhuhai Fudan Innovation Institute, Fudan University, Shanghai, 200433, China.
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
34
|
Dehghani S, Aghaee Z, Soleymani S, Tafazoli M, Ghabool Y, Tavassoli A. An overview of the production of tissue extracellular matrix and decellularization process. Cell Tissue Bank 2024; 25:369-387. [PMID: 37812368 DOI: 10.1007/s10561-023-10112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
Thousands of patients need an organ transplant yearly, while only a tiny percentage have this chance to receive a tissue/organ transplant. Nowadays, decellularized animal tissue is one of the most widely used methods to produce engineered scaffolds for transplantation. Decellularization is defined as physically or chemically removing cellular components from tissues while retaining structural and functional extracellular matrix (ECM) components and creating an ECM-derived scaffold. Then, decellularized scaffolds could be reseeded with different cells to fabricate an autologous graft. Effective decellularization methods preserve ECM structure and bioactivity through the application of the agents and techniques used throughout the process. The most valuable agents for the decellularization process depend on biological properties, cellular density, and the thickness of the desired tissue. ECM-derived scaffolds from various mammalian tissues have been recently used in research and preclinical applications in tissue engineering. Many studies have shown that decellularized ECM-derived scaffolds could be obtained from tissues and organs such as the liver, cartilage, bone, kidney, lung, and skin. This review addresses the significance of ECM in organisms and various decellularization agents utilized to prepare the ECM. Also, we describe the current knowledge of the decellularization of different tissues and their applications.
Collapse
Affiliation(s)
- Shima Dehghani
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Zahra Aghaee
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Safoura Soleymani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Maryam Tafazoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Yasin Ghabool
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| |
Collapse
|
35
|
Ding X, Zhang Z, Kluka C, Asim S, Manuel J, Lee BP, Jiang J, Heiden PA, Heldt CL, Rizwan M. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. ACS APPLIED BIO MATERIALS 2024; 7:863-878. [PMID: 38207114 PMCID: PMC10954299 DOI: 10.1021/acsabm.3c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A pair of alkyne- and thiol-functionalized polyesters are designed to engineer elastomeric scaffolds with a wide range of tunable material properties (e.g., thermal, degradation, and mechanical properties) for different tissues, given their different host responses, mechanics, and regenerative capacities. The two prepolymers are quickly photo-cross-linkable through thiol-yne click chemistry to form robust elastomers with small permanent deformations. The elastic moduli can be easily tuned between 0.96 ± 0.18 and 7.5 ± 2.0 MPa, and in vitro degradation is mediated from hours up to days by adjusting the prepolymer weight ratios. These elastomers bear free hydroxyl and thiol groups with a water contact angle of less than 85.6 ± 3.58 degrees, indicating a hydrophilic nature. The elastomer is compatible with NIH/3T3 fibroblast cells with cell viability reaching 88 ± 8.7% relative to the TCPS control at 48 h incubation. Differing from prior soft elastomers, a mixture of the two prepolymers without a carrying polymer is electrospinnable and UV-cross-linkable to fabricate elastic fibrous scaffolds for soft tissues. The designed prepolymer pair can thus ease the fabrication of elastic fibrous conduits, leading to potential use as a resorbable synthetic graft. The elastomers could find use in other tissue engineering applications as well.
Collapse
Affiliation(s)
- Xiaochu Ding
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Christopher Kluka
- Department of Materials Science and Engineering, Michigan Technological University, 609 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - James Manuel
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Jingfeng Jiang
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Patricia A. Heiden
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Caryn L. Heldt
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemical Engineering, Michigan Technological University, 203 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| |
Collapse
|
36
|
Shin JW, Kim DJ, Jang TM, Han WB, Lee JH, Ko GJ, Yang SM, Rajaram K, Han S, Kang H, Lim JH, Eom CH, Bandodkar AJ, Min H, Hwang SW. Highly Elastic, Bioresorbable Polymeric Materials for Stretchable, Transient Electronic Systems. NANO-MICRO LETTERS 2024; 16:102. [PMID: 38300387 PMCID: PMC10834929 DOI: 10.1007/s40820-023-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 02/02/2024]
Abstract
Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.
Collapse
Affiliation(s)
- Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Semiconductor R&D Center, Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix, 2091, Gyeongchung-daero, Bubal-eup, Icheon-si, Gyeonggi-do, 17336, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Kaveti Rajaram
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan-Hwi Eom
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hanul Min
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
37
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
38
|
Xing S, Liu Y. Functional micro-/nanostructured gallium-based liquid metal for biochemical sensing and imaging applications. Biosens Bioelectron 2024; 243:115795. [PMID: 37913588 DOI: 10.1016/j.bios.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
In recent years, liquid metals (LMs) have garnered increasing attention for their expanded applicability, and wide application potential in various research fields. Among them, gallium (Ga)-based LMs exhibit remarkable analytical performance in electrical and optical sensors, thanks to their excellent conductivity, large surface area, biocompatibility, small bandgap, and high elasticity. This review comprehensively summarizes the latest advancements in functional micro-/nanostructured Ga-based LMs for biochemical sensing and imaging applications. Firstly, the electrical, optical, and biocompatible features of Ga-based LM micro-/nanoparticles are briefly discussed, along with the manufacturing and functionalization processes. Subsequently, we demonstrate the utilization of Ga-based LMs in biochemical sensing techniques, encompassing electrochemistry, electrochemiluminescence, optical sensing techniques, and various biomedical imaging. Lastly, we present an insightful perspective on promising research directions and remaining challenges in LM-based biochemical sensing and imaging applications.
Collapse
Affiliation(s)
- Simin Xing
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
Park S, Lee SJ, Park KM, Jung TG. Biomechanical and Biological Assessment of Polyglycelrolsebacate-Coupled Implant with Shape Memory Effect for Treating Osteoporotic Fractures. Bioengineering (Basel) 2023; 10:1413. [PMID: 38136004 PMCID: PMC10740735 DOI: 10.3390/bioengineering10121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Poly(glycerol sebacate) is a biocompatible elastomer that has gained increasing attention as a potential biomaterial for tissue engineering applications. In particular, PGS is capable of providing shape memory effects and allows for a free form, which can remember the original shape and obtain a temporary shape under melting point and then can recover its original shape at body temperature. Because these properties can easily produce customized shapes, PGS is being coupled with implants to offer improved fixation and maintenance of implants for fractures of osteoporosis bone. Herein, this study fabricated the OP implant with a PGS membrane and investigated the potential of this coupling. Material properties were characterized and compared with various PGS membranes to assess features such as control of curing temperature, curing time, and washing time. Based on the ISO 10993-5 standard, in vitro cell culture studies with C2C12 cells confirmed that the OP implant coupled with PGS membrane showed biocompatibility and biomechanical experiments indicated significantly increased pullout strength and maintenance. It is believed that this multifunctional OP implant will be useful for bone tissue engineering applications.
Collapse
Affiliation(s)
- Suzy Park
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| | - Su-Jeong Lee
- R&D Planning Team, Organoid Sciences Co., Ltd., 331, Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Min Park
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyung-ro, Osong-eub, Heungdeok-gu, Cheongju-si 28160, Chungbuk, Republic of Korea; (S.P.); (K.-M.P.)
| |
Collapse
|
40
|
Perin GB, Moreno S, Zhou Y, Günther M, Boye S, Voit B, Felisberti MI, Appelhans D. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction. Biomacromolecules 2023; 24:5807-5822. [PMID: 37984848 DOI: 10.1021/acs.biomac.3c00828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).
Collapse
Affiliation(s)
- Giovanni B Perin
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Günther
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maria I Felisberti
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
41
|
Wu Z, Li Q, Wang L, Zhang Y, Liu W, Zhao S, Geng X, Fan Y. A novel biomimetic nanofibrous cardiac tissue engineering scaffold with adjustable mechanical and electrical properties based on poly(glycerol sebacate) and polyaniline. Mater Today Bio 2023; 23:100798. [PMID: 37753375 PMCID: PMC10518490 DOI: 10.1016/j.mtbio.2023.100798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterial tissue engineering scaffolds play a critical role in providing mechanical support, promoting cells growth and proliferation. However, due to the insulation and inappropriate stiffness of most biomaterials, there is an unmet need to engineer a biomimetic nanofibrous cardiac tissue engineering scaffold with tailorable mechanical and electrical properties. Here, we demonstrate for the first time the feasibility to generate a novel type of biocompatible fibrous scaffolds by blending elastic poly(glycerol sebacate) (PGS) and conductive polyaniline (PANI) with the help of a nontoxic carrier polymer, poly (vinyl alcohol) (PVA). Aligned and random PGS/PANI scaffolds are successfully obtained after electrospinning, cross-linking, water and ethanol wash. Incorporating of different concentrations of PANI into PGS fibers, the fibrous sheets show enhanced conductivity and slower degradation rates while maintaining the favorable hemocompatibility. The elastic modulus of the PGS/PANI scaffolds is in the range of 0.65-2.18 MPa under wet conditions, which is similar to that of natural myocardium. All of these fibrous mats show good cell viability and were able to promote adhesion and proliferation of H9c2 cells. Furthermore, the in vivo host responses of both random and aligned scaffolds confirm their good biocompatibility. Therefore, these PGS/PANI scaffolds have great potential for cardiac tissue engineering.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qiao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yang Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Wei Liu
- Department of Cardiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Shudong Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuezheng Geng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
42
|
Lee IK, Xie R, Luz-Madrigal A, Min S, Zhu J, Jin J, Edwards KL, Phillips MJ, Ludwig AL, Gamm DM, Gong S, Ma Z. Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct. Bioact Mater 2023; 30:142-153. [PMID: 37575875 PMCID: PMC10415596 DOI: 10.1016/j.bioactmat.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Age-related macular degeneration (AMD) causes blindness due to loss of retinal pigment epithelium (RPE) and photoreceptors (PRs), which comprise the two outermost layers of the retina. Given the small size of the macula and the importance of direct contact between RPE and PRs, the use of scaffolds for targeted reconstruction of the outer retina in later stage AMD and other macular dystrophies is particularly attractive. We developed microfabricated, honeycomb-patterned, biodegradable poly(glycerol sebacate) (PGS) scaffolds to deliver organized, adjacent layers of RPE and PRs to the subretinal space. Furthermore, an optimized process was developed to photocure PGS, shortening scaffold production time from days to minutes. The resulting scaffolds robustly supported the seeding of human pluripotent stem cell-derived RPE and PRs, either separately or as a dual cell-layered construct. These advanced, economical, and versatile scaffolds can accelerate retinal cell transplantation efforts and benefit patients with AMD and other retinal degenerative diseases.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Agustin Luz-Madrigal
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiahe Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - M. Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Allison L. Ludwig
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David M. Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
43
|
Luo J, Zhao X, Ju H, Chen X, Zhao S, Demchuk Z, Li B, Bocharova V, Carrillo JMY, Keum JK, Xu S, Sokolov AP, Chen J, Cao PF. Highly Recyclable and Tough Elastic Vitrimers from a Defined Polydimethylsiloxane Network. Angew Chem Int Ed Engl 2023; 62:e202310989. [PMID: 37783669 DOI: 10.1002/anie.202310989] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Despite intensive research on sustainable elastomers, achieving elastic vitrimers with significantly improved mechanical properties and recyclability remains a scientific challenge. Herein, inspired by the classical elasticity theory, we present a design principle for ultra-tough and highly recyclable elastic vitrimers with a defined network constructed by chemically crosslinking the pre-synthesized disulfide-containing polydimethylsiloxane (PDMS) chains with tetra-arm polyethylene glycol (PEG). The defined network is achieved by the reduced dangling short chains and the relatively uniform molecular weight of network strands. Such elastic vitrimers with the defined network, i.e., PDMS-disulfide-D, exhibit significantly improved mechanical performance than random analogous, previously reported PDMS vitrimers, and even commercial silicone-based thermosets. Moreover, unlike the vitrimers with random network that show obvious loss in mechanical properties after recycling, those with the defined network enable excellent thermal recyclability. The PDMS-disulfide-D also deliver comparable electrochemical signals if utilized as substrates for electromyography sensors after the recycling. The multiple relaxation processes are revealed via a unique physical approach. Multiple techniques are also applied to unravel the microscopic mechanism of the excellent mechanical performance and recyclability of such defined network.
Collapse
Affiliation(s)
- Jiancheng Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Xiao Zhao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Hao Ju
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA-92093, USA
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN-37996, USA
| | - Zoriana Demchuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN-37996, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | | | - Jong K Keum
- Center for Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA-92093, USA
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN-37830, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN-37996, USA
| | - Jiayao Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
44
|
Rosenbalm TN, Levi NH, Morykwas MJ, Wagner WD. Electrical stimulation via repeated biphasic conducting materials for peripheral nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:61. [PMID: 37964030 PMCID: PMC10645611 DOI: 10.1007/s10856-023-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Improved materials for peripheral nerve repair are needed for the advancement of new surgical techniques in fields spanning from oncology to trauma. In this study, we developed bioresorbable materials capable of producing repeated electric field gradients spaced 600 μm apart to assess the impact on neuronal cell growth, and migration. Electrically conductive, biphasic composites comprised of poly (glycerol) sebacate acrylate (PGSA) alone, and doped with poly (pyrrole) (PPy), were prepared to create alternating segments with high and low electrically conductivity. Conductivity measurements demonstrated that 0.05% PPy added to PSA achieved an optimal value of 1.25 × 10-4 S/cm, for subsequent electrical stimulation. Tensile testing and degradation of PPy doped and undoped PGSA determined that 35-40% acrylation of PGSA matched nerve mechanical properties. Both fibroblast and neuronal cells thrived when cultured upon the composite. Biphasic PGSA/PPy sheets seeded with neuronal cells stimulated for with 3 V, 20 Hz demonstrated a 5x cell increase with 1 day of stimulation and up to a 10x cell increase with 3 days stimulation compared to non-stimulated composites. Tubular conduits composed of repeated high and low conductivity materials suitable for implantation in the rat sciatic nerve model for nerve repair were evaluated in vivo and were superior to silicone conduits. These results suggest that biphasic conducting conduits capable of maintaining mechanical properties without inducing compression injuries while generating repeated electric fields are a promising tool for acceleration of peripheral nerve repair to previously untreatable patients.
Collapse
Affiliation(s)
- Tabitha N Rosenbalm
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| | - Nicole H Levi
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA.
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA.
| | - Michael J Morykwas
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| | - William D Wagner
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Polytechnic Institute and State University, Winston-Salem, NC, 27106, USA
- Department of Plastic and Reconstructive Surgery, Wake Forest Baptist Health, Winston-Salem, NC, 27157, USA
| |
Collapse
|
45
|
Oyama Y, Kurokawa N, Hotta A. Multifunctionality of Iodinated Halogen-Bonded Polymer: Biodegradability, Radiopacity, Elasticity, Ductility, and Self-Healing Ability. ACS Biomater Sci Eng 2023; 9:6094-6102. [PMID: 37856790 DOI: 10.1021/acsbiomaterials.3c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A polymer with high contents of ester bonds and iodine atoms was synthesized, exhibiting sufficient biodegradability and radioactivity for biomedical applications. The iodine moieties of the synthesized polyester can generate halogen bonding between molecules, which may develop additional functional properties through the bonding. In this study, poly(glycerol adipate) (PGA) was selected and synthesized as a polyester, which was then adequately conjugated with three different types of iodine compounds via the hydroxy groups of PGA. It was found that the iodine compounds could effectively work as donors of halogen bonding. The thermal analysis by differential scanning calorimetry (DSC) revealed that the glass transition temperature increased with the increase in the strength of interactions caused by π-π stacking and halogen bonding, eventually reaching 49.6 °C for PGA with triiodobenzoic groups. An elastomeric PGA with monoiodobenzoic groups was also obtained, exhibiting a high self-healing ability at room temperature because of the reconstruction of halogen bonding. Such multifaceted performance of the synthesized polyester with controllable thermal/mechanical properties was realized by halogen bonding, leading to a promising biomaterial with multifunctionality.
Collapse
Affiliation(s)
- Yuya Oyama
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Naruki Kurokawa
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Atsushi Hotta
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
46
|
Okhovatian S, Shakeri A, Huyer LD, Radisic M. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip. Biomacromolecules 2023; 24:4511-4531. [PMID: 37639715 PMCID: PMC10915885 DOI: 10.1021/acs.biomac.3c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Locke Davenport Huyer
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
47
|
Perin GB, Felisberti MI. Phosphorylated Polyesters Inspired by Phospholipids: Synthesis, Characterization, and Potential Applications. Biomacromolecules 2023; 24:5207-5218. [PMID: 37792366 DOI: 10.1021/acs.biomac.3c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report the synthesis of phosphorylated polyesters by the phosphorylation of hydroxylated polyesters synthesized by the lipase-catalyzed polycondensation of glycerol and aliphatic dicarboxylic acids and their characterization. The use of phosphoryl chloride as a phosphorylating agent and triethylamine as a catalyst in mild reaction conditions resulted in polyesters with repetitive units structurally similar to phospholipids, molar mass of around 14-38 kDa, and a degree of phosphorylation of 36 ± 11 mol %. These polyesters are composed mainly of 10 different repetitive units as determined by 1D and 2D NMR. Their properties change from more hydrophilic and amorphous for phosphorylated poly(glycerol adipate) to more hydrophobic and semicrystalline for phosphorylated poly(glycerol dodecanedioate). Preliminary investigations have shown the potential of these polyesters to self-assemble in aqueous media forming nanoparticles, which can be loaded with hydrophobic molecules and released into an organic phase, acting as a phase transfer agent, and used as a pH-responsive emulsifier.
Collapse
Affiliation(s)
- Giovanni B Perin
- Institute of Chemistry, University of Campinas, P.O. Box: 6154, Campinas, SP 13083-970, Brazil
| | - Maria I Felisberti
- Institute of Chemistry, University of Campinas, P.O. Box: 6154, Campinas, SP 13083-970, Brazil
| |
Collapse
|
48
|
Wu M, Zhao Y, Tao M, Fu M, Wang Y, Liu Q, Lu Z, Guo J. Malate-Based Biodegradable Scaffolds Activate Cellular Energetic Metabolism for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50836-50853. [PMID: 37903387 DOI: 10.1021/acsami.3c09394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The latest advancements in cellular bioenergetics have revealed the potential of transferring chemical energy to biological energy for therapeutic applications. Despite efforts, a three-dimensional (3D) scaffold that can induce long-term bioenergetic effects and facilitate tissue regeneration remains a big challenge. Herein, the cellular energetic metabolism promotion ability of l-malate, an important intermediate of the tricarboxylic acid (TCA) cycle, was proved, and a series of bioenergetic porous scaffolds were fabricated by synthesizing poly(diol l-malate) (PDoM) prepolymers via a facial one-pot polycondensation of l-malic acid and aliphatic diols, followed by scaffold fabrication and thermal-cross-linking. The degradation products of the developed PDoM scaffolds can regulate the metabolic microenvironment by entering mitochondria and participating in the TCA cycle to elevate intracellular adenosine triphosphate (ATP) levels, thus promoting the cellular biosynthesis, including the production of collagen type I (Col1a1), fibronectin 1 (Fn1), and actin alpha 2 (Acta2/α-Sma). The porous PDoM scaffold was demonstrated to support the growth of the cocultured mesenchymal stem cells (MSCs) and promote their secretion of bioactive molecules [such as vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), and basic fibroblast growth factor (bFGF)], and this stem cells-laden scaffold architecture was proved to accelerate wound healing in a critical full-thickness skin defect model on rats.
Collapse
Affiliation(s)
- Min Wu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meihan Tao
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yue Wang
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qi Liu
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
- Regenerative Medicine and Tissue Repair Research Center, Huangpu Institute of Materials, Guangzhou 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, GDMPA Key Laboratory of Key Technologies for Cosmetics Safety and Efficacy Evaluation, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
49
|
Li J, Carlos C, Zhou H, Sui J, Wang Y, Silva-Pedraza Z, Yang F, Dong Y, Zhang Z, Hacker TA, Liu B, Mao Y, Wang X. Stretchable piezoelectric biocrystal thin films. Nat Commun 2023; 14:6562. [PMID: 37848410 PMCID: PMC10582159 DOI: 10.1038/s41467-023-42184-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
Stretchability is an essential property for wearable devices to match varying strains when interfacing with soft tissues or organs. While piezoelectricity has broad application potentials as tactile sensors, artificial skins, or nanogenerators, enabling tissue-comparable stretchability is a main roadblock due to the intrinsic rigidity and hardness of the crystalline phase. Here, an amino acid-based piezoelectric biocrystal thin film that offers tissue-compatible omnidirectional stretchability with unimpaired piezoelectricity is reported. The stretchability was enabled by a truss-like microstructure that was self-assembled under controlled molecule-solvent interaction and interface tension. Through the open and close of truss meshes, this large scale biocrystal microstructure was able to endure up to 40% tensile strain along different directions while retained both structural integrity and piezoelectric performance. Built on this structure, a tissue-compatible stretchable piezoelectric nanogenerator was developed, which could conform to various tissue surfaces, and exhibited stable functions under multidimensional large strains. In this work, we presented a promising solution that integrates piezoelectricity, stretchability and biocompatibility in one material system, a critical step toward tissue-compatible biomedical devices.
Collapse
Affiliation(s)
- Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Corey Carlos
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hao Zhou
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiajie Sui
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yikai Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zulmari Silva-Pedraza
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fan Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, 200025, China
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Bo Liu
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
50
|
Bice MLL, Ortega VL, Yu MH, McHugh KJ. Methacrylated poly(glycerol sebacate) as a photocurable, biocompatible, and biodegradable polymer with tunable degradation and drug release kinetics. RESEARCH SQUARE 2023:rs.3.rs-3384762. [PMID: 37886600 PMCID: PMC10602112 DOI: 10.21203/rs.3.rs-3384762/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Poly(glycerol sebacate) (PGS) is a biodegradable, elastomeric polymer that has been explored for applications ranging from tissue engineering to drug delivery and wound repair. Despite its promise, its biomedical utility is limited by its rapid, and largely fixed, degradation rate. Additionally, its preparation requires high temperatures for long periods of time, rendering it incompatible with heat-sensitive molecules, complex device geometries, and high-throughput production. In this study, we synthesized methacrylated PGS (PGS-M), imparting the ability to rapidly photocross-link the polymer. Increasing the degree of methacrylation was found to slow PGS-M degradation; PGS-M (5.5 kDa) disks with 21% methacrylation lost 43% of their mass over 11 weeks in vivo whereas 47% methacrylated disks lost just 14% of their mass over the same period. Increasing the methacrylation also extended the release of encapsulated daunorubicin by up to two orders of magnitude in vitro, releasing drug over months instead of one week. Like PGS, PGS-M exhibited good biocompatibility, eliciting limited inflammation and fibrous encapsulation when implanted subcutaneously. These studies are the first to perform long-term studies demonstrating the ability to tune PGS-M degradation rate, use PGS-M to release drug, demonstrate sustained release of drug from PGS-M, and evaluate PGS-M behavior in vivo. Taken together, these studies show that PGS-M offers several key advantages over PGS for drug delivery and tissue engineering, including rapid curing, facile loading of drugs without exposure to heat, tunable degradation rates, and tunable release kinetics, all while retaining the favorable biocompatibility of PGS.
Collapse
|