1
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Thierry GR, Baudon EM, Bijnen M, Bellomo A, Lagueyrie M, Mondor I, Simonnet L, Carrette F, Fenouil R, Keshvari S, Hume DA, Dombrowicz D, Bajenoff M. Non-classical monocytes scavenge the growth factor CSF1 from endothelial cells in the peripheral vascular tree to ensure survival and homeostasis. Immunity 2024; 57:2108-2121.e6. [PMID: 39089257 DOI: 10.1016/j.immuni.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024]
Abstract
Unlike sessile macrophages that occupy specialized tissue niches, non-classical monocytes (NCMs)-circulating phagocytes that patrol and cleanse the luminal surface of the vascular tree-are characterized by constant movement. Here, we examined the nature of the NCM's nurturing niche. Expression of the growth factor CSF1 on endothelial cells was required for survival of NCMs in the bloodstream. Lack of endothelial-derived CSF1 did not affect blood CSF1 concentration, suggesting that NCMs rely on scavenging CSF1 present on endothelial cells. Deletion of the transmembrane chemokine and adhesion factor CX3CL1 on endothelial cells impaired NCM survival. Mechanistically, endothelial-derived CX3CL1 and integrin subunit alpha L (ITGAL) facilitated the uptake of CSF1 by NCMs. CSF1 was produced by all tissular endothelial cells, and deletion of Csf1 in all endothelial cells except bone marrow sinusoids impaired NCM survival, arguing for a model where the full vascular tree acts as a niche for NCMs and where survival and patrolling function are connected.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Elisa M Baudon
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Mitchell Bijnen
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Alicia Bellomo
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Marine Lagueyrie
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Isabelle Mondor
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Louise Simonnet
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Florent Carrette
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Romain Fenouil
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France
| | - Sahar Keshvari
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David A Hume
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David Dombrowicz
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Marc Bajenoff
- Centre d'Immunologie Marseille-Luminy, Aix Marseille Univ UM 2, CNRS UMR 7280, INSERM U1104, 13009 Marseille, France.
| |
Collapse
|
3
|
Fernandes CJC, Silva RA, Ferreira MR, Fuhler GM, Peppelenbosch MP, van der Eerden BC, Zambuzzi WF. Vascular smooth muscle cell-derived exosomes promote osteoblast-to-osteocyte transition via β-catenin signaling. Exp Cell Res 2024; 442:114211. [PMID: 39147261 DOI: 10.1016/j.yexcr.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Blood vessel growth and osteogenesis in the skeletal system are coupled; however, fundamental aspects of vascular function in osteoblast-to-osteocyte transition remain unclear. Our study demonstrates that vascular smooth muscle cells (VSMCs), but not endothelial cells, are sufficient to drive bone marrow mesenchymal stromal cell-derived osteoblast-to-osteocyte transition via β-catenin signaling and exosome-mediated communication. We found that VSMC-derived exosomes are loaded with transcripts encoding proteins associated with the osteocyte phenotype and members of the WNT/β-catenin signaling pathway. In contrast, endothelial cell-derived exosomes facilitated mature osteoblast differentiation by reprogramming the TGFB1 gene family and osteogenic transcription factors osterix (SP7) and RUNX2. Notably, VSMCs express significant levels of tetraspanins (CD9, CD63, and CD81) and drive the intracellular trafficking of exosomes with a lower membrane zeta potential than those from other cells. Additionally, the high ATP content within these exosomes supports mineralization mechanisms, as ATP is a substrate for alkaline phosphatase. Osteocyte function was further validated by RNA sequencing, revealing activity in genes related to intermittent mineralization and sonic hedgehog signaling, alongside a significant increase in TNFSF11 levels. Our findings unveil a novel role of VSMCs in promoting osteoblast-to-osteocyte transition, thus offering new insights into bone biology and homeostasis, as well as in bone-related diseases. Clinically, these insights could pave the way for innovative therapeutic strategies targeting VSMC-derived exosome pathways to treat bone-related disorders such as osteoporosis. By manipulating these signaling pathways, it may be possible to enhance bone regeneration and improve skeletal health in patients with compromised bone structure and function.
Collapse
Affiliation(s)
- Célio J C Fernandes
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil
| | - Rodrigo A Silva
- School of Dentistry, University of Taubaté, 12020-340, Taubaté, São Paulo, Brazil
| | - Marcel R Ferreira
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Bram Cj van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Willian F Zambuzzi
- Bioassays and Cell Dynamics Lab, Dept. of Chemistry and Biochemistry, Bioscience Institute, UNESP, Botucatu, 18603-100, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Mildner A, Kim KW, Yona S. Unravelling monocyte functions: from the guardians of health to the regulators of disease. DISCOVERY IMMUNOLOGY 2024; 3:kyae014. [PMID: 39430099 PMCID: PMC11486918 DOI: 10.1093/discim/kyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Monocytes are a key component of the innate immune system. They undergo intricate developmental processes within the bone marrow, leading to diverse monocyte subsets in the circulation. In a state of healthy homeostasis, monocytes are continuously released into the bloodstream, destined to repopulate specific tissue-resident macrophage pools where they fulfil tissue-specific functions. However, under pathological conditions monocytes adopt various phenotypes to resolve inflammation and return to a healthy physiological state. This review explores the nuanced developmental pathways and functional roles that monocytes perform, shedding light on their significance in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Simon Yona
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
5
|
Chen Y, Wang J, An C, Bao S, Zhang C. The role and research progress of macrophages after heart transplantation. Heliyon 2024; 10:e33844. [PMID: 39027574 PMCID: PMC11255595 DOI: 10.1016/j.heliyon.2024.e33844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Since the 60s of the 20th century, heart transplantation has been the best treatment for patients with end-stage heart failure. Due to the increasing number of patients, how to expand the number of donor organs and enhance immune compatibility has become an urgent problem to be solved at this stage. Although current immunosuppression is effective, its side effects are also quite obvious, such as opportunistic infections and malignant tumors. In this review, we focus on the important role in macrophages after heart transplantation and their potential targets for achieving allogeneic graft tolerance, in order to improve effective graft survival and reduce infection and the occurrence of malignant tumors.
Collapse
Affiliation(s)
- Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - JianPeng Wang
- School of First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - ShanQing Bao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - ChengXin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
6
|
Trzebanski S, Kim JS, Larossi N, Raanan A, Kancheva D, Bastos J, Haddad M, Solomon A, Sivan E, Aizik D, Kralova JS, Gross-Vered M, Boura-Halfon S, Lapidot T, Alon R, Movahedi K, Jung S. Classical monocyte ontogeny dictates their functions and fates as tissue macrophages. Immunity 2024; 57:1225-1242.e6. [PMID: 38749446 DOI: 10.1016/j.immuni.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.
Collapse
Affiliation(s)
- Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niss Larossi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ayala Raanan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Bastos
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Montaser Haddad
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ehud Sivan
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Aizik
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Mor Gross-Vered
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tsvee Lapidot
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Kim S, Chen J, Ou F, Liu TT, Jo S, Gillanders WE, Murphy TL, Murphy KM. Transcription factor C/EBPα is required for the development of Ly6C hi monocytes but not Ly6C lo monocytes. Proc Natl Acad Sci U S A 2024; 121:e2315659121. [PMID: 38564635 PMCID: PMC11009651 DOI: 10.1073/pnas.2315659121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Monocytes comprise two major subsets, Ly6Chi classical monocytes and Ly6Clo nonclassical monocytes. Notch2 signaling in Ly6Chi monocytes triggers transition to Ly6Clo monocytes, which require Nr4a1, Bcl6, Irf2, and Cebpb. By comparison, less is known about transcriptional requirements for Ly6Chi monocytes. We find transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) is highly expressed in Ly6Chi monocytes, but down-regulated in Ly6Clo monocytes. A few previous studies described the requirement of C/EBPα in the development of neutrophils and eosinophils. However, the role of C/EBPα for in vivo monocyte development has not been understood. We deleted the Cebpa +37 kb enhancer in mice, eliminating hematopoietic expression of C/EBPα, reproducing the expected neutrophil defect. Surprisingly, we also found a severe and selective loss of Ly6Chi monocytes, while preserving Ly6Clo monocytes. We find that BM progenitors from Cebpa +37-/- mice rapidly progress through the monocyte progenitor stage to develop directly into Ly6Clo monocytes even in the absence of Notch2 signaling. These results identify a previously unrecognized role for C/EBPα in maintaining Ly6Chi monocyte identity.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - William E. Gillanders
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
Yan J, Tie G, Tutto A, Messina LM. Hypercholesterolemia impairs collateral artery enlargement by ten-eleven translocation 1-dependent hematopoietic stem cell autonomous mechanism in a murine model of limb ischemia. JVS Vasc Sci 2024; 5:100203. [PMID: 38774713 PMCID: PMC11106542 DOI: 10.1016/j.jvssci.2024.100203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/22/2024] [Indexed: 05/24/2024] Open
Abstract
Objective The extent of collateral artery enlargement determines the risk of limb loss due to peripheral arterial disease. Hypercholesterolemia impairs collateral artery enlargement, but the underlying mechanism remains poorly characterized. This study tests the hypothesis that hypercholesterolemia impairs collateral artery enlargement through a ten-eleven translocation 1 (Tet1)-dependent hematopoietic stem cell (HSC)-autonomous mechanism that increases their differentiation into proinflammatory Ly6Chi monocytes and restricts their conversion into proangiogenic Ly6Clow monocytes. Methods To test our hypothesis, we induced limb ischemia and generated chimeric mouse models by transplanting HSCs from either wild-type (WT) mice or hypercholesterolemic mice into lethally irradiated WT recipient mice. Results We found that the lethally irradiated WT recipient mice reconstituted with HSCs from hypercholesterolemic mice displayed lower blood flow recovery and collateral artery enlargement that was nearly identical to that observed in hypercholesterolemic mice, despite the absence of hypercholesterolemia and consistent with an HSC-autonomous mechanism. We showed that hypercholesterolemia impairs collateral artery enlargement by a Tet1-dependent mechanism that increases HSC differentiation toward proinflammatory Ly6Chi monocytes and restricts the conversion of Ly6Chi monocytes into proangiogenic Ly6Clow monocytes. Moreover, Tet1 epigenetically reprograms monocyte gene expression within the HSCs. Restoration of Tet1 expression in HSCs of hypercholesterolemic mice restores WT collateral artery enlargement and blood flow recovery after induction of hindlimb ischemia. Conclusions These results show that hypercholesterolemia impairs collateral artery enlargement by a novel Tet1-dependent HSC-autonomous mechanism that epigenetically reprograms monocyte gene expression within the HSCs.
Collapse
Affiliation(s)
- Jinglian Yan
- Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA
| | - Guodong Tie
- Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA
| | - Amanda Tutto
- Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA
| | - Louis M. Messina
- Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
9
|
Kou T, Kang L, Zhang B, Li J, Zhao B, Zeng W, Hu X. RBP-J regulates homeostasis and function of circulating Ly6C lo monocytes. eLife 2024; 12:RP88135. [PMID: 38407952 PMCID: PMC10942619 DOI: 10.7554/elife.88135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Notch-RBP-J signaling plays an essential role in the maintenance of myeloid homeostasis. However, its role in monocyte cell fate decisions is not fully understood. Here, we showed that conditional deletion of transcription factor RBP-J in myeloid cells resulted in marked accumulation of blood Ly6Clo monocytes that highly expressed chemokine receptor CCR2. Bone marrow transplantation and parabiosis experiments revealed a cell-intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes. RBP-J-deficient Ly6Clo monocytes exhibited enhanced capacity competing with wildtype counterparts in blood circulation. In accordance with alterations of circulating monocytes, RBP-J deficiency led to markedly increased population of lung tissues with Ly6Clo monocytes and CD16.2+ interstitial macrophages. Furthermore, RBP-J deficiency-associated phenotypes could be genetically corrected by further deleting Ccr2 in myeloid cells. These results demonstrate that RBP-J functions as a crucial regulator of blood Ly6Clo monocytes and thus derived lung-resident myeloid populations, at least in part through regulation of CCR2.
Collapse
Affiliation(s)
- Tiantian Kou
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Lan Kang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Jiaqi Li
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| |
Collapse
|
10
|
Kaneko Y, Miyato H, Tojo M, Futoh Y, Takahashi K, Kimura Y, Saito A, Ohzawa H, Yamaguchi H, Sata N, Kitayama J, Hosoya Y. Splenectomy has opposite effects on the growth of primary compared with metastatic tumors in a murine colon cancer model. Sci Rep 2024; 14:4496. [PMID: 38402307 PMCID: PMC10894273 DOI: 10.1038/s41598-024-54768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
The spleen is a key source of circulating and tumor-infiltrating immune cells. However, the effect of splenectomy on tumor growth remains unclear. At 3 weeks after splenectomy, we subcutaneously injected LuM1 cells into BALB/c mice and evaluated the growth of primary tumors and lung metastases at 4 weeks after tumor inoculation. In addition, we examined the phenotypes of immune cells in peripheral blood by using flow cytometry and in tumor tissue by using multiplex immunohistochemistry. The growth of primary tumors was reduced in splenectomized mice compared with the sham-operated group. Conversely, splenectomized mice had more lung metastases. Splenectomized mice had fewer CD11b+cells, especially monocytic MDSCs (CD11b+Gr-1neg-lowLy6chigh), and NK cells (CD49b+CD335+). The proportion of NK cells was inversely correlated with the number of lung metastases. In splenectomized mice, the density of CD3+ and granzyme B+ CD8+ T cells was increased, with fewer M2-type macrophages in primary tumors, but NK cells were decreased markedly in lung. Splenectomy concurrently enhances T cell-mediated acquired immunity by reducing the number of monocytic MDSCs and suppresses innate immunity by decreasing the number of NK cells. Splenectomy has opposite effects on primary and metastatic lesions through differential regulation on these two immune systems.
Collapse
Affiliation(s)
- Yuki Kaneko
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Mineyuki Tojo
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yurie Futoh
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kazuya Takahashi
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuki Kimura
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Akira Saito
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
11
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Schroth FN, Xu Y, Chen R, Rong S, Shushakova N, Gueler F, Haller H, Limbourg FP. Validation of CSF-1 receptor (CD115) staining for analysis of murine monocytes by flow cytometry. J Leukoc Biol 2024; 115:573-582. [PMID: 38038378 DOI: 10.1093/jleuko/qiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Frauline Nicole Schroth
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Yuangao Xu
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| |
Collapse
|
12
|
Liu Y, Su S, Shayo S, Bao W, Pal M, Dou K, Shi PA, Aygun B, Campbell-Lee S, Lobo CA, Mendelson A, An X, Manwani D, Zhong H, Yazdanbakhsh K. Hemolysis dictates monocyte differentiation via two distinct pathways in sickle cell disease vaso-occlusion. J Clin Invest 2023; 133:e172087. [PMID: 37490346 PMCID: PMC10503794 DOI: 10.1172/jci172087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by painful vaso-occlusive crises (VOC) and chronic hemolysis. The mononuclear phagocyte system is pivotal to SCD pathophysiology, but the mechanisms governing monocyte/macrophage differentiation remain unknown. This study examined the influence of hemolysis on circulating monocyte trajectories in SCD. We discovered that hemolysis stimulated CSF-1 production, partly by endothelial cells via Nrf2, promoting classical monocyte (CMo) differentiation into blood patrolling monocytes (PMo) in SCD mice. However, hemolysis also upregulated CCL-2 through IFN-I, inducing CMo transmigration and differentiation into tissue monocyte-derived macrophages. Blocking CMo transmigration by anti-P selectin antibody in SCD mice increased circulating PMo, corroborating that CMo-to-tissue macrophage differentiation occurs at the expense of CMo-to-blood PMo differentiation. We observed a positive correlation between plasma CSF-1/CCL-2 ratios and blood PMo levels in patients with SCD, underscoring the clinical significance of these two opposing factors in monocyte differentiation. Combined treatment with CSF-1 and anti-P selectin antibody more effectively increased PMo numbers and reduced stasis compared with single-agent therapies in SCD mice. Altogether, these data indicate that monocyte fates are regulated by the balance between two heme pathways, Nrf2/CSF-1 and IFN-I/CCL-2, and suggest that the CSF-1/CCL-2 ratio may present a diagnostic and therapeutic target in SCD.
Collapse
Affiliation(s)
| | - Shan Su
- Laboratory of Complement Biology
| | | | | | | | - Kai Dou
- Laboratory of Immune Regulation, and
| | - Patricia A. Shi
- Clinical Research in Sickle Cell Disease, New York Blood Center, New York, New York, USA
| | - Banu Aygun
- Cohen Children’s Medical Center, New Hyde Park, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Sally Campbell-Lee
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, New York, USA
| | - Deepa Manwani
- Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Children’s Hospital at Montefiore, New York, New York, USA
| | - Hui Zhong
- Laboratory of Immune Regulation, and
| | | |
Collapse
|
13
|
O’Connor KW, Liu T, Kim S, Briseño CG, Georgopoulos K, Murphy TL, Murphy KM. Bcl6, Irf2, and Notch2 promote nonclassical monocyte development. Proc Natl Acad Sci U S A 2023; 120:e2220853120. [PMID: 37607223 PMCID: PMC10469339 DOI: 10.1073/pnas.2220853120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Ly6Clo monocytes are a myeloid subset that specializes in the surveillance of vascular endothelium. Ly6Clo monocytes have been shown to derive from Ly6Chi monocytes. NOTCH2 signaling has been implicated as a trigger for Ly6Clo monocyte development, but the basis for this effect is unclear. Here, we examined the impact of NOTCH2 signaling of myeloid progenitors on the development of Ly6Clo monocytes in vitro. NOTCH2 signaling induced by delta-like ligand 1 (DLL1) efficiently induced the transition of Ly6Chi TREML4- monocytes into Ly6Clo TREML4+ monocytes. We further identified two additional transcriptional requirements for development of Ly6Clo monocytes. Deletion of BCL6 from myeloid progenitors abrogated development of Ly6Clo monocytes. IRF2 was also required for Ly6Clo monocyte development in a cell-intrinsic manner. DLL1-induced in vitro transition into Ly6Clo TREML4+ monocytes required IRF2 but unexpectedly could occur in the absence of NUR77 or BCL6. These results imply a transcriptional hierarchy for these factors in controlling Ly6Clo monocyte development.
Collapse
Affiliation(s)
- Kevin W. O’Connor
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO63110
| | - Tiantian Liu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO63110
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO63110
| | - Carlos G. Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO63110
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO63110
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO63110
| |
Collapse
|
14
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Kijas D, Haller H, Schmidt-Ott K, Limbourg FP. CSF-1 and Notch signaling cooperate in macrophage instruction and tissue repair during peripheral limb ischemia. Front Immunol 2023; 14:1240327. [PMID: 37691936 PMCID: PMC10484478 DOI: 10.3389/fimmu.2023.1240327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Ischemia causes an inflammatory response featuring monocyte-derived macrophages (MF) involved in angiogenesis and tissue repair. Angiogenesis and ischemic macrophage differentiation are regulated by Notch signaling via Notch ligand Delta-like 1 (Dll1). Colony stimulating factor 1 (CSF-1) is an essential MF lineage factor, but its role in ischemic macrophage development and the interaction with Notch signaling is so far unclear. Using a mouse model of hind limb ischemia with CSF-1 inhibitor studies and Dll1 heterozygous mice we show that CSF-1 is induced in the ischemic niche by a subpopulation of stromal cells expressing podoplanin, which was paralleled by the development of ischemic macrophages. Inhibition of CSF-1 signaling with small molecules or blocking antibodies impaired macrophage differentiation but prolonged the inflammatory response, resulting in impaired perfusion recovery and tissue regeneration. Yet, despite high levels of CSF-1, macrophage maturation and perfusion recovery were impaired in mice with Dll1 haploinsufficiency, while inflammation was exaggerated. In vitro, CSF-1 was not sufficient to induce full MF differentiation from donor monocytes in the absence of recombinant DLL1, while the presence of DLL1 in a dose-dependent manner stimulated MF differentiation in combination with CSF-1. Thus, CSF-1 is an ischemic niche factor that cooperates with Notch signaling in a non-redundant fashion to instruct macrophage cell fate and maturation, which is required for ischemic perfusion recovery and tissue repair.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Kai Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Florian P. Limbourg
- Vascular Medicine Research, Hannover Medical School, Hannover, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Liang SQ, Li PH, Hu YY, Zhao JL, Shao FZ, Kuang F, Ren KX, Wei TX, Fan F, Feng L, Han H, Qin HY. Myeloid-specific blockade of notch signaling alleviates dopaminergic neurodegeneration in Parkinson's disease by dominantly regulating resident microglia activation through NF-κB signaling. Front Immunol 2023; 14:1193081. [PMID: 37680624 PMCID: PMC10481959 DOI: 10.3389/fimmu.2023.1193081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023] Open
Abstract
Yolk sac-derived microglia and peripheral monocyte-derived macrophages play a key role during Parkinson's disease (PD) progression. However, the regulatory mechanism of microglia/macrophage activation and function in PD pathogenesis remains unclear. Recombination signal-binding protein Jκ (RBP-J)-mediated Notch signaling regulates macrophage development and activation. In this study, with an 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride-induced acute murine PD model, we found that Notch signaling was activated in amoeboid microglia accompanied by a decrease in tyrosine hydroxylase (TH)-positive neurons. Furthermore, using myeloid-specific RBP-J knockout (RBP-JcKO) mice combined with a PD model, our results showed that myeloid-specific disruption of RBP-J alleviated dopaminergic neurodegeneration and improved locomotor activity. Fluorescence-activated cell sorting (FACS) analysis showed that the number of infiltrated inflammatory macrophages and activated major histocompatibility complex (MHC) II+ microglia decreased in RBP-JcKO mice compared with control mice. Moreover, to block monocyte recruitment by using chemokine (C-C motif) receptor 2 (CCR2) knockout mice, the effect of RBP-J deficiency on dopaminergic neurodegeneration was not affected, indicating that Notch signaling might regulate neuroinflammation independent of CCR2+ monocyte infiltration. Notably, when microglia were depleted with the PLX5622 formulated diet, we found that myeloid-specific RBP-J knockout resulted in more TH+ neurons and fewer activated microglia. Ex vitro experiments demonstrated that RBP-J deficiency in microglia might reduce inflammatory factor secretion, TH+ neuron apoptosis, and p65 nuclear translocation. Collectively, our study first revealed that RBP-J-mediated Notch signaling might participate in PD progression by mainly regulating microglia activation through nuclear factor kappa-B (NF-κB) signaling.
Collapse
Affiliation(s)
- Shi-Qian Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Peng-Hui Li
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yi-Yang Hu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Fang-Ze Shao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Fang Kuang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Kai-Xi Ren
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Tiao-Xia Wei
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Fan Fan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Lei Feng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Dastagir K, Gamrekelashvili J, Dastagir N, Limbourg A, Kijas D, Kapanadze T, Vogt PM, Limbourg FP. A new fasciocutaneous flap model identifies a critical role for endothelial Notch signaling in wound healing and flap survival. Sci Rep 2023; 13:12542. [PMID: 37532879 PMCID: PMC10397185 DOI: 10.1038/s41598-023-39722-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/29/2023] [Indexed: 08/04/2023] Open
Abstract
Flap surgery is a common treatment for severe wounds and a major determinant of surgical outcome. Flap survival and healing depends on adaptation of the local flap vasculature. Using a novel and defined model of fasciocutaneous flap surgery, we demonstrate that the Notch ligand Delta-like 1 (Dll1), expressed in vascular endothelial cells, regulates flap arteriogenesis, inflammation and flap survival. Utilizing the stereotyped anatomy of dorsal skin arteries, ligation of the major vascular pedicle induced strong collateral vessel development by end-to-end anastomosis in wildtype mice, which supported flap perfusion recovery over time. In mice with heterozygous deletion of Dll1, collateral vessel formation was strongly impaired, resulting in aberrant vascularization and subsequent necrosis of the tissue. Furthermore, Dll1 deficient mice showed severe inflammation in the flap dominated by monocytes and macrophages. This process is controlled by endothelial Dll1 in vivo, since the results were recapitulated in mice with endothelial-specific deletion of Dll1. Thus, our model provides a platform to study vascular adaptation to flap surgery and molecular and cellular regulators influencing flap healing and survival.
Collapse
Affiliation(s)
- Khaled Dastagir
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Nadjib Dastagir
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Anne Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
17
|
Brandi J, Wiethe C, Riehn M, Jacobs T. OMIP-93: A 41-color high parameter panel to characterize various co-inhibitory molecules and their ligands in the lymphoid and myeloid compartment in mice. Cytometry A 2023; 103:624-630. [PMID: 37219006 DOI: 10.1002/cyto.a.24740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
This 41-color panel has been designed to characterize both the lymphoid and the myeloid compartments in mice. The number of immune cells isolated from organs is often low, whilst an increasing number of factors need to be analyzed to gain a deeper understanding of the complexity of an immune response. With a focus on T cells, their activation and differentiation status, as well as their expression of several co-inhibitory and effector molecules, this panel also allows the analysis of ligands to these co-inhibitory molecules on antigen-presenting cells. This panel enables deep phenotypic characterization of CD4+ and CD8+ T cells, regulatory T cells, γδ T cells, NK T cells, B cells, NK cells, monocytes, macrophages, dendritic cells, and neutrophils. Whilst previous panels have focused on these topics individually, this is the first panel to enable simultaneous analysis of these compartments, thus enabling a comprehensive analysis with a limited number of immune cells/sample size. This panel is designed to analyze and compare the immune response in different mouse models of infectious diseases, but can also be extended to other disease models, for example tumors or autoimmune diseases. Here, we apply this panel to C57BL/6 mice infected with Plasmodium berghei ANKA, a mouse model of cerebral malaria.
Collapse
Affiliation(s)
- Johannes Brandi
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carsten Wiethe
- Marketing and Scientific Application, BioLegend Inc, San Diego, California, USA
| | - Mathias Riehn
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
18
|
Rondeaux J, Groussard D, Renet S, Tardif V, Dumesnil A, Chu A, Di Maria L, Lemarcis T, Valet M, Henry JP, Badji Z, Vézier C, Béziau-Gasnier D, Neele AE, de Winther MPJ, Guerrot D, Brand M, Richard V, Durand E, Brakenhielm E, Fraineau S. Ezh2 emerges as an epigenetic checkpoint regulator during monocyte differentiation limiting cardiac dysfunction post-MI. Nat Commun 2023; 14:4461. [PMID: 37491334 PMCID: PMC10368741 DOI: 10.1038/s41467-023-40186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Epigenetic regulation of histone H3K27 methylation has recently emerged as a key step during alternative immunoregulatory M2-like macrophage polarization; known to impact cardiac repair after Myocardial Infarction (MI). We hypothesized that EZH2, responsible for H3K27 methylation, could act as an epigenetic checkpoint regulator during this process. We demonstrate for the first time an ectopic EZH2, and putative, cytoplasmic inactive localization of the epigenetic enzyme, during monocyte differentiation into M2 macrophages in vitro as well as in immunomodulatory cardiac macrophages in vivo in the post-MI acute inflammatory phase. Moreover, we show that pharmacological EZH2 inhibition, with GSK-343, resolves H3K27 methylation of bivalent gene promoters, thus enhancing their expression to promote human monocyte repair functions. In line with this protective effect, GSK-343 treatment accelerated cardiac inflammatory resolution preventing infarct expansion and subsequent cardiac dysfunction in female mice post-MI in vivo. In conclusion, our study reveals that pharmacological epigenetic modulation of cardiac-infiltrating immune cells may hold promise to limit adverse cardiac remodeling after MI.
Collapse
Affiliation(s)
- Julie Rondeaux
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | | | - Sylvanie Renet
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Virginie Tardif
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Anaïs Dumesnil
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Alphonse Chu
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Léa Di Maria
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Théo Lemarcis
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Manon Valet
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Jean-Paul Henry
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Zina Badji
- CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | - Claire Vézier
- CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | | | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dominique Guerrot
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Nephrology, F-76000, Rouen, France
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Vincent Richard
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Pharmacology, F-76000, Rouen, France
| | - Eric Durand
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | - Ebba Brakenhielm
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Sylvain Fraineau
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France.
| |
Collapse
|
19
|
Li X, Wu J, Zhu S, Wei Q, Wang L, Chen J. Intragraft immune cells: accomplices or antagonists of recipient-derived macrophages in allograft fibrosis? Cell Mol Life Sci 2023; 80:195. [PMID: 37395809 DOI: 10.1007/s00018-023-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Organ fibrosis caused by chronic allograft rejection is a major concern in the field of transplantation. Macrophage-to-myofibroblast transition plays a critical role in chronic allograft fibrosis. Adaptive immune cells (such as B and CD4+ T cells) and innate immune cells (such as neutrophils and innate lymphoid cells) participate in the occurrence of recipient-derived macrophages transformed to myofibroblasts by secreting cytokines, which eventually leads to fibrosis of the transplanted organ. This review provides an update on the latest progress in understanding the plasticity of recipient-derived macrophages in chronic allograft rejection. We discuss here the immune mechanisms of allograft fibrosis and review the reaction of immune cells in allograft. The interactions between immune cells and the process of myofibroblast formulation are being considered for the potential therapeutic targets of chronic allograft fibrosis. Therefore, research on this topic seems to provide novel clues for developing strategies for preventing and treating allograft fibrosis.
Collapse
Affiliation(s)
- Xiaoping Li
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
- Department of Pediatrics, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jing Wu
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Shan Zhu
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Qiuyu Wei
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Liyan Wang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Jingtao Chen
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China.
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China.
| |
Collapse
|
20
|
Ma F, Plazyo O, Billi AC, Tsoi LC, Xing X, Wasikowski R, Gharaee-Kermani M, Hile G, Jiang Y, Harms PW, Xing E, Kirma J, Xi J, Hsu JE, Sarkar MK, Chung Y, Di Domizio J, Gilliet M, Ward NL, Maverakis E, Klechevsky E, Voorhees JJ, Elder JT, Lee JH, Kahlenberg JM, Pellegrini M, Modlin RL, Gudjonsson JE. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat Commun 2023; 14:3455. [PMID: 37308489 PMCID: PMC10261041 DOI: 10.1038/s41467-023-39020-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
The immunopathogenesis of psoriasis, a common chronic inflammatory disease of the skin, is incompletely understood. Here we demonstrate, using a combination of single cell and spatial RNA sequencing, IL-36 dependent amplification of IL-17A and TNF inflammatory responses in the absence of neutrophil proteases, which primarily occur within the supraspinous layer of the psoriatic epidermis. We further show that a subset of SFRP2+ fibroblasts in psoriasis contribute to amplification of the immune network through transition to a pro-inflammatory state. The SFRP2+ fibroblast communication network involves production of CCL13, CCL19 and CXCL12, connected by ligand-receptor interactions to other spatially proximate cell types: CCR2+ myeloid cells, CCR7+ LAMP3+ dendritic cells, and CXCR4 expressed on both CD8+ Tc17 cells and keratinocytes, respectively. The SFRP2+ fibroblasts also express cathepsin S, further amplifying inflammatory responses by activating IL-36G in keratinocytes. These data provide an in-depth view of psoriasis pathogenesis, which expands our understanding of the critical cellular participants to include inflammatory fibroblasts and their cellular interactions.
Collapse
Affiliation(s)
- Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Grace Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Enze Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joseph Kirma
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jingyue Xi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jer-En Hsu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yutein Chung
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeremy Di Domizio
- Department of Dermatology, University Hospital of Lausanne, 1011, Lausanne, Switzerland
| | - Michel Gilliet
- Department of Dermatology, University Hospital of Lausanne, 1011, Lausanne, Switzerland
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis, Sacramento, CA, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, 48105, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
22
|
Li J, Zhao C, Xu Y, Song L, Chen Y, Xu Y, Ma Y, Wang S, Xu A, He F. Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: Single-cell transcriptome analysis. Bioact Mater 2023; 22:404-422. [PMID: 36311047 PMCID: PMC9588995 DOI: 10.1016/j.bioactmat.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems. The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive. Here, a single-cell study involving 40043 cells is conducted, and a total of 10 distinct cell clusters are identified from five different groups. A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties. The increased immature neutrophils, Ly6C + CCR2hi monocytes, and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant. The enrichment of mature neutrophils, FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response. Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration. Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis. These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of 'osteoimmune-smart' biomaterials in the bone regeneration field.
Collapse
Key Words
- BMP2, Bone Morphogenetic Proteins 2
- CXCL12, Chemokine (C-X-C mode) Ligand 12
- CXCR, CXC Chemokine Receptor
- FcgR, Fc Gamma Receptor
- IFN-γ, Interferon-gamma
- IL-1β, Interleukin-1 beta
- Implant
- MHC, Major Histocompatibility Complex
- MIP, Macrophage inflammatory cytokines
- MPO, Myeloperoxidase
- NE, Neutrophil Elastase
- NF-κB, Nuclear Factor Kappa-light-chain-enhancer of Activated B cells
- NOD, Nucleotide Binding Oligomerization Domain
- Neutrophil
- OPG, Osteoprotegerin
- Osseointegration
- Osteoimmunology
- RANKL, Nuclear Factor B receptor Activator Ligand
- RUNX2, Runt-related Transcription Factor 2
- S100a8, S100 Calcium Binding Protein A8
- SDF-1α, Stromal Cell-derived Factor-1 alpha
- STAT, Signal Transduction and Transcription Activator
- Single-cell transcriptomics
- TLR, Toll Like Receptor
- TNFα, Tumor Necrosis Factor-alpha
- TRAP, Tartrate Resistant Acid Phosphatase
Collapse
Affiliation(s)
- Jia Li
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Congrui Zhao
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yangbo Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lu Song
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yanqi Chen
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuzi Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yang Ma
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Antian Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
24
|
Hasan SS, Fischer A. Notch Signaling in the Vasculature: Angiogenesis and Angiocrine Functions. Cold Spring Harb Perspect Med 2023; 13:cshperspect.a041166. [PMID: 35667708 PMCID: PMC9899647 DOI: 10.1101/cshperspect.a041166] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Formation of a functional blood vessel network is a complex process tightly controlled by pro- and antiangiogenic signals released within the local microenvironment or delivered through the bloodstream. Endothelial cells precisely integrate such temporal and spatial changes in extracellular signals and generate an orchestrated response by modulating signaling transduction, gene expression, and metabolism. A key regulator in vessel formation is Notch signaling, which controls endothelial cell specification, proliferation, migration, adhesion, and arteriovenous differentiation. This review summarizes the molecular biology of endothelial Notch signaling and how it controls angiogenesis and maintenance of the established, quiescent vasculature. In addition, recent progress in the understanding of Notch signaling in endothelial cells for controlling organ homeostasis by transcriptional regulation of angiocrine factors and its relevance to disease will be discussed.
Collapse
Affiliation(s)
- Sana S Hasan
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
25
|
Lin S, Wang Q, Huang X, Feng J, Wang Y, Shao T, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Wounds under diabetic milieu: The role of immune cellar components and signaling pathways. Biomed Pharmacother 2023; 157:114052. [PMID: 36462313 DOI: 10.1016/j.biopha.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A major challenge in the field of diabetic wound healing is to confirm the body's intrinsic mechanism that could sense the immune system damage promptly and protect the wound from non-healing. Accumulating literature indicates that macrophage, a contributor to prolonged inflammation occurring at the wound site, might play such a role in hindering wound healing. Likewise, other immune cell dysfunctions, such as persistent neutrophils and T cell infection, may also lead to persistent oxidative stress and inflammatory reaction during diabetic wound healing. In this article, we discuss recent advances in the immune cellular components in wounds under the diabetic milieu, and the role of key signaling mechanisms that compromise the function of immune cells leading to persistent wound non-healing.
Collapse
Affiliation(s)
- Siyuan Lin
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
26
|
Mysore KR, Kannanganat S, Schraw JM, Lupo PJ, Goss JA, Setchell KDR, Kheradmand F, Li XC, Shneider BL. Innate immune cell dysfunction and systemic inflammation in children with chronic liver diseases undergoing transplantation. Am J Transplant 2023; 23:26-36. [PMID: 36695617 DOI: 10.1016/j.ajt.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 09/17/2022] [Indexed: 01/12/2023]
Abstract
Advanced liver diseases (ALD) can affect immune function and compromise host defense against infections. In this study, we examined the phenotypic and functional alterations in circulating monocyte and dendritic cells (DCs) in children with ALD undergoing liver transplantation (LT). Children were stratified into 2 clusters, C1 (mild) and C2 (severe), on the basis of laboratory parameters of ALD and compared with healthy pediatric controls. Children in C2 had a significant reduction in frequencies of nonclassical monocytes and myeloid DCs. Children in C2 displayed monocyte and DC dysfunction, characterized by lower human leucocyte antigen DR expression and reduced interleukin 12 production, and had an increased incidence of infections before and after LT. Children in C2 demonstrated immune dysregulation with elevations of pro- and anti-inflammatory cytokines in plasma. Alterations of innate immune cells correlated with multiple laboratory parameters of ALD, including plasma bile acids. In vitro, monocytes cultured with specific bile acids demonstrated a dose-dependent reduction in interleukin 12 production, similar to alterations in children with ALD. In conclusion, a cohort of children with ALD undergoing LT exhibited innate immune dysfunction, which may be related to the chronic elevation of serum bile acids. Identifying at-risk patients may permit personalized management pre- and post-transplant, thereby reducing the incidence of infection-related complications.
Collapse
Affiliation(s)
- Krupa R Mysore
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; William Shearer Center for Human Immunobiology, Feigin Center, Texas Children's Hospital, Houston, Texas, USA.
| | - Sunil Kannanganat
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; William Shearer Center for Human Immunobiology, Feigin Center, Texas Children's Hospital, Houston, Texas, USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas, USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas, USA
| | - John A Goss
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Farrah Kheradmand
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Xian C Li
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Benjamin L Shneider
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Ren K, Li S, Liang S, Fan F, Lu J, Wei T, Cao X, Gong L, Li H, Zhao J, Qin H, Guo J. Notch signaling dependent monocyte conversion alleviates immune-mediated neuropathies by regulating RBP-J/NR4A1 axis. J Autoimmun 2022; 133:102945. [PMID: 36356552 DOI: 10.1016/j.jaut.2022.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
Monocytes in peripheral blood and sciatic nerves play vital roles in immune-mediated neuropathies such as Guillain-Barré syndrome (GBS). Different subpopulations of monocytes, including classical and non-classical, exhibit distinct functions as well as phenotypic conversion potentials. However, the mechanisms underlying their development during immune-mediated neuropathy remain unclear. Notch signaling participates in monocyte differentiation and function. In this study, we used a myeloid-specific Notch signaling activation transgenic mouse (NICcA) and investigated the role of Notch signaling in monocytes during experimental autoimmune neuritis (EAN) in a mouse model of GBS. Clinical score assessment and histopathological examination revealed that sciatic nerve injury was attenuated in NICcA EAN mice compared to that in control mice. Flow cytometry and immunofluorescence staining suggested that increasing Ly6Clo monocytes in the peripheral blood and nerve tissue might contribute to the alleviation of neuritis in NICcA mice. Meanwhile, an in vitro study suggested that bone marrow-derived monocytes from NICcA mice are more inclined toward Ly6Clo cells than Ly6Chi cells. Differential expression of monocyte development-associated genes was detected in NICcA and wild-type mice using RNA sequencing. The expression of Nr4a1 is upregulated remarkably when Notch signaling is activated. Treatment with Nr4a1 antagonist on NICcA mice-derived monocytes compromise their Ly6Clo tendency. Consistently, a relationship between monocyte conversion and disease severity was observed in blood samples from patients with GBS. In conclusion, our current study showed that monocyte conversion modulated by Notch signaling plays an essential role in the EAN mouse model.
Collapse
Affiliation(s)
- Kaixi Ren
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Sanzhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Shiqian Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Fan Fan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Jiarui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Tiaoxia Wei
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Xiuli Cao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hongzeng Li
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China.
| | - Hongyan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China.
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
28
|
Sequí-Sabater JM, Beretta L. Defining the Role of Monocytes in Sjögren's Syndrome. Int J Mol Sci 2022; 23:ijms232112765. [PMID: 36361554 PMCID: PMC9654893 DOI: 10.3390/ijms232112765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Sjögren's syndrome is one of the most prevalent autoimmune diseases after rheumatoid arthritis, with a preference for middle age, and is characterised by exocrine glandular involvement leading to xerostomia and xerophthalmia. It can have systemic implications with vascular, neurological, renal, and pulmonary involvement, and in some cases, it may evolve to non-Hodgkin's lymphoma. For a long time, B- and T-lymphocytes have been the focus of research and have been considered key players in Sjögren's syndrome pathogenesis and evolution. With the development of new technologies, including omics, more insights have been found on the different signalling pathways that lead to inflammation and activation of the immune system. New evidence indicates that a third actor linking innate and adaptive immunity plays a leading role in the Sjögren's syndrome play: the monocyte. This review summarises the recent insights from transcriptomic, proteomic, and epigenetic studies that help us to understand more about the Sjögren's syndrome pathophysiology and redefine the involvement of monocytes in this disease.
Collapse
Affiliation(s)
- Jose Miguel Sequí-Sabater
- Rheumatology Department, Reina Sofía University Hospital, Menéndez Pidal Ave., 14005 Córdoba, Spain
- Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, Menéndez Pidal Ave., 14005 Córdoba, Spain
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico di Milano, Francesco Sforza St. 35, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
29
|
Han S, Zhuang H, Arja RD, Reeves WH. A novel monocyte differentiation pattern in pristane-induced lupus with diffuse alveolar hemorrhage. eLife 2022; 11:e76205. [PMID: 36264674 PMCID: PMC9584606 DOI: 10.7554/elife.76205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Pristane causes chronic peritoneal inflammation resulting in lupus, which in C57BL/6 mice is complicated by lung microvascular injury and diffuse alveolar hemorrhage (DAH). Mineral oil (MO) also causes inflammation, but not lupus or DAH. Since monocyte depletion prevents DAH, we examined the role of monocytes in the disease. Impaired bone marrow (BM) monocyte egress in Ccr2-/- mice abolished DAH, confirming the importance of monocyte recruitment to the lung. Circulating Ly6Chi monocytes from pristane-treated mice exhibited increased annexin-V staining in comparison with MO-treated controls without evidence of apoptosis, suggesting that pristane alters the distribution of phosphatidylserine in the plasma membrane before or shortly after monocyte egress from the BM. Plasma membrane asymmetry also was impaired in Nr4a1-regulated Ly6Clo/- 'patrolling' monocytes, which are derived from Ly6Chi precursors. Patrolling Ly6Clo/- monocytes normally promote endothelial repair, but their phenotype was altered in pristane-treated mice. In contrast to MO-treated controls, Nr4a1-regulated Ly6Clo/- monocytes from pristane-treated mice were CD138+, expressed more TremL4, a protein that amplifies TLR7 signaling, and exuberantly produced TNFα in response to TLR7 stimulation. TremL4 expression on these novel CD138+ monocytes was regulated by Nr4a1. Thus, monocyte CD138, high TremL4 expression, and annexin-V staining may define an activated/inflammatory subtype of patrolling monocytes associated with DAH susceptibility. By altering monocyte development, pristane exposure may generate activated Ly6Chi and Ly6Clo/- monocytes, contributing to lung microvascular endothelial injury and DAH susceptibility.
Collapse
Affiliation(s)
- Shuhong Han
- Division of Rheumatology, Allergy, & Clinical Immunology, University of FloridaGainesvilleUnited States
| | - Haoyang Zhuang
- Division of Rheumatology, Allergy, & Clinical Immunology, University of FloridaGainesvilleUnited States
| | - Rawad Daniel Arja
- Division of Rheumatology, Allergy, & Clinical Immunology, University of FloridaGainesvilleUnited States
| | - Westley H Reeves
- Division of Rheumatology, Allergy, & Clinical Immunology, University of FloridaGainesvilleUnited States
| |
Collapse
|
30
|
Pu D, Liu L, Wang N, Wang D, Zhang Z, Feng B. Case report: Single-cell mapping of peripheral blood mononuclear cells from a patient with both Crohn’s disease and isolated congenital asplenia. Front Immunol 2022; 13:959281. [PMID: 36091029 PMCID: PMC9459022 DOI: 10.3389/fimmu.2022.959281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Crohn’s disease (CD), as one of the principal form of inflammatory bowel disease (IBD), is characterized by the chronic and recurring inflammatory conditions in the intestine resulting from the over-activation of intestinal immunity. Hyposplenism is strongly associated with CD, while the effect of human spleen on the differentiation and development of immune cell subsets in CD patients remains unclear. Isolated congenital asplenia (ICA) is an extremely rare condition characterized by the absence of a spleen at birth without any other developmental defects. Here, we describe the first case of a patient with both ICA and CD, and follow the progression of CD from remission to active stage. Using cytometry by time of flight (CyTOF) analysis, we draw the first single-cell mapping of peripheral blood mononuclear cells (PBMC) from this unique patient, tracing back to the innate or adaptive immune cell subsets and cell surface markers affected by the spleen. Based on our analysis, it is speculated that the spleen contributes to maintaining immune homeostasis, alleviating intestinal inflammation and improving prognosis by influencing the differentiation and development of peripheral immune cell subsets and the expression of cell surface markers in patients with CD.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dandan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhe Zhang, ; Baisui Feng,
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhe Zhang, ; Baisui Feng,
| |
Collapse
|
31
|
Colony stimulating factor-1 producing endothelial cells and mesenchymal stromal cells maintain monocytes within a perivascular bone marrow niche. Immunity 2022; 55:862-878.e8. [PMID: 35508166 DOI: 10.1016/j.immuni.2022.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
Abstract
Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.
Collapse
|
32
|
Fleig S, Kapanadze T, Bernier-Latmani J, Lill JK, Wyss T, Gamrekelashvili J, Kijas D, Liu B, Hüsing AM, Bovay E, Jirmo AC, Halle S, Ricke-Hoch M, Adams RH, Engel DR, von Vietinghoff S, Förster R, Hilfiker-Kleiner D, Haller H, Petrova TV, Limbourg FP. Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nat Commun 2022; 13:2022. [PMID: 35440634 PMCID: PMC9018798 DOI: 10.1038/s41467-022-29701-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation. Loss of canonical Notch signaling in vascular endothelial cells induces spontaneous formation of proto-typical tertiary lymphoid structures in mouse kidney, liver and lungs, which form around central arteries that acquire a high endothelial cell signature
Collapse
Affiliation(s)
- Susanne Fleig
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Department of Geriatric Medicine (Medical Clinic VI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Jeremiah Bernier-Latmani
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Julia K Lill
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Tania Wyss
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Bin Liu
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Anne M Hüsing
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Esther Bovay
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Adan Chari Jirmo
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Sibylle von Vietinghoff
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Division of Medicine I, Nephrology section, UKB Bonn University Hospital, Bonn, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany.,Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, 35037, Marburg, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Tatiana V Petrova
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Florian P Limbourg
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany. .,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
33
|
Abstract
Notch signalling is an evolutionarily highly conserved signalling mechanism governing differentiation and regulating homeostasis in many tissues. In this review, we discuss recent advances in our understanding of the roles that Notch signalling plays in the vasculature. We describe how Notch signalling regulates different steps during the genesis and remodelling of blood vessels (vasculogenesis and angiogenesis), including critical roles in assigning arterial and venous identities to the emerging blood vessels and regulation of their branching. We then proceed to discuss how experimental perturbation of Notch signalling in the vasculature later in development affects vascular homeostasis. In this review, we also describe how dysregulated Notch signalling, as a consequence of direct mutations of genes in the Notch pathway or aberrant Notch signalling output, contributes to various types of vascular disease, including CADASIL, Snedden syndrome and pulmonary arterial hypertension. Finally, we point out some of the current knowledge gaps and identify remaining challenges in understanding the role of Notch in the vasculature, which need to be addressed to pave the way for Notch-based therapies to cure or ameliorate vascular disease.
Collapse
Affiliation(s)
- Francesca Del Gaudio
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dongli Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
34
|
Hornsby E, King HW, Peiris M, Buccafusca R, Lee WYJ, Wing ES, Blackshaw LA, Lindsay JO, Stagg AJ. The cation channel TRPM8 influences the differentiation and function of human monocytes. J Leukoc Biol 2022; 112:365-381. [PMID: 35233801 PMCID: PMC9543907 DOI: 10.1002/jlb.1hi0421-181r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Monocytes are mononuclear phagocytes that can differentiate to a variety of cell fates under the influence of their microenvironment and hardwired commitment. We found that inhibition of TRPM8 in human blood CD14+ monocytes during a critical 3‐h window at the beginning of their differentiation into macrophages led to enhanced survival and LPS‐driven TNFα production after 24 h. TRPM8 antagonism also promoted LPS‐driven TNFα production in CD14+ monocytes derived from the intestinal mucosa. Macrophages that had been derived for 6 days under blockade of TRPM8 had impaired phagocytic capacity and were transcriptionally distinct. Most of the affected genes were altered in a way that opposed normal monocyte to macrophage differentiation indicating that TRPM8 activity promotes aspects of this differentiation programme. Thus, we reveal a novel role for TRPM8 in regulating human CD14+ monocyte fate and function.
Collapse
Affiliation(s)
- Eve Hornsby
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Hamish W King
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Roberto Buccafusca
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Wing-Yiu Jason Lee
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Elinor S Wing
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James O Lindsay
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Department of Gastroenterology, Barts Health NHS Trust, The Royal London Hospital, Whitechapel, London, UK
| | - Andrew J Stagg
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
35
|
Shahneh F, Christian Probst H, Wiesmann SC, A-Gonzalez N, Ruf W, Steinbrink K, Raker VK, Becker C. Inflammatory Monocyte Counts Determine Venous Blood Clot Formation and Resolution. Arterioscler Thromb Vasc Biol 2022; 42:145-155. [PMID: 34911360 DOI: 10.1161/atvbaha.121.317176] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Monocytes are thought to be involved in venous thrombosis but the role of individual monocyte subpopulations on thrombus formation, clot inflammation, and degradation is an important unresolved issue. We investigate the role of inflammatory Ly6Chi monocytes in deep vein thrombosis and their potential therapeutic impact. METHODS Frequencies and compositions of blood monocytes were analyzed by flow cytometry in CCR2-/- (C-C chemokine receptor type 2) and wild-type mice of different ages and after treatment with the NR4A1 (nuclear receptor group 4 family A member 1, Nur77) agonist CnsB (cytosporone B). TF (tissue factor) sufficient and deficient Ly6Chi monocytes were adoptively transferred into aged CCR2-/- mice. Thrombus formation and size were followed by ultrasound over a 3-week period after surgical reduction of blood flow (stenosis) in the inferior vena cava. RESULTS Reduced numbers of peripheral monocytes in aged (>30 w) CCR2-/- mice are accompanied by reduced thrombus formation after inferior vena cava ligation. Reducing the number of inflammatory Ly6Chi monocytes in wild-type mice by CsnB treatment before ligation, similarly suspends clotting, while later treatment (d1 or d4) reduces thrombus growth and accelerates resolution. We describe how changes in inflammatory monocyte numbers affect the gradual differentiation of monocytes in thrombi and show that only tissue factor-competent Ly6Chi monocytes restore thrombosis in aged CCR2-/- mice. CONCLUSIONS We conclude that the number of inflammatory Ly6Chi monocytes controls deep vein thrombosis formation, growth, and resolution and can be therapeutically manipulated with a NR4A1 agonist at all disease stages.
Collapse
Affiliation(s)
- Fatemeh Shahneh
- Department of Dermatology (F.S.), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
- Center for Thrombosis and Hemostasis (F.S., W.R.), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Hans Christian Probst
- Institute for Immunology (H.C.P.), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Sabine C Wiesmann
- Institute of Immunology (S.C.W., N.A.-G) and Westfälische Wilhelms-University Münster, Germany
| | - Noelia A-Gonzalez
- Institute of Immunology (S.C.W., N.A.-G) and Westfälische Wilhelms-University Münster, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (F.S., W.R.), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, Westfälische Wilhelms-University Münster, Germany (K.S., V.K.R., C.B.)
| | - Verena K Raker
- Department of Dermatology, Westfälische Wilhelms-University Münster, Germany (K.S., V.K.R., C.B.)
| | - Christian Becker
- Department of Dermatology, Westfälische Wilhelms-University Münster, Germany (K.S., V.K.R., C.B.)
| |
Collapse
|
36
|
Kaur K, Bachus H, Lewis C, Papillion AM, Rosenberg AF, Ballesteros-Tato A, León B. GM-CSF production by non-classical monocytes controls antagonistic LPS-driven functions in allergic inflammation. Cell Rep 2021; 37:110178. [PMID: 34965421 PMCID: PMC8759241 DOI: 10.1016/j.celrep.2021.110178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) can either promote or prevent T helper 2 (Th2) cell allergic responses. However, the underlying mechanism remains unknown. We show here that LPS activity switches from pro-pathogenic to protective depending on the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by non-classical monocytes. In the absence of GM-CSF, LPS can favor pathogenic Th2 cell responses by supporting the trafficking of lung-migratory dendritic cells (mDC2s) into the lung-draining lymph node. However, when non-classical monocytes produce GM-CSF, LPS and GM-CSF synergize to differentiate monocyte-derived DCs from classical Ly6Chi monocytes that instruct mDC2s for Th2 cell suppression. Importantly, only allergens with cysteine protease activity trigger GM-CSF production by non-classical monocytes. Hence, the therapeutic effect of LPS is restricted to allergens with this enzymatic activity. Treatment with GM-CSF, however, restores the protective effects of LPS. Thus, GM-CSF produced by non-classical monocytes acts as a rheostat that fine-tunes the pathogenic and therapeutic functions of LPS.
Collapse
Affiliation(s)
- Kamaljeet Kaur
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly Bachus
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Crystal Lewis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amber M Papillion
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - André Ballesteros-Tato
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
37
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Moreno-Cañadas R, Luque-Martín L, Arroyo AG. Intravascular Crawling of Patrolling Monocytes: A Lèvy-Like Motility for Unique Search Functions? Front Immunol 2021; 12:730835. [PMID: 34603307 PMCID: PMC8485030 DOI: 10.3389/fimmu.2021.730835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Patrolling monocytes (PMo) are the organism’s preeminent intravascular guardians by their continuous search of damaged endothelial cells and harmful microparticles for their removal and to restore homeostasis. This surveillance is accomplished by PMo crawling on the apical side of the endothelium through regulated interactions of integrins and chemokine receptors with their endothelial ligands. We propose that the search mode governs the intravascular motility of PMo in vivo in a similar way to T cells looking for antigen in tissues. Signs of damage to the luminal side of the endothelium (local death, oxidized LDL, amyloid deposits, tumor cells, pathogens, abnormal red cells, etc.) will change the diffusive random towards a Lèvy-like crawling enhancing their recognition and clearance by PMo damage receptors as the integrin αMβ2 and CD36. This new perspective can help identify new actors to promote unique PMo intravascular actions aimed at maintaining endothelial fitness and combating harmful microparticles involved in diseases as lung metastasis, Alzheimer’s angiopathy, vaso-occlusive disorders, and sepsis.
Collapse
Affiliation(s)
- Rocío Moreno-Cañadas
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Laura Luque-Martín
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Alicia G Arroyo
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
39
|
López-Cortés A, Abarca E, Silva L, Velastegui E, León-Sosa A, Karolys G, Cabrera F, Caicedo A. Identification of key proteins in the signaling crossroads between wound healing and cancer hallmark phenotypes. Sci Rep 2021; 11:17245. [PMID: 34446793 PMCID: PMC8390472 DOI: 10.1038/s41598-021-96750-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Wound healing (WH) and cancer seem to share common cellular and molecular processes that could work in a tight balance to maintain tissue homeostasis or, when unregulated, drive tumor progression. The "Cancer Hallmarks" comprise crucial biological properties that mediate the advancement of the disease and affect patient prognosis. These hallmarks have been proposed to overlap with essential features of the WH process. However, common hallmarks and proteins actively participating in both processes have yet to be described. In this work we identify 21 WH proteins strongly linked with solid tumors by integrated TCGA Pan-Cancer and multi-omics analyses. These proteins were associated with eight of the ten described cancer hallmarks, especially avoiding immune destruction. These results show that WH and cancer's common proteins are involved in the microenvironment modification of solid tissues and immune system regulation. This set of proteins, between WH and cancer, could represent key targets for developing therapies.
Collapse
Affiliation(s)
- Andrés López-Cortés
- grid.412257.70000 0004 0485 6316Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador ,Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain ,grid.8073.c0000 0001 2176 8535RNASA-IMEDIR, Computer Science Faculty, Universidad of A Coruna, A Coruña, Spain
| | - Estefanía Abarca
- grid.442129.8Carrera de Biotecnología, Universidad Politécnica Salesiana UPS, Quito, Ecuador
| | - Leonardo Silva
- grid.442129.8Carrera de Biotecnología, Universidad Politécnica Salesiana UPS, Quito, Ecuador
| | - Erick Velastegui
- grid.442129.8Carrera de Biotecnología, Universidad Politécnica Salesiana UPS, Quito, Ecuador
| | - Ariana León-Sosa
- grid.412251.10000 0000 9008 4711Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Germania Karolys
- grid.442129.8Carrera de Biotecnología, Universidad Politécnica Salesiana UPS, Quito, Ecuador ,grid.442129.8Grupo de Investigación y Desarrollo en Ciencias Aplicadas a los Recursos Biológicos, Universidad Politécnica Salesiana, Quito, Ecuador
| | - Francisco Cabrera
- grid.412251.10000 0000 9008 4711Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador ,grid.412251.10000 0000 9008 4711Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- grid.412251.10000 0000 9008 4711Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador ,grid.412251.10000 0000 9008 4711Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador ,Mito-Act Research Consortium, Quito, Ecuador ,grid.412251.10000 0000 9008 4711Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
40
|
Orozco SL, Canny SP, Hamerman JA. Signals governing monocyte differentiation during inflammation. Curr Opin Immunol 2021; 73:16-24. [PMID: 34411882 DOI: 10.1016/j.coi.2021.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Monocytes are innate immune cells that develop in the bone marrow and are continually released into circulation, where they are poised to enter tissues in response to homeostatic or inflammatory cues. Monocytes are highly plastic cells that can differentiate in tissues into a variety of monocyte-derived cells to replace resident tissue macrophages, promote inflammatory responses, or resolution of inflammation. As such, monocytes can support tissue homeostasis as well as productive and pathogenic immune responses. Recent work shows previously unappreciated heterogeneity in monocyte development and differentiation in the steady state and during infectious, autoimmune, and inflammatory diseases. Monocyte-derived cells can differentiate via signals from cytokines, pattern recognition receptors or other factors, which can influence development in the bone marrow or in tissues. An improved understanding of these monocyte-derived cells and the signals that drive their differentiation in distinct inflammatory settings could allow for targeting these pathways in pathological inflammation.
Collapse
Affiliation(s)
- Susana L Orozco
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Avenue, Seattle 98101, WA, USA
| | - Susan P Canny
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Avenue, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington, 1959 NE Pacific St., Seattle 98195, WA, USA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Avenue, Seattle 98101, WA, USA; Department of Immunology, University of Washington, 750 Republican St., Seattle 98109, WA, USA.
| |
Collapse
|
41
|
Xia Z, Wang J, Yang S, Liu C, Qin S, Li W, Cheng Y, Hu H, Qian J, Liu Y, Deng C. Emodin alleviates hypertrophic scar formation by suppressing macrophage polarization and inhibiting the Notch and TGF-β pathways in macrophages. ACTA ACUST UNITED AC 2021; 54:e11184. [PMID: 34320121 PMCID: PMC8302142 DOI: 10.1590/1414-431x2021e11184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
Hypertrophic scar (HS) formation is a common complication that develops after skin injury; however, there are few effective and specific therapeutic approaches for HS. Emodin has previously been reported to inhibit mechanical stress-induced HS inflammation. Here, we investigated the molecular mechanisms underlying the inhibitory effects of emodin on HS formation. First, we conducted in vitro assays that revealed that emodin inhibited M1 and M2 polarization in rat macrophages. We subsequently established a combined rat model of tail HS and dorsal subcutaneous polyvinyl alcohol (PVA) sponge-induced wounds. Rats were treated with emodin or vehicle (DMEM). Tail scar specimens were harvested at 14, 28, and 42 days post-incision and subjected to H&E staining and Masson's trichrome staining. Histopathological analyses confirmed that emodin attenuated HS formation and fibrosis. Macrophages were separated from wound cells collected from the PVA sponge at 3 and 7 days after implantation. Flow cytometry analysis demonstrated that emodin suppressed in vivo macrophage recruitment and polarization at the wound site. Finally, we explored the molecular mechanisms of emodin in modulating macrophage polarization by evaluating the expression levels of selected effectors of the Notch and TGF-β pathways in macrophages isolated from PVA sponges. Western blot and qPCR assays showed that Notch1, Notch4, Hes1, TGF-β, and Smad3 were downregulated in response to emodin treatment. Taken together, our findings suggested that emodin attenuated HS formation and fibrosis by suppressing macrophage polarization, which is associated with the inhibition of the Notch and TGF-β pathways in macrophages.
Collapse
Affiliation(s)
- Zihuan Xia
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiancheng Wang
- Department of General Surgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songlin Yang
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng Liu
- Department of Plastic Surgery, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Shu Qin
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yulong Cheng
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huan Hu
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jin Qian
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Liu
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenliang Deng
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
42
|
van Niekerk G, van der Merwe M, Engelbrecht AM. Diabetes and susceptibility to infections: Implication for COVID-19. Immunology 2021; 164:467-475. [PMID: 34115881 PMCID: PMC8446942 DOI: 10.1111/imm.13383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
A number of mechanisms have been proposed to explain the well‐established link between diabetic status and an increased susceptibility to infection. Notably, diabetes has been shown to be one of the strongest factors influencing healthcare outcome in COVID‐19 infections. Though it has long been noted that lymphocytes upregulate insulin receptors following immune activation, until recently, this observation has received little attention. Here, we point out key findings implicating dysregulated insulin signalling in immune cells as a possible contributing factor in the immune pathology associated with diabetes. Mechanistically, insulin, by activating the PI3K/Akt/mTOR pathway, regulates various aspects of both myeloid cells and lymphocytes, such as cell survival, metabolic reprogramming and the polarization and differentiation of immune cells. PI3K signalling is also supressed by immune checkpoint proteins, suggesting that insulin signalling may antagonize peripheral tolerance. Remarkably, it has also recently been shown that, following insulin binding, the insulin receptor translocates to the nucleus where it plays a key role in regulating the transcription of various immune‐related genes, including pathways involved in viral infections. Taken together, these observations suggest that dysregulated insulin signalling may directly contribute to a defective immune response during COVID‐19 infections.
Collapse
Affiliation(s)
- Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Michelle van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
43
|
Abstract
The Notch signalling pathway is one of the main regulators of endothelial biology. In the last 20 years the critical function of Notch has been uncovered in the context of angiogenesis, participating in tip-stalk specification, arterial-venous differentiation, vessel stabilization, and maturation processes. Importantly, pharmacological compounds targeting distinct members of the Notch signalling pathway have been used in the clinics for cancer therapy. However, the underlying mechanisms that support the variety of outcomes triggered by Notch in apparently opposite contexts such as angiogenesis and vascular homeostasis remain unknown. In recent years, advances in -omics technologies together with mosaic analysis and high molecular, cellular and temporal resolution studies have allowed a better understanding of the mechanisms driven by the Notch signalling pathway in different endothelial contexts. In this review we will focus on the main findings that revisit the role of Notch signalling in vascular biology. We will also discuss potential future directions and technologies that will shed light on the puzzling role of Notch during endothelial growth and homeostasis. Addressing these open questions may allow the improvement and development of therapeutic strategies based on modulation of the Notch signalling pathway.
Collapse
|
44
|
Ferrari I, Vagnozzi RJ. Mechanisms and strategies for a therapeutic cardiac immune response. J Mol Cell Cardiol 2021; 158:82-88. [PMID: 34051237 DOI: 10.1016/j.yjmcc.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Ilaria Ferrari
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ronald J Vagnozzi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
45
|
Never Change a Flowing System? The Effects of Retrograde Flow on Isolated Perfused Lungs and Vessels. Cells 2021; 10:cells10051210. [PMID: 34063473 PMCID: PMC8156646 DOI: 10.3390/cells10051210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Retrograde perfusion may occur during disease, surgery or extracorporeal circulation. While it is clear that endothelial cells sense and respond to changes in blood flow, the consequences of retrograde perfusion are only poorly defined. Similar to shear stress or disturbed flow, retrograde perfusion might result in vasomotor responses, edema formation or inflammation in and around vessels. In this study we investigated in rats the effects of retrograde perfusion in isolated systemic vessels (IPV) and in pulmonary vessels of isolated perfused lungs (IPL). Anterograde and retrograde perfusion was performed for 480 min in IPV and for 180 min in the IPL. Perfusion pressure, cytokine levels in perfusate and bronchoalveolar lavage fluid (BALF), edema formation and mRNA expression were studied. In IPV, an increased perfusion pressure and initially also increased cytokine levels were observed during retrograde perfusion. In the IPL, increased edema formation occurred, while cytokine levels were not increased, though dilution of cytokines in BALF due to pulmonary edema cannot be excluded. In conclusion, effects of flow reversal were visible immediately after initiation of retrograde perfusion. Pulmonary edema formation was the only effect of the 3 h retrograde perfusion. Therefore, further research should focus on identification of possible long-term complications of flow reversal.
Collapse
|
46
|
Sim JH, Ambler WG, Sollohub IF, Howlader MJ, Li TM, Lee HJ, Lu TT. Immune Cell-Stromal Circuitry in Lupus Photosensitivity. THE JOURNAL OF IMMUNOLOGY 2021; 206:302-309. [PMID: 33397744 DOI: 10.4049/jimmunol.2000905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Photosensitivity is a sensitivity to UV radiation (UVR) commonly found in systemic lupus erythematosus (SLE) patients who have cutaneous disease. Upon even ambient UVR exposure, patients can develop inflammatory skin lesions that can reduce the quality of life. Additionally, UVR-exposed skin lesions can be associated with systemic disease flares marked by rising autoantibody titers and worsening kidney disease. Why SLE patients are photosensitive and how skin sensitivity leads to systemic disease flares are not well understood, and treatment options are limited. In recent years, the importance of immune cell-stromal interactions in tissue function and maintenance is being increasingly recognized. In this review, we discuss SLE as an anatomic circuit and review recent findings in the pathogenesis of photosensitivity with a focus on immune cell-stromal circuitry in tissue health and disease.
Collapse
Affiliation(s)
- Ji Hyun Sim
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - William G Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| | - Isabel F Sollohub
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021
| | - Mir J Howlader
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Biochemistry and Structural Biology, Cell Biology, Developmental Biology, and Molecular Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065; and
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021
| | - Henry J Lee
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10065
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; .,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
47
|
Gamrekelashvili J, Haller H, Limbourg FP. Analysis of Monocyte Cell Fate by Adoptive Transfer in a Murine Model of TLR7-induced Systemic Inflammation. Bio Protoc 2021; 11:e4007. [PMID: 34124307 DOI: 10.21769/bioprotoc.4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 11/02/2022] Open
Abstract
Myeloid plasticity is a hallmark of the innate immune response to Toll-like receptor (TLR) activation. Here, we provide a protocol for monocyte cell fate tracking by adoptive transfer in the context of systemic inflammation induced by TLR7 activation, the principal innate immune receptor sensing viral RNA in mice. Defined monocyte subsets are isolated from the bone marrow of donor mice by cell sorting and adoptively transferred into the systemic circulation of congenic hosts, with or without concurrent activation of TLR7 via the topical application of the small molecule agonist, imiquimod, in a cream formulation that induces a systemic inflammatory response. Advantages are the precise definition of donor cell populations and resulting cell fate without the need for host conditioning in a model that recapitulates key aspects of the systemic inflammatory response to TLR7 stimulation.
Collapse
Affiliation(s)
- Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, 30625 Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Hermann Haller
- Vascular Medicine Research, Hannover Medical School, 30625 Hannover, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Hannover Medical School, 30625 Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
48
|
Christopoulos PF, Gjølberg TT, Krüger S, Haraldsen G, Andersen JT, Sundlisæter E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front Immunol 2021; 12:668207. [PMID: 33912195 PMCID: PMC8071949 DOI: 10.3389/fimmu.2021.668207] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway regulates developmental cell-fate decisions and has recently also been linked to inflammatory diseases. Although therapies targeting Notch signaling in inflammation in theory are attractive, their design and implementation have proven difficult, at least partly due to the broad involvement of Notch signaling in regenerative and homeostatic processes. In this review, we summarize the supporting role of Notch signaling in various inflammation-driven diseases, and highlight efforts to intervene with this pathway by targeting Notch ligands and/or receptors with distinct therapeutic strategies, including antibody designs. We discuss this in light of lessons learned from Notch targeting in cancer treatment. Finally, we elaborate on the impact of individual Notch members in inflammation, which may lay the foundation for development of therapeutic strategies in chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Torleif T. Gjølberg
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Eye Research and Department of Ophthalmology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stig Krüger
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eirik Sundlisæter
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
49
|
Tao X, Xiang H, Pan Y, Shang D, Guo J, Gao G, Xiao GG. Pancreatitis initiated pancreatic ductal adenocarcinoma: Pathophysiology explaining clinical evidence. Pharmacol Res 2021; 168:105595. [PMID: 33823219 DOI: 10.1016/j.phrs.2021.105595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.
Collapse
Affiliation(s)
- Xufeng Tao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Pan
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junchao Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gary Guishan Xiao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China; The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States.
| |
Collapse
|
50
|
Muglia Amancio A, Mittereder L, Carletti A, Tosh KW, Green D, Antonelli LR, Gazzinelli RT, Sher A, Jankovic D. IFNs Reset the Differential Capacity of Human Monocyte Subsets to Produce IL-12 in Response to Microbial Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1642-1652. [PMID: 33627376 PMCID: PMC8034562 DOI: 10.4049/jimmunol.2001194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
Human primary monocytes are composed of a minor, more mature CD16+(CD14low/neg) population and a major CD16neg(CD14+) subset. The specific functions of CD16+ versus CD16neg monocytes in steady state or inflammation remain poorly understood. In previous work, we found that IL-12 is selectively produced by the CD16+ subset in response to the protozoan pathogen, Toxoplasma gondii In this study, we demonstrated that this differential responsiveness correlates with the presence of an IFN-induced transcriptional signature in CD16+ monocytes already at baseline. Consistent with this observation, we found that in vitro IFN-γ priming overcomes the defect in the IL-12 response of the CD16neg subset. In contrast, pretreatment with IFN-γ had only a minor effect on IL-12p40 secretion by the CD16+ population. Moreover, inhibition of the mTOR pathway also selectively increased the IL-12 response in CD16neg but not in CD16+ monocytes. We further demonstrate that in contrast to IFN-γ, IFN-α fails to promote IL-12 production by the CD16neg subset and blocks the effect of IFN-γ priming. Based on these observations, we propose that the acquisition of IL-12 responsiveness by peripheral blood monocyte subsets depends on extrinsic signals experienced during their developmental progression in vivo. This process can be overridden during inflammation by the opposing regulatory effects of type I and II IFN as well as the mTOR inhibition.
Collapse
Affiliation(s)
- Alice Muglia Amancio
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lara Mittereder
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexie Carletti
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kevin W Tosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Green
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais 30190-002, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
- Plataforma de Medicina Translacional, FIOCRUZ, Ribeirão Preto, São Paulo 14040-030, Brazil
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dragana Jankovic
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|