1
|
Lee DH, Usmani A, Wu R, Wicks T, Noh CY, Burke R, Ravichandran V, Wolf-Doty T, Dumitru I, Oliveira GH, Berman P, Mackie B. Relationship between donor-derived cell-free DNA and tissue-based rejection-related transcripts in heart transplantation. J Heart Lung Transplant 2024; 43:1118-1125. [PMID: 38373559 DOI: 10.1016/j.healun.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Endomyocardial biopsy (EMB)-based traditional microscopy remains the gold standard for the detection of cardiac allograft rejection, despite its limitation of inherent subjectivity leading to inter-reader variability. Alternative techniques now exist to surveil for allograft injury and classify rejection. Donor-derived cell-free DNA (dd-cfDNA) testing is now a validated blood-based assay used to surveil for allograft injury. The molecular microscope diagnostic system (MMDx) utilizes intragraft rejection-associated transcripts (RATs) to classify allograft rejection and identify injury. The use of dd-cfDNA and MMDx together provides objective molecular insight into allograft injury and rejection. The aim of this study was to measure the diagnostic agreement between dd-cfDNA and MMDx and assess the relationship between dd-cfDNA and MMDx-derived RATs, which may provide further insight into the pathophysiology of allograft rejection and injury. METHODS This is a retrospective observational study of 156 EMB evaluated with traditional microscopy and MMDx. All samples were paired with dd-cfDNA from peripheral blood before EMB (up to 9 days). Diagnostic agreement between traditional histopathology, MMDx, and dd-cfDNA (threshold of 0.20%) was compared for assessment of allograft injury. In addition, the relationship between dd-cfDNA and individual RAT expression levels from MMDx was evaluated. RESULTS MMDx characterized allograft tissue as no rejection (62.8%), antibody-mediated rejection (ABMR) (26.9%), T-cell-mediated rejection (TCMR) (5.8%), and mixed ABMR/TCMR (4.5%). For the diagnosis of any type of rejection (TCMR, ABMR, and mixed rejection), there was substantial agreement between MMDx and dd-cfDNA (76.3% agreement). All transcript clusters (group of gene sets designated by MMDx) and individual transcripts considered abnormal from MMDx had significantly elevated dd-cfDNA. In addition, a positive correlation between dd-cfDNA levels and certain MMDx-derived RATs was observed. Tissue transcript clusters were correlated with dd-cfDNA scores, including DSAST, GRIT, HT1, QCMAT, and S4. For individual transcripts, tissue ROBO4 was significantly correlated with dd-cfDNA in both nonrejection and rejection as assessed by MMDx. CONCLUSIONS Collectively, we have shown substantial diagnostic agreement between dd-cfDNA and MMDx. Furthermore, based on the findings presented, we postulate a common pathway between the release of dd-cfDNA and expression of ROBO4 (a vascular endothelial-specific gene that stabilizes the vasculature) in the setting of antibody-mediated rejection, which may provide a mechanistic rationale for observed elevations in dd-cfDNA in AMR, compared to acute cellular rejection.
Collapse
Affiliation(s)
- Dae Hyun Lee
- Heart Transplant Program, Transplant Institute, Tampa General Hospital, Tampa, Florida; Division of Cardiovascular Medicine, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Heart & Vascular Institute, Tampa General Hospital, Tampa, Florida.
| | - Ahsan Usmani
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Robby Wu
- Heart Transplant Program, Transplant Institute, Tampa General Hospital, Tampa, Florida; Division of Cardiovascular Medicine, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Heart & Vascular Institute, Tampa General Hospital, Tampa, Florida
| | - Tammi Wicks
- Heart Transplant Program, Transplant Institute, Tampa General Hospital, Tampa, Florida; Heart & Vascular Institute, Tampa General Hospital, Tampa, Florida
| | - Caroline Y Noh
- Department of Pediatrics, Children's Hospital Los Angeles, USC Keck School of Medicine, Los Angeles, California
| | | | | | | | - Ioana Dumitru
- Heart Transplant Program, Transplant Institute, Tampa General Hospital, Tampa, Florida; Division of Cardiovascular Medicine, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Heart & Vascular Institute, Tampa General Hospital, Tampa, Florida
| | - Guilherme H Oliveira
- Heart Transplant Program, Transplant Institute, Tampa General Hospital, Tampa, Florida; Division of Cardiovascular Medicine, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Heart & Vascular Institute, Tampa General Hospital, Tampa, Florida
| | - Peter Berman
- Heart Transplant Program, Transplant Institute, Tampa General Hospital, Tampa, Florida; Division of Cardiovascular Medicine, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Heart & Vascular Institute, Tampa General Hospital, Tampa, Florida
| | - Benjamin Mackie
- Heart Transplant Program, Transplant Institute, Tampa General Hospital, Tampa, Florida; Division of Cardiovascular Medicine, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Heart & Vascular Institute, Tampa General Hospital, Tampa, Florida.
| |
Collapse
|
2
|
Tanaka M, Shirakura K, Takayama Y, Μatsui M, Watanabe Y, Yamamoto T, Takahashi J, Tanaka S, Hino N, Doi T, Obana M, Fujio Y, Takayama K, Okada Y. Endothelial ROBO4 suppresses PTGS2/COX-2 expression and inflammatory diseases. Commun Biol 2024; 7:599. [PMID: 38762541 PMCID: PMC11102558 DOI: 10.1038/s42003-024-06317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Accumulating evidence suggests that endothelial cells can be useful therapeutic targets. One of the potential targets is an endothelial cell-specific protein, Roundabout4 (ROBO4). ROBO4 has been shown to ameliorate multiple diseases in mice, including infectious diseases and sepsis. However, its mechanisms are not fully understood. In this study, using RNA-seq analysis, we found that ROBO4 downregulates prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2. Mechanistic analysis reveals that ROBO4 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1) and TNF receptor-associated factor 7 (TRAF7), a ubiquitin E3 ligase. In this complex, ROBO4 enhances IQGAP1 ubiquitination through TRAF7, inhibits prolonged RAC1 activation, and decreases PTGS2 expression in inflammatory endothelial cells. In addition, Robo4-deficiency in mice exacerbates PTGS2-associated inflammatory diseases, including arthritis, edema, and pain. Thus, we reveal the molecular mechanism by which ROBO4 suppresses the inflammatory response and vascular hyperpermeability, highlighting its potential as a promising therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Masato Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Shirakura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yui Takayama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Miki Μatsui
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukio Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Junya Takahashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shota Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masanori Obana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Chen R, Wang Y, Zhang Z, Wang X, Li Y, Wang M, Wang H, Dong M, Zhou Q, Yang L. The Role of SLIT3-ROBO4 Signaling in Endoplasmic Reticulum Stress-Induced Delayed Corneal Epithelial and Nerve Regeneration. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38700874 PMCID: PMC11077912 DOI: 10.1167/iovs.65.5.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/23/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yao Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Min Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Huifeng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Muchen Dong
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
4
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
5
|
Okada Y. Potential Therapeutic Strategies and Drugs That Target Vascular Permeability in Severe Infectious Diseases. Biol Pharm Bull 2024; 47:549-555. [PMID: 38432910 DOI: 10.1248/bpb.b24-00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.
Collapse
Affiliation(s)
- Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
6
|
Feng L, Shu HP, Sun LL, Tu YC, Liao QQ, Yao LJ. Role of the SLIT-ROBO signaling pathway in renal pathophysiology and various renal diseases. Front Physiol 2023; 14:1226341. [PMID: 37497439 PMCID: PMC10366692 DOI: 10.3389/fphys.2023.1226341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
SLIT ligand and its receptor ROBO were initially recognized for their role in axon guidance in central nervous system development. In recent years, as research has advanced, the role of the SLIT-ROBO signaling pathway has gradually expanded from axonal repulsion to cell migration, tumor development, angiogenesis, and bone metabolism. As a secreted protein, SLIT regulates various pathophysiological processes in the kidney, such as proinflammatory responses and fibrosis progression. Many studies have shown that SLIT-ROBO is extensively involved in various aspects of kidney development and maintenance of structure and function. The SLIT-ROBO signaling pathway also plays an important role in different types of kidney disease. This article reviews the advances in the study of the SLIT-ROBO pathway in various renal pathophysiological and kidney disorders and proposes new directions for further research in this field.
Collapse
|
7
|
Brisson L, Henrique Geraldo L, Bikfalvi A, Mathivet T. The strange Microenvironment of Glioblastoma. Rev Neurol (Paris) 2023; 179:490-501. [PMID: 36964121 PMCID: PMC11195635 DOI: 10.1016/j.neurol.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor, with poor patient survival and lack of effective therapies. Late advances trying to decipher the composition of the GB tumor microenvironment (TME) emphasized its role in tumor progression and potentialized it as a therapeutic target. Many components participate critically to tumor development and expansion such as blood vessels, immune cells or components of the nervous system. Dysmorphic tumor vasculature brings challenges to optimal delivery of cytotoxic agents currently used in clinics. Also, massive infiltration of immunosuppressive myeloid cells and limited recruitment of T cells limits the success of conventional immunotherapies. Neuronal input seems also be required for tumor expansion. In this review, we provide a comprehensive report of vascular and immune component of the GB TME and their cross talk during GB progression.
Collapse
Affiliation(s)
- L Brisson
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| | - L Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - A Bikfalvi
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France.
| | - T Mathivet
- BRIC Inserm U1312, Université de Bordeaux, 33615 Pessac, France
| |
Collapse
|
8
|
Upregulation of Robo4 expression by SMAD signaling suppresses vascular permeability and mortality in endotoxemia and COVID-19 models. Proc Natl Acad Sci U S A 2023; 120:e2213317120. [PMID: 36634143 PMCID: PMC9934020 DOI: 10.1073/pnas.2213317120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is an urgent need to develop novel drugs to reduce the mortality from severe infectious diseases with the emergence of new pathogens, including Coronavirus disease 2019 (COVID-19). Although current drugs effectively suppress the proliferation of pathogens, immune cell activation, and inflammatory cytokine functions, they cannot completely reduce mortality from severe infections and sepsis. In this study, we focused on the endothelial cell-specific protein, Roundabout 4 (Robo4), which suppresses vascular permeability by stabilizing endothelial cells, and investigated whether enhanced Robo4 expression could be a novel therapeutic strategy against severe infectious diseases. Endothelial-specific overexpression of Robo4 suppresses vascular permeability and reduces mortality in lipopolysaccharide (LPS)-treated mice. Screening of small molecules that regulate Robo4 expression and subsequent analysis revealed that two competitive small mothers against decapentaplegic (SMAD) signaling pathways, activin receptor-like kinase 5 (ALK5)-SMAD2/3 and ALK1-SMAD1/5, positively and negatively regulate Robo4 expression, respectively. An ALK1 inhibitor was found to increase Robo4 expression in mouse lungs, suppress vascular permeability, prevent extravasation of melanoma cells, and decrease mortality in LPS-treated mice. The inhibitor suppressed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced endothelial barrier disruption and decreased mortality in mice infected with SARS-CoV-2. These results indicate that enhancing Robo4 expression is an efficient strategy to suppress vascular permeability and mortality in severe infectious diseases, including COVID-19, and that small molecules that upregulate Robo4 can be potential therapeutic agents against these diseases.
Collapse
|
9
|
Zhou W, Liu K, Zeng L, He J, Gao X, Gu X, Chen X, Jing Li J, Wang M, Wu D, Cai Z, Claesson-Welsh L, Ju R, Wang J, Zhang F, Chen Y. Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation 2022; 146:1855-1881. [PMID: 36384284 DOI: 10.1161/circulationaha.122.061900] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with increased expression of VEGF-A (vascular endothelial growth factor A) and its receptor, VEGFR2 (vascular endothelial growth factor 2), but whether and how activation of VEGF-A signal participates in the pathogenesis of PH is unclear. METHODS VEGF-A/VEGFR2 signal activation and VEGFR2 Y949-dependent vascular leak were investigated in lung samples from patients with PH and mice exposed to hypoxia. To study their mechanistic roles in hypoxic PH, we examined right ventricle systolic pressure, right ventricular hypertrophy, and pulmonary vasculopathy in mutant mice carrying knock-in of phenylalanine that replaced the tyrosine at residual 949 of VEGFR2 (Vefgr2Y949F) and mice with conditional endothelial deletion of Vegfr2 after chronic hypoxia exposure. RESULTS We show that PH leads to excessive pulmonary vascular leak in both patients and hypoxic mice, and this is because of an overactivated VEGF-A/VEGFR2 Y949 signaling axis. In the context of hypoxic PH, activation of Yes1 and c-Src and subsequent VE-cadherin phosphorylation in endothelial cells are involved in VEGFR2 Y949-induced vascular permeability. Abolishing VEGFR2 Y949 signaling by Vefgr2Y949F point mutation was sufficient to prevent pulmonary vascular permeability and inhibit macrophage infiltration and Rac1 activation in smooth muscle cells under hypoxia exposure, thereby leading to alleviated PH manifestations, including muscularization of distal pulmonary arterioles, elevated right ventricle systolic pressure, and right ventricular hypertrophy. It is important that we found that VEGFR2 Y949 signaling in myeloid cells including macrophages was trivial and dispensable for hypoxia-induced vascular abnormalities and PH. In contrast with selective blockage of VEGFR2 Y949 signaling, disruption of the entire VEGFR2 signaling by conditional endothelial deletion of Vegfr2 promotes the development of PH. CONCLUSIONS Our results support the notion that VEGF-A/VEGFR2 Y949-dependent vascular permeability is an important determinant in the pathogenesis of PH and might serve as an attractive therapeutic target pathway for this disease.
Collapse
Affiliation(s)
- Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jiaqi He
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Minghui Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Duoguang Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.)
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, China (Z.C.)
| | - Lena Claesson-Welsh
- Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (L.C.-W.)
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Jingfeng Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China (W.Z., K.L., L.Z., X. Gao, X. Gu, X.C., J.J.L., R.J., F.Z.)
| | - Yangxin Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (W.Z., J.H., M.W., D.W., J.W., Y.C.).,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (W.Z., J.H., J.W., Y.C.)
| |
Collapse
|
10
|
Yamanaka M, Hayashi M, Sonohara F, Yamada S, Tanaka H, Sakai A, Mii S, Kobayashi D, Kurimoto K, Tanaka N, Inokawa Y, Takami H, Hattori N, Kanda M, Tanaka C, Nakayama G, Koike M, Kodera Y. Downregulation of ROBO4 in Pancreatic Cancer Serves as a Biomarker of Poor Prognosis and Indicates Increased Cell Motility and Proliferation Through Activation of MMP-9. Ann Surg Oncol 2022; 29:7180-7189. [PMID: 35726111 DOI: 10.1245/s10434-022-12039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The axon guidance gene family, SLIT/ROBO pathway, controls neural network formation, which correlates with the development of several cancers. METHODS We found through analysis of the public database that ROBO4, one of the axon guidance molecules among the SLIT/ROBO family, is significantly downregulated in primary pancreatic cancer tissues compared with adjacent normal tissues. We carried out transfection experiments using three pancreatic cancer cell lines (MiaPaCa-2, BxPC-3, and SW1990) and one pancreatic duct epithelial cell line (HPDE6c7). A total of 51 clinical samples were then examined by immunohistochemical staining to find an association between ROBO4 expression at the protein level, clinical characteristics, and surgical outcomes. RESULTS ROBO4 overexpression suppressed the invasion and migration abilities in MiaPaCa-2 and BxPC-3, while ROBO4 siRNA transfection to SW1990 and HPDE6c7 enhanced those activities. PCR-based profiling detected MMP-9 as a candidate downstream target of ROBO4, which was validated by decreased MMP-9 activity after the ROBO4 overexpression assay. High ROBO4 expression clinical samples had significantly better overall survival rather than low ROBO4 cases (P = 0.048). CONCLUSION These findings suggest that decreased ROBO4 expression activates malignant phenotypes in cancer cells and is correlated with poor survival outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Masaya Yamanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Sakai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daigo Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kurimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutake Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Laws KM, Bashaw GJ. Diverse roles for axon guidance pathways in adult tissue architecture and function. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220021. [PMID: 37456985 PMCID: PMC10346896 DOI: 10.1002/ntls.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Classical axon guidance ligands and their neuronal receptors were first identified due to their fundamental roles in regulating connectivity in the developing nervous system. Since their initial discovery, it has become clear that these signaling molecules play important roles in the development of a broad array of tissue and organ systems across phylogeny. In addition to these diverse developmental roles, there is a growing appreciation that guidance signaling pathways have important functions in adult organisms, including the regulation of tissue integrity and homeostasis. These roles in adult organisms include both tissue-intrinsic activities of guidance molecules, as well as systemic effects on tissue maintenance and function mediated by the nervous and vascular systems. While many of these adult functions depend on mechanisms that mirror developmental activities, such as regulating adhesion and cell motility, there are also examples of adult roles that may reflect signaling activities that are distinct from known developmental mechanisms, including the contributions of guidance signaling pathways to lineage commitment in the intestinal epithelium and bone remodeling in vertebrates. In this review, we highlight studies of guidance receptors and their ligands in adult tissues outside of the nervous system, focusing on in vivo experimental contexts. Together, these studies lay the groundwork for future investigation into the conserved and tissue-specific mechanisms of guidance receptor signaling in adult tissues.
Collapse
Affiliation(s)
- Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Current address: Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Xiao W, Pinilla-Baquero A, Faulkner J, Song X, Prabhakar P, Qiu H, Moremen KW, Ludwig A, Dempsey PJ, Azadi P, Wang L. Robo4 is constitutively shed by ADAMs from endothelial cells and the shed Robo4 functions to inhibit Slit3-induced angiogenesis. Sci Rep 2022; 12:4352. [PMID: 35288626 PMCID: PMC8921330 DOI: 10.1038/s41598-022-08227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
Roundabout 4 (Robo4) is a transmembrane receptor that expresses specifically in endothelial cells. Soluble Robo4 was reported in the human plasma and mouse serum and is inhibitory towards FGF- and VEGF-induced angiogenesis. It remains unknown how soluble Robo4 is generated and if soluble Robo4 regulates additional angiogenic signaling. Here, we report soluble Robo4 is the product of constitutive ectodomain shedding of endothelial cell surface Robo4 by disintegrin metalloproteinases ADAM10 and ADAM17 and acts to inhibit angiogenic Slit3 signaling. Meanwhile, the ligand Slit3 induces cell surface receptor Robo4 endocytosis to shield Robo4 from shedding, showing Slit3 inhibits Robo4 shedding to enhance Robo4 signaling. Our study delineated ADAM10 and ADAM17 are Robo4 sheddases, and ectodomain shedding, including negative regulation by its ligand Slit3, represents a novel control mechanism of Robo4 signaling in angiogenesis.
Collapse
Affiliation(s)
- Wenyuan Xiao
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alejandro Pinilla-Baquero
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - John Faulkner
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - Xuehong Song
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA
| | - Pradeep Prabhakar
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Hong Qiu
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andreas Ludwig
- Institute for Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado Medical School, Aurora, CO, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer's Research Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL33613, USA.
- Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
13
|
Abstract
Blood-brain barrier (BBB) integrity is critical for proper function of the central nervous system (CNS). Here, we show that the endothelial Unc5B receptor controls BBB integrity by maintaining Wnt/β-catenin signaling. Inducible endothelial-specific deletion of Unc5B in adult mice leads to BBB leak from brain capillaries that convert to a barrier-incompetent state with reduced Claudin-5 and increased PLVAP expression. Loss of Unc5B decreases BBB Wnt/β-catenin signaling, and β-catenin overexpression rescues Unc5B mutant BBB defects. Mechanistically, the Unc5B ligand Netrin-1 enhances Unc5B interaction with the Wnt co-receptor LRP6, induces its phosphorylation and activates Wnt/β-catenin downstream signaling. Intravenous delivery of antibodies blocking Netrin-1 binding to Unc5B causes a transient BBB breakdown and disruption of Wnt signaling, followed by neurovascular barrier resealing. These data identify Netrin-1-Unc5B signaling as a ligand-receptor pathway that regulates BBB integrity, with implications for CNS diseases. The authors show that Netrin-1-Unc5B signaling controls blood-brain barrier integrity by maintaining Wnt/b-catenin signaling and that delivery of antibodies blocking Netrin-1 binding to Unc5B causes transient and size-selective BBB breakdown.
Collapse
|
14
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
15
|
Ozhan A, Tombaz M, Konu O. Discovery of Cancer-Specific and Independent Prognostic Gene Subsets of the Slit-Robo Family Using TCGA-PANCAN Datasets. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:782-795. [PMID: 34757814 DOI: 10.1089/omi.2021.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Slit-Robo family of axon guidance molecules works in concert, playing important roles in organ development and cancer. Expressions of individual Slit-Robo genes have been used in calculating univariable hazard ratios (HRuni) for predicting cancer prognosis in the literature. However, Slit-Robo members do not act independently; hence, hazard ratios from multivariable Cox regression (HRmulti) on the whole gene set can further lead to identification of cancer-specific, novel, and independent prognostic gene pairs or modules. Herein, we obtained mRNA expressions of the Slit-Robo family consisting of four Robos (ROBO1/2/3/4) and three Slits (SLIT1/2/3), along with four types of survival outcome across cancers found in the Cancer Genome Atlas (TCGA). We used cluster heat maps to visualize closely associated pairs/modules of prognostic genes across 33 different cancers. We found a smaller number of significant genes in HRmulti than in HRuni, suggesting that the former analysis was less redundant. High ROBO4 expression emerged as relatively protective within the family, in both types of HR analyses. Multivariable Cox regression, on the other hand, revealed significantly more HR signatures containing Slit-Robo pairs acting in opposing directions than those containing Slit-Slit or Robo-Robo pairs for disease-specific survival. Furthermore, we discovered, through the online app SmulTCan's lasso regression, Slit-Robo gene subsets that significantly differentiated between high- versus low-risk prognosis patient groups, particularly for renal cancers and low-grade glioma. The statistical pipeline reported herein can help test independent and significant pairs/modules within a codependent gene family for cancer prognostication, and thus should also prove useful in personalized/precision medicine research.
Collapse
Affiliation(s)
- Ayse Ozhan
- UNAM-National Nanotechnology Research Center, Institute of Material Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- UNAM-National Nanotechnology Research Center, Institute of Material Science and Nanotechnology, Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.,Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| |
Collapse
|
16
|
Shirakura K, Okada Y. Vascular Leakage Prevention by Roundabout 4 under Pathological Conditions. Biol Pharm Bull 2021; 44:1365-1370. [PMID: 34602544 DOI: 10.1248/bpb.b21-00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular permeability is regulated mainly by the endothelial barrier and controls vascular homeostasis, proper vessel development, and immune cell trafficking. Several molecules are involved in regulating endothelial barrier function. Roundabout 4 (Robo4) is a single-pass transmembrane protein that is specifically expressed in vascular endothelial cells. Robo4 is an important regulator of vascular leakage and angiogenesis, especially under pathological conditions. The role of Robo4 in preventing vascular leakage has been studied in various disease models, including animal models of retinopathy, tumors, diabetes, and endotoxemia. The involvement of Robo4 in vascular endothelial growth factor and inflammation-mediated signaling pathways has been well studied, and recent evidence suggests that Robo4 modulates endothelial barrier function via distinct mechanisms. In this review, we discuss the role of Robo4 in endothelial barrier function and the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
17
|
Li J, Geraldo LH, Dubrac A, Zarkada G, Eichmann A. Slit2-Robo Signaling Promotes Glomerular Vascularization and Nephron Development. J Am Soc Nephrol 2021; 32:2255-2272. [PMID: 34341180 PMCID: PMC8729857 DOI: 10.1681/asn.2020111640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Kidney function requires continuous blood filtration by glomerular capillaries. Disruption of glomerular vascular development or maintenance contributes to the pathogenesis of kidney diseases, but the signaling events regulating renal endothelium development remain incompletely understood. Here, we discovered a novel role of Slit2-Robo signaling in glomerular vascularization. Slit2 is a secreted polypeptide that binds to transmembrane Robo receptors and regulates axon guidance as well as ureteric bud branching and angiogenesis. METHODS We performed Slit2-alkaline phosphatase binding to kidney cryosections from mice with or without tamoxifen-inducible Slit2 or Robo1 and -2 deletions, and we characterized the phenotypes using immunohistochemistry, electron microscopy, and functional intravenous dye perfusion analysis. RESULTS Only the glomerular endothelium, but no other renal endothelial compartment, responded to Slit2 in the developing kidney vasculature. Induced Slit2 gene deletion or Slit2 ligand trap at birth affected nephrogenesis and inhibited vascularization of developing glomeruli by reducing endothelial proliferation and migration, leading to defective cortical glomerular perfusion and abnormal podocyte differentiation. Global and endothelial-specific Robo deletion showed that both endothelial and epithelial Robo receptors contributed to glomerular vascularization. CONCLUSIONS Our study provides new insights into the signaling pathways involved in glomerular vascular development and identifies Slit2 as a potential tool to enhance glomerular angiogenesis.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Cellular and Molecular Physiology, Yale University Medical School, New Haven, Connecticut
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Luiz Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
- Université de Paris, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale U907, Paris, France
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Georgia Zarkada
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University Medical School, New Haven, Connecticut
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
- Université de Paris, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale U907, Paris, France
| |
Collapse
|
18
|
Aminophylline modulates the permeability of endothelial cells via the Slit2-Robo4 pathway in lipopolysaccharide-induced inflammation. Exp Ther Med 2021; 22:1042. [PMID: 34373728 PMCID: PMC8343459 DOI: 10.3892/etm.2021.10474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis and septic shock are the main cause of mortality in intensive care units. The prevention and treatment of sepsis remains a significant challenge worldwide. The endothelial cell barrier plays a critical role in the development of sepsis. Aminophylline, a non-selective phosphodiesterase inhibitor, has been demonstrated to reduce endothelial cell permeability. However, little is known regarding the role of aminophylline in regulating vascular permeability during sepsis, as well as the potential underlying mechanisms. In the present study, the Slit2/Robo4 signaling pathway, the downstream protein, vascular endothelial (VE)-cadherin and endothelial cell permeability were investigated in a lipopolysaccharide (LPS)-induced inflammation model. It was indicated that, in human umbilical vein endothelial cells (HUVECs), LPS downregulated Slit2, Robo4 and VE-cadherin protein expression levels and, as expected, increased endothelial cell permeability in vitro during inflammation. After administration of aminophylline, the protein expression levels of Slit2, Robo4 and VE-cadherin were upregulated and endothelial cell permeability was significantly improved. These results suggested that the permeability of endothelial cells could be mediated by VE-cadherin via the Slit2/Robo4 signaling pathway. Aminophylline reduced endothelial permeability in a LPS-induced inflammation model. Therefore, aminophylline may represent a promising candidate for modulating vascular permeability induced by inflammation or sepsis.
Collapse
|
19
|
Shi X, Dong N, Qiu Q, Li S, Zhang J. Salidroside Prevents Hypoxia-Induced Human Retinal Microvascular Endothelial Cell Damage Via miR-138/ROBO4 Axis. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 34269814 PMCID: PMC8297420 DOI: 10.1167/iovs.62.9.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Retinopathies are associated with the injury of retinal microvascular endothelial cells. Salidroside (SAL) is a medicinal supplement that has antioxidative and cytoprotective properties. We hypothesized that SAL might have a protective function in retinopathies. This research aims to explore the function and mechanism of SAL in hypoxia-induced retinal microvascular endothelial cell injury. Methods Human retinal microvascular endothelial cells (HRMECs) injury was induced by culturing under hypoxic condition. The function of SAL on HRMECs injury was investigated using cell counting kit-8, 5-ethynyl-2′-deoxyuridine (EdU) staining, flow cytometry, Western blotting, and enzyme linked immunosorbent assay. MicroRNA (miR)-138, roundabout 4 (ROBO4), and proteins in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways were examined using quantitative reverse transcription polymerase chain reaction or Western blotting. The target correlation was determined by dual-luciferase reporter analysis and RNA immunoprecipitation. Results Hypoxia resulted in proliferation inhibition, cycle arrest, apoptosis, inflammatory reaction, and oxidative stress in HRMECs. SAL attenuated hypoxia-induced HRMECs injury via increasing cell proliferation, and mitigating cycle arrest, apoptosis, inflammatory reaction, and oxidative stress. MiR-138 expression was enhanced by hypoxia, and decreased via SAL stimulation. MiR-138 upregulation reversed the influence of SAL on hypoxia-induced HRMECs injury. ROBO4 was targeted via miR-138. ROBO4 overexpression weakened the role of miR-138 in HRMECs injury. The PI3K/AKT/mTOR pathway was inactivated under hypoxic condition, and SAL increased the activation of PI3K/AKT/mTOR pathways by decreasing miR-138. Conclusions SAL protected against hypoxia-induced HRMECs injury through regulating miR-138/ROBO4 axis, indicating the protective potential of SAL in retinopathies.
Collapse
Affiliation(s)
- Xiaoling Shi
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, Fujian, China.,Affiliated Xiamen Eye Center, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Nuo Dong
- Affiliated Xiamen Eye Center, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Qi Qiu
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Shanhua Li
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, Medical College of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
20
|
Guo Z, Wu X, Fan W. Clarifying the effects of diabetes on the cerebral circulation: Implications for stroke recovery and beyond. Brain Res Bull 2021; 171:67-74. [PMID: 33662495 DOI: 10.1016/j.brainresbull.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Given the sheer increased number of victims per year and the availability of only one effective treatment, acute ischemic stroke (AIS) remains to be one of the most under-treated serious diseases. Diabetes not only increases the incidence of ischemic stroke, but amplifies the ischemic damage, upon which if patients with diabetes suffer from stroke, he/she will confront increased risks of long-term functional deficits. The grim reality makes it a pressing need to intensify efforts at the basic science level to understand how diabetes impairs stroke recovery. This review retrospects the clinical and experimental studies in order to elucidate the detrimental effect of diabetes on cerebrovascular circulation including the major arteries/arterioles, collateral circulation, and neovascularization to shed light on further exploration of novel strategies for cerebral circulation protection before and after AIS in patients with diabetes.
Collapse
Affiliation(s)
- Zhihui Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
21
|
Yan H, Jiang G, Wu F, Li Z, Xiao L, Jiang Y, Duan X. Sulfoxidation regulation of transcription factor NAC42 influences its functions in relation to stress-induced fruit ripening in banana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:682-699. [PMID: 33070185 DOI: 10.1093/jxb/eraa474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Redox modification of functional or regulatory proteins has emerged as an important mechanism of post-translational modification. However, the role of redox modifications of transcription factors mediated by methionine sulfoxide reductase (Msr) in regulating physiological processes in plants remains unclear, especially in fruit ripening. In this study, we determined that MaNAC42, a transcriptional activator, is involved in the regulation of fruit ripening in banana under oxidative stress. Integrated analysis of ChIP-qPCR and EMSA data showed that MaNAC42 directly binds to promoters of genes related to oxidative stress and ripening. Ectopic overexpression of MaNAC42 in Arabidopsis delays dark-induced senescence in leaves, indicating that MaNAC42 plays a negative role in senescence. Furthermore, we found that MaNAC42 is a target of MaMsrB2, a methionine sulfoxide reductase B. Methionine oxidation in MaNAC42 (i.e. sulfoxidation) or mimicking sulfoxidation by mutating methionine to glutamine both lead to decreased DNA-binding capacity and transcriptional activity. On the other hand, MaMsrB2 can partially repair oxidized MaNAC42 and restore its DNA-binding capacity. Thus, our results suggest a novel regulatory mechanism of fruit ripening in banana involving MaMsrB2-mediated redox regulation of the ripening-related transcription factor MaNAC42.
Collapse
Affiliation(s)
- Huiling Yan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoxiang Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Fuwang Wu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiwei Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Xiao
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Luo Y, Li Y, Peng H, Zhao Y. miR-140-5p regulates vascular smooth muscle cell viability, migration and apoptosis by targeting ROBO4 gene expression in atherosclerosis. Mol Med Rep 2021; 23:213. [PMID: 33495827 PMCID: PMC7845623 DOI: 10.3892/mmr.2021.11852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 09/24/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) are essential regulators of atherosclerosis (AS) development; however, the pathogenic roles of miR-140-5p during AS development are not completely understood. The present study investigated the effects of miR‑140-5p on human vascular smooth muscle cells (VSMCs) and its target gene. miR-140-5p and roundabout guidance receptor 4 (ROBO4) mRNA expression levels were determined by performing reverse transcription-quantitative PCR. ROBO4 protein expression levels were analyzed via western blotting. Cell viability, migration, invasion and apoptosis were evaluated by conducting Cell Counting Kit-8, Transwell and flow cytometry assays, respectively. The binding of miR-140-5p to ROBO4 mRNA was verified using the dual-luciferase reporter assay. miR-140-5p was highly expressed in the plaque-containing artery tissues of patients with AS compared with healthy control tissues. Oxidized-low density lipoprotein (ox-LDL) treatment increased miR-140-5p expression and decreased ROBO4 expression in human VSMCs, which promoted VSMC viability, migration and invasion, but suppressed apoptosis compared with the control group. The effects of ox-LDL treatment on VSMCs were attenuated by miR-140-5p inhibitor. miR-140-5p directly bound to the 3'-untranslated region of ROBO4 mRNA. ROBO4 overexpression mitigated the effects of ox-LDL treatment on VSMC viability, migration, invasion and apoptosis. Therefore, the present study suggested that high level miR-140-5p expression promoted VSMC viability, migration, and invasion, and suppressed VSMC apoptosis by reducing ROBO4 gene expression. The present study provided novel insights into AS pathogenesis that may aid the development of new strategies for the treatment and prevention of AS.
Collapse
Affiliation(s)
- Yi Luo
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yangmin Li
- Department of Gynecology, Jialing Branch of Nanchong Central Hospital, Nanchong, Sichuan 637919, P.R. China
| | - Hong Peng
- Department of Anorectal, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
23
|
Shaik F, Cuthbert GA, Homer-Vanniasinkam S, Muench SP, Ponnambalam S, Harrison MA. Structural Basis for Vascular Endothelial Growth Factor Receptor Activation and Implications for Disease Therapy. Biomolecules 2020; 10:biom10121673. [PMID: 33333800 PMCID: PMC7765180 DOI: 10.3390/biom10121673] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) bind to membrane receptors on a wide variety of cells to regulate diverse biological responses. The VEGF-A family member promotes vasculogenesis and angiogenesis, processes which are essential for vascular development and physiology. As angiogenesis can be subverted in many disease states, including tumour development and progression, there is much interest in understanding the mechanistic basis for how VEGF-A regulates cell and tissue function. VEGF-A binds with high affinity to two VEGF receptor tyrosine kinases (VEGFR1, VEGFR2) and with lower affinity to co-receptors called neuropilin-1 and neuropilin-2 (NRP1, NRP2). Here, we use a structural viewpoint to summarise our current knowledge of VEGF-VEGFR activation and signal transduction. As targeting VEGF-VEGFR activation holds much therapeutic promise, we examine the structural basis for anti-angiogenic therapy using small-molecule compounds such as tyrosine kinase inhibitors that block VEGFR activation and downstream signalling. This review provides a rational basis towards reconciling VEGF and VEGFR structure and function in developing new therapeutics for a diverse range of ailments.
Collapse
Affiliation(s)
- Faheem Shaik
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK;
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence: ; Tel.: +44-207-8824207
| | - Gary A. Cuthbert
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; (G.A.C.); (S.H.-V.); (M.A.H.)
| | | | - Stephen P. Muench
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | | | - Michael A. Harrison
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; (G.A.C.); (S.H.-V.); (M.A.H.)
| |
Collapse
|
24
|
Isumi Y, Hayashi S, Inoue T, Yoshigae Y, Sato T, Hasegawa J, Agatsuma T. DS-7080a, a Selective Anti-ROBO4 Antibody, Shows Anti-Angiogenic Efficacy with Distinctly Different Profiles from Anti-VEGF Agents. Transl Vis Sci Technol 2020; 9:7. [PMID: 32879763 PMCID: PMC7442859 DOI: 10.1167/tvst.9.9.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Neovascular age-related macular degeneration (nAMD) results from choroidal neovascularization (CNV) and causes severe vision loss. Intravitreal anti-vascular endothelial growth factor (VEGF) therapies have significantly improved therapeutic outcomes; however, a substantial number of patients experience disease progression. Roundabout 4 (ROBO4) has been reported to be a vascular-specific protein that stabilizes vasculature in ocular pathological angiogenesis. To explore ROBO4 targeting as a novel treatment against neovascularization, we generated a humanized anti-human ROBO4 antibody, DS-7080a, and evaluated its efficacy. Methods ROBO4 mRNA in human whole eye cross-sections was examined by in situ hybridization. Human umbilical vein endothelial cell (HUVEC) migration was measured in the presence of VEGF, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), or conditioned medium of primary human retinal pigment epithelial (HRPE) cells. CNV was induced in cynomolgus monkeys by laser irradiation. Vascular leakage was measured by fluorescein angiography, and pathological changes were determined by histology. Results ROBO4 mRNA was detected in choroidal vessels of nAMD patients. DS-7080a suppressed HGF- or bFGF-induced HUVEC migration in addition to that induced by VEGF. Further, HUVEC migration induced by HRPE-conditioned medium was inhibited by either DS-7080a or ranibizumab in a similar manner, and the combination of these showed further inhibition. In a laser-induced CNV monkey model, single intravitreous administration of 1.1 mg/eye of DS-7080a reduced the incidence of grade 4 leakage from 44.45% in control eyes to 1.85% (P < 0.05 by Dunnett's test). Conclusions Anti-ROBO4 antibody DS-7080a suppressed HUVEC migration in a distinctly different fashion from anti-VEGF agents and improved laser-induced CNV in non-human primates. Translational Relevance DS-7080a may be a novel treatment option for nAMD.
Collapse
Affiliation(s)
- Yoshitaka Isumi
- Oncology Research Laboratories I, Oncology Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Shinko Hayashi
- Oncology Research Laboratories I, Oncology Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tatsuya Inoue
- Specialty Medicine Research Laboratories I, Research Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yasushi Yoshigae
- Research Planning Group, Research Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshiyuki Sato
- Specialty Medicine Research Laboratories II, Research Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Jun Hasegawa
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshinori Agatsuma
- Oncology Research Laboratories I, Oncology Function, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
25
|
Bhosle VK, Mukherjee T, Huang YW, Patel S, Pang BWF, Liu GY, Glogauer M, Wu JY, Philpott DJ, Grinstein S, Robinson LA. SLIT2/ROBO1-signaling inhibits macropinocytosis by opposing cortical cytoskeletal remodeling. Nat Commun 2020; 11:4112. [PMID: 32807784 PMCID: PMC7431850 DOI: 10.1038/s41467-020-17651-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Macropinocytosis is essential for myeloid cells to survey their environment and for growth of RAS-transformed cancer cells. Several growth factors and inflammatory stimuli are known to induce macropinocytosis, but its endogenous inhibitors have remained elusive. Stimulation of Roundabout receptors by Slit ligands inhibits directional migration of many cell types, including immune cells and cancer cells. We report that SLIT2 inhibits macropinocytosis in vitro and in vivo by inducing cytoskeletal changes in macrophages. In mice, SLIT2 attenuates the uptake of muramyl dipeptide, thereby preventing NOD2-dependent activation of NF-κB and consequent secretion of pro-inflammatory chemokine, CXCL1. Conversely, blocking the action of endogenous SLIT2 enhances CXCL1 secretion. SLIT2 also inhibits macropinocytosis in RAS-transformed cancer cells, thereby decreasing their survival in nutrient-deficient conditions which resemble tumor microenvironment. Our results identify SLIT2 as a physiological inhibitor of macropinocytosis and challenge the conventional notion that signals that enhance macropinocytosis negatively regulate cell migration, and vice versa.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Bo Wen Frank Pang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- BenchSci, Suite 201, 559 College Street, Toronto, ON, M6G 1A9, Canada
| | - Guang-Ying Liu
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON, M5G 2L3, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
26
|
Sherchan P, Travis ZD, Tang J, Zhang JH. The potential of Slit2 as a therapeutic target for central nervous system disorders. Expert Opin Ther Targets 2020; 24:805-818. [PMID: 32378435 PMCID: PMC7529836 DOI: 10.1080/14728222.2020.1766445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies. Areas covered: This review provides an overview of the diverse functions of Slit2 in CNS disorders and discusses the potential of Slit2 as a therapeutic target. We reviewed preclinical studies reporting the role of Slit2 in various CNS disease models, transgenic animal research, and rodent models that utilized Slit2 as a therapy. Expert opinion: Slit2 exerts a wide array of beneficial effects ranging from anti-migration, blood-brain barrier (BBB) protection, inhibition of peripheral immune cell infiltration, and anti-apoptosis in various disease models. However, a dual role of Slit2 in endothelial permeability has been observed in transgenic animals. Further research on Slit2 will be crucial including key issues such as effects of transgenic overexpression versus exogenous Slit2, function of Slit2 dependent on cellular expression of Robo receptors and the underlying pathology for potential clinical translation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Zachary D. Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA and Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
27
|
Tisch N, Freire-Valls A, Yerbes R, Paredes I, La Porta S, Wang X, Martín-Pérez R, Castro L, Wong WWL, Coultas L, Strilic B, Gröne HJ, Hielscher T, Mogler C, Adams RH, Heiduschka P, Claesson-Welsh L, Mazzone M, López-Rivas A, Schmidt T, Augustin HG, Ruiz de Almodovar C. Caspase-8 modulates physiological and pathological angiogenesis during retina development. J Clin Invest 2020; 129:5092-5107. [PMID: 31454332 DOI: 10.1172/jci122767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/20/2019] [Indexed: 12/29/2022] Open
Abstract
During developmental angiogenesis, blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether, how, cell death signaling molecules contribute to blood vessel formation is still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death-signaling pathway, regulates cell death via both apoptosis and necroptosis. Here, we show that expression of Casp-8 in endothelial cells (ECs) is required for proper postnatal retina angiogenesis. EC-specific Casp-8-KO pups (Casp-8ECKO) showed reduced retina angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting, and migration independently of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 MAPK downstream of receptor-interacting serine/threonine protein kinase 3 (RIPK3) and destabilization of vascular endothelial cadherin (VE-cadherin) at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR) resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs was beneficial, as pathological neovascularization was reduced in Casp-8ECKO pups. Taking these data together, we show that Casp-8 acts in a cell death-independent manner in ECs to regulate the formation of the retina vasculature and that Casp-8 in ECs is mechanistically involved in the pathophysiology of ROP.
Collapse
Affiliation(s)
- Nathalie Tisch
- Biochemistry Center.,European Center for Angioscience (ECAS).,Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, and
| | - Aida Freire-Valls
- Biochemistry Center.,Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Rosario Yerbes
- Biochemistry Center.,Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla and Universidad Pablo de Olavide, Sevilla, Spain
| | - Isidora Paredes
- Biochemistry Center.,European Center for Angioscience (ECAS).,Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, and
| | - Silvia La Porta
- European Center for Angioscience (ECAS).,Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | | | - Rosa Martín-Pérez
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (VIB), Leuven, Belgium.,Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Wendy Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leigh Coultas
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine and
| | - Peter Heiduschka
- Research Laboratory, Department of Ophthalmology, University Medical Center, University of Münster, Münster, Germany
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Massimiliano Mazzone
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (VIB), Leuven, Belgium.,Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla and Universidad Pablo de Olavide, Sevilla, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Hellmut G Augustin
- European Center for Angioscience (ECAS).,Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Biochemistry Center.,European Center for Angioscience (ECAS).,Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, and
| |
Collapse
|
28
|
Xiao X, Zhuang X, Xu C, Chen H, Zhu W, Pang C, Zhang M. ROBO4 deletion ameliorates PAF-mediated skin inflammation via regulating the mRNA translation efficiency of LPCAT1/LPCAT2 and the expression of PAF receptor. Int J Biol Sci 2020; 16:1086-1095. [PMID: 32140075 PMCID: PMC7053341 DOI: 10.7150/ijbs.35797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/06/2019] [Indexed: 01/12/2023] Open
Abstract
The diminished level of platelet-activating factor acetylhydrolase (PAFAH) in milk causes an enhanced level of platelet activating factor (PAF) in the skin, leading to a severe hair loss phenotype during neonatal pup's lactation. The deletion of very-low-density-lipoprotein receptor (VLDLR) prevents the expression and secretion of PAFAH. Here we revealed that deletion of Roundabout 4 (ROBO4) in mice ameliorated hair loss phenotype via reducing PAF concentration in skin. As a consequence, the neonatal pups with ROBO4 deletion lactated by mother with VLDLR deletion showed normal hair phenotype during lactation. In details,ROBO4 deletion reduced the protein but not mRNA expression of two PAF synthetic enzymes LPCAT1/LPCAT2 in macrophage as well as the expression of PAF receptor in both macrophage and ocular tissue, but increased PAFAH protein in serum. On the other hand, RNA expression profile analysis in macrophages revealed that the genes involving in oxidative phosphorylation and ribosome obviously decreased their expression in response to ROBO4 deletion. Moreover, through High Performance Liquid Chromatography (HPLC) analysis, we found that ATP concentration also reduced in ROBO4 deletion macrophages. Because ribosome and energy are very important factors for the mRNA translation, we then tested whether ROBO4 deletion affects LPCAT1/LPCAT2 mRNA translation using polyribosome assay. As expected, the mRNA level of LPCAT1/LPCAT2 significantly decreased in polyribosome in ROBO4 deletion macrophage comparing to that of wild type. Additionally, mice with ROBO4 deletion suppressed LPS-induced IL-6 expression as well as the phosphorylation of p44/42 and p65, but enhanced the AKT phosphorylation. Collectively, ROBO4 deletion alleviates PAF- and LPS-mediated inflammation. And above results also indicate PAF signal might be a crosstalk point of ROBO4- and VLDLR-activated pathways.
Collapse
Affiliation(s)
- Xiaoqiang Xiao
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Xi Zhuang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Ciyan Xu
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Haoyu Chen
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine, University of Utah
| | - ChiPui Pang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China.,Department of Ophthalmology & Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
29
|
Regulatory mechanisms of Robo4 and their effects on angiogenesis. Biosci Rep 2019; 39:BSR20190513. [PMID: 31160487 PMCID: PMC6620384 DOI: 10.1042/bsr20190513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Roundabout4 (Robo4) is a transmembrane receptor that belongs to the Roundabout (Robo) family of axon guidance molecules. Robo4 is an endothelial-specific receptor that participates in endothelial cell migration, proliferation, and angiogenesis and the maintenance of vasculature homeostasis. The purpose of this review is to summarize and analyze three main mechanisms related to the expression and function of Robo4 during developmental and pathological angiogenesis. In this review, static shear stress and the binding of transcription factors such as E26 transformation-specific variant 2 (ETV2) and Slit3 induce Robo4 expression and activate Robo4 during tissue and organ development. Robo4 interacts with Slit2 or UNC5B to maintain vascular integrity, while a disturbed flow and the expression of transcription factors in inflammatory or neoplastic environments alter Robo4 expression levels, although these changes have uncertain functions. Based on the mechanisms described above, we discuss the aberrant expression of Robo4 in angiogenesis-related diseases and propose antiangiogenic therapies targeting the Robo4 signaling pathway for the treatment of ocular neovascularization lesions and tumors. Finally, although many problems related to Robo4 signaling pathways remain to be resolved, Robo4 is a promising and potentially valuable therapeutic target for treating pathological angiogenesis and developmental defects in angiogenesis.
Collapse
|
30
|
Refueling the Ischemic CNS: Guidance Molecules for Vascular Repair. Trends Neurosci 2019; 42:644-656. [PMID: 31285047 DOI: 10.1016/j.tins.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Stroke patients have only limited therapeutic options and often remain with considerable disabilities. To promote neurological recovery, angiogenesis in the ischemic peri-infarct region has been recognized as an encouraging therapeutic target. Despite advances in mechanistic understanding of vascular growth and repair, effective and safe angiogenic treatments are currently missing. Besides the most intensively studied angiogenic growth factors, recent research has indicated that the process of vascular sprouting and migration also requires the participation of guidance molecules, many of which were initially identified as regulators of axonal growth. Here, we review the inhibitory and growth-promoting effects of guidance molecules on the vascular system and discuss their potential as novel angiogenic targets for neurovascular diseases.
Collapse
|
31
|
Kim DY, Park JA, Kim Y, Noh M, Park S, Lie E, Kim E, Kim YM, Kwon YG. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175. FASEB J 2019; 33:9842-9857. [PMID: 31170000 PMCID: PMC6704462 DOI: 10.1096/fj.201802516rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiogenesis depends on VEGF-mediated signaling. However, the regulatory mechanisms and functions of individual VEGF receptor 2 (VEGFR2) phosphorylation sites remain unclear. Here, we report that synaptic adhesion-like molecule 4 (SALM4) regulates a specific VEGFR2 phosphorylation site. SALM4 silencing in HUVECs and Salm4 knockout (KO) in lung endothelial cells (ECs) of Salm4−/− mice suppressed phosphorylation of VEGFR2 tyrosine (Y) 1175 (Y1173 in mice) and downstream signaling upon VEGF-A stimulation. However, VEGFR2 phosphorylation at Y951 (Y949 in mice) and Y1214 (Y1212 in mice) remained unchanged. Knockdown and KO of SALM4 inhibited VEGF-A–induced angiogenic functions of ECs. SALM4 depletion reduced endothelial leakage, sprouting, and migratory activities. Furthermore, in an ischemia and reperfusion (I/R) model, brain injury was attenuated in Salm4−/− mice compared with wild-type (WT) mice. In brain lysates after I/R, VEGFR2 phosphorylation at Y949, Y1173, and Y1212 were induced in WT brains, but only Y1173 phosphorylation of VEGFR2 was reduced in Salm4−/− brains. Taken together, our results demonstrate that SALM4 specifically regulates VEGFR2 phosphorylation at Y1175 (Y1173 in mice), thereby fine-tuning VEGF signaling in ECs.—Kim, D. Y., Park, J. A., Kim, Y., Noh, M., Park, S., Lie, E., Kim, E., Kim, Y.-M., Kwon, Y.-G. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeomyung Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Songyi Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunkyung Lie
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon-si, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
32
|
Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, Li J, Genet N, Henrique Geraldo L, Benedetti L, Künzel S, Pibouin-Fragner L, Thomas JL, Eichmann A. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun 2019; 10:2350. [PMID: 31138815 PMCID: PMC6538628 DOI: 10.1038/s41467-019-10359-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell migration, proliferation and survival are triggered by VEGF-A activation of VEGFR2. However, how these cell behaviors are regulated individually is still unknown. Here we identify Endophilin-A2 (ENDOA2), a BAR-domain protein that orchestrates CLATHRIN-independent internalization, as a critical mediator of endothelial cell migration and sprouting angiogenesis. We show that EndoA2 knockout mice exhibit postnatal angiogenesis defects and impaired front-rear polarization of sprouting tip cells. ENDOA2 deficiency reduces VEGFR2 internalization and inhibits downstream activation of the signaling effector PAK but not ERK, thereby affecting front-rear polarity and migration but not proliferation or survival. Mechanistically, VEGFR2 is directed towards ENDOA2-mediated endocytosis by the SLIT2-ROBO pathway via SLIT-ROBO-GAP1 bridging of ENDOA2 and ROBO1. Blocking ENDOA2-mediated endothelial cell migration attenuates pathological angiogenesis in oxygen-induced retinopathy models. This work identifies a specific endocytic pathway controlling a subset of VEGFR2 mediated responses that could be targeted to prevent excessive sprouting angiogenesis in pathological conditions.
Collapse
Affiliation(s)
- Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin Boyé
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Thomas Mathivet
- Inserm U970, Paris Cardiovascular Research Center, Paris, 75015, France
| | - Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Functional Genomics, Proteomics and Experimental Pathology Department, Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania, Department of Basic, Preventive and Clinical Science, University of Transylvania, Brasov, Romania
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jinyu Li
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Nafiisha Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Lorena Benedetti
- Department of Neuroscience and Cell Biology, School of Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Steffen Künzel
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Jean-Leon Thomas
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Sorbonne Universités, UPMC Université Paris 06, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique, AP-HP, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Inserm U970, Paris Cardiovascular Research Center, Paris, 75015, France.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
33
|
Jiang S, Du Y, Liu D, He J, Huang Y, Qin K, Zhou X. Inhibitory Effect of Slit2-N on VEGF165-induced proliferation of vascular endothelia via Slit2-N-Robo4-Akt pathway in choroidal neovascularization. Cell Cycle 2019; 18:1241-1253. [PMID: 31081721 DOI: 10.1080/15384101.2019.1617005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Researches have been focusing on the role of Slit2 in angiogenesis, specifically in cell migration and vessel permeability. Nevertheless, the role of Slit2-N, the bioactive fragment of Slit2, in the proliferation of vascular endothelia in choroidal neovascularization and some related mechanisms have not been studied yet. Thus, our study aimed to explore the role of Slit2-N in proliferation of vascular endothelia and the related mechanisms in choroidal neovascularization. Fluorescein isothiocyanate perfusion and HE staining were performed to evaluate volumes of choroidal neovascularization lesions. The effect of Slit2-N on VEGF165-induced cell proliferation and some related mechanisms were detected by CCK8 assay, flow cytometry, siRNA transfection, and western blotting. We found that Slit2-N reduced volumes of laser-induced choroidal neovascularization networks in vivo. Results of the in vitro study showed Slit2-N reduced VEGF165-induced cell proliferation of both human umbilical vascular endothelial cells and human microvascular endothelial cells possibly via activation of AKT rather than that of ERK1/2. Additionally, Robo4, one of the receptors binding to Slit2-N, was involved in the inhibitory effect of Slit2-N. Generally, our findings revealed the inhibitory role of Slit2-N in proliferation of vascular endothelia and some related mechanisms, and presented some potential targets, molecules along Slit2-N-Robo4-AKT axis, to choroidal neovascularization therapy.
Collapse
Affiliation(s)
- Shaoqiu Jiang
- a Department of Ophthalmology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Ophthalmology , Chongqing Eye Institute , Chongqing , China
| | - Yong Du
- a Department of Ophthalmology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Ophthalmology , Chongqing Eye Institute , Chongqing , China
| | - Danning Liu
- a Department of Ophthalmology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Junchi He
- c Department of Neurosurgery , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Yike Huang
- b Chongqing Key Laboratory of Ophthalmology , Chongqing Eye Institute , Chongqing , China.,d Department of Ophthalmology , the First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Ke Qin
- a Department of Ophthalmology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Ophthalmology , Chongqing Eye Institute , Chongqing , China
| | - Xiyuan Zhou
- a Department of Ophthalmology , the Second Affiliated Hospital of Chongqing Medical University , Chongqing , China.,b Chongqing Key Laboratory of Ophthalmology , Chongqing Eye Institute , Chongqing , China
| |
Collapse
|
34
|
Huminiecki L. Magic roundabout is an endothelial-specific ohnolog of ROBO1 which neo-functionalized to an essential new role in angiogenesis. PLoS One 2019; 14:e0208952. [PMID: 30802244 PMCID: PMC6389290 DOI: 10.1371/journal.pone.0208952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Magic roundabout (ROBO4) is an unusual endothelial-specific paralog of the family of neuronally-expressed axon guidance receptors called roundabouts. Endothelial cells (ECs), whose uninterrupted sheet delimits the lumen of all vertebrate blood vessels and which are absent from invertebrate species, are a vertebrate-specific evolutionary novelty. RESULTS Herein, the evolutionary mechanism of the duplication, retention and divergence of ROBO4 was investigated for the first time. Phylogenetic analyses carried out suggested that ROBO4 is a fast-evolving paralog of ROBO1 formed at the base of vertebrates. The ancestral expression pattern was neuronal. ROBO4 dramatically shifted its expression and became exceptionally specific to ECs. The data-mining of FANTOM5 and ENCODE reveals that ROBO4's endothelial expression arises from a single transcription start site (TSS), conserved in mouse, controlled by a proximal promoter with a complex architecture suggestive of regulatory neo-functionalization. (An analysis of promoter probabilities suggested the architecture was not due to a chance arrangement of TFBSes). Further evidence for the neo-functionalization of ROBO4 comes from the analysis of its protein interactions, the rates of protein evolution, and of positively selected sites. CONCLUSIONS The neo-functionalization model explains why ROBO4 protein acquired new context-specific biological functions in the control of angiogenesis. This endothelial-specific roundabout receptor is an illustrative example of the emergence of an essential vertebrate molecular novelty and an endothelial-specific signaling sub-network through 2R-WGD. The emergence of novel cell types, such as ECs, might be a neglected evolutionary force contributing to the high rate of retention of duplicates post-2R-WGD. Crucially, expression neo-functionalization to evolutionarily novel sites of expression conceptually extends the classical model of neo-functionalization.
Collapse
Affiliation(s)
- Lukasz Huminiecki
- Instytut Genetyki i Hodowli Zwierząt Polskiej Akademii Nauk, Jastrzębiec, Magdalenka, Poland
| |
Collapse
|
35
|
Shirakura K, Ishiba R, Kashio T, Funatsu R, Tanaka T, Fukada SI, Ishimoto K, Hino N, Kondoh M, Ago Y, Fujio Y, Yano K, Doi T, Aird WC, Okada Y. The Robo4-TRAF7 complex suppresses endothelial hyperpermeability in inflammation. J Cell Sci 2019; 132:jcs.220228. [PMID: 30510113 DOI: 10.1242/jcs.220228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/28/2018] [Indexed: 01/15/2023] Open
Abstract
Roundabout guidance receptor 4 (Robo4) is an endothelial cell-specific receptor that stabilizes the vasculature in pathological angiogenesis. Although Robo4 has been shown to suppress vascular hyperpermeability induced by vascular endothelial growth factor (VEGF) in angiogenesis, the role of Robo4 in inflammation is poorly understood. In this study, we investigated the role of Robo4 in vascular hyperpermeability during inflammation. Endotoxemia models using Robo4 -/- mice showed increased mortality and vascular leakage. In endothelial cells, Robo4 suppressed tumor necrosis factor α (TNFα)-induced hyperpermeability by stabilizing VE-cadherin at cell junctions, and deletion assays revealed that the C-terminus of Robo4 was involved in this suppression. Through binding and localization assays, we demonstrated that in endothelial cells, Robo4 binds to TNF receptor-associated factor 7 (TRAF7) through interaction with the C-terminus of Robo4. Gain- and loss-of-function studies of TRAF7 with or without Robo4 expression showed that TRAF7 is required for Robo4-mediated suppression of hyperpermeability. Taken together, our results demonstrate that the Robo4-TRAF7 complex is a novel negative regulator of inflammatory hyperpermeability. We propose this complex as a potential future target for protection against inflammatory diseases.
Collapse
Affiliation(s)
- Keisuke Shirakura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Ryosuke Ishiba
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Taito Kashio
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Risa Funatsu
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Toru Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - So-Ichiro Fukada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Kenji Ishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Nobumasa Hino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Yukio Ago
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - Kiichiro Yano
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| | - William C Aird
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0781, Japan
| |
Collapse
|
36
|
Abstract
The creation of complex neuronal networks relies on ligand-receptor interactions that mediate attraction or repulsion towards specific targets. Roundabouts comprise a family of single-pass transmembrane receptors facilitating this process upon interaction with the soluble extracellular ligand Slit protein family emanating from the midline. Due to the complexity and flexible nature of Robo receptors , their overall structure has remained elusive until now. Recent structural studies of the Robo 1 and Robo 2 ectodomains have provided the basis for a better understanding of their signalling mechanism. These structures reveal how Robo receptors adopt an auto-inhibited conformation on the cell surface that can be further stabilised by cis and/or trans oligmerisation arrays. Upon Slit -N binding Robo receptors must undergo a conformational change for Ig4 mediated dimerisation and signaling, probably via endocytosis. Furthermore, it's become clear that Robo receptors do not only act alone, but as large and more complex cell surface receptor assemblies to manifest directional and growth effects in a concerted fashion. These context dependent assemblies provide a mechanism to fine tune attractive and repulsive signals in a combinatorial manner required during neuronal development. While a mechanistic understanding of Slit mediated Robo signaling has advanced significantly further structural studies on larger assemblies are required for the design of new experiments to elucidate their role in cell surface receptor complexes. These will be necessary to understand the role of Slit -Robo signaling in neurogenesis, angiogenesis, organ development and cancer progression. In this chapter, we provide a review of the current knowledge in the field with a particular focus on the Roundabout receptor family.
Collapse
Affiliation(s)
- Francesco Bisiak
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue Des Martyrs, 38042, Grenoble, France.
| | - Andrew A McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue Des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
37
|
The precise molecular signals that control endothelial cell-cell adhesion within the vessel wall. Biochem Soc Trans 2018; 46:1673-1680. [PMID: 30514769 PMCID: PMC6299237 DOI: 10.1042/bst20180377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/23/2022]
Abstract
Endothelial cell–cell adhesion within the wall of the vasculature controls a range of physiological processes, such as growth, integrity and barrier function. The adhesive properties of endothelial cells are tightly controlled by a complex cascade of signals transmitted from the surrounding environment or from within the cells themselves, with the dynamic nature of cellular adhesion and the regulating signalling networks now beginning to be appreciated. Here, we summarise the current knowledge of the mechanisms controlling endothelial cell–cell adhesion in the developing and mature blood vasculature.
Collapse
|
38
|
Beamish IV, Hinck L, Kennedy TE. Making Connections: Guidance Cues and Receptors at Nonneural Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:a029165. [PMID: 28847900 PMCID: PMC6211390 DOI: 10.1101/cshperspect.a029165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The field of axon guidance was revolutionized over the past three decades by the identification of highly conserved families of guidance cues and receptors. These proteins are essential for normal neural development and function, directing cell and axon migration, neuron-glial interactions, and synapse formation and plasticity. Many of these genes are also expressed outside the nervous system in which they influence cell migration, adhesion and proliferation. Because the nervous system develops from neural epithelium, it is perhaps not surprising that these guidance cues have significant nonneural roles in governing the specialized junctional connections between cells in polarized epithelia. The following review addresses roles for ephrins, semaphorins, netrins, slits and their receptors in regulating adherens, tight, and gap junctions in nonneural epithelia and endothelia.
Collapse
Affiliation(s)
- Ian V Beamish
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
39
|
Mazzaferri J, Larrivée B, Cakir B, Sapieha P, Costantino S. A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model. Sci Rep 2018; 8:3916. [PMID: 29500375 PMCID: PMC5834630 DOI: 10.1038/s41598-018-22251-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License (https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva).
Collapse
Affiliation(s)
- Javier Mazzaferri
- Research Center of the Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Bruno Larrivée
- Research Center of the Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Bertan Cakir
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Przemyslaw Sapieha
- Research Center of the Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada.,Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada.,Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | - Santiago Costantino
- Research Center of the Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada. .,Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Shirakura K, Ishiba R, Kashio T, Sakai M, Fukushima Y, Yamamoto N, Manabe S, Shigesada N, Tanaka T, Hino N, Aird WC, Doi T, Okada Y. Endothelial Robo4 regulates IL-6 production by endothelial cells and monocytes via a crosstalk mechanism in inflammation. Biochem Biophys Res Commun 2018; 495:801-806. [DOI: 10.1016/j.bbrc.2017.11.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023]
|
41
|
Zhou W, Wang H, Yu W, Xie W, Zhao M, Huang L, Li X. The expression of the Slit-Robo signal in the retina of diabetic rats and the vitreous or fibrovascular retinal membranes of patients with proliferative diabetic retinopathy. PLoS One 2017; 12:e0185795. [PMID: 28973045 PMCID: PMC5626485 DOI: 10.1371/journal.pone.0185795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE The Slit-Robo signal has an important role in vasculogenesis and angiogenesis. Our study examined the expression of Slit2 and its receptor, Robo1, in a rat model of streptozotocin-induced diabetes and in patients with proliferative diabetic retinopathy. METHODS Diabetes was induced in male Sprague-Dawley rats via a single, intraperitoneal injection of streptozotocin. The rats were sacrificed 1, 3 or 6 months after the injection. The expression of Slit2 and Robo1 in retinal tissue was measured by real-time reverse transcription polymerase chain reaction (RT-PCR), and protein levels were measured by western blotting and immunohistochemistry. Recombinant N-Slit2 protein was used to study the effects of Slit2 on the expression of VEGF in vivo. The concentration of Slit2 protein in human eyes was measured by enzyme-linked immunosorbent assay in 27 eyes with proliferative diabetic retinopathy and 28 eyes in control group. The expression of Slit2, Robo1 and VEGF in the excised human fibrovascular membranes was examined by fluorescence immunostaining and semi-quantitative RT-PCR. RESULTS The expression of Slit2 and Robo1 in the retina was altered after STZ injection. Recombinant N-Slit2 protein did not increase the retinal VEGF expression. Vitreous concentrations of Slit2 were significantly higher in the study group than in the control group. In the human fibrovascular membranes of the study group, the co-localization of VEGF with the markers for Slit2 and Robo1was observed. The expression of Slit2 mRNA, Robo1 mRNA, and VEGF mRNA was significantly higher in human fibrovascular proliferative diabetic retinopathy membranes than in the control membranes. CONCLUSIONS The alteration of Slit2 and Robo1 expression in the retinas of diabetic rats and patients with proliferative diabetic retinopathy suggests a role for the Slit-Robo signal in the various stages diabetic retinopathy. Further studies should address the possible involvement of the Slit-Robo signal in the pathophysiological progress of diabetic retinopathy.
Collapse
Affiliation(s)
- Weiyan Zhou
- Department of Ophthalmology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Hongya Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wenzhen Yu
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Wankun Xie
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Min Zhao
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People’s Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
42
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
43
|
Wu MF, Liao CY, Wang LY, Chang JT. The role of Slit-Robo signaling in the regulation of tissue barriers. Tissue Barriers 2017; 5:e1331155. [PMID: 28598714 PMCID: PMC5501134 DOI: 10.1080/21688370.2017.1331155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/12/2023] Open
Abstract
The role of Slit/Robo signaling has extended from initial axon repulsion in the developing nervous system to organ morphogenesis, cancer development and angiogenesis. Slit/Robo signaling regulates similar pathways within these processes. Slit/Robo ensures the homeostasis of the dynamic interaction between cell-cell and cell-matrix interactions. The dysregulation of Slit/Robo signaling damages the tissue barrier, resulting in developmental abnormalities or disease. Here, we summarize how Slit/Robo controls kidney morphogenesis and describe the dual roles of Slit/Robo signaling in the regulation of tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Chen-Yi Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Ling-Yi Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Jinghua Tsai Chang
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|