1
|
Mimi MA, Hasan MM, Takanashi Y, Waliullah ASM, Mamun MA, Chi Z, Kahyo T, Aramaki S, Takatsuka D, Koizumi K, Setou M. UBL3 overexpression enhances EV-mediated Achilles protein secretion in conditioned media of MDA-MB-231 cells. Biochem Biophys Res Commun 2024; 738:150559. [PMID: 39182355 DOI: 10.1016/j.bbrc.2024.150559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Cancer cells communicate within the tumor microenvironment (TME) through extracellular vesicles (EVs), which act as crucial messengers in intercellular communication, transporting biomolecules to facilitate cancer progression. Ubiquitin-like 3 (UBL3) facilitates protein sorting into small EVs as a post-translational modifier. However, the effect of UBL3 overexpression in EV-mediated protein secretion has not been investigated yet. This study aimed to investigate the effect of UBL3 overexpression in enhancing EV-mediated Achilles protein secretion in MDA-MB-231 (MM) cells by a dual-reporter system integrating Akaluc and Achilles tagged with Ubiquitin where self-cleaving P2A linker connects Akaluc and Achilles. MM cells stably expressing Ubiquitin-Akaluc-P2A-Achilles (Ubi-Aka/Achi) were generated. In our study, both the bioluminescence of Ubiquitin-Akaluc (Ubi-Aka) and the fluorescence of Achilles secretion were observed. The intensity of Ubi-Aka was thirty times lower, while the Achilles was four times lower than the intensity of corresponding cells. The ratio of Ubi-Aka and Achilles in conditioned media (CM) was 7.5. They were also detected within EVs using an EV uptake luciferase assay and fluorescence imaging. To investigate the effect of the UBL3 overexpression in CM, Ubi-Aka/Achi was transiently transfected into MM-UBL3-KO, MM, and MM-Flag-UBL3 cells. We found that the relative fluorescence expression of Achilles in CM of MM-UBL3-KO, MM, and MM-Flag-UBL3 cells was 30 %, 28 %, and 45 %, respectively. These findings demonstrated that UBL3 overexpression enhances EV-mediated Achilles protein secretion in CM of MM cells. Targeting UBL3 could lead to novel therapies for cancer metastasis by reducing the secretion of pro-metastatic proteins, thereby inhibiting disease progression.
Collapse
Affiliation(s)
- Mst Afsana Mimi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Md Mahmudul Hasan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - A S M Waliullah
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Zhang Chi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shuhei Aramaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Radiation Oncology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan; Translational Biomedical Photonics, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Daiki Takatsuka
- Department of Surgery 1, Division of Breast Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kei Koizumi
- Department of Surgery 1, Division of Breast Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan; International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
2
|
Meyer M, Fourie C, van der Merwe H, Botha H, Engelbrecht AM. Targeting treatment resistance in cervical cancer: A new avenue for senolytic therapies. Adv Med Sci 2024:S1896-1126(24)00062-2. [PMID: 39549742 DOI: 10.1016/j.advms.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/27/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Cervical cancer poses a significant global health challenge, particularly impacting women in economically developing nations. This disparity stems from a combination of factors, including inadequate screening infrastructure and resource limitations. However, the foremost contributor is the widespread lack of awareness and limited accessibility to Human Papillomavirus (HPV) vaccination, which is a key preventative measure against cervical cancer development. Despite advancements in cervical cancer prevention, treatment resistance remains a major hurdle in achieving improved patient outcomes. Cellular senescence, specifically the senescence-associated secretory phenotype (SASP) and its bidirectional relationship with the immune system, has been implicated in resistance to conventional cervical cancer chemotherapy treatments. The exact mechanisms by which this state of growth arrest and the associated changes in immune regulation contribute to cervical cancer progression and the associated drug resistance are not entirely understood. This underscores the necessity for innovative strategies to address the prevalence of treatment-resistant cervical cancer, with one promising avenue being the utilisation of senolytics. Senolytics are agents that have promising efficacy in clearing senescent cells from tumour tissues, however neither the utilisation of senolytics for addressing senescence-induced treatment resistance nor the potential integration of immunotherapy as senolytic agents in cervical cancer treatment has been explored to date. This review provides a concise overview of the mechanisms underlying senescence induction and the pivotal role of the immune system in this process. Additionally, it explores various senolytic approaches that hold significant potential for advancing cervical cancer research.
Collapse
Affiliation(s)
- Madré Meyer
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Carla Fourie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Haynes van der Merwe
- Department of Obstetrics and Gynaecology, Stellenbosch University Medical Campus, Cape Town, South Africa
| | - Hennie Botha
- Department of Obstetrics and Gynaecology, Stellenbosch University Medical Campus, Cape Town, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
3
|
Chen YY, Sullivan J, Hanley S, Price J, Tariq MA, McIlvenna LC, Whitham M, Sharma-Oates A, Harrison P, Lord JM, Hazeldine J. Impact of Senescent Cell-Derived Extracellular Vesicles on Innate Immune Cell Function. Adv Biol (Weinh) 2024:e2400265. [PMID: 39441562 DOI: 10.1002/adbi.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are components of the senescence-associated secretory phenotype (SASP) that influence cellular functions via their cargo. Here, the interaction between EVs derived from senescent (SEVs) and non-senescent (N-SEVs) fibroblasts and the immune system is investigated. Via endocytosis, SEVs are phagocytosed by monocytes, neutrophils, and B cells. Studies with the monocytic THP-1 cell line find that pretreatment with SEVs results in a 32% (p < 0.0001) and 66% (p < 0.0001) increase in lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) production when compared to vehicle control or N-SEVs respectively. Interestingly, relative to vehicle control, THP-1 cells exposed to N-SEVs exhibit a 20% decrease in TNF-α secretion (p < 0.05). RNA sequencing reveals significant differences in gene expression in THP-1 cells treated with SEVs or N-SEVs, with vesicle-mediated transport and cell cycle regulation pathways featuring predominantly with N-SEV treatment, while pathways relating to SLITS/ROBO signaling, cell metabolism, and cell cycle regulation are enriched in THP-1 cells treated with SEVs. Proteomic analysis also reveals significant differences between SEV and N-SEV cargo. These results demonstrate that phagocytes and B cells uptake SEVs and drive monocytes toward a more proinflammatory phenotype upon LPS stimulation. SEVs may therefore contribute to the more proinflammatory immune response seen with aging.
Collapse
Affiliation(s)
- Yung-Yi Chen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jack Sullivan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| | - Shaun Hanley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad A Tariq
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke C McIlvenna
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, B15 2TH, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| |
Collapse
|
4
|
Bach ML, Laftih S, Andresen JK, Pedersen RM, Andersen TE, Madsen LW, Madsen K, Hinrichs GR, Zachar R, Svenningsen P, Lund L, Johansen IS, Hansen LF, Palarasah Y, Jensen BL. ACE2 and TMPRSS2 in human kidney tissue and urine extracellular vesicles with age, sex, and COVID-19. Pflugers Arch 2024:10.1007/s00424-024-03022-y. [PMID: 39382598 DOI: 10.1007/s00424-024-03022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
SARS-CoV-2 virus infects cells by engaging with ACE2 requiring protease TMPRSS2. ACE2 is highly expressed in kidneys. Predictors for severe disease are high age and male sex. We hypothesized that ACE2 and TMPRSS2 proteins are more abundant (1) in males and with increasing age in kidney and (2) in urine and extracellular vesicles (EVs) from male patients with COVID-19 and (3) SARS-CoV-2 is present in urine and EVs during infection. Kidney cortex samples from patients subjected to cancer nephrectomy (male/female; < 50 years/˃75 years, n = 24; ˃80 years, n = 15) were analyzed for ACE2 and TMPRSS2 protein levels. Urine from patients hospitalized with SARS-CoV-2 infection was analyzed for ACE2 and TMPRSS2. uEVs were used for immunoblotting and SARS-CoV-2 mRNA and antigen detection. Tissue ACE2 and TMPRSS2 protein levels did not change with age. ACE2 was not more abundant in male kidneys in any age group. ACE2 protein was associated with proximal tubule apical membranes in cortex. TMPRSS2 was observed predominantly in the medulla. ACE2 was elevated significantly in uEVs and urine from patients with COVID-19 with no sex difference compared with urine from controls w/wo albuminuria. TMPRSS2 was elevated in uEVs from males compared to female. ACE2 and TMPRSS2 did not co-localize in uEVs/apical membranes. SARS-CoV-2 nucleoprotein and mRNA were not detected in urine. Higher kidney ACE2 protein abundance is unlikely to explain higher susceptibility to SARS-CoV-2 infection in males. Kidney tubular cells appear not highly susceptible to SARS-CoV-2 infection. Loss of ACE2 into urine in COVID could impact susceptibility and angiotensin metabolism.
Collapse
Affiliation(s)
- Marie Lykke Bach
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Sara Laftih
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper K Andresen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rune M Pedersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital, and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Lone W Madsen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
- Unit for Infectious Diseases, Department of Medicine, Sygehus Lillebælt, Kolding, Denmark
| | - Kirsten Madsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Gitte R Hinrichs
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Rikke Zachar
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Per Svenningsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | | | - Yaseelan Palarasah
- Unit of Inflammation and Cancer Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Peng S, Liu X, Chang L, Liu B, Zhang M, Mao Y, Shen X. Exosomes Derived from Rejuvenated Stem Cells Inactivate NLRP3 Inflammasome and Pyroptosis of Nucleus Pulposus Cells via the Transfer of Antioxidants. Tissue Eng Regen Med 2024; 21:1061-1077. [PMID: 39060654 PMCID: PMC11416441 DOI: 10.1007/s13770-024-00663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Accumulating evidence supports the potential of exosomes as a promising therapeutic approach for intervertebral disc degeneration (IDD). Nevertheless, enhancing the efficiency of exosome treatment remains an urgent concern. This study investigated the impact of quercetin on the characteristics of mesenchymal stem cells (MSCs) and their released exosomes. METHODS Exosomes were obtained from quercetin pre-treated MSCs and quantified for the production based on nanoparticle tracking and western blot analysis. The molecules involved in the secretion and cargo sorting of exosomes were investigated using western blot and immunofluorescence analysis. Based on the in vitro biological analysis and in vivo histological analysis, the effects of exosomes derived from conventional or quercetin-treated MSCs on nucleus pulposus (NP) cells were compared. RESULTS A significant enhancement in the production and transportation efficiency of exosomes was observed in quercetin-treated MSCs. Moreover, the exosomes derived from quercetin-treated MSCs exhibited a greater abundance of antioxidant proteins, specifically superoxide dismutase 1 (SOD1), which inhibit the activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome in NP cells. Through in vitro and in vivo experiments, it was elucidated that exosomes derived from quercetin-treated MSCs possessed enhanced anti-inflammatory and antioxidant properties. CONCLUSION Collectively, our research underscores an optimized therapeutic strategy for IDD utilizing MSC-derived exosomes, thereby augmenting the efficacy of exosomes in intervertebral disc regeneration.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Xiangyang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Lei Chang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Bin Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Mingyan Zhang
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China
| | - Yan Mao
- Department of Ophthalmology, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, China
| | - Xiongjie Shen
- Department of Spine Surgery, Hunan Provincial People's Hospital, 61 Jiefang West Road, Furong District, Changsha, 410005, Hunan, China.
| |
Collapse
|
6
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
7
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
8
|
Zhang F, Guo J, Yu S, Zheng Y, Duan M, Zhao L, Wang Y, Yang Z, Jiang X. Cellular senescence and metabolic reprogramming: Unraveling the intricate crosstalk in the immunosuppressive tumor microenvironment. Cancer Commun (Lond) 2024; 44:929-966. [PMID: 38997794 PMCID: PMC11492308 DOI: 10.1002/cac2.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
The intrinsic oncogenic mechanisms and properties of the tumor microenvironment (TME) have been extensively investigated. Primary features of the TME include metabolic reprogramming, hypoxia, chronic inflammation, and tumor immunosuppression. Previous studies suggest that senescence-associated secretory phenotypes that mediate intercellular information exchange play a role in the dynamic evolution of the TME. Specifically, hypoxic adaptation, metabolic dysregulation, and phenotypic shifts in immune cells regulated by cellular senescence synergistically contribute to the development of an immunosuppressive microenvironment and chronic inflammation, thereby promoting the progression of tumor events. This review provides a comprehensive summary of the processes by which cellular senescence regulates the dynamic evolution of the tumor-adapted TME, with focus on the complex mechanisms underlying the relationship between senescence and changes in the biological functions of tumor cells. The available findings suggest that components of the TME collectively contribute to the progression of tumor events. The potential applications and challenges of targeted cellular senescence-based and combination therapies in clinical settings are further discussed within the context of advancing cellular senescence-related research.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
- Department of Hepatobiliary and Pancreatic SurgeryPeking University First HospitalBeijingP. R. China
| | - Junchen Guo
- Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Shengmiao Yu
- Outpatient DepartmentThe Fourth Affiliated HospitalChina Medical UniversityShenyangLiaoningP. R. China
| | - Youwei Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Meiqi Duan
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Liang Zhao
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Yihan Wang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhi Yang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaofeng Jiang
- Department of General SurgeryThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
9
|
Knopf P, Pacheco-Torres J, Zizmare L, Mori N, Wildes F, Zhou B, Krishnamachary B, Mironchik Y, Kneilling M, Trautwein C, Pichler BJ, Bhujwalla ZM. Metabolic fingerprinting by nuclear magnetic resonance of hepatocellular carcinoma cells during p53 reactivation-induced senescence. NMR IN BIOMEDICINE 2024; 37:e5157. [PMID: 38589764 DOI: 10.1002/nbm.5157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Cellular senescence is characterized by stable cell cycle arrest. Senescent cells exhibit a senescence-associated secretory phenotype that can promote tumor progression. The aim of our study was to identify specific nuclear magnetic resonance (NMR) spectroscopy-based markers of cancer cell senescence. For metabolic studies, we employed murine liver carcinoma Harvey Rat Sarcoma Virus (H-Ras) cells, in which reactivation of p53 expression induces senescence. Senescent and nonsenescent cell extracts were subjected to high-resolution proton (1H)-NMR spectroscopy-based metabolomics, and dynamic metabolic changes during senescence were analyzed using a magnetic resonance spectroscopy (MRS)-compatible cell perfusion system. Additionally, the ability of intact senescent cells to degrade the extracellular matrix (ECM) was quantified in the cell perfusion system. Analysis of senescent H-Ras cell extracts revealed elevated sn-glycero-3-phosphocholine, myoinositol, taurine, and creatine levels, with decreases in glycine, o-phosphocholine, threonine, and valine. These metabolic findings were accompanied by a greater degradation index of the ECM in senescent H-Ras cells than in control H-Ras cells. MRS studies with the cell perfusion system revealed elevated creatine levels in senescent cells on Day 4, confirming the 1H-NMR results. These senescence-associated changes in metabolism and ECM degradation strongly impact growth and redox metabolism and reveal potential MRS signals for detecting senescent cancer cells in vivo.
Collapse
Affiliation(s)
- Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Noriko Mori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Benyuan Zhou
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Ji P, Wang C, Liu Y, Guo X, Liang Y, Wei J, Liu Z, Gong L, Yang G, Ji G. Targeted Clearance of Senescent Cells Via Engineered Extracellular Vesicles Reprograms Tumor Immunosuppressive Microenvironment. Adv Healthc Mater 2024; 13:e2400945. [PMID: 38794820 DOI: 10.1002/adhm.202400945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Unravelling the mechanisms for the immunosuppressive tumor microenvironment and developing corresponding therapeutic strategies are of great importance to improve the cancer immunotherapy. This study has revealed that there are abundant senescent cells accumulated in the colon cancer tissue, which contributes greatly to the immunosuppressive microenvironment. Oral delivery of Dasatinib and Quercetin (D+Q) eliminates the senescent cells with compromised efficiency due to the poor tumor penetration and short half-life. To improve the efficacy of senescent cell clearance, this work has developed an extracellular vesicle (EV) based senolytic strategy. The engineered senolytic EVs have anti-GPNMB (a senescent cell surface marker) displayed on the surface and D+Q loaded on the membrane. In a syngeneic mouse model, senolytic EVs efficiently and selectively eradicate the senescent cells and in turn unleashes the antitumor immunity. With the antitumor immunity boosted, cancer growth is inhibited and the survival is prolonged. In summary, this work has illuminated that senescent cells contribute to the immunosuppressive microenvironment in colon cancer and proposes a novel strategy to conquer the problem by EV-based senolytics.
Collapse
Affiliation(s)
- Panpan Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yang Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xin Guo
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jiangpeng Wei
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaoyou Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Military Medical Innovation Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
11
|
Yanagawa K, Kuma A, Hamasaki M, Kita S, Yamamuro T, Nishino K, Nakamura S, Omori H, Kaminishi T, Oikawa S, Kato Y, Edahiro R, Kawagoe R, Taniguchi T, Tanaka Y, Shima T, Tabata K, Iwatani M, Bekku N, Hanayama R, Okada Y, Akimoto T, Kosako H, Takahashi A, Shimomura I, Sakata Y, Yoshimori T. The Rubicon-WIPI axis regulates exosome biogenesis during ageing. Nat Cell Biol 2024; 26:1558-1570. [PMID: 39174742 DOI: 10.1038/s41556-024-01481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Cells release intraluminal vesicles in multivesicular bodies as exosomes to communicate with other cells. Although recent studies suggest an intimate link between exosome biogenesis and autophagy, the detailed mechanism is not fully understood. Here we employed comprehensive RNA interference screening for autophagy-related factors and discovered that Rubicon, a negative regulator of autophagy, is essential for exosome release. Rubicon recruits WIPI2d to endosomes to promote exosome biogenesis. Interactome analysis of WIPI2d identified the ESCRT components that are required for intraluminal vesicle formation. Notably, we found that Rubicon is required for an age-dependent increase of exosome release in mice. In addition, small RNA sequencing of serum exosomes revealed that Rubicon determines the fate of exosomal microRNAs associated with cellular senescence and longevity pathways. Taken together, our current results suggest that the Rubicon-WIPI axis functions as a key regulator of exosome biogenesis and is responsible for age-dependent changes in exosome quantity and quality.
Collapse
Affiliation(s)
- Kyosuke Yanagawa
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Tokyo New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Higashimurayama, Japan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Hiroko Omori
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Satoshi Oikawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Waseda Institute for Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryosuke Kawagoe
- i2i-Labo, Yokohama Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama, Japan
| | - Takako Taniguchi
- i2i-Labo, Yokohama Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama, Japan
| | - Yoko Tanaka
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Shima
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Miki Iwatani
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nao Bekku
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
- WPI Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Japan
| | - Takayuki Akimoto
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan.
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
12
|
Dong Z, Luo Y, Yuan Z, Tian Y, Jin T, Xu F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol Cancer 2024; 23:181. [PMID: 39217404 PMCID: PMC11365203 DOI: 10.1186/s12943-024-02096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cellular senescence (CS), a permanent and irreversible arrest of the cell cycle and proliferation leading to the degeneration of cellular structure and function, has been implicated in various key physiological and pathological processes, particularly in cancer. Initially, CS was recognized as a barrier to tumorigenesis, serving as an intrinsic defense mechanism to protect cells from malignant transformation. However, increasing evidence suggests that senescent cells can promote tumor progression to overt malignancy, primarily through a set of factors known as senescence-associated secretory phenotypes (SASPs), including chemokines, growth factors, cytokines, and stromal metalloproteinases. These factors significantly reshape the tumor microenvironment (TME), enabling tumors to evade immune destruction. Interestingly, some studies have also suggested that SASPs may impede tumor development by enhancing immunosurveillance. These opposing roles highlight the complexity and heterogeneity of CS and SASPs in diverse cancers. Consequently, there has been growing interest in pharmacological interventions targeting CS or SASPs in cancer therapy, such as senolytics and senomorphics, to either promote the clearance of senescent cells or mitigate the harmful effects of SASPs. In this review, we will interpret the concept of CS, delve into the role of SASPs in reshaping the TME, and summarize recent advances in anti-tumor strategies targeting CS or SASPs.
Collapse
Affiliation(s)
- Zening Dong
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yahan Luo
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Shanghai, China
| | - Zhangchen Yuan
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianqiang Jin
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Feng Xu
- Hepatobiliary and Splenic Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Motlagh RA, Pipella J, Thompson PJ. Exploring senescence as a modifier of β cell extracellular vesicles in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1422279. [PMID: 39239092 PMCID: PMC11374605 DOI: 10.3389/fendo.2024.1422279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Type 1 Diabetes (T1D) is a chronic metabolic disease resulting from insulin deficiency due to autoimmune loss of pancreatic β cells. In addition to β cell destruction, it is now accepted that β cell stress and dysfunction, such as senescence, plays a crucial role in the development of the disease. Accumulation of senescent β cells occurs during development of T1D in humans and contributes to the progression of T1D in the nonobese diabetic (NOD) mouse model. Senescent β cells are thought to exacerbate the inflammatory response within the islets by production and secretion of senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) from β cells have been shown to carry protein and microRNAs (miRNAs), influencing cellular signaling and may contribute to the development of T1D but it remains to be addressed how senescence impacts β cell EV cargo. In this minireview, we discuss emerging evidence that EV cargo proteins and miRNAs associated with senescence could contribute to the development of T1D and could suggest potential biomarkers and therapeutic targets for the regulation of SASP and elimination of senescent β cells in T1D. Future investigation exploring the intricate relationship between β cell senescence, EVs and miRNAs could pave the way for the development of novel diagnostic techniques and therapeutic interventions.
Collapse
Affiliation(s)
- Roozbeh Akbari Motlagh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Jasmine Pipella
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Wu D, Zhao X, Xie J, Yuan R, Li Y, Yang Q, Cheng X, Wu C, Wu J, Zhu N. Physical modulation of mesenchymal stem cell exosomes: A new perspective for regenerative medicine. Cell Prolif 2024; 57:e13630. [PMID: 38462759 PMCID: PMC11294442 DOI: 10.1111/cpr.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exo) offer promising therapeutic potential for various refractory diseases, presenting a novel therapeutic strategy. However, their clinical application encounters several obstacles, including low natural secretion, uncontrolled biological functions and inherent heterogeneity. On the one hand, physical stimuli can mimic the microenvironment dynamics where MSC-Exo reside. These factors influence not only their secretion but also, significantly, their biological efficacy. Moreover, physical factors can also serve as techniques for engineering exosomes. Therefore, the realm of physical factors assumes a crucial role in modifying MSC-Exo, ultimately facilitating their clinical translation. This review focuses on the research progress in applying physical factors to MSC-Exo, encompassing ultrasound, electrical stimulation, light irradiation, intrinsic physical properties, ionizing radiation, magnetic field, mechanical forces and temperature. We also discuss the current status and potential of physical stimuli-affected MSC-Exo in clinical applications. Furthermore, we address the limitations of recent studies in this field. Based on this, this review provides novel insights to advance the refinement of MSC-Exo as a therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Dan Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiansheng Zhao
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jiaheng Xie
- Department of Plastic SurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Ruoyue Yuan
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yue Li
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Quyang Yang
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiujun Cheng
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Changyue Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jinyan Wu
- Department of DermatologyChongzhou People's HospitalChengduChina
| | - Ningwen Zhu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
- Department of PlasticReconstructive and Burns Surgery, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
15
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
17
|
Feng Y, He C, Liu C, Shao B, Wang D, Wu P. Exploring the Complexity and Promise of Tumor Immunotherapy in Drug Development. Int J Mol Sci 2024; 25:6444. [PMID: 38928150 PMCID: PMC11204037 DOI: 10.3390/ijms25126444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer represents a significant threat to human health, and traditional chemotherapy or cytotoxic therapy is no longer the sole or preferred approach for managing malignant tumors. With advanced research into the immunogenicity of tumor cells and the growing elderly population, tumor immunotherapy has emerged as a prominent therapeutic option. Its significance in treating elderly cancer patients is increasingly recognized. In this study, we review the conceptual classifications and benefits of immunotherapy, and discuss recent developments in new drugs and clinical progress in cancer treatment through various immunotherapeutic modalities with different mechanisms. Additionally, we explore the impact of immunosenescence on the effectiveness of cancer immunotherapy and propose innovative and effective strategies to rejuvenate senescent T cells.
Collapse
Affiliation(s)
| | | | | | | | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (C.H.); (C.L.); (B.S.)
| | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (C.H.); (C.L.); (B.S.)
| |
Collapse
|
18
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00738-8. [PMID: 38831121 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
19
|
Shen J, Hu L, Huang X, Mao J, Wu Y, Xie Z, Lan Y. Skeleton-derived extracellular vesicles in bone and whole-body aging: From mechanisms to potential applications. Bone 2024; 183:117076. [PMID: 38521235 DOI: 10.1016/j.bone.2024.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The skeleton serves as a supportive and protective organ for the body. As individuals age, their bone tissue undergoes structural, cellular, and molecular changes, including the accumulation of senescent cells. Extracellular vesicles (EVs) play a crucial role in aging through the cellular secretome and have been found to induce or accelerate age-related dysfunction in bones and to contribute further via the circulatory system to the aging of phenotypes of other bodily systems. However, the extent of these effects and their underlying mechanisms remain unclear. Therefore, this paper attempts to give an overview of the current understanding of age-related alteration in EVs derived from bones. The role of EVs in mediating communications among bone-related cells and other body parts is discussed, and the significance of bones in the whole-body aging process is highlighted. Ultimately, it is hoped that gaining a clearer understanding of the relationship between EVs and aging mechanisms may serve as a basis for new treatment strategies for age-related degenerative diseases in the skeleton and other systems.
Collapse
Affiliation(s)
- Jiahui Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Lingling Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jiajie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuzhu Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Yanhua Lan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
20
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
21
|
Laliberté C, Bossé B, Bourdeau V, Prieto LI, Perron-Deshaies G, Vuong-Robillard N, Igelmann S, Aguilar LC, Oeffinger M, Baker DJ, DesGroseillers L, Ferbeyre G. Senescent Macrophages Release Inflammatory Cytokines and RNA-Loaded Extracellular Vesicles to Circumvent Fibroblast Senescence. Biomedicines 2024; 12:1089. [PMID: 38791051 PMCID: PMC11118806 DOI: 10.3390/biomedicines12051089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Senescent cells, which accumulate with age, exhibit a pro-inflammatory senescence-associated secretory phenotype (SASP) that includes the secretion of cytokines, lipids, and extracellular vesicles (EVs). Here, we established an in vitro model of senescence induced by Raf-1 oncogene in RAW 264.7 murine macrophages (MΦ) and compared them to senescent MΦ found in mouse lung tumors or primary macrophages treated with hydrogen peroxide. The transcriptomic analysis of senescent MΦ revealed an important inflammatory signature regulated by NFkB. We observed an increased secretion of EVs in senescent MΦ, and these EVs presented an enrichment for ribosomal proteins, major vault protein, pro-inflammatory miRNAs, including miR-21a, miR-155, and miR-132, and several mRNAs. The secretion of senescent MΦ allowed senescent murine embryonic fibroblasts to restart cell proliferation. This antisenescence function of the macrophage secretome may explain their pro-tumorigenic activity and suggest that senolytic treatment to eliminate senescent MΦ could potentially prevent these deleterious effects.
Collapse
Affiliation(s)
- Camille Laliberté
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada (B.B.); (V.B.)
| | - Bianca Bossé
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada (B.B.); (V.B.)
- Centre de Recherche du Centre, Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada (G.P.-D.)
| | - Véronique Bourdeau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada (B.B.); (V.B.)
| | - Luis I. Prieto
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (L.I.P.); (D.J.B.)
- Department of Pediatrics, Mayo Clinic, Rochester, MN 55905, USA
| | - Genève Perron-Deshaies
- Centre de Recherche du Centre, Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada (G.P.-D.)
| | - Nhung Vuong-Robillard
- Centre de Recherche du Centre, Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada (G.P.-D.)
| | - Sebastian Igelmann
- Centre de Recherche du Centre, Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada (G.P.-D.)
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| | - Lisbeth Carolina Aguilar
- Institut de Recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada (M.O.)
| | - Marlene Oeffinger
- Institut de Recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada (M.O.)
| | - Darren J. Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (L.I.P.); (D.J.B.)
- Department of Pediatrics, Mayo Clinic, Rochester, MN 55905, USA
- Paul F. Glenn Center for Biology of Aging Research, Mayo Clinic, 200 1st ST SW, Rochester, MN 55905, USA
| | - Luc DesGroseillers
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada (B.B.); (V.B.)
| | - Gerardo Ferbeyre
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada (B.B.); (V.B.)
- Centre de Recherche du Centre, Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada (G.P.-D.)
| |
Collapse
|
22
|
Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal diseases: shedding light on blood-retinal barrier dysfunction. J Biomed Sci 2024; 31:48. [PMID: 38730462 PMCID: PMC11088087 DOI: 10.1186/s12929-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.
Collapse
Affiliation(s)
- Beatriz Martins
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - Maria Pires
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - António Francisco Ambrósio
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - Rosa Fernandes
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal.
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal.
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal.
| |
Collapse
|
23
|
Ning N, Lu J, Li Q, Li M, Cai Y, Wang H, Li J. Single-sEV profiling identifies the TACSTD2 + sEV subpopulation as a factor of tumor susceptibility in the elderly. J Nanobiotechnology 2024; 22:222. [PMID: 38698420 PMCID: PMC11067244 DOI: 10.1186/s12951-024-02456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Aging is a very complex physiological phenomenon, and sEVs are involved in the regulation of this mechanism. Serum samples from healthy individuals under 30 and over 60 years of age were collected to analyze differences in sEVs proteomics. RESULTS Based on PBA analysis, we found that sEVs from the serum of elderly individuals highly express TACSTD2 and identified a subpopulation marked by TACSTD2. Using ELISA, we verified the upregulation of TACSTD2 in serum from elderly human and aged mouse. In addition, we discovered that TACSTD2 was significantly increased in samples from tumor patients and had better diagnostic value than CEA. Specifically, 9 of the 13 tumor groups exhibited elevated TACSTD2, particularly for cervical cancer, colon cancer, esophageal carcinoma, liver cancer and thyroid carcinoma. Moreover, we found that serum sEVs from the elderly (especially those with high TACSTD2 levels) promoted tumor cell (SW480, HuCCT1 and HeLa) proliferation and migration. CONCLUSION TACSTD2 was upregulated in the serum of elderly individuals and patients with tumors, and could serve as a dual biomarker for aging and tumors.
Collapse
Affiliation(s)
- Nannan Ning
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Jianying Lu
- School of Public Health, Shandong University, Jinan, China
| | - Qianpeng Li
- Department of Hematology, Weifang People's Hospital, Weifang, China
| | - Mengmeng Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanling Cai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China.
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
24
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
25
|
Wang R, Shi Y, Lv Y, Xie C, Hu Y. The novel insights of epithelial-derived exosomes in various fibrotic diseases. Biomed Pharmacother 2024; 174:116591. [PMID: 38631144 DOI: 10.1016/j.biopha.2024.116591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The characteristics of fibrosis include the abnormal accumulation of extracellular matrix proteins and abnormal tissue repair caused by injury, infection, and inflammation, leading to a significant increase in organ failure and mortality. Effective and precise treatments are urgently needed to halt and reverse the progression of fibrotic diseases. Exosomes are tiny vesicles derived from endosomes, spanning from 40 to 160 nanometers in diameter, which are expelled into the extracellular matrix environment by various cell types. They play a crucial role in facilitating cell-to-cell communication by transporting a variety of cargoes, including proteins, RNA, and DNA. Epithelial cells serve as the primary barrier against diverse external stimuli that precipitate fibrotic diseases. Numerous research suggests that exosomes from epithelial cells have a significant impact on several fibrotic diseases. An in-depth comprehension of the cellular and molecular mechanisms of epithelial cell-derived exosomes in fibrosis holds promise for advancing the exploration of novel diagnostic biomarkers and clinical drug targets. In this review, we expand upon the pathogenic mechanisms of epithelium-derived exosomes and highlight their role in the fibrotic process by inducing inflammation and activating fibroblasts. In addition, we are particularly interested in the bioactive molecules carried by epithelial-derived exosomes and their potential value in the diagnosis and treatment of fibrosis and delineate the clinical utility of exosomes as an emerging therapeutic modality, highlighting their potential application in addressing various medical conditions.
Collapse
Affiliation(s)
- Rifu Wang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yuxin Shi
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Yonglin Lv
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Yanjia Hu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00727-x. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
27
|
Atri Roozbahani G, Kokal-Ribaudo M, Heidari Horestani M, Pungsrinont T, Baniahmad A. The protein composition of exosomes released by prostate cancer cells is distinctly regulated by androgen receptor-antagonists and -agonist to stimulate growth of target cells. Cell Commun Signal 2024; 22:219. [PMID: 38589887 PMCID: PMC11000412 DOI: 10.1186/s12964-024-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignancy in men worldwide, ranking as the second leading cause of cancer-related death in Western countries. Various PCa hormone therapies, such as androgen receptor (AR)-antagonists or supraphysiological androgen level (SAL) reduce cancer cell proliferation. However, treated cells may influence the growth of neighboring cells through secreted exosomes in the tumor microenvironment (TME). Here, the change of protein content of exosomes secreted from PCa cells through treatment with different AR-antagonists or SAL has been analyzed. METHODS Isolation of exosomes via ultracentrifugation of treated human PCa LNCaP cells with AR-agonist and various AR-antagonists; analysis of cellular senescence by detection of senescence associated beta galactosidase activity (SA β-Gal); Western blotting and immunofluorescence staining; Mass spectrometry (MS-spec) of exosomes and bioinformatic analyses to identify ligand-specific exosomal proteins. Growth assays to analyze influence of exosomes on non-treated cells. RESULTS MS-spec analysis identified ligand-specific proteins in exosomes. One thousand seventy proteins were up- and 52 proteins downregulated by SAL whereas enzalutamide upregulated 151 proteins and downregulated 42 exosomal proteins. The bioinformatic prediction indicates an up-regulation of pro-proliferative pathways. AR ligands augment hub factors in exosomes that include AKT1, CALM1, PAK2 and CTNND1. Accordingly, functional assays confirmed that the isolated exosomes from AR-ligand treated cells promote growth of untreated PCa cells. CONCLUSION The data suggest that the cargo of exosomes is controlled by AR-agonist and -antagonists and distinct among the AR-antagonists. Further, exosomes promote growth that might influence the TME. This finding sheds light into the complex interplay between AR signaling and exosome-mediated communication between PCa cells.
Collapse
Affiliation(s)
- Golnaz Atri Roozbahani
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Miriam Kokal-Ribaudo
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | | | - Thanakorn Pungsrinont
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, 07740, Jena, Germany.
| |
Collapse
|
28
|
Zhang D, Zhang JW, Xu H, Chen X, Gao Y, Jiang HG, Wang Y, Wu H, Yang L, Wang WB, Dai J, Xia L, Peng J, Zhou FX. Therapy-induced senescent tumor cell-derived extracellular vesicles promote colorectal cancer progression through SERPINE1-mediated NF-κB p65 nuclear translocation. Mol Cancer 2024; 23:70. [PMID: 38576002 PMCID: PMC10993572 DOI: 10.1186/s12943-024-01985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Cellular senescence frequently occurs during anti-cancer treatment, and persistent senescent tumor cells (STCs) unfavorably promote tumor progression through paracrine secretion of the senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) have recently emerged as a novel component of the SASP and primarily mediate the tumor-promoting effect of the SASP. Of note, the potential effect of EVs released from STCs on tumor progression remains largely unknown. METHODS We collected tumor tissues from two cohorts of colorectal cancer (CRC) patients to examine the expression of p16, p21, and SERPINE1 before and after anti-cancer treatment. Cohort 1 included 22 patients with locally advanced rectal cancer (LARC) who received neoadjuvant therapy before surgical resection. Cohort 2 included 30 patients with metastatic CRC (mCRC) who received first-line irinotecan-contained treatment. CCK-8, transwell, wound-healing assay, and tumor xenograft experiments were carried out to determine the impacts of EVs released from STCs on CRC progression in vitro and in vivo. Quantitative proteomic analysis was applied to identify protein cargo inside EVs secreted from STCs. Immunoprecipitation and mass spectrometer identification were utilized to explore the binding partners of SERPINE1. The interaction of SERPINE1 with p65 was verified by co-immunoprecipitation, and their co-localization was confirmed by immunofluorescence. RESULTS Chemotherapeutic agents and irradiation could potently induce senescence in CRC cells in vitro and in human CRC tissues. The more significant elevation of p16 and p21 expression in patients after anti-cancer treatment displayed shorter disease-free survival (DFS) for LARC or progression-free survival (PFS) for mCRC. We observed that compared to non-STCs, STCs released an increased number of EVs enriched in SERPINE1, which further promoted the progression of recipient cancer cells. Targeting SERPINE1 with a specific inhibitor, tiplaxtinin, markedly attenuated the tumor-promoting effect of STCs-derived EVs. Additionally, the patients with greater increment of SERPINE1 expression after anti-cancer treatment had shorter DFS for LARC or PFS for mCRC. Mechanistically, SERPINE1 bound to p65, promoting its nuclear translocation and subsequently activating the NF-κB signaling pathway. CONCLUSIONS We provide the in vivo evidence of the clinical prognostic implications of therapy-induced senescence. Our results revealed that STCs were responsible for CRC progression by producing large amounts of EVs enriched in SERPINE1. These findings further confirm the crucial role of therapy-induced senescence in tumor progression and offer a potential therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jian-Wei Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yu Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huan-Gang Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Han Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wen-Bo Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ling Xia
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Fu-Xiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China.
| |
Collapse
|
29
|
Okawa H, Tanaka Y, Takahashi A. Network of extracellular vesicles surrounding senescent cells. Arch Biochem Biophys 2024; 754:109953. [PMID: 38432566 DOI: 10.1016/j.abb.2024.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Extracellular vesicles (EVs) are small lipid bilayers released from cells that contain cellular components such as proteins, nucleic acids, lipids, and metabolites. Biological information is transmitted between cells via the EV content. Cancer and senescent cells secrete more EVs than normal cells, delivering more information to the surrounding recipient cells. Cellular senescence is a state of irreversible cell cycle arrest caused by the accumulation of DNA damage. Senescent cells secrete various inflammatory proteins known as the senescence-associated secretory phenotype (SASP). Inflammatory SASP factors, including small EVs, induce chronic inflammation and lead to various age-related pathologies. Recently, senolytic drugs that selectively induce cell death in senescent cells have been developed to suppress the pathogenesis of age-related diseases. This review describes the characteristics of senescent cells, the functions of EVs released from senescent cells, and the therapeutic effects of EVs on age-related diseases. Understanding the biology of EVs secreted from senescent cells will provide valuable insights for achieving healthy longevity in an aging society.
Collapse
Affiliation(s)
- Hikaru Okawa
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Division of Cellular and Molecular Imaging of Cancer, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Yoko Tanaka
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Akiko Takahashi
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
| |
Collapse
|
30
|
Zingoni A, Antonangeli F, Sozzani S, Santoni A, Cippitelli M, Soriani A. The senescence journey in cancer immunoediting. Mol Cancer 2024; 23:68. [PMID: 38561826 PMCID: PMC10983694 DOI: 10.1186/s12943-024-01973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer progression is continuously controlled by the immune system which can identify and destroy nascent tumor cells or inhibit metastatic spreading. However, the immune system and its deregulated activity in the tumor microenvironment can also promote tumor progression favoring the outgrowth of cancers capable of escaping immune control, in a process termed cancer immunoediting. This process, which has been classified into three phases, i.e. "elimination", "equilibrium" and "escape", is influenced by several cancer- and microenvironment-dependent factors. Senescence is a cellular program primed by cells in response to different pathophysiological stimuli, which is based on long-lasting cell cycle arrest and the secretion of numerous bioactive and inflammatory molecules. Because of this, cellular senescence is a potent immunomodulatory factor promptly recruiting immune cells and actively promoting tissue remodeling. In the context of cancer, these functions can lead to both cancer immunosurveillance and immunosuppression. In this review, the authors will discuss the role of senescence in cancer immunoediting, highlighting its context- and timing-dependent effects on the different three phases, describing how senescent cells promote immune cell recruitment for cancer cell elimination or sustain tumor microenvironment inflammation for immune escape. A potential contribution of senescent cells in cancer dormancy, as a mechanism of therapy resistance and cancer relapse, will be discussed with the final objective to unravel the immunotherapeutic implications of senescence modulation in cancer.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, 00185, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy
- IRCCS Neuromed, Pozzilli, 86077, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| | - Alessandra Soriani
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, 00161, Italy.
| |
Collapse
|
31
|
Bitencourt TC, Vargas JE, Silva AO, Fraga LR, Filippi‐Chiela E. Subcellular structure, heterogeneity, and plasticity of senescent cells. Aging Cell 2024; 23:e14154. [PMID: 38553952 PMCID: PMC11019148 DOI: 10.1111/acel.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.
Collapse
Affiliation(s)
- Thais Cardoso Bitencourt
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | | | - Andrew Oliveira Silva
- Faculdade Estácio RSPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Programa de Pós‐Graduação Em Medicina: Ciências MédicasUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
| | - Eduardo Filippi‐Chiela
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
- Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| |
Collapse
|
32
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
33
|
Chatzikalil E, Stergiou IE, Papadakos SP, Konstantinidis I, Theocharis S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int J Mol Sci 2024; 25:3834. [PMID: 38612645 PMCID: PMC11011407 DOI: 10.3390/ijms25073834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
34
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
35
|
Fraile-Martinez O, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Garcia-Montero C, Barrena-Blázquez S, García-García J, García-Honduvilla N, Alvarez-Mon M, Lopez-Gonzalez L, Diaz-Pedrero R, Guijarro LG, Ortega MA. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Front Genet 2024; 15:1345459. [PMID: 38469117 PMCID: PMC10925776 DOI: 10.3389/fgene.2024.1345459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Joaquin García-García
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala deHenares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcala deHenares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala deHenares, Spain
| |
Collapse
|
36
|
Liu T, Li N, Pu J, Zhang C, Xu K, Wang W, Liu L, Gao L, Xu X, Tan J. The plasma derived exosomal miRNA-483-5p/502-5p serve as potential MCI biomarkers in aging. Exp Gerontol 2024; 186:112355. [PMID: 38190948 DOI: 10.1016/j.exger.2023.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is rapidly becoming one of the most costly, fatal diseases, which is typically discovered in the late stage of molecular pathology, at which point medication intervention is irreversible. As a result, there is an urgent need for a low-cost, least-invasive way of screening cognitive impairment, with the goal of identifying persons at risk of AD. Mild cognitive impairment (MCI) has been described as a transitional state between normal cognitive aging and AD. Early detection and timely tracking of MCI can to some extent prevent the progression towards AD. We found a population in Northwestern China has a comparatively high prevalence of MCI. Continued education, consistent exercise, and a secure financial situation can all help older people maintain cognitive function. Due to the critical role of circulating microRNAs in intercellular signaling and the perturbations thereof, their investigation has assumed paramount significance in elucidating various pathological conditions. Numerous investigations have substantiated the significance of circulating miRNAs specifically in MCI. Here, we evaluated miR-483-5p (Area Under the Curve (AUC) is 0.901, sensitivity 79.2 % and specificity 100 %) and miR-502-5p (AUC is 0.872, sensitivity 79.2 % and specificity 83.3 %), which were derived from plasma exosomes and maintained at high levels in elderly people with MCI, could be employed as promising noninvasive biomarkers.
Collapse
Affiliation(s)
- Ting Liu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Na Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Caihong Zhang
- Changkong Hospital, Tianshui 741000, Gansu Province, China
| | - Kun Xu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wenting Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Linsheng Liu
- Changkong Hospital, Tianshui 741000, Gansu Province, China
| | - Lihong Gao
- Changkong Hospital, Tianshui 741000, Gansu Province, China
| | - Xiaonan Xu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jiying Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
37
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
38
|
Nedachi T, Bonod C, Rorteau J, Chinoune W, Ishiuchi Y, Hughes S, Gillet B, Bechetoille N, Sigaudo-Roussel D, Lamartine J. Chronological aging impacts abundance, function and microRNA content of extracellular vesicles produced by human epidermal keratinocytes. Aging (Albany NY) 2023; 15:12702-12722. [PMID: 38015712 DOI: 10.18632/aging.205245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
The disturbance of intercellular communication is one of the hallmarks of aging. The goal of this study is to clarify the impact of chronological aging on extracellular vesicles (EVs), a key mode of communication in mammalian tissues. We focused on epidermal keratinocytes, the main cells of the outer protective layer of the skin which is strongly impaired in the skin of elderly. EVs were purified from conditioned medium of primary keratinocytes isolated from infant or aged adult skin. A significant increase of the relative number of EVs released from aged keratinocytes was observed whereas their size distribution was not modified. By small RNA sequencing, we described a specific microRNA (miRNA) signature of aged EVs with an increase abundance of miR-30a, a key regulator of barrier function in human epidermis. EVs from aged keratinocytes were found to be able to reduce the proliferation of young keratinocytes, to impact their organogenesis properties in a reconstructed epidermis model and to slow down the early steps of skin wound healing in mice, three features observed in aged epidermis. This work reveals that intercellular communication mediated by EVs is modulated during aging process in keratinocytes and might be involved in the functional defects observed in aged skin.
Collapse
Affiliation(s)
- Taku Nedachi
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
- Department of Life Science, Toyo University, Gunma, Japan
| | - Christelle Bonod
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Julie Rorteau
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Wafae Chinoune
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Yuri Ishiuchi
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
- Department of Life Science, Toyo University, Gunma, Japan
| | - Sandrine Hughes
- IGFL CNRS UMR5242, ENS de Lyon, University of Lyon, Lyon, France
| | - Benjamin Gillet
- IGFL CNRS UMR5242, ENS de Lyon, University of Lyon, Lyon, France
| | - Nicolas Bechetoille
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
- Gattefossé SAS, St Priest, France
| | - Dominique Sigaudo-Roussel
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Jérôme Lamartine
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| |
Collapse
|
39
|
FUJIOKA Y, OTANI K, KODAMA T, OKADA M, YAMAWAKI H. Autocrine role of senescent cardiac fibroblasts-derived extracellular vesicles. J Vet Med Sci 2023; 85:1157-1164. [PMID: 37779091 PMCID: PMC10686776 DOI: 10.1292/jvms.23-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Cellular senescence is a highly stable state associated with cell cycle arrest, that is elicited in response to various stresses. The accumulation of senescent cells in tissues drives age-related diseases. Recent studies have shown that the cellular senescence enhances an extracellular vesicles (EV) secretion. EV are lipid-bilayer-capsuled particles released by various cells mediating cell-to-cell communication. It was recently reported that EV secreted by the senescent cells had several functions such as cancer cell proliferation and immune cell activation. In the present study, we investigated whether senescent cardiac fibroblasts-derived EV play an autocrine/paracrine role in the heart cells. Neonatal rat cardiac fibroblasts (NRCFs) were treated with doxorubicin (DOX) to induce cellular senescence. EV were isolated from NRCFs culture media. The vehicle-treated NRCFs-derived EV (D0-EV, 72 hr) increased a living cell number in NRCFs, which was attenuated by DOX (1,000 nM)-treated NRCFs-derived EV (D103-EV, 72 hr). While D0-EV did not affect protein concentration in NRCFs, D103-EV decreased it. Furthermore, D103-EV significantly increased a ratio of microtubule-associated protein 1 light chain 3 (LC3)-II to LC3-I in NRCFs, indicating an induction of autophagy. In addition, D103-EV increased phosphorylation of adenosine monophosphate-activated kinase (AMPK) α in NRCFs. In neonatal rat cardiomyocytes, however, NRCFs-derived EV (72 hr) had no effect on the living cell number, protein concentration, and ratio of LC3-II to LC3-I. In conclusion, we for the first time revealed that DOX-induced senescent NRCFs-derived EV induce autophagy in NRCFs perhaps partly through the activation of AMPKα.
Collapse
Affiliation(s)
- Yusei FUJIOKA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kosuke OTANI
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Tomoko KODAMA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Muneyoshi OKADA
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Hideyuki YAMAWAKI
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
40
|
McIlvenna LC, Whitham M. Exercise, healthy ageing, and the potential role of small extracellular vesicles. J Physiol 2023; 601:4937-4951. [PMID: 35388915 PMCID: PMC10952297 DOI: 10.1113/jp282468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022] Open
Abstract
Extracellular vesicles (EVs) can be released from most cells in the body and act as intercellular messengers transferring information in their cargo to affect cellular function. A growing body of evidence suggests that a subset of EVs, referred to here as 'small extracellular vesicles' (sEVs), can accelerate or slow the processes of ageing and age-related diseases dependent on their molecular cargo and cellular origin. Continued exploration of the vast complexity of the sEV cargo aims to further characterise these systemic vehicles that may be targeted to ameliorate age-related pathologies. Marked progress in the development of mass spectrometry-based technologies means that it is now possible to characterise a significant proportion of the proteome of sEVs (surface and cargo) via unbiased proteomics. This information is vital for identifying biomarkers and the development of sEV-based therapeutics in the context of ageing. Although exercise and physical activity are prominent features in maintaining health in advancing years, the mechanisms responsible are unclear. A potential mechanism by which plasma sEVs released during exercise could influence ageing and senescence is via the increased delivery of cargo proteins that function as antioxidant enzymes or inhibitors of senescence. These have been observed to increase in sEVs following acute and chronic exercise, as identified via independent interrogation of high coverage, publicly available proteomic datasets. Establishing tropism and exchange of functionally active proteins by these processes represents a promising line of enquiry in implicating sEVs as biologically relevant mediators of the ageing process.
Collapse
Affiliation(s)
- Luke C. McIlvenna
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
41
|
Qiu P, Li D, Xiao C, Xu F, Chen X, Chang Y, Liu L, Zhang L, Zhao Q, Chen Y. The Eph/ephrin system symphony of gut inflammation. Pharmacol Res 2023; 197:106976. [PMID: 38032293 DOI: 10.1016/j.phrs.2023.106976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| |
Collapse
|
42
|
Brázda V, Mergny JL. Quadruplexes and aging: G4-binding proteins regulate the presence of miRNA in small extracellular vesicles (sEVs). Biochimie 2023; 214:69-72. [PMID: 36690199 DOI: 10.1016/j.biochi.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
The interaction between proteins and nucleic acids is a core element of life. Many proteins bind nucleic acids via a sequence-specific manner, but there are also many types of proteins that recognize various structural motifs. Researchers have recently found that proteins that can recognize DNA and RNA G-quadruplexes (G4s) are very important for basic cellular processes, particularly in eukaryotes. Some of these proteins are located outside the nucleus and interact with RNA, potentially affecting miRNA functions in intercellular communication, which is facilitated by small extracellular vesicles (sEVs). Imbalances in the production of sEVs are associated with various pathologies and senescence in humans. The distribution of miRNA into sEVs is regulated by two RNA-binding proteins, Alyref and FUS. Both proteins possess G-rich recognition motifs that are compatible with the formation of RNA parallel G4 structures. This lends credence to the new hypothesis that G4-formation in RNAs and their interaction with G4-binding proteins can affect the fate of miRNAs and control their distribution in sEVs that are associated with senescence and aging.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
43
|
Saleh T, Bloukh S, Hasan M, Al Shboul S. Therapy-induced senescence as a component of tumor biology: Evidence from clinical cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188994. [PMID: 37806641 DOI: 10.1016/j.bbcan.2023.188994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Therapy-Induced Senescence (TIS) is an established response to anticancer therapy in a variety of cancer models. Ample evidence has characterized the triggers, hallmarks, and functional outcomes of TIS in preclinical studies; however, limited evidence delineates TIS in clinical cancer (human tumor samples). We examined the literature that investigated the induction of TIS in samples derived from human cancers and highlighted the major findings that suggested that TIS represents a main constituent of tumor biology. The most frequently utilized approach to identify TIS in human cancers was to investigate the protein expression of senescence-associated markers (such as cyclins, cyclin-dependent kinase inhibitors, Ki67, DNA damage repair response markers, DEC1, and DcR1) via immunohistochemical techniques using formalin-fixed paraffin-embedded (FFPE) tissue samples and/or testing the upregulation of Senescence-Associated β-galactosidase (SA-β-gal) in frozen sections of unfixed tumor samples. Collectively, and in studies where the extent of TIS was determined, TIS was detected in 31-66% of tumors exposed to various forms of chemotherapy. Moreover, TIS was not only limited to both malignant and non-malignant components of tumoral tissue but was also identified in samples of normal (non-transformed) tissue upon chemo- or radiotherapy exposure. Nevertheless, the available evidence continues to be limited and requires a more rigorous assessment of in vivo senescence based on novel approaches and more reliable molecular signatures. The accurate assessment of TIS will be beneficial for determining its relevant contribution to the overall outcome of cancer therapy and the potential translatability of senotherapeutics.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan.
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mira Hasan
- Department of Medicine, University of Connecticut Health Center, Farmington, USA
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13115, Jordan
| |
Collapse
|
44
|
Meng Q, Chen C, Yang N, Gololobova O, Shi C, Dunn CA, Rossi M, Martindale JL, Basisty N, Ding J, Delannoy M, Basu S, Mazan-Mamczarz K, Shin CH, Yang JH, Johnson PF, Witwer KW, Biragyn A, Sen P, Abdelmohsen K, De S, Gorospe M. Surfaceome analysis of extracellular vesicles from senescent cells uncovers uptake repressor DPP4. Proc Natl Acad Sci U S A 2023; 120:e2219801120. [PMID: 37862381 PMCID: PMC10614838 DOI: 10.1073/pnas.2219801120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 08/24/2023] [Indexed: 10/22/2023] Open
Abstract
Senescent cells are beneficial for repairing acute tissue damage, but they are harmful when they accumulate in tissues, as occurs with advancing age. Senescence-associated extracellular vesicles (S-EVs) can mediate cell-to-cell communication and export intracellular content to the microenvironment of aging tissues. Here, we studied the uptake of EVs from senescent cells (S-EVs) and proliferating cells (P-EVs) and found that P-EVs were readily taken up by proliferating cells (fibroblasts and cervical cancer cells) while S-EVs were not. We thus investigated the surface proteome (surfaceome) of P-EVs relative to S-EVs derived from cells that had reached senescence via replicative exhaustion, exposure to ionizing radiation, or treatment with etoposide. We found that relative to P-EVs, S-EVs from all senescence models were enriched in proteins DPP4, ANXA1, ANXA6, S10AB, AT1A1, and EPHB2. Among them, DPP4 was found to selectively prevent uptake by proliferating cells, as ectopic overexpression of DPP4 in HeLa cells rendered DPP4-expressing EVs that were no longer taken up by other proliferating cells. We propose that DPP4 on the surface of S-EVs makes these EVs refractory to internalization by proliferating cells, advancing our knowledge of the impact of senescent cells in aging-associated processes.
Collapse
Affiliation(s)
- Qiong Meng
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Chen Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Na Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Christopher A. Dunn
- Flow Cytometry Unit, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Jun Ding
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Michael Delannoy
- Department of Cell Biology and Imaging Facility, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Srikanta Basu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Peter F. Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD21224
| |
Collapse
|
45
|
Xiong Y, Chu X, Yu T, Knoedler S, Schroeter A, Lu L, Zha K, Lin Z, Jiang D, Rinkevich Y, Panayi AC, Mi B, Liu G, Zhao Y. Reactive Oxygen Species-Scavenging Nanosystems in the Treatment of Diabetic Wounds. Adv Healthc Mater 2023; 12:e2300779. [PMID: 37051860 DOI: 10.1002/adhm.202300779] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Diabetic wounds are characterized by drug-resistant bacterial infections, biofilm formation, impaired angiogenesis and perfusion, and oxidative damage to the microenvironment. Given their complex nature, diabetic wounds remain a major challenge in clinical practice. Reactive oxygen species (ROS), which have been shown to trigger hyperinflammation and excessive cellular apoptosis, play a pivotal role in the pathogenesis of diabetic wounds. ROS-scavenging nanosystems have recently emerged as smart and multifunctional nanomedicines with broad synergistic applicability. The documented anti-inflammatory and pro-angiogenic ability of ROS-scavenging treatments predestines these nanosystems as promising options for the treatment of diabetic wounds. Yet, in this context, the therapeutic applicability and efficacy of ROS-scavenging nanosystems remain to be elucidated. Herein, the role of ROS in diabetic wounds is deciphered, and the properties and strengths of nanosystems with ROS-scavenging capacity for the treatment of diabetic wounds are summarized. In addition, the current challenges of such nanosystems and their potential future directions are discussed through a clinical-translational lens.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Tao Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625, Hanover, Lower Saxony, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
46
|
Shekari F, Alibhai FJ, Baharvand H, Börger V, Bruno S, Davies O, Giebel B, Gimona M, Salekdeh GH, Martin‐Jaular L, Mathivanan S, Nelissen I, Nolte‐’t Hoen E, O'Driscoll L, Perut F, Pluchino S, Pocsfalvi G, Salomon C, Soekmadji C, Staubach S, Torrecilhas AC, Shelke GV, Tertel T, Zhu D, Théry C, Witwer K, Nieuwland R. Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e115. [PMID: 38939735 PMCID: PMC11080896 DOI: 10.1002/jex2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP‐TDC), Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Verena Börger
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Owen Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mario Gimona
- GMP UnitSpinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS) and Research Program “Nanovesicular Therapies” Paracelsus Medical UniversitySalzburgAustria
| | | | - Lorena Martin‐Jaular
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVICAustralia
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Health departmentBoeretangBelgium
| | - Esther Nolte‐’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)SPBrazil
| | - Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Dandan Zhu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVICAustralia
| | - Clotilde Théry
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Kenneth Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology and Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical CentersLocation AMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
47
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
48
|
Bruder‐Nascimento A, Awata WMC, Alves JV, Singh S, Costa RM, Bruder‐Nascimento T. Progranulin Maintains Blood Pressure and Vascular Tone Dependent on EphrinA2 and Sortilin1 Receptors and Endothelial Nitric Oxide Synthase Activation. J Am Heart Assoc 2023; 12:e030353. [PMID: 37581395 PMCID: PMC10492929 DOI: 10.1161/jaha.123.030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
Background The mechanisms determining vascular tone are still not completely understood, even though it is a significant factor in blood pressure management. Many circulating proteins have a significant impact on controlling vascular tone. Progranulin displays anti-inflammatory effects and has been extensively studied in neurodegenerative illnesses. We investigated whether progranulin sustains the vascular tone that helps regulate blood pressure. Methods and Results We used male and female C57BL6/J wild type (progranulin+/+) and B6(Cg)-Grntm1.1Aidi/J (progranulin-/-) to understand the impact of progranulin on vascular contractility and blood pressure. We found that progranulin-/- mice display elevated blood pressure followed by hypercontractility to noradrenaline in mesenteric arteries, which is restored by supplementing the mice with recombinant progranulin. In ex vivo experiments, recombinant progranulin attenuated the vascular contractility to noradrenaline in male and female progranulin+/+ arteries, which was blunted by blocking EphrinA2 or Sortilin1. To understand the mechanisms whereby progranulin evokes anticontractile effects, we inhibited endothelial factors. N(gamma)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) prevented the progranulin effects, whereas indomethacin (cyclooxygenase inhibitor) affected only the contractility in arteries incubated with vehicle, indicating that progranulin increases nitric oxide and decreases contractile prostanoids. Finally, recombinant progranulin induced endothelial nitric oxide synthase phosphorylation and nitric oxide production in isolated mesenteric endothelial cells. Conclusions Circulating progranulin regulates vascular tone and blood pressure via EphrinA2 and Sortilin1 receptors and endothelial nitric oxide synthase activation. Collectively, our data suggest that deficiency in progranulin is a cardiovascular risk factor and that progranulin might be a new therapeutic avenue to treat high blood pressure.
Collapse
Affiliation(s)
- Ariane Bruder‐Nascimento
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Wanessa M. C. Awata
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Juliano V. Alves
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Shubhnita Singh
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Rafael M. Costa
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Thiago Bruder‐Nascimento
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
- Endocrinology Division at UPMC Children’s Hospital of PittsburghPittsburghPAUSA
- Vascular Medicine Institute (VMI), University of PittsburghPittsburghPAUSA
| |
Collapse
|
49
|
Garcia-Arias JM, Pinal N, Cristobal-Vargas S, Estella C, Morata G. Lack of apoptosis leads to cellular senescence and tumorigenesis in Drosophila epithelial cells. Cell Death Discov 2023; 9:281. [PMID: 37532716 PMCID: PMC10397273 DOI: 10.1038/s41420-023-01583-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Programmed cell death (apoptosis) is a homeostasis program of animal tissues designed to remove cells that are unwanted or are damaged by physiological insults. To assess the functional role of apoptosis, we have studied the consequences of subjecting Drosophila epithelial cells defective in apoptosis to stress or genetic perturbations that normally cause massive cell death. We find that many of those cells acquire persistent activity of the JNK pathway, which drives them into senescent status, characterized by arrest of cell division, cell hypertrophy, Senescent Associated ß-gal activity (SA-ß-gal), reactive oxygen species (ROS) production, Senescent Associated Secretory Phenotype (SASP) and migratory behaviour. We have identified two classes of senescent cells in the wing disc: 1) those that localize to the appendage part of the disc, express the upd, wg and dpp signalling genes and generate tumour overgrowths, and 2) those located in the thoracic region do not express wg and dpp nor they induce tumour overgrowths. Whether to become tumorigenic or non-tumorigenic depends on the original identity of the cell prior to the transformation. We also find that the p53 gene contributes to senescence by enhancing the activity of JNK.
Collapse
Affiliation(s)
- Juan Manuel Garcia-Arias
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
| | - Noelia Pinal
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
| | - Sara Cristobal-Vargas
- Laboratory of Gene expression control, patterning and growth during appendage development. Centro de Biología Molecular CSIC-UAM, Madrid, Spain
- Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Carlos Estella
- Laboratory of Gene expression control, patterning and growth during appendage development. Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| | - Ginés Morata
- Laboratory of Tumorogenesis and Regeneration. Centro de Biología Molecular CSIC-UAM, Madrid, Spain.
| |
Collapse
|
50
|
Li C, Sun C, Lohcharoenkal W, Ali MM, Xing P, Zheng W, Görgens A, Gustafsson MO, El Andaloussi S, Sonkoly E, Pivarcsi A. Cutaneous squamous cell carcinoma-derived extracellular vesicles exert an oncogenic role by activating cancer-associated fibroblasts. Cell Death Discov 2023; 9:260. [PMID: 37495566 PMCID: PMC10372068 DOI: 10.1038/s41420-023-01555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a fast-increasing cancer with metastatic potential. Extracellular vesicles (EVs) are small membrane-bound vesicles that play important roles in intercellular communication, particularly in the tumor microenvironment (TME). Here we report that cSCC cells secrete an increased number of EVs relative to normal human epidermal keratinocytes (NHEKs) and that interfering with the capacity of cSCC to secrete EVs inhibits tumor growth in vivo in a xenograft model of human cSCC. Transcriptome analysis of tumor xenografts by RNA-sequencing enabling the simultaneous quantification of both the human and the mouse transcripts revealed that impaired EV-production of cSCC cells prominently altered the phenotype of stromal cells, in particular genes related to extracellular matrix (ECM)-formation and epithelial-mesenchymal transition (EMT). In line with these results, co-culturing of human dermal fibroblasts (HDFs) with cSCC cells, but not with normal keratinocytes in vitro resulted in acquisition of cancer-associated fibroblast (CAF) phenotype. Interestingly, EVs derived from metastatic cSCC cells, but not primary cSCCs or NHEKs, were efficient in converting HDFs to CAFs. Multiplex bead-based flow cytometry assay and mass-spectrometry (MS)-based proteomic analyses revealed the heterogenous cargo of cSCC-derived EVs and that especially EVs derived from metastatic cSCCs carry proteins associated with EV-biogenesis, EMT, and cell migration. Mechanistically, EVs from metastatic cSCC cells result in the activation of TGFβ signaling in HDFs. Altogether, our study suggests that cSCC-derived EVs mediate cancer-stroma communication, in particular the conversion of fibroblasts to CAFs, which eventually contribute to cSCC progression.
Collapse
Affiliation(s)
- Chen Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Chengxi Sun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Clinical Laboratory, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Warangkana Lohcharoenkal
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, SE, 17176, Sweden
| | - Mohamad Moustafa Ali
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Pengwei Xing
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Wenyi Zheng
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - André Görgens
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuela O Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, SE, 17176, Sweden
| | - Andor Pivarcsi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
- Unit of Dermatology and Venerology, Department of Medicine, Karolinska Institutet, Stockholm, SE, 17176, Sweden.
| |
Collapse
|