1
|
Ren ZQ, Chang RR, Wang H, Li GF, Huang BC, Jin RC. Polyphenolic compounds mitigate the oxidative damage of anammox sludge under long-term light irradiation. BIORESOURCE TECHNOLOGY 2025:132038. [PMID: 39756662 DOI: 10.1016/j.biortech.2025.132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Continuous high-intensity light exposure can inhibit anaerobic ammonium oxidation (anammox) bacteria activity, though the specific impacts on anammox reactor performance remain unclear. This study investigates the effects of long-term light stress on anammox sludge reactors and explores the use of tea polyphenols as an engineering interventions to mitigate photo oxidation damage. The results showed that the nitrogen removal efficiency (NRE) of the reactor rapidly deteriorated to 41.4 % under 10,000 lx light conditions. However, reactors supplemented with 1 mg·L-1 and 5 mg·L-1 tea polyphenols sustained NREs of 75.2 % and 82.5 %, respectively. The addition of tea polyphenols alleviated oxidative stress by scavenging reactive oxygen species such as ·OH and H2O2, and by enhancing the activities of antioxidant enzymes including total superoxide dismutase and glutathione peroxidase. Candidatus Kuenenia was negatively impacted by light, while unclassified_f__Brocadiaceae thrived under light stress. These findings provide insights for the development of stable nitrogen removal systems under light exposure.
Collapse
Affiliation(s)
- Zhi-Qi Ren
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121 China
| | - Rong-Rong Chang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121 China
| | - Hao Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121 China
| | - Gui-Feng Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121 China
| | - Bao-Cheng Huang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018 China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018 China
| |
Collapse
|
2
|
Yang Y, Cui D, Wang H, Di X, Jia M, Yang J, Zhao M. The cytotoxicity of photoexcited CdS in an E. coli-CdS hybrid system and the roles of the sacrificial agent to reduce this toxic effect. ENVIRONMENTAL RESEARCH 2024; 267:120700. [PMID: 39733981 DOI: 10.1016/j.envres.2024.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
This study investigates the biosynthesis of CdS nanoparticles (NPs) by Escherichia coli CD-2 to develop an E. coli-CdS hybrid system. The hybrid system was exposed to light in the presence and absence of cysteine (Cys) as a sacrificial agent. The finding revealed that in the absence of Cys, photo-induced holes led to a sharp increase in oxidative stress, disrupting the oxidative/antioxidative balance within bacterial cells. Consequently, cellular components were oxidized under elevated oxidative stress, lending to functional loss. This oxidative damage resulted in reduced cell viability, and in severe cases, cell disruption. Fortunately, the inclusion of the sacrificial agent alleviated these toxic effects. Cys quenched the photo-induced holes, markedly lowering oxidative stress within the cells. This mitigation enabled the maintenance of essential cellular functions during treatment. The majority of bacterial cells preserved their vitality and utilized the extra photoelectrons for cell growth under these conditions.
Collapse
Affiliation(s)
- Yue Yang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - He Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xinyu Di
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Mingyu Jia
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jinming Yang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Guo Z, Cao J, Xu R, Zhang H, He L, Gao H, Zhu L, Jia M, Yang Z, Xiong W. Novel Photoelectron-Assisted Microbial Reduction of Arsenate Driven by Photosensitive Dissolved Organic Matter in Mine Stream Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22170-22182. [PMID: 39526867 DOI: 10.1021/acs.est.4c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The microbial reduction of arsenate (As(V)) significantly contributes to arsenic migration in mine stream sediment, primarily driven by heterotrophic microorganisms using dissolved organic matter (DOM) as a carbon source. This study reveals a novel reduction pathway in sediments that photosensitive DOM generates photoelectrons to stimulate diverse nonphototrophic microorganisms to reduce As(V). This microbial photoelectrophic As(V) reduction (PEAsR) was investigated using microcosm incubation, which showed the transfer of photoelectrons from DOM to indigenous sediment microorganisms, thereby leading to a 50% higher microbial reduction rate of As(V). The abundance of two marker genes for As(V) reduction, arrA and arsC, increased substantially, confirming the microbial nature of PEAsR rather than a photoelectrochemical process. Photoelectron ion is unlikely to stimulate photolithoautotrophic growth. Instead, diverse nonphototrophic genera, e.g., Cupriavidus, Sphingopyxis, Mycobacterium, and Bradyrhizobium, spanning 13 orders became enriched by 10-50 folds. Metagenomic binning revealed their genetic potential to mediate the photoelectron-assisted reduction of As(V). These microorganisms contain essential genes involved in respiratory As(V) reduction, detoxification As(V) reduction, dimethyl sulfoxide reductase family, c-type cytochromes, and multiple heavy-metal resistance but lack a complete photosynthesis system. The novel microbial PEAsR pathway offers new insights into the interaction between photoelectron utilization and nonphototrophic As(V)-reducing microorganisms, which may have profound implications for arsenic pollution transportation in mine stream sediment.
Collapse
Affiliation(s)
- Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Jie Cao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Linao Zhu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Meiying Jia
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| |
Collapse
|
4
|
Wang Y, Ren G, Wang Q, Xie W, Yang Z, Zhou Y. Enhanced denitrification by sunlight-hematite: A neglected nitrogen flow pattern in red soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176980. [PMID: 39427905 DOI: 10.1016/j.scitotenv.2024.176980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Mineral-microbe interactions in the Earth's Critical Zone significantly influence elemental biogeochemical cycling and energy flow processes. This study addresses the key scientific question of how semiconducting minerals drive microbial nitrogen cycling. In the red soil environment, the presence of semiconducting minerals enhances the denitrification process mediated by facultative microorganisms (Pseudomonas aeruginosa PAO1) with denitrifying activity. Compared to darkness, light significantly enhanced the synergistic denitrification kinetic process of red soil and Pseudomonas aeruginosa PAO1 (1.87 times). Cyclic voltammetry shows that the P. aeruginosa PAO1-red soil synergistic system exhibits distinct redox peaks under light. The constant potential current curve and electrochemical impedance spectroscopy measurements reveal a high photocurrent density (1.0 μA/cm2) and minimal polarization resistance (102 Ω) under this condition. These findings confirm that the sunlight-red soil-P. aeruginosa PAO1 synergistic process has excellent electron generation and migration capacity, active redox reactions, and good electron compatibility. Additionally, the photoelectrons of semiconductive minerals in red soil profoundly impact the metabolic processes of microbial denitrification functional genes. Using real-time polymerase chain reaction (qPCR) gene array technology, the abundance of nitrogen metabolism functional genes in P. aeruginosa PAO1 increased by 200 % during the light-red soil synergistic process. Notably, denitrification-related genes (ureC, nirS1, gdhA, and nosZ2) were significantly upregulated. This study confirms that semiconducting minerals are involved in the nitrogen cycle pathway of microbial denitrification and supplements the theory of mineral-microbial synergistic element biogeochemical cycling in the natural environment.
Collapse
Affiliation(s)
- Ye Wang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Guiping Ren
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Qijun Wang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenqing Xie
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhaolin Yang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yunzhu Zhou
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
5
|
Huang S, Ye J, Gao J, Chen M, Zhou S. Harnessing microbes to pioneer environmental biophotoelectrochemistry. Trends Biotechnol 2024; 42:1677-1690. [PMID: 39095256 DOI: 10.1016/j.tibtech.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
In seeking sustainable environmental strategies, microbial biophotoelectrochemistry (BPEC) systems represent a significant advancement. In this review, we underscore the shift from conventional bioenergy systems to sophisticated BPEC applications, emphasizing their utility in leveraging solar energy for essential biochemical conversions. Recent progress in BPEC technology has facilitated improved photoelectron transfer and system stability, resulting in substantial advancements in carbon and nitrogen fixation, degradation of pollutants, and energy recovery from wastewater. Advances in system design and synthetic biology have expanded the potential of BPEC for environmental clean-up and sustainable energy generation. We also highlight the challenges of environmental BPEC systems, ranging from performance improvement to future applications.
Collapse
Affiliation(s)
- Shaofu Huang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiangtao Gao
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Miao X, An T, Wang L, Xiong S, Zhang H, Yi J, Zhao B, Zhao K. The Photothermal Synergistic Mechanism of Rock Varnish Photoconductance Under Laser Irradiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5841. [PMID: 39685276 DOI: 10.3390/ma17235841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Rock varnishes, complex structures formed by long-term deposition on rocks, exhibit unique light absorption characteristics and are widely distributed across arid environments on Earth's surface. The varnishes possess the ability to absorb and convert photons from solar radiation into electrons, which represents a newly discovered fundamental energy form in nature, with further elucidation required regarding the underlying mechanism of how semiconductor minerals respond to light radiation. The regulations governing the photoconductive responses of samples from the Alashan region in Gobi, China, and the mechanisms exhibited by rock rock varnishes under various bias voltages and irradiation wavelengths (532 nm, 808 nm, and 1064 nm) were studied. The photoconductivity response is positively correlated with the applied external bias, and the response caused by shorter wavelengths is larger. The synergistic effect was quantitatively assessed by monitoring and fitting the correlation between photoconductivity, temperature, and time during laser irradiation. As an effective method to study the fundamental physical properties of semiconductor minerals, the photoconductivity testing will help to establish a fundamental framework for investigating the intrinsic physical characteristics of natural rock varnishes.
Collapse
Affiliation(s)
- Xinyang Miao
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Tiantian An
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Lijun Wang
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Shujie Xiong
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Huanxi Zhang
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Jiahao Yi
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Bingbing Zhao
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Kun Zhao
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
7
|
Zhang L, Chen S, Yang Y, Xie S, Luo L, Lu Y, Luan T. Chlorophyll a acts as a natural photosensitizer to drive nitrate reduction in nonphotosynthetic microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174119. [PMID: 38906304 DOI: 10.1016/j.scitotenv.2024.174119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
With the death and decomposition of widely distributed photosynthetic organisms, free natural pigments are often detected in surface water, sediment and soil. Whether free pigments can act as photosensitizers to drive biophotoelectrochemical metabolism in nonphotosynthetic microorganisms has not been reported. In this work, we provide direct evidence for the photoelectrophic relationship between extracellular chlorophyll a (Chl a) and nonphotosynthetic microorganisms. The results show that 10 μg of Chl a can produce significant photoelectrons (∼0.34 A/cm2) upon irradiation to drive nitrate reduction in Shewanella oneidensis. Chl a undergoes structural changes during the photoelectric process, thus the ability of Chl a to generate a photocurrent decreases gradually with increasing illumination time. These changes are greater in the presence of microorganisms than in the absence of microorganisms. Photoelectron transport from Chl a to S. oneidensis occurs through a direct pathway involving the cytochromes MtrA, MtrB, MtrC and CymA but not through an indirect pathway involving riboflavin. These findings reveal a novel photoelectrotrophic linkage between natural photosynthetic pigments and nonphototrophic microorganisms, which has important implications for the biogeochemical cycle of nitrogen in various natural environments where Chl a is distributed.
Collapse
Affiliation(s)
- Lanlan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Yuting Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuyi Xie
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|
8
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Ren G, Ye J, Hu Q, Zhang D, Yuan Y, Zhou S. Growth of electroautotrophic microorganisms using hydrovoltaic energy through natural water evaporation. Nat Commun 2024; 15:4992. [PMID: 38862519 PMCID: PMC11166942 DOI: 10.1038/s41467-024-49429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
It has been previously shown that devices based on microbial biofilms can generate hydrovoltaic energy from water evaporation. However, the potential of hydrovoltaic energy as an energy source for microbial growth has remained unexplored. Here, we show that the electroautotrophic bacterium Rhodopseudomonas palustris can directly utilize evaporation-induced hydrovoltaic electrons for growth within biofilms through extracellular electron uptake, with a strong reliance on carbon fixation coupled with nitrate reduction. We obtained similar results with two other electroautotrophic bacterial species. Although the energy conversion efficiency for microbial growth based on hydrovoltaic energy is low compared to other processes such as photosynthesis, we hypothesize that hydrovoltaic energy may potentially contribute to microbial survival and growth in energy-limited environments, given the ubiquity of microbial biofilms and water evaporation conditions.
Collapse
Affiliation(s)
- Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qichang Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
10
|
Zeng Y, Wang H, Hu J, Zhang J, Wang F, Wang T, Zhou Q, Dahlgren RA, Gao M, Gao H, Chen Z. Illuminated fulvic acid stimulates denitrification and As(III) immobilization in flooded paddy soils via an enhanced biophotoelectrochemical pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169670. [PMID: 38160830 DOI: 10.1016/j.scitotenv.2023.169670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Fulvic acid (FA) is a representative photosensitive dissolved organic matter (DOM) compound that occurs naturally in paddy soils. In this study, the effect of a FA + nitrate treatment (0, 4 and 8 mg/L FA + 20 mmol/L nitrate) on denitrification and As(III) immobilization in flooded paddy soils was assessed under dark and intermittently illuminated conditions (12 h light+12 h dark). The FA input stimulated denitrification in illuminated soils (~100 % of nitrate removal within 6 days) compared to dark conditions (~92 % nitrate removal after 6 days). Meanwhile, As(III) (initial concentration of 0.1 mmol/L) was nearly completely immobilized (~100 %) under illuminated conditions after 4 days for the FA + nitrate treatment compared to 90- 93 % retention in the dark. Denitrification and As immobilization were positively related to the FA dosage in the illuminated assays. The stronger denitrification in illuminated soils was ascribed to denitrifiers harvesting photoelectrons from photosensitive substrates/semiconducting minerals. FA addition also increased the activities of denitrifying enzymes (e.g., NAR, NIR and NOR) and the denitrification electron transport system by nearly 0.6-0.7 and 1.5-1.8 times that of the nitrate-alone treatment under illuminated and dark conditions, thereby fostering stronger denitrification. Upon irradiation, As(III) immobilization was not only stimulated by the interactions with the denitrification pathway whereby As(III) acts as an electron donor for denitrifiers, but was also modulated by Fe(III)/oxidative reactive species-derived photooxidation of As(III). Moreover, the FA + nitrate treatment promoted the enrichment of metal-oxidizing bacteria (e.g., Stenotrophomonas and Acidovorax) that are responsible for nitrate-dependent As(III)/Fe(II) oxidation. The results of this study enhance our understanding of interactions among the biogeochemical cycles of As, Fe, N and C, which are intricately linked by a biophotoelectrochemical pathway in flooded paddy soils.
Collapse
Affiliation(s)
- Yanqiong Zeng
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Jiehua Hu
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, PR China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China
| | - Feng Wang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Tongyu Wang
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Qiqi Zhou
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Randy A Dahlgren
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; Department of Land, Air & Water Resources, University of California, Davis, CA 95616, USA
| | - Meiling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou 325027, PR China.
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China.
| | - Zheng Chen
- School of Public Health & Management, Wenzhou Medical University, Wenzhou 325035, PR China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| |
Collapse
|
11
|
Shu Z, Liu Q, Liu E, Pan Z, Yan S, Zhang L, Song W, Wang Z. Overlooked role of aqueous chromate (VI) as a photosensitizer in enhancing the photochemical reactivity of ferrihydrite and production of hydroxyl radical. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133557. [PMID: 38309168 DOI: 10.1016/j.jhazmat.2024.133557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
The reactive oxygen species (ROS) photochemically generated from natural iron minerals have gained significant attention. Amidst the previous studies on the impact of heavy metal ions on ROS generation, our study addresses the role of the anion Cr(VI), with its intrinsic photoactivity, in influencing ROS photochemical generation with the co-presence of minerals. We investigated the transformation of inorganic/organic pollutants (Cr(VI) and benzoic acid) at the ferrihydrite interface, considering sunlight-mediated conversion processes (300-1000 nm). Increased photochemical reactivity of ferrihydrite was observed in the presence of aqueous Cr(VI), acting as a photosensitizer. Meanwhile, a positive correlation between hydroxyl radical (•OH) production and concentrations of aqueous Cr(VI) was observed, with a 650% increase of •OH generation at 50 mg L-1 Cr(VI) compared to systems without Cr(VI). Our photochemical batch experiments elucidated three potential pathways for •OH photochemical production under varying wet chemistry conditions: (1) ferrihydrite hole-mediated pathway, (2) chromium intermediate O-I-mediated pathway, and (3) chromium intermediates CrIV/V-mediated pathway. Notably, even in the visible region (> 425 nm), the promotion of aqueous Cr(VI) on •OH accumulation was observed in the presence of ferrihydrite and TiO2 suspensions, attributed to Cr(VI) photosensitization at the mineral interface. This study sheds light on the overlooked role of aqueous Cr(VI) in the photochemical reactivity of minerals, thereby enhancing our understanding of pollutant fate in acid mining-impacted environments.
Collapse
Affiliation(s)
- Zhipeng Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qiuyao Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Enyang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China.
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
12
|
Huang BC, Li GF, Ren ZQ, Ji XM, Wang Y, Gu YN, Li JP, Chang RR, Fan NS, Jin RC. Light-Driven Electron Uptake from Nonfermentative Organic Matter to Expedite Nitrogen Dissimilation by Chemolithotrophic Anammox Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12732-12740. [PMID: 37590181 DOI: 10.1021/acs.est.3c04160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Nonphotosynthetic microorganisms are typically unable to directly utilize light energy, but light might change the metabolic pathway of these bacteria indirectly by forming intermediates such as reactive oxygen species (ROS). This work investigated the role of light on nitrogen conversion by anaerobic ammonium oxidation (anammox) consortia. The results showed that high intensity light (>20000 lx) caused ca. 50% inhibition of anammox activity, and total ROS reached 167% at 60,000 lx. Surprisingly, 200 lx light was found to induce unexpected promotion of the nitrogen conversion rate, and ultraviolet light (<420 nm) was identified as the main contributor. Metagenomic and metatranscriptomic analyses revealed that the gene encoding cytochrome c peroxidase was highly expressed only under 200 lx light. 15N isotope tracing, gene abundance quantification, and external H2O2 addition experiments showed that photoinduced trace H2O2 triggered cytochrome c peroxidase expression to take up electrons from extracellular nonfermentative organics to synthesize NADH and ATP, thereby expediting nitrogen dissimulation of anammox consortia. External supplying reduced humic acid into a low-intensity light exposure system would result in a maximal 1.7-fold increase in the nitrogen conversion rate. These interesting findings may provide insight into the niche differentiation and widespread nature of anammox bacteria in natural ecotopes.
Collapse
Affiliation(s)
- Bao-Cheng Huang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gui-Feng Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi-Qi Ren
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ye-Nan Gu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing-Peng Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rong-Rong Chang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
13
|
Chen S, Chen J, Zhang L, Huang S, Liu X, Yang Y, Luan T, Zhou S, Nealson KH, Rensing C. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria. THE ISME JOURNAL 2023; 17:712-719. [PMID: 36823233 PMCID: PMC10119253 DOI: 10.1038/s41396-023-01383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Anaerobic reduction processes in natural waters can be promoted by dead microalgae that have been attributed to nutrient substances provided by the decomposition of dead microalgae for other microorganisms. However, previous reports have not considered that dead microalgae may also serve as photosensitizers to drive microbial reduction processes. Here we demonstrate a photoelectric synergistic linkage between dead microalgae and bacteria capable of extracellular electron transfer (EET). Illumination of dead Raphidocelis subcapitata resulted in two-fold increase in the rate of anaerobic bioreduction by pure Geobacter sulfurreducens, suggesting that photoelectrons generated from the illuminated dead microalgae were transferred to the EET-capable microorganisms. Similar phenomena were observed in NO3- reduction driven by irradiated dead Chlorella vulgaris and living Shewanella oneidensis, and Cr(VI) reduction driven by irradiated dead Raphidocelis subcapitata and living Bacillus subtilis. Enhancement of bioreduction was also seen when the killed microalgae were illuminated in mixed-culture lake water, suggesting that EET-capable bacteria were naturally present and this phenomenon is common in post-bloom systems. The intracellular ferredoxin-NADP+-reductase is inactivated in the dead microalgae, allowing the production and extracellular transfer of photoelectrons. The use of mutant strains confirmed that the electron transport pathway requires multiheme cytochromes. Taken together, these results suggest a heretofore overlooked biophotoelectrochemical process jointly mediated by illumination of dead microalgae and live EET-capable bacteria in natural ecosystems, which may add an important component in the energetics of bioreduction phenomena particularly in microalgae-enriched environments.
Collapse
Affiliation(s)
- Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Jin Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanlan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Shaofu Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuting Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Kenneth H Nealson
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Chen J, Bai Q, Li Y, Liu Z, Li Y, Liang D. Coacervates Forming Coexisting Phases on a Mineral Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5814-5824. [PMID: 37053474 DOI: 10.1021/acs.langmuir.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Minerals played a crucial role in the chemical evolution of small molecules into biopolymers. Yet, it is still not clear how the minerals are related to the formation and the evolution of protocells on early Earth. In this work, using the coacervate formed by quaternized dextran (Q-dextran) and single-stranded oligonucleotides (ss-oligo) as the protocell model, we systematically studied the phase separation of Q-dextran and ss-oligo on the muscovite surface. Serving as rigid and 2D polyelectrolytes, the muscovite surface can be treated by Q-dextran to become negatively charged, neutral, or positively charged. We observed that Q-dextran and ss-oligo form uniform coacervates on naked and neutral muscovite surfaces, while they form biphasic coacervates containing Q-dextran-rich phases and ss-oligo-rich phases on positively or negatively charged muscovite surfaces that were pretreated by Q-dextran. The evolution of the phases is caused by the redistribution of the components as the coacervate touches the surface. Our study indicates that the mineral surface could be a potential driving force for the formation of protocells with hierarchical structures and desirable functions on prebiotic Earth.
Collapse
Affiliation(s)
- Jiaxin Chen
- Beijing National Laboratory for Molecular Sciences, and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qingwen Bai
- Beijing National Laboratory for Molecular Sciences, and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanzhang Li
- Beijing Key Laboratory of Mineral Environmental Function, and the Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing 100871, China
| | - Zhijun Liu
- Beijing National Laboratory for Molecular Sciences, and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Li
- Beijing Key Laboratory of Mineral Environmental Function, and the Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing 100871, China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
16
|
Response of Microbial Communities on Cathode with Different Potentials in a Single-Chamber Reactor. Curr Microbiol 2023; 80:70. [PMID: 36609874 DOI: 10.1007/s00284-022-03148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/11/2022] [Indexed: 01/09/2023]
Abstract
Microbes use both organic and inorganic compounds as electron donors, with different electronic potentials, to produce energy required for growth in environments. Conventional studies on the effects of different electron donors on microbial community has been extensively studied with a set cathode potential. However, it remains under-researched how a microbial community response to the different redox potentials in different environments. Here, we incubated a lake sediment in a single-chamber reactor equipped with three working electrodes, i.e., with potentials of - 0.29 V, - 0.05 V versus standard hydrogen electrode and open-circuit, respectively. Results reveal that the structure of bacterial communities was highly similar for all closed-circuit electrodes (- 0.29 V, - 0.05 V), while differing significantly from those on open-circuit electrodes. We also show that specific bacteria were preferentially enriched by different electrode potentials, i.e., Pseudomonas and Rhodobacter preferentially grew on - 0.05 V and - 0.29 V cathode potentials, Azospirillum and Bosea preferentially grew on - 0.05 V; while Ferrovibrio, Hydrogenophaga, Delftia, and Sphingobium preferentially grew on - 0.29 V. In addition, microorganisms selectively enriched on open-circuit electrodes possess higher connectivity and closer relationship than microorganisms selectively enriched on closed-circuit electrode.
Collapse
|
17
|
Jiang YJ, Hui S, Jiang LP, Zhu JJ. Functional Nanomaterial-Modified Anodes in Microbial Fuel Cells: Advances and Perspectives. Chemistry 2023; 29:e202202002. [PMID: 36161734 DOI: 10.1002/chem.202202002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 01/05/2023]
Abstract
Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.
Collapse
Affiliation(s)
- Yu-Jing Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Su Hui
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
18
|
Zhao X, Ke Z, Wang Q, Zhang C, Wang Y, Ren J, Ren G. Efficient organic contaminant and Cr (VI) synchronous removing by one-step modified molybdenite cathode microbial fuel cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4423-4434. [PMID: 35969345 DOI: 10.1007/s11356-022-22445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
As a novel technique with a wide range of applications, microbial fuel cell (MFC) could simultaneously remove organic contaminants and heavy metals in complex wastewater, despite striking differences in physicochemical properties of these contaminant. But its wastewater treatment efficiency is restricted by its lower generation performance. However, approaches for the modification of MFCs' cathode with appropriate catalyst could effectively overcome this limitation. Herein, a new-type efficient cathode catalyst was invented through modifying natural molybdenite via one-step oxidation method. In this case, molybdenite had many changes in morphology (wave-shaped bending, fragmentation and decrescent diameter) during oxidation modification process, and oxidation-modified molybdenite could provide much more active sites for the cathode. After applying this novel cathode catalyst, the electric generation capacity of MFC system increased by 5.08 times, and its simultaneous degradation efficiency of methyl blue (MB) and Cr (VI) increased by 3.35 times (compared with graphite cathode MFC). This study provides a novel low-carbon and environmentally friendly way to prepare high efficiency cathode catalyst materials and provides a new idea of simultaneous purification for organic and metallic pollutants from complex wastewater.
Collapse
Affiliation(s)
- Xu Zhao
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Zunzhuang Ke
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Qijun Wang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Chengbin Zhang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Ye Wang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Jingyi Ren
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China
| | - Guiping Ren
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, 730000, Lanzhou, People's Republic of China.
| |
Collapse
|
19
|
Wang W, Liu Y, Li G, Liu Z, Wong PK, An T. Mechanism insights into bacterial sporulation at natural sphalerite interface with and without light irradiation: The suppressing role in bacterial sporulation by photocatalysis. ENVIRONMENT INTERNATIONAL 2022; 168:107460. [PMID: 35981477 DOI: 10.1016/j.envint.2022.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Unveiling the mechanisms of bacterial sporulation at natural mineral interfaces is crucial to fully understand the interactions of mineral with microorganism in aquatic environment. In this study, the bacterial sporulation mechanisms of Bacillus subtilis (B. subtilis) at natural sphalerite (NS) interface with and without light irradiation were systematically investigated for the first time. Under dark condition, NS was found to inactivate vegetative cells of B. subtilis and promote their sporulation simultaneously. The released Zn2+ from NS was mainly responsible for the bacterial inactivation and sporulation. With light irradiation, the photocatalytic effect from NS could increase the bacterial inactivation efficiency, while the bacterial sporulation efficiency was decreased from 8.1 % to 4.5 %. The photo-generated H2O2 and O2- played the major roles in enhancing bacterial inactivation and suppressing bacterial sporulation process. The intracellular synthesis of dipicolinic acid (DPA) as biomarker for sporulation was promoted by NS in dark, which was suppressed by the photocatalytic effect of NS with light irradiation. The transformation process from vegetative cells to spores was monitored by both 3D-fluerecence EEM and SEM observations. Compared with the NS alone system, the NS/light combined system induced higher level of intracellular ROSs, up-regulated antioxidant enzyme activity and decreased cell metabolism activity, which eventually led to enhanced inactivation of vegetative cells and suppressed bacterial sporulation. These results not only provide in-depth understanding about bacterial sporulation as a new mode of sub-lethal stress response at NS interface, but also shed lights on putting forward suitable strategies for controlling spore-producing bacteria by suppressing their sporulation during water disinfection.
Collapse
Affiliation(s)
- Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenni Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Po Keung Wong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
20
|
Bai L, Wang J, Wang Y, Wang Y, Yang Y, Cui D, Zhao M. Photocatalytic performance of an α-Fe 2O 3 electrode and its effects on the growth and metabolism of Citrobacter freundii. Appl Microbiol Biotechnol 2022; 106:6253-6262. [PMID: 35969261 DOI: 10.1007/s00253-022-12120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022]
Abstract
Electronic exchanges occur between semiconductor minerals and microorganisms. However, researchers have focused on the photocatalytic degradation of pollutants by semiconductor minerals, and there is a limited amount of studies on semiconductor photogenerated electrons that influence the growth and energetic mechanisms of bacteria. Bioelectrochemical systems (BES) are important new bioengineering technologies for investigating the mechanisms by which bacteria absorb electrons. In this work, we built a BES that used α-Fe2O3 nanorods as a photoanode and Citrobacter freundii as bio-cathode bacteria to explore the effect of photoelectrons on C. freundii growth and metabolism. The photoanode was prepared by a hydrothermal synthesis method. As confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), the photoanode was made of α-Fe2O3. Corresponding scanning electron microscope (SEM) images showed that α-Fe2O3 nanorod arrays formed with a diameter of 50 nm, and the band gap was 2.03 eV, as indicated by UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The C. freundii growth metabolism changed significantly because of photoelectrons; under light conditions, the growth rate of C. freundii significantly accelerated, and as inferred from the three-dimensional fluorescence spectrum, the protein, humic acid, and NADH concentrations were significantly higher at 72 h. According to the changes in the organic acid content, photoelectrons participated in the reductive tricarboxylic acid cycle (rTCA) to enhance growth and metabolism. The results of the study have broad implications for advancing fields that study the effects of semiconductor minerals on electroactive microorganisms and the semiconductor-photoelectronic transport mechanisms of electroautotrophic microorganisms. KEY POINTS: • For the first time, A BES was built that used α-Fe2O3 nanorods as a photoanode and C. freundii as a bio-cathode bacteria. • Photoelectrons produced by α-Fe2O3 photoelectrode promote the growth of C. freundii. • Effects of photoelectrons on C. freundii metabolism were conjectured by the changes of organic acids and NADH.
Collapse
Affiliation(s)
- Long Bai
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jueyu Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuelei Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yongqi Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yue Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
21
|
Dong H, Huang L, Zhao L, Zeng Q, Liu X, Sheng Y, Shi L, Wu G, Jiang H, Li F, Zhang L, Guo D, Li G, Hou W, Chen H. A critical review of mineral-microbe interaction and coevolution: mechanisms and applications. Natl Sci Rev 2022; 9:nwac128. [PMID: 36196117 PMCID: PMC9522408 DOI: 10.1093/nsr/nwac128] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The mineral-microbe interactions play important roles in environmental change, biogeochemical cycling of elements, and formation of ore deposits. Minerals provide both beneficial (physical and chemical protection, nutrients, and energy) and detrimental (toxic substances and oxidative pressure) effects to microbes, resulting in mineral-specific microbial colonization. Microbes impact dissolution, transformation, and precipitation of minerals through their activity, resulting in either genetically-controlled or metabolism-induced biomineralization. Through these interactions minerals and microbes coevolve through Earth history. The mineral-microbe interactions typically occur at microscopic scale but the effect is often manifested at global scale. Despite advances achieved through decades of research, major questions remain. Four areas are identified for future research: integrating mineral and microbial ecology, establishing mineral biosignatures, linking laboratory mechanistic investigation to field observation, and manipulating mineral-microbe interactions for the benefit of humankind.
Collapse
Affiliation(s)
- Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Linduo Zhao
- Illinois Sustainable Technology Center , Illinois State Water Survey, , Champaign , IL 61820 , USA
- University of Illinois at Urbana-Champaign , Illinois State Water Survey, , Champaign , IL 61820 , USA
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Xiaolei Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Liang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Fangru Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Li Zhang
- Department of Geology and Environmental Earth Science, Miami University , Oxford , OH 45056 , USA
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Weiguo Hou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Hongyu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| |
Collapse
|
22
|
Bai Y, Nan L, Wang Q, Wang W, Hai J, Yu X, Cao Q, Huang J, Zhang R, Han Y, Yang M, Yang G. Soil Respiration of Paddy Soils Were Stimulated by Semiconductor Minerals. FRONTIERS IN PLANT SCIENCE 2022; 13:941144. [PMID: 35832219 PMCID: PMC9271915 DOI: 10.3389/fpls.2022.941144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Large quantities of semiconductor minerals on soil surfaces have a sensitive photoelectric response. These semiconductor minerals generate photo-electrons and photo-hole pairs that can stimulate soil oxidation-reduction reactions when exposed to sunlight. We speculated that the photocatalysis of semiconductor minerals would affect soil carbon cycles. As the main component of the carbon cycle, soil respiration from paddy soil is often ignored. Five rice cropping areas in China were chosen for soil sampling. Semiconductor minerals were measured, and three main semiconductor minerals including hematile, rutile, and manganosite were identified in the paddy soils. The identified semiconductor minerals consisted of iron, manganese, and titanium oxides. Content of Fe2O3, TiO2, and MnO in the sampled soil was between 4.21-14%, 0.91-2.72%, and 0.02-0.22%, respectively. Most abundant semiconductor mineral was found in the DBDJ rice cropping area in Jilin province, with the highest content of Fe2O3 of 14%. Soils from the five main rice cropping areas were also identified as having strong photoelectric response characteristics. The highest photoelectric response was found in the DBDJ rice cropping area in Jilin province with a maximum photocurrent density of 0.48 μA/cm2. Soil respiration was monitored under both dark and light (3,000 lux light density) conditions. Soil respiration rates in the five regions were (from highest to lowest): DBDJ > XNDJ > XBDJ > HZSJ > HNSJ. Soil respiration was positively correlated with semiconductor mineral content, and soil respiration was higher under the light treatment than the dark treatment in every rice cropping area. This result suggested that soil respiration was stimulated by semiconductor mineral photocatalysis. This analysis provided indirect evidence of the effect semiconductor mineral photocatalysis has on the carbon cycle within paddy soils, while exploring carbon conversion mechanisms that could provide a new perspective on the soil carbon cycle.
Collapse
Affiliation(s)
- Yinping Bai
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Ling Nan
- School of Resources and Environmental Engineering, Tianshui Normal University, Tianshui, China
| | - Qing Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jiangbo Hai
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoya Yu
- School of Tourism and Resources Environment, Qiannan Normal University for Nationalities, Duyun, China
| | - Qin Cao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rongping Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yunwei Han
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Min Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Gang Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
23
|
Yau MCM, Hayes M, Kalathil S. Biocatalytic conversion of sunlight and carbon dioxide to solar fuels and chemicals. RSC Adv 2022; 12:16396-16411. [PMID: 35754911 PMCID: PMC9169074 DOI: 10.1039/d2ra00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
This review discusses the progress in the assembly of photosynthetic biohybrid systems using enzymes and microbes as the biocatalysts which are capable of utilising light to reduce carbon dioxide to solar fuels. We begin by outlining natural photosynthesis, an inspired biomachinery to develop artificial photosystems, and the rationale and motivation to advance and introduce biological substrates to create more novel, and efficient, photosystems. The case studies of various approaches to the development of CO2-reducing microbial semi-artificial photosystems are also summarised, showcasing a variety of methods for hybrid microbial photosystems and their potential. Finally, approaches to investigate the relatively ambiguous electron transfer mechanisms in such photosystems are discussed through the presentation of spectroscopic techniques, eventually leading to what this will mean for the future of microbial hybrid photosystems.
Collapse
Affiliation(s)
- Mandy Ching Man Yau
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle NE1 8ST UK
| | - Martin Hayes
- Johnson Matthey Technology Centre Cambridge Science Park, Milton Road Cambridge CB4 0FP UK
| | - Shafeer Kalathil
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle NE1 8ST UK
| |
Collapse
|
24
|
Jiang C, Zhang S, Wang J, Xia X. The inhibitory effects of sunlight on nitrogen removal in riverine overlying water with suspended particles. CHEMOSPHERE 2022; 295:133941. [PMID: 35150703 DOI: 10.1016/j.chemosphere.2022.133941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Overlying water with suspended particles is a hot spot for nitrogen removal in river systems. Although light exposure affects nitrogen transformations and nitrogen removal in some environments, such effects have rarely been explored and quantified in riverine overlying water. Herein, we examined the difference between dark and light conditions in the community composition and abundance of nitrogen transformation microbes in simulated overlying water by high-throughput sequencing and qPCR. Moreover, 15N-labeling techniques were used to investigate variation in nitrogen removal rates (N2 and N2O) as well as nitrification rates between dark and light conditions. We found apparent differences in the bacterial community between light and dark microcosms. The abundance of Cyanobacteria was greatly elevated in light microcosms, with the diazotroph nifH gene abundance being 7.4-fold higher in the light microcosm (P < 0.01). However, due to the vulnerability of some specifies to UV damage, the diazotroph species richness was reduced. The abundances of ammonia-oxidizing archaeal amoA, ammonia-oxidizing bacterial amoA, and denitrifying nirS genes were 80.1%, 46.3%, and 50.7% lower in the light microcosm, respectively, owing to the differential inhibition of sunlight exposure on these microbes. Both 15N-N2 and 15N-N2O were significantly produced regardless of conditions with or without light. Due to the combined effects of reduced nitrification and denitrification, as well as potentially enhanced nitrogen fixation, the accumulated amounts of 15N-N2 and 15N-N2O were 6.2% and 44.8% lower, respectively, in the light microcosm. This study quantifies the inhibitory effect of sunlight exposure on nitrogen removal in riverine overlying water and reveals the underlying mechanisms, providing insights into our understanding of nitrogen transformations in river systems.
Collapse
Affiliation(s)
- Chenrun Jiang
- School of Environment, Beijing Normal University / State Key Joint Laboratory of Environmental Simulation and Pollution Control / Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing, 100875, China
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Junfeng Wang
- School of Environment, Beijing Normal University / State Key Joint Laboratory of Environmental Simulation and Pollution Control / Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing, 100875, China
| | - Xinghui Xia
- School of Environment, Beijing Normal University / State Key Joint Laboratory of Environmental Simulation and Pollution Control / Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing, 100875, China.
| |
Collapse
|
25
|
Yu C, Yu L, Mohamed A, Fang J, Wu Y, Dai K, Cai P, Huang Q. Size-dependent visible-light-enhanced Cr(VI) bioreduction by hematite nanoparticles. CHEMOSPHERE 2022; 295:133633. [PMID: 35041817 DOI: 10.1016/j.chemosphere.2022.133633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Light irradiation would affect the electron transfer between dissimilatory metal-reducing bacteria (DMRB) and semiconducting minerals, which may impose a great influence on the biogeochemistry cycle of heavy metals. However, the size effect of semiconducting minerals on the its electron transfer with DMRB and microbial Cr(VI) reduction under visible light irradiation is little known. Herein, the Cr(VI) reduction by Shewanella oneidensis MR-1 (MR-1) was investigated in the presence of hematite nanoparticles with average diameters of 10 nm and 50 nm in dark and under visible light irradiation. It is found that hematite nanoparticles adhered onto MR-1 cells to form the composites, leading to the decrease in surface sites and Zeta potential. Hematite mediated-Cr(VI) bioreduction rate under visible light irradiation was 0.342 h-1, which is 3.4 folds enhancement compared with that in dark and 4.4 folds compared with the MR-1 alone under visible light irradiation. Decreasing nanoparticle size of hematite from 50 nm to 10 nm promoted the Cr(VI) reduction under visible light irradiation but impeded it in dark. It was deduced that the bioelectrons from MR-1 could promote the separation of photoelectron-hole pairs of light-irradiated hematite, which consequently enhanced the Cr(VI) bioreduction by MR-1-hematite composites. Moreover, mutant strains experiments demonstrated the vital role of c-cytochrome for the conducting network actively established by MR-1 with hematite nanoparticles. Those findings expand the understanding of the electron transfer pathway for enhancing Cr(VI) reduction by hematite-MR-1 composites, and the impact of particle size on the interaction between semiconducting mineral and electroactive bacteria under light irradiation.
Collapse
Affiliation(s)
- Cheng Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lu Yu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Abdelkader Mohamed
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Soil and Water Res. Department, Nuclear Research Center, Atomic Energy Authority, Abou Zaabl, 13759, Egypt
| | - Jun Fang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yichao Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ke Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Peng Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
26
|
Chen H, Li DH, Jiang AJ, Li XG, Wu SJ, Chen JW, Qu MJ, Qi XQ, Dai J, Zhao R, Zhang WJ, Liu SS, Wu LF. Metagenomic analysis reveals wide distribution of phototrophic bacteria in hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:255-267. [PMID: 37073225 PMCID: PMC10077154 DOI: 10.1007/s42995-021-00121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/31/2021] [Indexed: 05/03/2023]
Abstract
Deep-sea hydrothermal vents are known as chemosynthetic ecosystems. However, high temperature vents emit light that hypothetically can drive photosynthesis in this habitat. Metagenomic studies have sporadically reported the occurrence of phototrophic populations such as cyanobacteria in hydrothermal vents. To determine how geographically and taxonomically widespread phototrophs are in deep-sea hydrothermal vents, we collected samples from three niches in a hydrothermal vent on the Southwest Indian Ridge and carried out an integrated metagenomic analysis. We determined the typical community structures of microorganisms found in active venting fields and identified populations of known potential chlorophototrophs and retinalophototrophs. Complete chlorophyll biosynthetic pathways were identified in all samples. By contrast, proteorhodopsins were only found in active beehive smoker diffusers. Taxonomic groups possessing potential phototrophy dependent on semiconductors present in hydrothermal vents were also found in these samples. This systematic comparative metagenomic study reveals the widespread distribution of phototrophic bacteria in hydrothermal vent fields. Our results support the hypothesis that the ocean is a seed bank of diverse microorganisms. Geothermal vent light may provide energy and confer a competitive advantage on phototrophs to proliferate in hydrothermal vent ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00121-y.
Collapse
Affiliation(s)
- Hong Chen
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Deng Hui Li
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Ai Jun Jiang
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Xue Gong Li
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Shi Jun Wu
- Zhejiang University, Hangzhou, 310027 China
| | - Jian Wei Chen
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555 China
| | | | - Xiao Qing Qi
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Jie Dai
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Rui Zhao
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Wei-Jia Zhang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Shan Shan Liu
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555 China
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Aix Marseille University, Centre national de la recherche scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, L’ Institut Microbiologie, Bioénergies et Biotechnologie, 13402 Marseille, France
| |
Collapse
|
27
|
Han HX, Tian LJ, Liu DF, Yu HQ, Sheng GP, Xiong Y. Reversing Electron Transfer Chain for Light-Driven Hydrogen Production in Biotic-Abiotic Hybrid Systems. J Am Chem Soc 2022; 144:6434-6441. [PMID: 35377628 DOI: 10.1021/jacs.2c00934] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biotic-abiotic photosynthetic system integrating inorganic light absorbers with whole-cell biocatalysts innovates the way for sustainable solar-driven chemical transformation. Fundamentally, the electron transfer at the biotic-abiotic interface, which may induce biological response to photoexcited electron stimuli, plays an essential role in solar energy conversion. Herein, we selected an electro-active bacterium Shewanella oneidensis MR-1 as a model, which constitutes a hybrid photosynthetic system with a self-assembled CdS semiconductor, to demonstrate unique biotic-abiotic interfacial behavior. The photoexcited electrons from CdS nanoparticles can reverse the extracellular electron transfer (EET) chain within S. oneidensis MR-1, realizing the activation of a bacterial catalytic network with light illumination. As compared with bare S. oneidensis MR-1, a significant upregulation of hydrogen yield (711-fold), ATP, and reducing equivalent (NADH/NAD+) was achieved in the S. oneidensis MR-1-CdS under visible light. This work sheds light on the fundamental mechanism and provides design guidelines for biotic-abiotic photosynthetic systems.
Collapse
Affiliation(s)
- He-Xing Han
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Liu J, Ge X, Ding H, Yang S, Sun Y, Li Y, Ji X, Li Y, Lu A. Effect of Photoreduction of Semiconducting Iron Mineral-Goethite on Microbial Community in the Marine Euphotic Zone. Front Microbiol 2022; 13:846441. [PMID: 35479644 PMCID: PMC9037543 DOI: 10.3389/fmicb.2022.846441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Marine euphotic zone is the pivotal region for interplay of light-mineral-microorganism and elements cycle, in which semiconducting minerals exist widely and iron-bearing goethite is a typical and widespread one. In this work, we have conducted in-depth researches on the effect of ferrous [Fe(II)] ions dissolved by photoreduction of goethite on microbial community structure and diversity. The mineral phase, structure and morphology of synthesized goethite were characterized by Raman, X-ray diffraction (XRD), energy disperse spectroscopy (EDS), environmental scanning electron microscope (ESEM), and atomic force microscope (AFM). Photoelectrochemical measurements tested photoelectric response and redox activity of goethite, having proved its significant property of photoelectric response with 44.11% increment of the average photocurrent density relative to the dark current density. The photoreduction experiments of goethite were conducted under light condition in simulated seawater. It has suggested the photoreduction of goethite could occur and Fe(III) was reduced to Fe(II). The dissolved Fe(II) from the photoreduction of goethite under light condition was nearly 11 times than that group without light after a 10-day reaction. Furthermore, results of microbial community sequencing analysis indicated that dissolved Fe(II) could affect the structure and regulate the decrease of microbial community diversity. The emergence of dominant bacteria associated with iron oxidation and transport protein has suggested their obvious selectivity and adaptability in the environment with adding dissolved Fe(II). This work revealed the photoreduction process of semiconducting goethite was remarkable, giving rise to a non-negligible dissolved Fe(II) and its selective effect on the structure, diversity, as well as the function of microbial community. This light-induced interaction between minerals and microorganisms may also further regulate correlative metabolic pathways of carbon cycle in the marine euphotic zone.
Collapse
Affiliation(s)
| | | | - Hongrui Ding
- Beijing Key Laboratory of Mineral Environmental Function, The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | | | | | | | | | | | - Anhuai Lu
- Beijing Key Laboratory of Mineral Environmental Function, The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| |
Collapse
|
29
|
Huang S, Chen M, Diao Y, Feng Q, Zeng RJ, Zhou S. Dissolved Organic Matter Acting as a Microbial Photosensitizer Drives Photoelectrotrophic Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4632-4641. [PMID: 35319876 DOI: 10.1021/acs.est.1c07556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biogeochemical fates of dissolved organic matter (DOM) show important environmental significance in aqueous ecosystems. However, the current understanding of the trophic relationship between DOM and microorganisms limits the ability of DOM to serve as a heterotrophic substrate or electron shuttle for microorganisms. In this work, we provide the first evidence of photoelectrophy, a new trophic linkage, that occurs between DOM and nonphototrophic microorganisms. Specifically, the photoelectrotrophic denitrification process was demonstrated in a Thiobacillus denitrificans-DOM coupled system, in which DOM acted as a microbial photosensitizer to drive the model denitrifier nitrate reduction. The reduction of nitrate followed a pseudo-first-order reaction with a kinetic constant of 0.06 ± 0.003 h-1, and the dominant nitrogenous product was nitrogen. The significant upregulated (p < 0.01) expression of denitrifying genes, including nar, nir, nor, and nos, supported that the conversion of nitrate to nitrogen was the microorganism-mediated process. Interestingly, the photoelectrophic process triggered by DOM photosensitization promotes humification of DOM itself, an almost opposite trend of pure DOM irradiation. The finding not only reveals a so far overlooked role of DOM serving as the microbial photosensitizer in sunlit aqueous ecosystems but also suggests a strategy for promoting sunlight-driven denitrification in surface environments.
Collapse
Affiliation(s)
- Shaofu Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Youming Diao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinyuan Feng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
30
|
Zhao L, Chen S, Tan X, Yan X, Zhang W, Huang Y, Ji R, White JC. Environmental implications of MoS 2 nanosheets on rice and associated soil microbial communities. CHEMOSPHERE 2022; 291:133004. [PMID: 34826440 DOI: 10.1016/j.chemosphere.2021.133004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Molybdenum disulfide (MoS2) is a transition metal dichalcogenides (TMDCs) material that is seeing rapidly increasing use. The wide range of applications will result in significant environmental release. Here, the impact of MoS2 nanosheets on rice and associated soil microbial communities was evaluated. Rice plants were grown for 4 weeks in a natural paddy soil amended with either 1T or 2H phase MoS2 nanosheets at 10 and 100 mg kg-1. The 1T MoS2 nanosheets have a significantly greater dissolution rate (58.9%) compared to 2H MoS2 (4.4%), indicating the instability of 1T MoS2 in environment. High dissolution rate resulted in a high Mo bioaccumulation in rice leaves (272 and 189 mg kg-1 under 1T and 2H exposure at 100 mg kg-1). However, this did not induce overt phytotoxicity, as indicated by a range of phenotypic or biochemical based determine endpoints, e.g., biomass, photosynthetic pigments, and malondialdehyde (MDA) content. Additionally, rice P uptake was significantly increased upon exposure to 1T and 2H MoS2 (10 mg kg-1). Gas chromatography-mass spectrometry (GC-MS) reveals that both phases of MoS2 in soil systematically enhanced the carbon and nitrogen related metabolic pathways in exposed plants. Soil 16S rRNA gene sequencing data show that soil microbial community structure was unchanged upon MoS2 exposure. However, both phases of MoS2 remarkably increased the relative abundance of N2-fixation cyanobacteria, and 2H MoS2 exposure increased a plant growth-promoting rhizobacteria-Bacillus. Overall, our results suggest that MoS2 nanosheets at tested doses did not exert negative impacts on rice plant and the associated soil microbial community.
Collapse
Affiliation(s)
- Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xianjun Tan
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xin Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuxiong Huang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, CT, 06504, United States
| |
Collapse
|
31
|
Genetic Foundations of Direct Ammonia Oxidation (Dirammox) to N 2 and MocR-like Transcriptional Regulator DnfR in Alcaligenes faecalis JQ135. Appl Environ Microbiol 2022; 88:e0226121. [PMID: 35108103 DOI: 10.1128/aem.02261-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation is an important process of both the natural nitrogen cycle and nitrogen removal from engineered ecosystems. Recently, a new ammonia oxidation pathway termed Dirammox (direct ammonia oxidation, NH3→NH2OH→N2) has been identified in Alcaligenes ammonioxydans. However, whether Dirammox is present in other microbes and its genetic regulation remains unknown. In this study, it was found that the metabolically versatile bacterium Alcaligenes faecalis strain JQ135 could efficiently convert ammonia into N2 via NH2OH under aerobic conditions. Genetic deletion and complementation results suggest that dnfABC is responsible for the ammonia oxidation to N2 in this strain. Strain JQ135 also employs aerobic denitrification, mainly producing N2O and trace amounts of N2 with nitrite as sole nitrogen source. Deletion of genes nirK and nosZ that are essential for denitrification did not impair the capability of JQ135 to oxidize ammonia to N2 (i.e., Dirammox is independent of denitrification). Furthermore, it was also demonstrated that pod (which encodes pyruvic oxime dioxygenase) was not involved in Dirammox and AFA_16745 (which was previously annotated as ammonia monooxygenase and is widespread in heterotrophic bacteria) was not an ammonia monooxygenase. The MocR-family transcriptional regulator DnfR was characterized as an activator of the dnfABC operon with the binding motif 5'-TGGTCTGT-3' in the promotor region. Bioinformatic survey showed that homologs to dnf genes are widely distributed in heterotrophic bacteria. In conclusion, this work demonstrates that besides A. ammonioxydans, Dirammox also occurs in other bacteria, and is regulated by the MocR-family transcriptional regulator DnfR. Importance Microbial ammonia oxidation is a key and rate-limiting step of the nitrogen cycle. Three previous known ammonia oxidation pathways (i.e., nitrification, anaerobic ammonia oxidation (Anammox), and complete ammonia oxidation (Comammox)) are mediated by autotrophic microbes. However, the genetic foundations of ammonia oxidation by heterotrophic microorganisms have not been investigated in depth. Recently, a previously unknown pathway, termed direct ammonia oxidation to N2 (Dirammox), has been identified in the heterotrophic bacterium Alcaligenes ammonioxydans HO-1. This paper shows that in the metabolically versatile bacterium Alcaligenes faecalis JQ135, the Dirammox pathway is mediated by dnf genes, which are independent of the denitrification pathway. Bioinformatic survey suggests that homologs to dnf genes are widely distributed in bacteria. These findings enhance the understanding of the molecular mechanisms of heterotrophic ammonia oxidation to N2.
Collapse
|
32
|
Harnessing electrical-to-biochemical conversion for microbial synthesis. Curr Opin Biotechnol 2022; 75:102687. [PMID: 35104718 DOI: 10.1016/j.copbio.2022.102687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
Electrical-to-biochemical conversion (E2BC) drives cell metabolism for biosynthesis and has become a promising way to realize green biomanufacturing. This review discusses the following aspects: 1. the natural E2BC processes and their underlying E2BC mechanism; 2. development of artificial E2BC for tunable microbial electrosynthesis; 3. design of electrobiochemical systems using self-powered, light-assisted, and nano-biohybrid approaches; 4. synthetic biology methods for efficient microbial electrosynthesis. This review also compares E2BC with electrocatalysis-biochemical conversion (EC2BC), as both strategies may lead to future carbon negative green biomanufacturing.
Collapse
|
33
|
Zhao C, Yang B, Liao R, Hong M, Yu S, Wang J, Qiu G. Catalytic mechanism of manganese ions and visible light on chalcopyrite bioleaching in the presence of Acidithiobacillus ferrooxidans. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Chen S, Shi N, Huang M, Tan X, Yan X, Wang A, Huang Y, Ji R, Zhou D, Zhu YG, Keller AA, Gardea-Torresdey JL, White JC, Zhao L. MoS 2 Nanosheets-Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. ACS NANO 2021; 15:16344-16356. [PMID: 34569785 DOI: 10.1021/acsnano.1c05656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fully understanding the environmental implications of engineered nanomaterials is crucial for their safe and sustainable use. Cyanobacteria, as the pioneers of the planet earth, play important roles in global carbon and nitrogen cycling. Here, we evaluated the biological effects of molybdenum disulfide (MoS2) nanosheets on a N2-fixation cyanobacteria (Nostoc sphaeroides) by monitoring growth and metabolome changes. MoS2 nanosheets did not exert overt toxicity to Nostoc at the tested doses (0.1 and 1 mg/L). On the contrary, the intrinsic enzyme-like activities and semiconducting properties of MoS2 nanosheets promoted the metabolic processes of Nostoc, including enhancing CO2-fixation-related Calvin cycle metabolic pathway. Meanwhile, MoS2 boosted the production of a range of biochemicals, including sugars, fatty acids, amino acids, and other valuable end products. The altered carbon metabolism subsequently drove proportional changes in nitrogen metabolism in Nostoc. These intracellular metabolic changes could potentially alter global C and N cycles. The findings of this study shed light on the nature and underlying mechanisms of bio-nanoparticle interactions, and offer the prospect of utilization bio-nanomaterials for efficient CO2 sequestration and sustainable biochemical production.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Nibin Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xianjun Tan
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xin Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aodi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuxiong Huang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Arturo A Keller
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jorge L Gardea-Torresdey
- Bren School of Environmental Science & Management and Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, California 93106, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06504, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
35
|
Ye J, Hu A, Ren G, Chen M, Zhou S, He Z. Biophotoelectrochemistry for renewable energy and environmental applications. iScience 2021; 24:102828. [PMID: 34368649 PMCID: PMC8326206 DOI: 10.1016/j.isci.2021.102828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biophotoelectrochemistry (BPEC) is an interdisciplinary research field and combines bioelectrochemistry and photoelectrochemistry through the utilization of the catalytic abilities of biomachineries and light harvesters to accomplish the production of energy or chemicals driven by solar energy. The BPEC process may act as a new approach for sustainable green chemistry and waste minimization. This review provides the state-of-the-art introduction of BPEC basics and systems, with a focus on light harvesters and biocatalysts, configurations, photoelectron transfer mechanisms, and the potential applications in energy and environment. Several examples of BPEC applications are discussed including H2 production, CO2 reduction, chemical synthesis, pollution control, and biogeochemical cycle of elements. The challenges about BPEC systems are identified and potential solutions are proposed. The review aims to encourage further research of BPEC toward development of practical BPEC systems for energy and environmental applications.
Collapse
Affiliation(s)
- Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Andong Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoping Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
36
|
Ding R, Wu Y, Yang F, Xiao X, Li Y, Tian X, Zhao F. Degradation of low-concentration perfluorooctanoic acid via a microbial-based synergistic method: assessment of the feasibility and functional microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125857. [PMID: 34492806 DOI: 10.1016/j.jhazmat.2021.125857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is persistent in the environment. The activities of microorganisms alone are insufficient for the decomposition of PFOA, but microorganisms can contribute positively to the degradation of PFOA in synergistic systems. Herein, a synergistic system combining photocatalytic decay with microbial degradation of the transformation products was applied to degrade 500.0 μg L-1 PFOA. The microorganisms increased the total removed percentage by 30.7% to a final percentage of 79.7 ± 9.4% in comparison with the photocatalytic method alone. Moreover, an additional 44.2% of removed total organic carbon and additional defluorination percentage of 24.5% were obtained after the synergistic tests. The 16S RNA sequencing analysis indicated that Stenotrophomonas, Bacillus, Pseudomonas, and Brevundimonas were highly enriched in the functional microbial community, which was simultaneously shaped by photocatalysis and substances. This study found it would be feasible to use a synergistic method containing photocatalysis and a microbial community for the degradation of low-concentrations of PFOA, and the results provided a reference to modified the removal efficiency of the synergistic system by looking insight into the relationship between the functional microbial community and PFOA.
Collapse
Affiliation(s)
- Rui Ding
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian Province 350007, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Wu
- Public Health School, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fan Yang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Xiao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidi Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Tian
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
37
|
Marlow JJ, Hoer D, Jungbluth SP, Reynard LM, Gartman A, Chavez MS, El-Naggar MY, Tuross N, Orphan VJ, Girguis PR. Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites. Proc Natl Acad Sci U S A 2021; 118:e2006857118. [PMID: 34161255 PMCID: PMC8237665 DOI: 10.1073/pnas.2006857118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated Vmax, and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
| | - Daniel Hoer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Sean P Jungbluth
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94720
| | - Linda M Reynard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Amy Gartman
- US Geological Survey Pacific Coastal and Marine Science Center, Santa Cruz, CA 95060
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Noreen Tuross
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
38
|
Liu J, Liu X, Ding H, Ren G, Sun Y, Liu Y, Ji X, Ma LZ, Li Y, Lu A. Enhanced mechanism of extracellular electron transfer between semiconducting minerals anatase and Pseudomonas aeruginosa PAO1 in euphotic zone. Bioelectrochemistry 2021; 141:107849. [PMID: 34098461 DOI: 10.1016/j.bioelechem.2021.107849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022]
Abstract
Focusing the marine euphotic zone, which is the pivotal region for interaction of solar light-mineral-microorganism and the elements cycle, we have conducted the research on the mechanism of semiconducting minerals promoting extracellular electron transfer with microorganisms in depth. Therein, anatase which is one of the most representative semiconducting minerals in marine euphotic zone was selected. The mineralogical characterization of anatase was identified by ESEM, AFM, EDS, Raman, XRD, and its semiconducting characteristics was determined by UV-Vis and Mott-Schottky plots. Determined by the electrochemical measurement of I-t curves, the photocurrent density of anatase was more prominent than dark current density. Pseudomonas aeruginosa PAO1 was widely distributed in the euphotic zone, and its mutants of operons deficient in biosynthesis pyocyanin (Δphz1Δphz2) and pili deficient (ΔpilA) were employed in this study. I-t curves indicated that both direct and indirect extracellular electron transfer processes occurred between anatase and PAO1. The indirect electron transfer depending on pyocyanin secreted by PAO1 was the main electron transfer mode. This work demonstrated the light-driven extracellular electron transfer and further revealed the photo-catalyzed mechanisms between anatase and PAO1 in marine euphotic zone.
Collapse
Affiliation(s)
- Jia Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China
| | - Xi Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongrui Ding
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China.
| | | | - Yuan Sun
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China
| | - Ying Liu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China
| | - Xiang Ji
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing Key Laboratory of Mineral Environmental Function, Beijing 100871, China.
| |
Collapse
|
39
|
Dong G, Han R, Pan Y, Zhang C, Liu Y, Wang H, Ji X, Dahlgren RA, Shang X, Chen Z, Zhang M. Role of MnO 2 in controlling iron and arsenic mobilization from illuminated flooded arsenic-enriched soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123362. [PMID: 32629343 DOI: 10.1016/j.jhazmat.2020.123362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
This study examined the role of intermittent illumination/dark conditions coupled with MnO2-ammendments to regulate the mobility of As and Fe in flooded arsenic-enriched soils. Addition of MnO2 particles with intermittent illumination led to a pronounced increase in the reductive-dissolution of Fe(III) and As(V) from flooded soils compared to a corresponding dark treatments. A higher MnO2 dosage (0.10 vs 0.02 g) demonstrated a greater effect. Over a 49-day incubation, maximum Fe concentrations mobilized from the flooded soils amended with 0.10 and 0.02 g MnO2 particles were 2.39 and 1.85-fold higher than for non-amended soils under dark conditions. The corresponding maximum amounts of mobilized As were at least 92 % and 65 % higher than for non-amended soils under dark conditions, respectively. Scavenging of excited holes by soil humic/fulvic compounds increased mineral photoelectron production and boosted Fe(III)/As(V) reduction in MnO2-amended, illuminated soils. Additionally, MnO2 amendments shifted soil microbial community structure by enriching metal-reducing bacteria (e.g., Anaeromyxobacter, Bacillus and Geobacter) and increasing c-type cytochrome production. This microbial diversity response to MnO2 amendment facilitated direct contact extracellular electron transfer processes, which further enhanced Fe/As reduction. Subsequently, the mobility of released Fe(II) and As(III) was partially attenuated by adsorption, oxidation, complexation and/or coprecipitation on active sites generated on MnO2 surfaces during MnO2 dissolution. These results illustrated the impact of a semiconducting MnO2 mineral in regulating the biogeochemical cycles of As/Fe in soil and demonstrated the potential for MnO2-based bioremediation strategies for arsenic-polluted soils.
Collapse
Affiliation(s)
- Guowen Dong
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Fujian Provincial Key Laboratory of Resource and Environment Monitoring & Sustainable Management and Utilization, College of Resources and Chemical Engineering, Sanming University, Sanming, 365000, People's Republic of China
| | - Ruiwen Han
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Yajing Pan
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Chengkai Zhang
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Yu Liu
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Honghui Wang
- Department of Environmental Science, School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, People's Republic of China
| | - Xiaoliang Ji
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Randy A Dahlgren
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, 95616, United States
| | - Xu Shang
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Zheng Chen
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Department of Environmental Science, School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, People's Republic of China; Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing, 350300, People's Republic of China.
| | - Minghua Zhang
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, 95616, United States
| |
Collapse
|
40
|
Dong G, Wang H, Yan Z, Zhang J, Ji X, Lin M, Dahlgren RA, Shang X, Zhang M, Chen Z. Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140080. [PMID: 32562993 DOI: 10.1016/j.scitotenv.2020.140080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Intimate coupling of microbial extracellular electron transfer (EET) and photoelectrochemical processes is an emerging research area with great potential to circumvent many disadvantages associated with traditional techniques that depend on independent microbial or photocatalysis treatment. Microbial EET processes involve microorganism oxidation of extracellular electron donors for respiration and synchronous reduction of extracellular electron acceptors to form an integrated respiratory chain. Coupled microbial EET-photoelectrochemical technologies greatly improve energy conversion efficiency providing both economic and environmental benefits. Among substitutes for semiconductor photocatalysts, cadmium sulfide nanoparticles (CdS NPs) possess several attractive properties. Specifically, CdS NPs have suitable electrical conductivity, large specific surface area, visible light-driven photocatalysis capability and robust biocompatibility, enabling them to promote hybrid microbial-photoelectrochemical processes. This review highlights recent advances in intimately coupled CdS NPs-microbial extracellular electron transfer systems and examines the mechanistic pathways involved in photoelectrochemical transformations. Finally, the prospects for emerging applications utilizing hybrid CdS NPs-based microbial-photoelectrochemical technologies are assessed. As such, this review provides a rigorous fundamental analysis of electron transport dynamics for hybrid CdS NPs-microbial photoelectrochemical processes and explores the applicability of engineered CdS NPs-biohybrids for future applications, such as in environmental remediation and clean-energy production.
Collapse
Affiliation(s)
- Guowen Dong
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China; Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Fujian Provincial Key Laboratory of Resource and Environment Monitoring & Sustainable Management and Utilization, College of Resources and Chemical Engineering, Sanming University, Sanming 365000, People's Republic of China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Zhiying Yan
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Xiaoliang Ji
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Maozi Lin
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China
| | - Randy A Dahlgren
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Xu Shang
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Minghua Zhang
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Zheng Chen
- Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China.
| |
Collapse
|
41
|
Liu Y, Ding H, Sun Y, Li Y, Lu A. Genome Analysis of a Marine Bacterium Halomonas sp. and Its Role in Nitrate Reduction under the Influence of Photoelectrons. Microorganisms 2020; 8:E1529. [PMID: 33027938 PMCID: PMC7650824 DOI: 10.3390/microorganisms8101529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
The solar light response and photoelectrons produced by widespread semiconducting mineral play important roles in biogeochemical cycles on Earth's surface. To explore the potential influence of photoelectrons generated by semiconducting mineral particles on nitrate-reducing microorganisms in the photic zone, a marine heterotrophic denitrifier Halomonas sp. strain 3727 was isolated from seawater in the photic zone of the Yellow Sea, China. This strain was classified as a Halomonadaceae. Whole-genome analysis indicated that this strain possessed genes encoding the nitrogen metabolism, i.e., narG, nasA, nirBD, norZ, nosB, and nxr, which sustained dissimilatory nitrate reduction, assimilatory nitrate reduction, and nitrite oxidation. This strain also possessed genes related to carbon, sulfur, and other metabolisms, hinting at its substantial metabolic flexibility. A series of microcosm experiments in a simulative photoelectron system was conducted, and the results suggested that this bacterial strain could use simulated photoelectrons with different energy for nitrate reduction. Nitrite, as an intermediate product, was accumulated during the nitrate reduction with limited ammonia residue. The nitrite and ammonia productions differed with or without different energy electron supplies. Nitrite was the main product accounting for 30.03% to 68.40% of the total nitrogen in photoelectron supplement systems, and ammonia accounted for 3.77% to 8.52%. However, in open-circuit systems, nitrite and ammonia proportions were 26.77% and 11.17%, respectively, and nitrogen loss in the liquid was not observed. This study reveals that photoelectrons can serve as electron donors for nitrogen transformation mediated by Halomonas sp. strain 3727, which reveals an underlying impact on the nitrogen biogeochemical cycle in the marine photic zone.
Collapse
Affiliation(s)
| | - Hongrui Ding
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871 Beijing, China; (Y.L.); (Y.S.); (Y.L.)
| | | | | | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, 100871 Beijing, China; (Y.L.); (Y.S.); (Y.L.)
| |
Collapse
|
42
|
Ma N, Sha Z, Sun C. Formation of cadmium sulfide nanoparticles mediates cadmium resistance and light utilization of the deep-sea bacterium Idiomarina sp. OT37-5b. Environ Microbiol 2020; 23:934-948. [PMID: 32815245 DOI: 10.1111/1462-2920.15205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/16/2020] [Indexed: 01/10/2023]
Abstract
Heavy metal is one of the major factors threatening the survival of microorganisms. Here, a deep-sea bacterium designated Idiomarina sp. OT37-5b possessing strong cadmium (Cd) tolerance was isolated from a typical hydrothermal vent. Both the Cd-resistance and removal efficiency of Idiomarina sp. OT37-5b were significantly promoted by the supplement of cysteine and meanwhile large amount of CdS nanoparticles were observed. Production of H2 S from cysteine catalysed by methionine gamma-lyase was further demonstrated to contribute to the formation of CdS nanoparticles. Proteomic results showed the addition of cysteine effectively enhanced the efflux of Cd, improved the activities of reactive oxygen species scavenging enzymes, and thereby boosted the nitrogen reduction and energy production of Idiomarina sp. OT37-5b. Notably, the existence of CdS nanoparticles obviously promoted the growth of Idiomarina sp. OT37-5b when exposed to light, indicating this bacterium might grab light energy through CdS nanoparticles. Proteomic analysis revealed the expression levels of essential components for light utilization including electron transport, cytochrome complex and F-type ATPase were significantly up-regulated, which strongly suggested the formation of CdS nanoparticles promoted light utilization and energy production. Our results provide a good model to investigate the uncovered mechanisms of self-photosensitization of nonphotosynthetic bacteria for light-to-chemical production in the deep biosphere.
Collapse
Affiliation(s)
- Ning Ma
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Centre of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhongli Sha
- Centre of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Centre of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
43
|
The Micro-Scaled Characterization of Natural Terrestrial Ferromanganese Coatings and Their Semiconducting Properties. COATINGS 2020. [DOI: 10.3390/coatings10070666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Different types of ferromanganese coatings were collected from the Chinese mainland to study their mineralogical characteristics and semiconducting properties. Measurements, including by optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, micro-Raman spectrometer and transmission electron microscope, were employed to study their morphology, mineral assemblage, element abundance and distribution patterns. Soil Fe coatings are mainly composed of Al-rich hematite and clays. Soil Fe/Mn coatings can be divided into an outer belt rich in birnessite and an inner belt rich in hematite, goethite, ilmenite and magnetite. Goethite is the only component of rock Fe coatings. Rock Fe/Mn coatings mainly consist of birnessite and hematite, and alternating Fe/Mn-rich layers and Fe/Mn-poor layers can be observed. Powders were scraped off from the topmost part of ferromanganese coatings to conduct laboratory photochemical experiments. The photocurrent–time behavior indicates that natural coating electrodes exhibit an immediate increase in photocurrent intensity when exposed to light irradiation. Natural coatings can photo-catalytically degrade 14.3%–58.4% of methyl orange in 10 h. Under light irradiation, the photocurrent enhancement and organic degradation efficiency of the rock Fe/Mn coating, which has a close intergrowth structure of Fe and Mn components, is most significant. This phenomenon is attributed to the formation of semiconductor heterojunctions, which can promote the separation of electrons and holes. Terrestrial ferromanganese coatings are common in natural settings and rich in semiconducting Fe/Mn oxide minerals. Under solar light irradiation, these coatings can catalyze important photochemical processes and will thus have an impact on the surrounding environment.
Collapse
|
44
|
Abstract
AbstractAbiotic–biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide (CO2) to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission. We illustrate the recent progress in this field. Here, we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important. Second, we review the recent progress in the construction of abiotic–biological hybrid systems for CO2 transformation from two aspects: (i) microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and (ii) photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation. Lastly, we discuss potential approaches for further improvement of abiotic–biological hybrid systems.
Collapse
|
45
|
Li G, Chen X, Yin H, Wang W, Wong PK, An T. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes. ENVIRONMENT INTERNATIONAL 2020; 136:105497. [PMID: 31999971 DOI: 10.1016/j.envint.2020.105497] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Minerals and microorganisms are integral parts of natural environments, and they inevitably interact. Antibiotic-resistance genes (ARGs) significantly threaten modern healthcare. However, the effects of natural minerals on ARG propagation in aquatic systems are not fully understood. The present work studied the effects of natural sphalerite (NS) nanoparticles on the horizontal transfer of ARGs from Escherichia coli DH5α (CTX) (donor) to E. coli C600 (Sm) (recipient), and from E. coli DH5α (MCR) (donor) to E. coli C600 (Sm), and their underlying mechanisms. NS particles (0.5-50 mg L-1) induced an NS-concentration-dependent increase in conjugative transfer frequency. The underlying mechanisms associated with the facilitated ARG transfer included the production of intracellular reactive oxygen species, the SOS response, changes in bacterial cell morphology, and alteration of mRNA levels of bacterial cell membrane protein-related genes and genes associated with conjugative ARG transfer. The information herein offers new mechanistic understanding of risks of bacterial resistance resulting from NS.
Collapse
Affiliation(s)
- Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiaofang Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Hongliang Yin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
46
|
Yang B, Lin M, Fang J, Zhang R, Luo W, Wang X, Liao R, Wu B, Wang J, Gan M, Liu B, Zhang Y, Liu X, Qin W, Qiu G. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134175. [PMID: 31518786 DOI: 10.1016/j.scitotenv.2019.134175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Although jarosite and visible light are important factors for the formation of acid mine drainage (AMD), the effects of combined jarosite and visible light on chalcopyrite biodissolution have not been explored until now. In order to fill this knowledge gap, the combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans were investigated. The results indicated that jarosite and visible light could significantly accelerate chalcopyrite biodissolution, thus releasing more copper ions, iron ions and producing more acid. This in turn suggests enhanced generation of AMD under these conditions. Biodissolution results, mineral surface morphology, mineralogical phase and elemental composition analyses revealed that the promotion of chalcopyrite dissolution by additional jarosite and visible light was mainly attributed to the acceleration of ferric iron/ferrous iron cycling and the inhibition of the formation of a passivation layer (jarosite and Sn2-/S0) on the surface of chalcopyrite. This study provides a better understanding of the effects of jarosite and visible light on chalcopyrite biodissolution. In the future, the influences of jarosite and visible light on chalcopyrite dissolution should be considered in AMD evaluation to ensure reliability.
Collapse
Affiliation(s)
- Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Mo Lin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Jinghua Fang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany
| | - Wen Luo
- The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Xingxing Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Rui Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Baiqiang Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Bin Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Wenqing Qin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
47
|
Synergistic effects of electron shuttle AQS and Alcaligenes faecalis on photocatalytic removal of U(VI). J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06753-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Yang M, Zhong Y, Zhang B, Shi J, Huang X, Xing Y, Su L, Liu H, Borthwick AGL. Enhanced sulfide removal and bioelectricity generation in microbial fuel cells with anodes modified by vertically oriented nanosheets. ENVIRONMENTAL TECHNOLOGY 2019; 40:1770-1779. [PMID: 29345191 DOI: 10.1080/09593330.2018.1429496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/13/2018] [Indexed: 06/07/2023]
Abstract
Anode materials and structures are of critical importance for microbial fuel cells (MFCs) recovering energy from toxic substrates. Carbon-fiber-felt anodes modified by layers of vertically oriented TiO2 and Fe2O3 nanosheets were applied in the present study. Enhanced sulfide removal efficiencies (both over 90%) were obtained after a 48-h operation, with maximum power densities improved by 1.53 and 1.36 folds compared with MFCs with raw carbon-fiber-felt anode. The modified anodes provided more active sites for microbial adhesion with increasing biomass densities. High-throughput 16S rRNA gene sequencing analysis also indicated the increase in microbial diversities. Bacteroidetes responsible for bioelectricity generation with Thiobacillus and Spirochaeta dominating sulfide removal were found in the MFCs with the modified anodes, with less anaerobic fermentative bacteria as Firmicutes appeared. This indicates that the proposed materials are competitive for applications of MFCs generating bioelectricity from toxic sulfide.
Collapse
Affiliation(s)
- Meng Yang
- a School of Water Resources and Environment , MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences , Beijing , People's Republic of China
| | - Yuezhi Zhong
- a School of Water Resources and Environment , MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences , Beijing , People's Republic of China
| | - Baogang Zhang
- a School of Water Resources and Environment , MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences , Beijing , People's Republic of China
| | - Jiaxin Shi
- a School of Water Resources and Environment , MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences , Beijing , People's Republic of China
| | - Xueyang Huang
- a School of Water Resources and Environment , MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences , Beijing , People's Republic of China
| | - Yi Xing
- b School of Energy and Environmental Engineering , University of Sciences and Technology Beijing, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants , Beijing , People's Republic of China
| | - Lin Su
- c State Key Laboratory of Bioelectronics, Southeast University , Nanjing , People's Republic of China
| | - Huipeng Liu
- a School of Water Resources and Environment , MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences , Beijing , People's Republic of China
| | | |
Collapse
|
49
|
Chen M, Zhou XF, Yu YQ, Liu X, Zeng RJX, Zhou SG, He Z. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans. ENVIRONMENT INTERNATIONAL 2019; 127:353-360. [PMID: 30954721 DOI: 10.1016/j.envint.2019.03.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
N2O (Nitrous oxide, a booster oxidant in rockets) has attracted increasing interest as a means of enhancing energy production, and it can be produced by nitrate (NO3-) reduction in NO3--loading wastewater. However, conventional denitrification processes are often limited by the lack of bioavailable electron donors. In this study, we innovatively propose a self-photosensitized nonphototrophic Thiobacillus denitrificans (T. denitrificans-CdS) that is capable of NO3- reduction and N2O production driven by light. The system converted >72.1 ± 1.1% of the NO3--N input to N2ON, and the ratio of N2O-N in gaseous products was >96.4 ± 0.4%. The relative transcript abundance of the genes encoding the denitrifying proteins in T. denitrificans-CdS after irradiation was significantly upregulated. The photoexcited electrons acted as the dominant electron sources for NO3- reduction by T. denitrificans-CdS. This study provides the first proof of concept for sustainable and low-cost autotrophic denitrification to generate N2O driven by light. The findings also have strong implications for sustainable environmental management because the sunlight-triggered denitrification reaction driven by nonphototrophic microorganisms may widely occur in nature, particularly in a semiconductive mineral-enriched aqueous environment.
Collapse
Affiliation(s)
- Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Fang Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu-Qing Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Raymond Jian-Xiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
50
|
Photoelectric conversion on Earth's surface via widespread Fe- and Mn-mineral coatings. Proc Natl Acad Sci U S A 2019; 116:9741-9746. [PMID: 31010932 DOI: 10.1073/pnas.1902473116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sunlight drives photosynthesis and associated biological processes, and also influences inorganic processes that shape Earth's climate and geochemistry. Bacterial solar-to-chemical energy conversion on this planet evolved to use an intricate intracellular process of phototrophy. However, a natural nonbiological counterpart to phototrophy has yet to be recognized. In this work, we reveal the inherent "phototrophic-like" behavior of vast expanses of natural rock/soil surfaces from deserts, red soils, and karst environments, all of which can drive photon-to-electron conversions. Using scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and X-ray absorption spectroscopy, Fe and Mn (oxyhydr)oxide-rich coatings were found in rock varnishes, as were Fe (oxyhydr)oxides on red soil surfaces and minute amounts of Mn oxides on karst rock surfaces. By directly fabricating a photoelectric detection device on the thin section of a rock varnish sample, we have recorded an in situ photocurrent micromapping of the coatings, which behave as highly sensitive and stable photoelectric systems. Additional measurements of red soil and powder separated from the outermost surface of karst rocks yielded photocurrents that are also sensitive to irradiation. The prominent solar-responsive capability of the phototrophic-like rocks/soils is ascribed to the semiconducting Fe- and Mn (oxyhydr)oxide-mineral coatings. The native semiconducting Fe/Mn-rich coatings may play a role similar, in part, to photosynthetic systems and thus provide a distinctive driving force for redox (bio)geochemistry on Earth's surfaces.
Collapse
|