1
|
Morita H, Hoshiga M. Fibroblast Growth Factors in Cardiovascular Disease. J Atheroscler Thromb 2024; 31:1496-1511. [PMID: 39168622 PMCID: PMC11537794 DOI: 10.5551/jat.rv22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Despite advancements in managing traditional cardiovascular risk factors, many cardiovascular diseases (CVDs) persist. Fibroblast growth factors (FGFs) have emerged as potential diagnostic markers and therapeutic targets for CVDs. FGF1, FGF2, and FGF4 are primarily used for therapeutic angiogenesis. Clinical applications are being explored based on animal studies using approaches such as recombinant protein administration and adenovirus-mediated gene delivery, targeting patients with coronary artery disease and lower extremity arterial disease. Although promising results have been observed in animal models and early-stage clinical trials, further studies are required to assess their therapeutic potential. The FGF19 subfamily, consisting of FGF19, FGF21, and FGF23, act via endocrine signaling in various organs. FGF19, primarily expressed in the small intestine, plays important roles in glucose, lipid, and bile acid metabolism and has therapeutic potential for metabolic disorders. FGF21, found in various tissues, improves glucose metabolism and insulin sensitivity, suggesting potential for treating obesity and diabetes. FGF23, primarily secreted by osteocytes, regulates vitamin D and phosphate metabolism and serves as an important biomarker for chronic kidney disease and CVDs. Thus, FGFs holds promise for both therapeutic and diagnostic applications in metabolic and cardiovascular diseases. Understanding the mechanisms of FGF may pave the way for novel strategies to prevent and manage CVDs, potentially addressing the limitations of current treatments. This review explores the roles of FGF1, FGF2, FGF4, and the FGF19 subfamily in maintaining cardiovascular health. Further research and clinical trials are crucial to fully understand the therapeutic potential of FGFs in managing cardiovascular health.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masaaki Hoshiga
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
2
|
Berta E, Halmi S, Molnár I, Hutkai D, Csiha S, Bhattoa HP, Lőrincz H, Somodi S, Katkó M, Harangi M, Paragh G, Nagy EV, Bodor M. Low Serum Fibroblast Growth Factor 21 Level and Its Altered Regulation by Thyroid Hormones in Patients with Hashimoto's Thyroiditis on Levothyroxine Substitution. Metabolites 2024; 14:565. [PMID: 39452947 PMCID: PMC11509456 DOI: 10.3390/metabo14100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism exerting protection against atherosclerosis by multiple actions on the blood vessels, liver, and adipose tissues. We aimed to investigate serum FGF21 level and its relation to thyroid hormones and metabolic parameters among patients with Hashimoto's thyroiditis (HT). METHODS Eighty patients with HT on levothyroxine treatment and eighty-two age- and BMI-matched adults without thyroid disease serving as controls were enrolled. Serum FGF21 concentrations were determined with an enzyme-linked immunosorbent assay. RESULTS Median serum FGF21 level was significantly lower in HT patients compared with controls (74.2 (33.4-148.3) pg/mL vs. 131.9 (44.8-236.3) pg/mL; p = 0.03). We found a positive correlation between FGF21 and age, triglyceride, total cholesterol, and low-density lipoprotein cholesterol in both groups, while thyroid stimulating hormone and C-reactive protein showed a positive correlation, and thyroxine had an inverse correlation with FGF21 only in control subjects. According to multiple regression analyses, thyroid status is the main predictor of FGF21 in healthy controls, while it is not a significant predictor of FGF21 among HT patients on levothyroxine supplementation therapy. CONCLUSIONS Our results indicate that the physiological role of thyroid function in the regulation of FGF21 synthesis is impaired in HT patients, which may contribute to the metabolic alterations characteristic of HT patients.
Collapse
Affiliation(s)
- Eszter Berta
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (S.C.); (M.B.)
| | - Sándor Halmi
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (S.H.); (I.M.)
| | - István Molnár
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (S.H.); (I.M.)
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| | - Dávid Hutkai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Kálmán Laki Doctoral School, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sára Csiha
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (S.C.); (M.B.)
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (S.H.); (I.M.)
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
| | - Sándor Somodi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mónika Katkó
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
| | - György Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (H.L.); (S.S.); (M.H.); (G.P.)
| | - Endre V. Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| | - Miklós Bodor
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary; (S.C.); (M.B.)
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.K.); (E.V.N.)
| |
Collapse
|
3
|
Xu Z, Li H, Cao G, Li P, Zhou H, Sun Y. The protective role of brown adipose tissue in cardiac cell damage after myocardial infarction and heart failure. Lipids Health Dis 2024; 23:338. [PMID: 39415186 PMCID: PMC11481725 DOI: 10.1186/s12944-024-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024] Open
Abstract
Acute myocardial infarction (AMI) and related cardiovascular disease complications are the leading causes of mortality worldwide. Brown adipose tissue (BAT) is thermogenic and characterized by the uncoupling protein expression. Recent studies have found that in cardiovascular diseases, activated BAT can effectively improve the prognosis of AMI and concurrent heart failure through intercellular communication. However, a clear and systematic understanding of the myocardial protective mechanism of BAT after AMI is lacking, especially in the endocrine function of BAT. This review describes the effects of BAT on various cells in the heart after AMI. BAT plays a protective role on cardiac cells and fibroblasts during ischemia/reperfusion (I/R), myocardial remodeling, and myocardial fibrosis. This review also discusses the changes caused by BAT activation in different stages of heart failure. Finally, this review summarizes the treatment methods that target BAT to improve AMI. Further in-depth researches are still needed to clarify the underlying mechanism of the connection between BAT and different cells in cardiac tissue in order to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guojie Cao
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Panpan Li
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haitao Zhou
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Sun
- Department of Geriatric Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Campos I, Richter B, Thomas SM, Czaya B, Yanucil C, Kentrup D, Fajol A, Li Q, Secor SM, Faul C. FGFR4 Is Required for Concentric Growth of Cardiac Myocytes during Physiologic Cardiac Hypertrophy. J Cardiovasc Dev Dis 2024; 11:320. [PMID: 39452290 PMCID: PMC11508992 DOI: 10.3390/jcdd11100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Fibroblast growth factor (FGF) 23 is a bone-derived hormone that promotes renal phosphate excretion. Serum FGF23 is increased in chronic kidney disease (CKD) and contributes to pathologic cardiac hypertrophy by activating FGF receptor (FGFR) 4 on cardiac myocytes, which might lead to the high cardiovascular mortality in CKD patients. Increases in serum FGF23 levels have also been observed following endurance exercise and in pregnancy, which are scenarios of physiologic cardiac hypertrophy as an adaptive response of the heart to increased demand. To determine whether FGF23/FGFR4 contributes to physiologic cardiac hypertrophy, we studied FGFR4 knockout mice (FGFR4-/-) during late pregnancy. In comparison to virgin littermates, pregnant wild-type and FGFR4-/- mice showed increases in serum FGF23 levels and heart weight; however, the elevation in myocyte area observed in pregnant wild-type mice was abrogated in pregnant FGFR4-/- mice. This outcome was supported by treatments of cultured cardiac myocytes with serum from fed Burmese pythons, another model of physiologic hypertrophy, where the co-treatment with an FGFR4-specific inhibitor abrogated the serum-induced increase in cell area. Interestingly, we found that in pregnant mice, the heart, and not the bone, shows elevated FGF23 expression, and that increases in serum FGF23 are not accompanied by changes in phosphate metabolism. Our study suggests that in physiologic cardiac hypertrophy, the heart produces FGF23 that contributes to hypertrophic growth of cardiac myocytes in a paracrine and FGFR4-dependent manner, and that the kidney does not respond to heart-derived FGF23.
Collapse
Affiliation(s)
- Isaac Campos
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Beatrice Richter
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Sarah Madison Thomas
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Brian Czaya
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Christopher Yanucil
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Dominik Kentrup
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Abul Fajol
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Qing Li
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| | - Stephen M. Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Christian Faul
- Section of Mineral Metabolism, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.C.); (B.R.); (S.M.T.); (B.C.); (C.Y.); (D.K.); (A.F.); (Q.L.)
| |
Collapse
|
5
|
Brinker EJ, Hardcastle MR, Dittmer KE, Graff EC. Endocrine fibroblast growth factors in domestic animals. Domest Anim Endocrinol 2024; 89:106872. [PMID: 39059301 DOI: 10.1016/j.domaniend.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.
Collapse
Affiliation(s)
- Emily J Brinker
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA 01536
| | - Michael R Hardcastle
- IDEXX Laboratories Pty. Ltd., 20A Maui Street, Pukete, Hamilton 3200, New Zealand
| | - Keren E Dittmer
- School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Scott-Ritchey Research Center, College of Veterinary Medicine, Dr. Auburn University, 1265 HC Morgan, AL, USA 36849.
| |
Collapse
|
6
|
Sun C, Wang L, Huang H, Zheng Z, Xu X, Wang H, Chen K, Li X, Lai Y, Zhang H, Chu M, Zheng J. Mitigation of gestational diabetes-induced endothelial dysfunction through FGF21-NRF2 pathway activation involving L-Cystine. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167329. [PMID: 38960053 DOI: 10.1016/j.bbadis.2024.167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Gestational diabetes mellitus (GDM) disrupts glucolipid metabolism, endangering maternal and fetal health. Despite limited research on its pathogenesis and treatments, we conducted a study using serum samples from GDM-diagnosed pregnant women. We performed metabolic sequencing to identify key small molecule metabolites and explored their molecular interactions with FGF21. We also investigated FGF21's impact on GDM using blood samples from affected women. Our analysis revealed a novel finding: elevated levels of L-Cystine in GDM patients. Furthermore, we observed a positive correlation between L-Cystine and FGF21 levels, and found that L-Cystine induces NRF2 expression via FGF21 for a period of 96 h. Under high glucose (HG) conditions, FGF21 upregulates NRF2 and downstream genes NQO1 and EPHX1 via AKT phosphorylation induced by activation of IRS1, enhancing endothelial function. Additionally, we confirmed that levels of FGF21, L-Cystine, and endothelial function at the third trimester were effectively enhanced through appropriate exercise and diet during pregnancy in GDM patients (GDM + ED). These findings suggest FGF21 as a potential therapeutic agent for GDM, particularly in protecting endothelial cells. Moreover, elevated L-Cystine via appropriate exercise and diet might be a potential strategy to enhance FGF21's efficacy.
Collapse
Affiliation(s)
- Congcong Sun
- Department of Scientific Research Center, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China
| | - Linlin Wang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiya Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China
| | - Xiaomin Xu
- Department of Scientific Research Center, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China
| | - Hai Wang
- Department of Reproduction and Genetics, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China
| | - Kaixin Chen
- Department of Reproduction and Genetics, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China
| | - Xiaoqing Li
- Department of Scientific Research Center, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China
| | - Yanan Lai
- Department of Reproduction and Genetics, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China
| | - Hongping Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China.
| | - Maoping Chu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325000, Zhejiang, Province, China.
| | - Jianqiong Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated to Shanghai University, Wenzhou People's Hospital, Wenzhou, China.
| |
Collapse
|
7
|
Sullivan AI, Jensen-Cody SO, Claflin KE, Vorhies KE, Flippo KH, Potthoff MJ. Characterization of FGF21 Sites of Production and Signaling in Mice. Endocrinology 2024; 165:bqae120. [PMID: 39253796 DOI: 10.1210/endocr/bqae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor β-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.
Collapse
Affiliation(s)
- Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kai E Vorhies
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Harrison SA, Rolph T, Knott M, Dubourg J. FGF21 agonists: An emerging therapeutic for metabolic dysfunction-associated steatohepatitis and beyond. J Hepatol 2024; 81:562-576. [PMID: 38710230 DOI: 10.1016/j.jhep.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
The worldwide epidemics of obesity, hypertriglyceridemia, dyslipidaemia, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) represent a major economic burden on healthcare systems. Patients with at-risk MASH, defined as MASH with moderate or significant fibrosis, are at higher risk of comorbidity/mortality, with a significant risk of cardiovascular diseases and/or major adverse liver outcomes. Despite a high unmet medical need, there is only one drug approved for MASH. Several drug candidates have reached the phase III development stage and could lead to several potential conditional drug approvals in the coming years. Within the armamentarium of future treatment options, FGF21 analogues hold an interesting position thanks to their pleiotropic effects in addition to their significant effect on both MASH resolution and fibrosis improvement. In this review, we summarise preclinical and clinical data from FGF21 analogues for MASH and explore additional potential therapeutic indications.
Collapse
Affiliation(s)
- Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU UK; Pinnacle Clinical Research, San Antonio, Texas, USA
| | - Tim Rolph
- Akero Therapeutics, South San Francisco, California, USA
| | | | | |
Collapse
|
10
|
Zheng H, Zhang X, Li C, Wang D, Shen Y, Lu J, Zhao L, Li X, Gao H. BCAA mediated microbiota-liver-heart crosstalk regulates diabetic cardiomyopathy via FGF21. MICROBIOME 2024; 12:157. [PMID: 39182099 PMCID: PMC11344321 DOI: 10.1186/s40168-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/10/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of leading causes of diabetes-associated mortality. The gut microbiota-derived branched-chain amino acids (BCAA) have been reported to play a central role in the onset and progression of DCM, but the potential mechanisms remain elusive. RESULTS We found the type 1 diabetes (T1D) mice had higher circulating BCAA levels due to a reduced BCAA degradation ability of the gut microbiota. Excess BCAA decreased hepatic FGF21 production by inhibiting PPARα signaling pathway and thereby resulted in a higher expression level of cardiac LAT1 via transcription factor Zbtb7c. High cardiac LAT1 increased the levels of BCAA in the heart and then caused mitochondrial damage and myocardial apoptosis through mTOR signaling pathway, leading to cardiac fibrosis and dysfunction in T1D mice. Additionally, transplant of faecal microbiota from healthy mice alleviated cardiac dysfunction in T1D mice, but this effect was abolished by FGF21 knockdown. CONCLUSIONS Our study sheds light on BCAA-mediated crosstalk among the gut microbiota, liver and heart to promote DCM and FGF21 serves as a key mediator. Video Abstract.
Collapse
Affiliation(s)
- Hong Zheng
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xi Zhang
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chen Li
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Die Wang
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuying Shen
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiahui Lu
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liangcai Zhao
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaokun Li
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongchang Gao
- Oujiang Laboratory, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
11
|
Sun W, Fang X, Zhang H, Lu Y, Wang P, Li J, Li M. Endogenous RBM4 prevents Ang II-induced cardiomyocyte hypertrophy via downregulating the expression of PTBP1. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39118568 DOI: 10.3724/abbs.2024103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Aberrant gene expression in cardiomyocyte has been revealed to be the fundamental essence of pathological cardiac hypertrophy. However, the detailed mechanisms are not fully understood. The underlying regulators of gene expression involved in cardiac hypertrophy remain to be further identified. Here, we report that the RNA-binding protein RNA-binding motif protein 4 (RBM4) functions as an endogenic protector that is able to fight against cardiomyocyte hypertrophy in vitro. Under pro-hypertrophic stimulation of angiotensin II (Ang II), the protein level of RBM4 in cardiomyocyte and myocardium is elevated. Knockdown of RBM4 can further aggravate cardiomyocyte hypertrophy, while over-expression of RBM4 represses cardiomyocyte hypertrophy. Mechanistically, RBM4 is localized in the nucleus and down-regulates the expression of polypyrimidine tract-binding protein 1 (PTBP1), which has been shown to aggravate cardiomyocyte hypertrophy. In addition, we suggest that the up-regulation of RBM4 in cardiomyocyte hypertrophy is caused by N6-methyladenosine (m6A). Ang II induces m6A methylation of RBM4 mRNA, which further enhances the YTH domain-containing family protein 1 (YTHDF1)-mediated translation of RBM4. Thus, our results reveal a novel pathway consisting of m6A, RBM4 and PTBP1, which is involved in cardiomyocyte hypertrophy.
Collapse
|
12
|
Ding Y, Su J, Shan B, Fu X, Zheng G, Wang J, Wu L, Wang F, Chai X, Sun H, Zhang J. Brown adipose tissue-derived FGF21 mediates the cardioprotection of dexmedetomidine in myocardial ischemia/reperfusion injury. Sci Rep 2024; 14:18292. [PMID: 39112671 PMCID: PMC11306229 DOI: 10.1038/s41598-024-69356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Brown adipose tissue (BAT) plays a critical role in regulating cardiovascular homeostasis through the secretion of adipokines, such as fibroblast growth factor 21 (FGF21). Dexmedetomidine (DEX) is a selective α2-adrenergic receptor agonist with a protection against myocardial ischemia/reperfusion injury (MI/RI). It remains largely unknown whether or not BAT-derived FGF21 is involved in DEX-induced cardioprotection in the context of MI/RI. Herein, we demonstrated that DEX alleviated MI/RI and improved heart function through promoting the release of FGF21 from interscapular BAT (iBAT). Surgical iBAT depletion or supplementation with a FGF21 neutralizing antibody attenuated the beneficial effects of DEX. AMPK/PGC1α signaling-induced fibroblast growth factor 21 (FGF21) release in brown adipocytes is required for DEX-mediated cardioprotection since blockade of the AMPK/PGC1α axis weakened the salutary effects of DEX. Co-culture experiments showed that DEX-induced FGF21 from brown adipocytes increased the resistance of cardiomyocytes to hypoxia/reoxygenation (H/R) injury via modulating the Keap1/Nrf2 pathway. Our results provided robust evidence that the BAT-cardiomyocyte interaction is required for DEX cardioprotection, and revealed an endocrine role of BAT in DEX-mediating protection of hearts against MIRI.
Collapse
Affiliation(s)
- Yi Ding
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Jiabao Su
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Beiying Shan
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Xiao Fu
- Laboratory of Metabolic and Inflammatory Diseases, Wuxi School of Medicine, Jiangnan University, No.1800, Lihu Road, Wuxi, 214125, People's Republic of China
| | - Guanli Zheng
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Jiwen Wang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Lixue Wu
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China
| | - Fangming Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, People's Republic of China
| | - Xiaoying Chai
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214125, People's Republic of China
| | - Haijian Sun
- Laboratory of Metabolic and Inflammatory Diseases, Wuxi School of Medicine, Jiangnan University, No.1800, Lihu Road, Wuxi, 214125, People's Republic of China.
| | - Jiru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, 214125, People's Republic of China.
| |
Collapse
|
13
|
Negroiu CE, Riza AL, Streață I, Tudorașcu I, Beznă CM, Ungureanu AI, Dănoiu S. Connecting the Dots: FGF21 as a Potential Link between Obesity and Cardiovascular Health in Acute Coronary Syndrome Patients. Curr Issues Mol Biol 2024; 46:8512-8525. [PMID: 39194718 DOI: 10.3390/cimb46080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone involved in regulating the metabolism, energy balance, and glucose homeostasis, with new studies demonstrating its beneficial effects on the heart. This study investigated the relationship between FGF21 levels and clinical, biochemical, and echocardiographic parameters in patients with acute coronary syndromes (ACSs). This study included 80 patients diagnosed with ACS between May and July 2023, categorized into four groups based on body mass index (BMI): Group 1 (BMI 18.5-24.9 kg/m2), Group 2 (BMI 25-29.9 kg/m2), Group 3 (BMI 30-34.9 kg/m2), and Group 4 (BMI ≥ 35 kg/m2). Serum FGF21 levels were measured by ELISA (Abclonal Catalog NO.: RK00084). Serum FGF21 levels were quantifiable in 55 samples (mean ± SD: 342.42 ± 430.17 pg/mL). Group-specific mean FGF21 levels were 238.98 pg/mL ± SD in Group 1 (n = 14), 296.78 pg/mL ± SD in Group 2 (n = 13), 373.77 pg/mL ± SD in Group 3 (n = 12), and 449.94 pg/mL ± SD in Group 4 (n = 16), with no statistically significant differences between groups (p = 0.47). Based on ACS diagnoses, mean FGF21 levels were 245.72 pg/mL for STEMI (n = 21), 257.89 pg/mL for NSTEMI (n = 9), and 456.28 pg/mL for unstable angina (n = 25), with no significant differences observed between these diagnostic categories. Significant correlations were identified between FGF21 levels and BMI, diastolic blood pressure, and serum chloride. Regression analyses revealed correlations with uric acid, chloride, and creatinine kinase MB. This study highlights the complex interplay between FGF21, BMI, and acute coronary syndromes. While no significant differences were found in FGF21 levels between the different BMI and ACS diagnostic groups, correlations with clinical and biochemical parameters suggest a multifaceted role of FGF21 in cardiovascular health. Further research with a larger sample size is warranted to elucidate these relationships.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergengy County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergengy County Hospital Craiova, 200642 Craiova, Romania
| | - Iulia Tudorașcu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| | - Cristina Maria Beznă
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Adrian Ionuț Ungureanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Suzana Dănoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| |
Collapse
|
14
|
Pacheco-Bernal I, Becerril-Pérez F, Bustamante-Zepeda M, González-Suárez M, Olmedo-Suárez MA, Hernández-Barrientos LR, Alarcón-Del-Carmen A, Escalante-Covarrubias Q, Mendoza-Viveros L, Hernández-Lemus E, León-Del-Río A, de la Rosa-Velázquez IA, Orozco-Solis R, Aguilar-Arnal L. Transitions in chromatin conformation shaped by fatty acids and the circadian clock underlie hepatic transcriptional reorganization in obese mice. Cell Mol Life Sci 2024; 81:309. [PMID: 39060446 PMCID: PMC11335233 DOI: 10.1007/s00018-024-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPβ, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel A Olmedo-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luis Ricardo Hernández-Barrientos
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Alarcón-Del-Carmen
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Enrique Hernández-Lemus
- Department of Computational Genomics, Centro de Ciencias de La Complejidad (C3), Instituto Nacional de Medicina Genómica (INMEGEN), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfonso León-Del-Río
- Departamento de Medicina Genómica y Toxicología Ambiental, Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Inti A de la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a la Investigación-CIC, Universidad Nacional Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - Ricardo Orozco-Solis
- Laboratorio de Cronobiología, Metabolismo y Envejecimiento, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Mexico City, México
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
15
|
Shi R, Liu H, Xia K, Li Y, Chen T, Li X, Yang A, Xiao X. Circulating serum fibroblast growth factor 21 as risk and prognostic biomarker of retinal artery occlusion. Sci Rep 2024; 14:11854. [PMID: 38789571 PMCID: PMC11126651 DOI: 10.1038/s41598-024-62588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
To evaluate the predictive and prognostic value of fibroblast growth factor 21 (FGF21) levels in retinal artery occlusion (RAO) patients. In this case-control study, serum FGF21 levels were detected by using the ELISA method. Multivariable logistic regression analyses were performed to evaluate the significance of FGF21 in assessing the risk of developing RAO and its impact on vision and concurrent ischemic stroke. Compared with control group, serum FGF21 levels were significantly higher (median [IQR] = 230.90[167.40,332.20] pg/ml) in RAO patients. Multivariate logistic regression analysis showed that elevated serum FGF21 levels were associated with a higher risk of RAO occurrence (P = 0.025, OR [95%CI] = 9.672 [2.573, 36.359]) after adjustment for multiple confounding factors. Higher serum FGF21 levels were negatively associated with visual acuity improvement (P = 0.029, OR [95%CI] = 0.466[0.235, 0.925]) and positively correlated with concurrent ischemic stroke (P = 0.04, OR [95% CI] = 1.944[1.029, 3.672]) in RAO patients. Elevated serum FGF21 levels could promote the development of RAO and indicate worse visual prognosis and increase the risk of concurrent ischemic stroke, which might help clinicians early diagnose and treat RAO patients.
Collapse
Affiliation(s)
- Ruobing Shi
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Hang Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kaichao Xia
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Xuejie Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China
| | - Anhuai Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei Province, 430060, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Gómez-Hernández A, de las Heras N, Gálvez BG, Fernández-Marcelo T, Fernández-Millán E, Escribano Ó. New Mediators in the Crosstalk between Different Adipose Tissues. Int J Mol Sci 2024; 25:4659. [PMID: 38731880 PMCID: PMC11083914 DOI: 10.3390/ijms25094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain;
| | - Beatriz G. Gálvez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Óscar Escribano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
17
|
Negroiu CE, Tudoraşcu RI, Beznă MC, Ungureanu AI, Honţaru SO, Dănoiu S. The role of FGF21 in the interplay between obesity and non-alcoholic fatty liver disease: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:159-172. [PMID: 39020530 PMCID: PMC11384831 DOI: 10.47162/rjme.65.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity poses a significant and escalating challenge in contemporary society, increasing the risk of developing various metabolic disorders such as dyslipidemia, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and certain types of cancer. The current array of therapeutic interventions for obesity remains insufficient, prompting a pressing demand for novel and more effective treatments. In response, scientific attention has turned to the fibroblast growth factor 21 (FGF21) due to its remarkable and diverse impacts on lipid, carbohydrate, and energy metabolism. This comprehensive review aims to delve into the multifaceted aspects of FGF21, encompassing its discovery, synthesis, functional roles, and potential as a biomarker and therapeutic agent, with a specific focus on its implications for NAFLD.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Romania; ; Department of Health Care and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University Center of Piteşti, National University for Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
18
|
Fan L, Gu L, Yao Y, Ma G. High serum fibroblast growth factor 21 levels were related to the prognosis and ventricular remodeling of heart failure patients with mildly reduced and reduced ejection fraction. Perfusion 2024; 39:285-293. [PMID: 36321746 DOI: 10.1177/02676591221137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Previous studies have shown that fibroblast growth factor 21 (FGF21) is involved in the ventricular remodeling process in heart failure with preserved ejection fraction (HFpEF). We hypothesized that high levels of FGF21 correlated with the ventricular remodeling of heart failure patients with mildly reduced (HFmrEF) and reduced ejection fraction (HFrEF). METHODS A total of 203 participants with HFmrEF or HFrEF were enrolled and followed up from June 2018 to June 2021. 68 subjects without heart failure (HF) underwent physical examinations during the same time were selected as the control group. The primary endpoint was the occurrence of major adverse cardiovascular events (MACEs), which were defined as all-cause or cardiac mortality and rehospitalization for decompensation. Serum FGF21 levels were measured early the next morning after admission using enzyme-linked immunosorbent assay (ELISA). RESULTS The FGF21 levels were significantly higher in patients with HFmrEF or HFrEF than that in the control group (213.57 ± 42.65 pg/mL, 222.93 ± 34.36 pg/mL vs 171.00 ± 12.86 pg/mL, p < .001). The serum levels of FGF21 and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were both higher in the endpoint event group than those of non-endpoint event group regardless of the HFmrEF or HFrEF group (p < .001). Spearman's correlation revealed that FGF21 was positively correlated with left ventricular end-systolic diameter left ventricular end-diastolic diameter left ventricular mass index (p < .01). Moreover, there was a negative correlation between FGF21 and left ventricular ejection fraction in addition to relative wall thickness (p < .001). The area under the receiver operating characteristic (ROC) curve (AUC) of FGF21 was 0.874. The optimal cut-off value of FGF21 determined by ROC curve was 210.11 pg/mL. The Kaplan-Meier analysis demonstrated that the low FGF21 levels group had an increased MACE-free survival rate compared with the high FGF21 levels group. On univariate and multivariate Cox analysis, it was seen that both serum FGF21 and NT-proBNP were independent predictors of a poor prognosis in HF patients. CONCLUSION Baseline levels of FGF21 and NT-proBNP were related to the ventricular remodeling of patients with a mildly reduced or reduced ejection fraction. FGF21 and NT-proBNP both had good prognostic value for MACEs in heart failure patients with a mildly reduced and reduced ejection fraction.
Collapse
Affiliation(s)
- Liuzhang Fan
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
- Department of Cardiology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Lingyun Gu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
19
|
Minami S, Sakai S, Yamamoto T, Takabatake Y, Namba-Hamano T, Takahashi A, Matsuda J, Yonishi H, Nakamura J, Maeda S, Matsui S, Matsui I, Isaka Y. FGF21 and autophagy coordinately counteract kidney disease progression during aging and obesity. Autophagy 2024; 20:489-504. [PMID: 37722816 PMCID: PMC10936614 DOI: 10.1080/15548627.2023.2259282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Chronic kidney disease (CKD) has reached epidemic proportions worldwide, partly due to the increasing population of elderly and obesity. Macroautophagy/autophagy counteracts CKD progression, whereas autophagy is stagnated owing to lysosomal overburden during aging and obesity, which promotes CKD progression. Therefore, for preventing CKD progression during aging and obesity, it is important to elucidate the compensation mechanisms of autophagy stagnation. We recently showed that FGF21 (fibroblast growth factor 21), which is a prolongevity and metabolic hormone, is induced by autophagy deficiency in kidney proximal tubular epithelial cells (PTECs); however, its pathophysiological role remains uncertain. Here, we investigated the interplay between FGF21 and autophagy and the direct contribution of endogenous FGF21 in the kidney during aging and obesity using PTEC-specific fgf21- and/or atg5-deficient mice at 24 months (aged) or under high-fat diet (obese) conditions. PTEC-specific FGF21 deficiency in young mice increased autophagic flux due to increased demand of autophagy, whereas fgf21-deficient aged or obese mice exacerbated autophagy stagnation due to severer lysosomal overburden caused by aberrant autophagy. FGF21 was robustly induced by autophagy deficiency, and aged or obese PTEC-specific fgf21- and atg5-double deficient mice deteriorated renal histology compared with atg5-deficient mice. Mitochondrial function was severely disturbed concomitant with exacerbated oxidative stress and downregulated TFAM (transcription factor A, mitochondrial) in double-deficient mice. These results indicate that FGF21 is robustly induced by autophagy disturbance and protects against CKD progression during aging and obesity by alleviating autophagy stagnation and maintaining mitochondrial homeostasis, which will pave the way to a novel treatment for CKD.
Collapse
Affiliation(s)
- Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
20
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
21
|
Tucker WJ, Tucker B, Januszewski AS, Jenkins AJ, Keech AC, Kestenbaum BR, Allison MA, Rye KA, Ong KL. Association of circulating fibroblast growth factor 21 levels with all-cause and cardiovascular mortality: The multi-ethnic study of atherosclerosis. Clin Chim Acta 2024; 555:117799. [PMID: 38309558 DOI: 10.1016/j.cca.2024.117799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) levels are often elevated in cardiovascular disease (CVD). However, no study has assessed its association with cardiovascular and all-cause mortality in a population free of clinically evident CVD. METHODS A total of 5543 Multi-Ethnic Study of Atherosclerosis (MESA) participants (mean age 62.7 years, 47.5 % male), free of clinically evident CVD at baseline, were studied. From baseline (2000-2002), 1606 deaths (including 387 CVD deaths) were observed over a median follow-up of 17.7 years. Multivariable Cox regression analysis was performed to assess the association of plasma FGF21 levels with mortality. RESULTS FGF21 levels at baseline were associated with all-cause mortality, even after adjustment for traditional risk factors, including demographic, socioeconomic and cardiovascular risk factors (adjusted hazard ratio 1.08 [95% confidence interval 1.01, 1.16] per 1 SD increase in ln-transformed levels; 1.27 for the highest vs, lowest quartile). Baseline FGF21 levels were significantly associated with both CVD and non-CVD mortality in unadjusted models. However, the association with non-CVD mortality, but not CVD mortality, remained statistically significant after adjusting for covariates. Similar results were obtained in FGF21 quartile analyses and also when using competing risk regression or matched case-control cohort in sensitivity analyses. CONCLUSIONS In subjects without clinically-evident CVD at baseline, over 17.7 years follow-up there is a modest association of baseline FGF21 levels with all-cause mortality. The finding that this is driven primarily by a significant association with non-CVD mortality over almost two decades merits further investigation.
Collapse
Affiliation(s)
- William J Tucker
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bradley Tucker
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Alicia J Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anthony C Keech
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Bryan R Kestenbaum
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Matthew A Allison
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States
| | - Kerry-Anne Rye
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Abbasi K, Zarezadeh R, Valizadeh A, Mehdizadeh A, Hamishehkar H, Nouri M, Darabi M. White-brown adipose tissue interplay in polycystic ovary syndrome: Therapeutic avenues. Biochem Pharmacol 2024; 220:116012. [PMID: 38159686 DOI: 10.1016/j.bcp.2023.116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
This study highlights the therapeutic potential of activating brown adipose tissue (BAT) for managing polycystic ovary syndrome (PCOS), a prevalent endocrine disorder associated with metabolic and reproductive abnormalities. BAT plays a crucial role in regulating energy expenditure and systemic insulin sensitivity, making it an attractive target for the treatment of obesity and metabolic diseases. Recent research suggests that impaired BAT function and mass may contribute to the link between metabolic disturbances and reproductive issues in PCOS. Additionally, abnormal white adipose tissue (WAT) can exacerbate these conditions by releasing adipokines and nonesterified fatty acids. In this review, we explored the impact of WAT changes on BAT function in PCOS and discussed the potential of BAT activation as a therapeutic strategy to improve PCOS symptoms. We propose that BAT activation holds promise for managing PCOS; however, further research is needed to confirm its efficacy and to develop clinically feasible methods for BAT activation.
Collapse
Affiliation(s)
- Khadijeh Abbasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany.
| |
Collapse
|
23
|
Sadowska A, Poniedziałek-Czajkowska E, Mierzyński R. The Role of the FGF19 Family in the Pathogenesis of Gestational Diabetes: A Narrative Review. Int J Mol Sci 2023; 24:17298. [PMID: 38139126 PMCID: PMC10743406 DOI: 10.3390/ijms242417298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications. Understanding the pathogenesis and appropriate diagnosis of GDM enables the implementation of early interventions during pregnancy that reduce the risk of maternal and fetal complications. At the same time, it provides opportunities to prevent diabetes, metabolic syndrome, and cardiovascular diseases in women with GDM and their offspring in the future. Fibroblast growth factors (FGFs) represent a heterogeneous family of signaling proteins which play a vital role in cell proliferation and differentiation, repair of damaged tissues, wound healing, angiogenesis, and mitogenesis and also affect the regulation of carbohydrate, lipid, and hormone metabolism. Abnormalities in the signaling function of FGFs may lead to numerous pathological conditions, including metabolic diseases. The FGF19 subfamily, also known as atypical FGFs, which includes FGF19, FGF21, and FGF23, is essential in regulating metabolic homeostasis and acts as a hormone while entering the systemic circulation. Many studies have pointed to the involvement of the FGF19 subfamily in the pathogenesis of metabolic diseases, including GDM, although the results are inconclusive. FGF19 and FGF21 are thought to be associated with insulin resistance, an essential element in the pathogenesis of GDM. FGF21 may influence placental metabolism and thus contribute to fetal growth and metabolism regulation. The observed relationship between FGF21 and increased birth weight could suggest a potential role for FGF21 in predicting future metabolic abnormalities in children born to women with GDM. In this group of patients, different mechanisms may contribute to an increased risk of cardiovascular diseases in women in later life, and FGF23 appears to be their promising early predictor. This study aims to present a comprehensive review of the FGF19 subfamily, emphasizing its role in GDM and predicting its long-term metabolic consequences for mothers and their offspring.
Collapse
Affiliation(s)
| | - Elżbieta Poniedziałek-Czajkowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland; (A.S.); (R.M.)
| | | |
Collapse
|
24
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
25
|
Morón-Ros S, Blasco-Roset A, Navarro-Gascon A, Rupérez C, Zamora M, Crispi F, Uriarte I, Fernández-Barrena MG, Avila M, Ferrer-Curriu G, Lupón J, Bayés-Genis A, Villarroya F, Gavaldà-Navarro A, Planavila A. A new FGF15/19-mediated gut-to-heart axis controls cardiac hypertrophy. J Pathol 2023; 261:335-348. [PMID: 37650293 DOI: 10.1002/path.6193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Samantha Morón-Ros
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Artur Navarro-Gascon
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Monica Zamora
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Gemma Ferrer-Curriu
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Josep Lupón
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Antoni Bayés-Genis
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
26
|
Liu X, Shao Y, Han L, Zhang R, Chen J. Emerging Evidence Linking the Liver to the Cardiovascular System: Liver-derived Secretory Factors. J Clin Transl Hepatol 2023; 11:1246-1255. [PMID: 37577236 PMCID: PMC10412704 DOI: 10.14218/jcth.2022.00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 07/03/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. Recently, accumulating evidence has revealed hepatic mediators, termed as liver-derived secretory factors (LDSFs), play an important role in regulating CVDs such as atherosclerosis, coronary artery disease, thrombosis, myocardial infarction, heart failure, metabolic cardiomyopathy, arterial hypertension, and pulmonary hypertension. LDSFs presented here consisted of microbial metabolite, extracellular vesicles, proteins, and microRNA, they are primarily or exclusively synthesized and released by the liver, and have been shown to exert pleiotropic actions on cardiovascular system. LDSFs mainly target vascular endothelial cell, vascular smooth muscle cells, cardiomyocytes, fibroblasts, macrophages and platelets, and further modulate endothelial nitric oxide synthase/nitric oxide, endothelial function, energy metabolism, inflammation, oxidative stress, and dystrophic calcification. Although some LDSFs are known to be detrimental/beneficial, controversial findings were also reported for many. Therefore, more studies are required to further explore the causal relationships between LDSFs and CVDs and uncover the exact mechanisms, which is expected to extend our understanding of the crosstalk between the liver and cardiovascular system and identify potential therapeutic targets. Furthermore, in the case of patients with liver disease, awareness should be given to the implications of these abnormalities in the cardiovascular system. These studies also underline the importance of early recognition and intervention of liver abnormalities in the practice of cardiovascular care, and a multidisciplinary approach combining hepatologists and cardiologists would be more preferable for such patients.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Marvanova A, Kasik P, Elsnicova B, Tibenska V, Galatik F, Hornikova D, Zvolska V, Vebr P, Vodicka P, Hejnova L, Matous P, Szeiff Bacova B, Sykora M, Novotny J, Neuzil J, Kolar F, Novakova O, Zurmanova JM. Continuous short-term acclimation to moderate cold elicits cardioprotection in rats, and alters β-adrenergic signaling and immune status. Sci Rep 2023; 13:18287. [PMID: 37880253 PMCID: PMC10600221 DOI: 10.1038/s41598-023-44205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Moderate cold acclimation (MCA) is a non-invasive intervention mitigating effects of various pathological conditions including myocardial infarction. We aim to determine the shortest cardioprotective regimen of MCA and the response of β1/2/3-adrenoceptors (β-AR), its downstream signaling, and inflammatory status, which play a role in cell-survival during myocardial infarction. Adult male Wistar rats were acclimated (9 °C, 1-3-10 days). Infarct size, echocardiography, western blotting, ELISA, mitochondrial respirometry, receptor binding assay, and quantitative immunofluorescence microscopy were carried out on left ventricular myocardium and brown adipose tissue (BAT). MultiPlex analysis of cytokines and chemokines in serum was accomplished. We found that short-term MCA reduced myocardial infarction, improved resistance of mitochondria to Ca2+-overload, and downregulated β1-ARs. The β2-ARs/protein kinase B/Akt were attenuated while β3-ARs translocated on the T-tubular system suggesting its activation. Protein kinase G (PKG) translocated to sarcoplasmic reticulum and phosphorylation of AMPKThr172 increased after 10 days. Principal component analysis revealed a significant shift in cytokine/chemokine serum levels on day 10 of acclimation, which corresponds to maturation of BAT. In conclusion, short-term MCA increases heart resilience to ischemia without any negative side effects such as hypertension or hypertrophy. Cold-elicited cardioprotection is accompanied by β1/2-AR desensitization, activation of the β3-AR/PKG/AMPK pathways, and an immunomodulatory effect.
Collapse
Affiliation(s)
- Aneta Marvanova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Petr Kasik
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Barbara Elsnicova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Veronika Tibenska
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - František Galatik
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Daniela Hornikova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Veronika Zvolska
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Pavel Vebr
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Lucie Hejnova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Petr Matous
- First Faculty of Medicine, Center for Advanced Preclinical Imaging (CAPI), Charles University, Prague, Czech Republic
| | - Barbara Szeiff Bacova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Matus Sykora
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jiri Novotny
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Jiri Neuzil
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Novakova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka M Zurmanova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
28
|
Martí-Pàmies Í, Thoonen R, Morley M, Graves L, Tamez J, Caplan A, McDaid K, Yao V, Hindle A, Gerszten RE, Laurie A. Farrell, Li L, Tseng YH, Profeta G, Buys ES, Bloch DB, Scherrer-Crosbie M. Brown Adipose Tissue and BMP3b Decrease Injury in Cardiac Ischemia-Reperfusion. Circ Res 2023; 133:353-365. [PMID: 37462036 PMCID: PMC10528340 DOI: 10.1161/circresaha.122.322337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Despite advances in treatment, myocardial infarction (MI) is a leading cause of heart failure and death worldwide, with both ischemia and reperfusion (I/R) causing cardiac injury. A previous study using a mouse model of nonreperfused MI showed activation of brown adipose tissue (BAT). Recent studies showed that molecules secreted by BAT target the heart. We investigated whether BAT attenuates cardiac injury in I/R and sought to identify potential cardioprotective proteins secreted by BAT. METHODS Myocardial I/R surgery with or without BAT transplantation was performed in wild-type (WT) mice and in mice with impaired BAT function (uncoupling protein 1 [Ucp1]-deficient mice). To identify potential cardioprotective factors produced by BAT, RNA-seq (RNA sequencing) was performed in BAT from WT and Ucp1-/- mice. Subsequently, myocardial I/R surgery with or without BAT transplantation was performed in Bmp3b (bone morphogenetic protein 3b)-deficient mice, and WT mice subjected to myocardial I/R were treated using BMP3b. RESULTS Dysfunction of BAT in mice was associated with larger MI size after I/R; conversely, augmenting BAT by transplantation decreased MI size. We identified Bmp3b as a protein secreted by BAT after I/R. Compared with WT mice, Bmp3b-deficient mice developed larger MIs. Increasing functional BAT by transplanting BAT from WT mice to Bmp3b-deficient mice reduced I/R injury whereas transplanting BAT from Bmp3b-deficient mice did not. Treatment of WT mice with BMP3b before reperfusion decreased MI size. The cardioprotective effect of BMP3b was mediated through SMAD1/5/8. In humans, the plasma level of BMP3b increased after MI and was positively correlated with the extent of cardiac injury. CONCLUSIONS The results of this study suggest a cardioprotective role of BAT and BMP3b, a protein secreted by BAT, in a model of I/R injury. Interventions increasing BMP3b levels or targeting Smad 1/5 may represent novel therapeutic approaches to decrease myocardial damage in I/R injury.
Collapse
Affiliation(s)
- Íngrid Martí-Pàmies
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Robrecht Thoonen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Michael Morley
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Graves
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Jesus Tamez
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Alex Caplan
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Kendra McDaid
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Vincent Yao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Allyson Hindle
- Anesthesia Center for Critical Care Research, Massachusetts General Hospital, Boston, MA, United States
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Laurie A. Farrell
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Gerson Profeta
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, United States
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, United States
- The Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, United States
| | - Marielle Scherrer-Crosbie
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Matsiukevich D, Kovacs A, Li T, Kokkonen-Simon K, Matkovich SJ, Oladipupo SS, Ornitz DM. Characterization of a robust mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H203-H231. [PMID: 37204871 DOI: 10.1152/ajpheart.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Scot J Matkovich
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - Sunday S Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
30
|
Puengel T, Tacke F. Efruxifermin, an investigational treatment for fibrotic or cirrhotic non-alcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2023. [PMID: 37376813 DOI: 10.1080/13543784.2023.2230115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and strongly associated with metabolic disorders: obesity, type 2 diabetes (T2D), cardiovascular disease. Persistent metabolic injury results in inflammatory processes leading to nonalcoholic steatohepatitis (NASH), liver fibrosis and ultimately cirrhosis. To date, no pharmacologic agent is approved for the treatment of NASH. Fibroblast growth factor 21 (FGF21) agonism has been linked to beneficial metabolic effects ameliorating obesity, steatosis and insulin resistance, supporting its potential as a therapeutic target in NAFLD. AREAS COVERED Efruxifermin (EFX, also AKR-001 or AMG876) is an engineered Fc-FGF21 fusion protein with an optimized pharmacokinetic and pharmacodynamic profile, which is currently tested in several phase 2 clinical trials for the treatment of NASH, fibrosis and compensated liver cirrhosis. EFX improved metabolic disturbances including glycemic control, showed favorable safety and tolerability, and demonstrated antifibrotic efficacy according to FDA requirements for phase 3 trials. EXPERT OPINION While some other FGF-21 agonists (e.g. pegbelfermin) are currently not further investigated, available evidence supports the development of EFX as a promising anti-NASH drug in fibrotic and cirrhotic populations. However, antifibrotic efficacy, long-term safety and benefits (i.e. cardiovascular risk, decompensation events, disease progression, liver transplantation, mortality) remain to be determined.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
31
|
Zhao Z, Cui X, Liao Z. Mechanism of fibroblast growth factor 21 in cardiac remodeling. Front Cardiovasc Med 2023; 10:1202730. [PMID: 37416922 PMCID: PMC10322220 DOI: 10.3389/fcvm.2023.1202730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Cardiac remodeling is a basic pathological process that enables the progression of multiple cardiac diseases to heart failure. Fibroblast growth factor 21 is considered a regulator in maintaining energy homeostasis and shows a positive role in preventing damage caused by cardiac diseases. This review mainly summarizes the effects and related mechanisms of fibroblast growth factor 21 on pathological processes associated with cardiac remodeling, based on a variety of cells of myocardial tissue. The possibility of Fibroblast growth factor 21 as a promising treatment for the cardiac remodeling process will also be discussed.
Collapse
Affiliation(s)
- Zeyu Zhao
- Queen Mary College, Nanchang University, Nanchang, China
| | - Xuemei Cui
- Fourth Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology School of Pharmaceutical Science, Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Yan B, Mei Z, Tang Y, Song H, Wu H, Jing Q, Zhang X, Yan C, Han Y. FGF21-FGFR1 controls mitochondrial homeostasis in cardiomyocytes by modulating the degradation of OPA1. Cell Death Dis 2023; 14:311. [PMID: 37156793 PMCID: PMC10167257 DOI: 10.1038/s41419-023-05842-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone secreted primarily by the liver and is considered a major regulator of energy homeostasis. Recent research has revealed that FGF21 could play an important role in cardiac pathological remodeling effects and prevention of cardiomyopathy; however, the underlying mechanism remains largely unknown. This study aimed to determine the mechanism underlying the cardioprotective effects of FGF21. We engineered FGF21 knock out mice and subsequently elucidated the effects of FGF21 and its downstream mediators using western blotting, qRT-PCR, and mitochondrial morphological and functional analyses. FGF21 knockout mice showed cardiac dysfunction, accompanied by a decline in global longitudinal strain (GLS) and ejection fraction (EF), independent of metabolic disorders. Mitochondrial quality, quantity, and function were abnormal, accompanied by decreased levels of optic atrophy-1 (OPA1) in FGF21 KO mice. In contrast to FGF21 knockout, cardiac-specific overexpression of FGF21 alleviated the cardiac dysfunction caused by FGF21 deficiency. In an in vitro study, FGF21 siRNA deteriorated mitochondrial dynamics and impaired function induced by cobalt chloride (CoCl2). Both recombinant FGF21 and adenovirus-mediated FGF21 overexpression could alleviate CoCl2-induced mitochondrial impairment by restoring mitochondrial dynamics. FGF21 was essential for maintaining mitochondrial dynamics and function of the cardiomyocytes. As a regulator of cardiomyocyte mitochondrial homeostasis under oxidative stress, FGF21 could be an important new target for therapeutic options for patients with heart failure.
Collapse
Affiliation(s)
- Bing Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Zhu Mei
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yaohan Tang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haixu Song
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hanlin Wu
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Quanmin Jing
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaolin Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Chenghui Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
33
|
Li B, Liang Y, Bao H, Li D, Zhang Y, Dun X, Xu Z, Ji A, Zhang Z, Li Y, Zhang R, Chen W, Zheng Y, Cui L. Real-ambient particulate matter exposure-induced FGFR1 methylation contributes to cardiac dysfunction via lipid metabolism disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161903. [PMID: 36731555 DOI: 10.1016/j.scitotenv.2023.161903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter (PM)-induced cardiometabolic disorder contributes to the progression of cardiac diseases, but its epigenetic mechanisms are largely unknown. This study used bioinformatic analysis, in vivo and in vitro multiple models to investigate the role of PM-induced cardiac fibroblast growth factor 1 (FGFR1) methylation and its impact on cardiomyocyte lipid metabolic disruption. Bioinformatic analysis revealed that FGFR1 was associated with cardiac pathologies, mitochondrial function and metabolism, supporting the possibility that FGFR1 may play regulatory roles in PM-induced cardiac functional impairment and lipid metabolism disorders. Individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models were used to expose C57/BL6 mice for six and fifteen weeks. The results showed that PM induced cardiac lipid metabolism disorder, DNA nucleotide methyltransferases (DNMTs) alterations and FGFR1 expression declines in mouse heart. Lipidomics analysis revealed that carnitines, phosphoglycerides and lysophosphoglycerides were most significantly affected by PM exposure. At the cellular level, AC16 cells treated with FGFR1 inhibitor (PD173074) led to impaired mitochondrial and metabolic functions in cardiomyocytes. Inhibition of DNA methylation in cells by 5-AZA partially restored the FGFR1 expression, ameliorated cardiomyocyte injury and mitochondrial functions. These changes involved alterations in AMP-activated protein kinase (AMPK)-peroxisome proliferator activated receptors gamma, coactivator 1 alpha (PGC1α) pathways. Bisulfite sequencing PCR (BSP) and DNA methylation specific PCR (MSP) confirmed that PM exposure induced FGFR1 gene promoter region methylation. These results suggested that, by inducing FGFR1 methylation, PM exposure would affect cardiac injury and deranged lipid metabolism. Overexpression of FGFR1 in mouse heart using adeno-associated virus 9 (AAV9) effectively alleviated PM-induced cardiac impairment and metabolic disorder. Our findings identified that FGFR1 methylation might be one of the potential indicators for PM-induced cardiac mitochondrial and metabolic dysfunction, providing novel insights into underlying PM-related cardiotoxic mechanisms.
Collapse
Affiliation(s)
- Benying Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanan Liang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Hongxu Bao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Dun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zijian Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Andong Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yahui Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Kaur N, Gare SR, Ruiz-Velasco A, Miller JM, Abouleisa RR, Ou Q, Shen J, Soran H, Mohamed TM, Liu W. FGF21/FGFR1-β-KL cascade in cardiomyocytes modulates angiogenesis and inflammation under metabolic stress. Heliyon 2023; 9:e14952. [PMID: 37123894 PMCID: PMC10133673 DOI: 10.1016/j.heliyon.2023.e14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetes is a metabolic disorder with an increased risk of developing heart failure. Inflammation and damaged vasculature are the cardinal features of diabetes-induced cardiac damage. Moreover, systemic metabolic stress triggers discordant intercellular communication, thus culminating in cardiac dysfunction. Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone transducing cellular signals via fibroblast growth factor receptor 1 (FGFR1) and its co-receptor beta-klotho (β-KL). This study first demonstrated a decreased expression or activity of FGFR1 and β-KL in both human and mouse diabetic hearts. Reinforcing cardiac FGFR1 and β-KL expression can alleviate pro-inflammatory response and endothelial dysfunction upon diabetic stress. Using proteomics, novel cardiomyocyte-derived anti-inflammatory and proangiogenic factors regulated by FGFR1-β-KL signaling were identified. Although not exhaustive, this study provides a unique insight into the protective topology of the cardiac FGFR1-β-KL signaling-mediated intercellular reactions in the heart in response to metabolic stress.
Collapse
Affiliation(s)
- Namrita Kaur
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | | | | | - Jessica M. Miller
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Riham R.E. Abouleisa
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Jiahan Shen
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Handrean Soran
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Tamer M.A. Mohamed
- Institute of Molecular Cardiology, University of Louisville, 580 S Preston St., Louisville, KY, 40202, USA
| | - Wei Liu
- University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| |
Collapse
|
35
|
Tucker W, McClelland RL, Allison MA, Szklo M, Rye KA, Ong KL. The association of circulating fibroblast growth factor 21 levels with incident heart failure: The Multi-Ethnic Study of Atherosclerosis. Metabolism 2023; 143:155535. [PMID: 36931558 DOI: 10.1016/j.metabol.2023.155535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) levels are often elevated in heart failure (HF), although this has not been assessed using a longitudinal study design. Therefore, we investigated the association between baseline plasma FGF21 levels and incident HF in the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS A total of 5408 participants, free of clinically apparent cardiovascular disease, were included in the analysis, of which 342 developed HF over a median follow-up period of 16.7 years. Multivariable Cox regression analysis was performed and the additive value of FGF21 in the performance of risk prediction over other well-established cardiovascular biomarkers was assessed. RESULTS The mean age of the participants was 62.6 years with 47.6 % male. Regression spline analysis demonstrated a significant association of FGF21 levels with incident HF among participants with FGF21 levels ≥239.0 pg/mL (hazard ratio = 1.84 [95 % confidence interval 1.21, 2.80] per SD increase in ln-transformed levels) after adjustment for traditional cardiovascular risk factors and biomarkers, but not in participants with FGF21 levels <239.0 pg/mL (p for heterogeneity = 0.004). Among participants with FGF21 levels ≥239.0 pg/mL, FGF21 levels were associated with HF with preserved ejection fraction (HR [95 % CI] = 2.57 [1.51, 4.37]), but not HF with reduced ejection fraction. CONCLUSIONS The present study suggests baseline FGF21 levels could predict the development of incident HF with preserved ejection fraction, among participants with elevated FGF21 levels at baseline. This study may suggest a pathophysiological role of FGF21 resistance in HF with preserved ejection fraction.
Collapse
Affiliation(s)
- William Tucker
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Robyn L McClelland
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Matthew A Allison
- Department of Family Medicine, University of California San Diego, La Jolla, CA, United States
| | - Moyses Szklo
- Department of Epidemiology, John Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kerry-Anne Rye
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia; NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Fibroblast growth factor 18 alleviates stress-induced pathological cardiac hypertrophy in male mice. Nat Commun 2023; 14:1235. [PMID: 36871047 PMCID: PMC9985628 DOI: 10.1038/s41467-023-36895-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblast growth factor-18 (FGF18) has diverse organ development and damage repair roles. However, its role in cardiac homeostasis following hypertrophic stimulation remains unknown. Here we investigate the regulation and function of the FGF18 in pressure overload (PO)-induced pathological cardiac hypertrophy. FGF18 heterozygous (Fgf18+/-) and inducible cardiomyocyte-specific FGF18 knockout (Fgf18-CKO) male mice exposed to transverse aortic constriction (TAC) demonstrate exacerbated pathological cardiac hypertrophy with increased oxidative stress, cardiomyocyte death, fibrosis, and dysfunction. In contrast, cardiac-specific overexpression of FGF18 alleviates hypertrophy, decreased oxidative stress, attenuates cardiomyocyte apoptosis, and ameliorates fibrosis and cardiac function. Tyrosine-protein kinase FYN (FYN), the downstream factor of FGF18, was identified by bioinformatics analysis, LC-MS/MS and experiment validation. Mechanistic studies indicate that FGF18/FGFR3 promote FYN activity and expression and negatively regulate NADPH oxidase 4 (NOX4), thereby inhibiting reactive oxygen species (ROS) generation and alleviating pathological cardiac hypertrophy. This study uncovered the previously unknown cardioprotective effect of FGF18 mediated by the maintenance of redox homeostasis through the FYN/NOX4 signaling axis in male mice, suggesting a promising therapeutic target for the treatment of cardiac hypertrophy.
Collapse
|
37
|
Volpe M, Gallo G, Rubattu S. Endocrine functions of the heart: from bench to bedside. Eur Heart J 2023; 44:643-655. [PMID: 36582126 DOI: 10.1093/eurheartj/ehac759] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Heart has a recognized endocrine function as it produces several biologically active substances with hormonal properties. Among these hormones, the natriuretic peptide (NP) system has been extensively characterized and represents a prominent expression of the endocrine function of the heart. Over the years, knowledge about the mechanisms governing their synthesis, secretion, processing, and receptors interaction of NPs has been intensively investigated. Their main physiological endocrine and paracrine effects on cardiovascular and renal systems are mostly mediated through guanylate cyclase-A coupled receptors. The potential role of NPs in the pathophysiology of heart failure and particularly their counterbalancing action opposing the overactivation of renin-angiotensin-aldosterone and sympathetic nervous systems has been described. In addition, NPs are used today as key biomarkers in cardiovascular diseases with both diagnostic and prognostic significance. On these premises, multiple therapeutic strategies based on the biological properties of NPs have been attempted to develop new cardiovascular therapies. Apart from the introduction of the class of angiotensin receptor/neprilysin inhibitors in the current management of heart failure, novel promising molecules, including M-atrial natriuretic peptide (a novel atrial NP-based compound), have been tested for the treatment of human hypertension. The development of new drugs is currently underway, and we are probably only at the dawn of novel NPs-based therapeutic strategies. The present article also provides an updated overview of the regulation of NPs synthesis and secretion by microRNAs and epigenetics as well as interactions of cardiac hormones with other endocrine systems.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS San Raffaele, Via della Pisana 235, 00163 Rome, Italy
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.,IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy
| |
Collapse
|
38
|
Gu L, Jiang W, Jiang W, Xu Z, Li W, Zhang H. Elevated serum FGF21 levels predict heart failure during hospitalization of STEMI patients after emergency percutaneous coronary intervention. PeerJ 2023; 11:e14855. [PMID: 36778154 PMCID: PMC9910186 DOI: 10.7717/peerj.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/14/2023] [Indexed: 02/08/2023] Open
Abstract
Background Fibroblast growth factor 21 (FGF21) has multiple cardioprotective effects including modulation of glucolipid metabolism, anti-inflammation, and anti-oxidative stress, but its association with the heart failure during hospitalization in patients with ST-segment elevation myocardial infarction (STEMI) undergoing emergency percutaneous coronary intervention (PCI) has not been reported. Methods A total of 348 STEMI patients treated with emergency PCI were included from January 2016 to December 2018. Relevant biochemical indicators were measured by central laboratory. Serum FGF21 levels were measured by ELISA. The occurrence of heart failure during hospitalization was recorded. Patients' cardiac function was assessed by echocardiography. Results Serum FGF21 levels were significantly higher in the STEMI group with heart failure than in the group without heart failure (249.95 ± 25.52 vs. 209.98 ± 36.35, P < 0.001). Serum FGF21 levels showed a strong positive correlation with N-terminal precursor B-type natriuretic peptide (NT-proBNP) in STEMI patients (r = 0.749, P < 0.001). FGF21 was found to be an independent risk factor for the development of heart failure during hospitalization in STEMI patients by binary logistic regression analysis. The area under curve (AUC) for FGF21 to predict the development of heart failure during hospitalization in STEMI patients was 0.816 (95% CI [0.770-0.863]) according to the receiver operating characteristic (ROC) curve analysis. Conclusion Elevated serum FGF21 levels have been shown to be a strong predictor of heart failure during hospitalization in patients with STEMI after emergency PCI.
Collapse
|
39
|
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone involved in energy homeostasis that protects against the development of obesity and diabetes in animal models. Its level is elevated in atherosclerotic cardiovascular diseases (CVD) in humans. However, little is known about the role of FGF21 in heart failure (HF). HF is a major global health problem with a prevalence that is predicted to rise, especially in ageing populations. Despite improved therapies, mortality due to HF remains high, and given its insidious onset, prediction of its development is challenging for physicians. The emergence of cardiac biomarkers to improve prediction, diagnosis, and prognosis of HF has received much attention over the past decade. Recent studies have suggested FGF21 is a promising biomarker candidate for HF. Preclinical research has shown that FGF21 is involved in the pathophysiology of HF through the prevention of oxidative stress, cardiac hypertrophy, and inflammation in cardiomyocytes. However, in the available clinical literature, FGF21 levels appear to be paradoxically raised in HF, potentially implying a FGF21 resistant state as occurs in obesity. Several potential confounding variables complicate the verdict on whether FGF21 is of clinical value as a biomarker. Further research is thus needed to evaluate whether FGF21 has a causal role in HF, and whether circulating FGF21 can be used as a biomarker to improve the prediction, diagnosis, and prognosis of HF. This review draws from preclinical and clinical studies to explore the role of FGF21 in HF.
Collapse
Affiliation(s)
- William Tucker
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bradley Tucker
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Yan B, Ma S, Yan C, Han Y. Fibroblast growth factor 21 and prognosis of patients with cardiovascular disease: A meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1108234. [PMID: 36926038 PMCID: PMC10011636 DOI: 10.3389/fendo.2023.1108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND The role of fibroblast growth factor 21 (FGF21) in predicting the long-term prognosis of patients with cardiovascular disease (CVD) remains unknown. METHODS A comprehensive search in PubMed, Embase, and the Cochrane Library was performed to identify studies reporting the association between FGF21 and prognosis among patients with CVD. A meta-analysis was performed, with patients stratified by coronary artery disease (CAD) or heart failure (HF). The endpoint of CAD or HF was major adverse cardiovascular events defined by each study and a composite of death or HF readmission, respectively. The I2 method and linear regression test of funnel plot asymmetry were used to test heterogeneity (I2 > 50% indicates substantial heterogeneity) and publication bias (asymmetry P < 0.05, indicating publication bias). RESULTS A total of 807 records were retrieved, and nine studies were finally included. Higher FGF21 levels were significantly associated with the risk of major adverse cardiovascular events in patients with CAD (multivariate hazard ratio [HR]: 1.77, 95% confidence interval [CI]: 1.40-2.23, P < 0.05, I2 = 0%, fixed-effect model). Increased FGF21 levels were also associated with the risk of all-cause death among patients with CAD (multivariate HR: 2.67, 95% CI: 1.25-5.72, P < 0.05, I2 = 64%, random-effect model). No association was found between FGF21 and the endpoint among patients with HF (HR: 1.57, 95% CI: 0.99-2.48, P > 0.05, random-effect model), but a large heterogeneity (I2 = 95%) and potential publication bias (Asymmetry P < 0.05) existed in the analysis. CONCLUSION Increased FGF21 levels were independently associated with poor prognosis of CAD, whereas the role of FGF21 in predicting clinical outcomes of HF requires further investigation.
Collapse
Affiliation(s)
- Bing Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Cardiology and Cardiovascular Research Institute, Chinese People's Liberation Army, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Sicong Ma
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Cardiology and Cardiovascular Research Institute, Chinese People's Liberation Army, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute, Chinese People's Liberation Army, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- *Correspondence: Chenghui Yan, ; Yaling Han,
| | - Yaling Han
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Cardiology and Cardiovascular Research Institute, Chinese People's Liberation Army, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- *Correspondence: Chenghui Yan, ; Yaling Han,
| |
Collapse
|
41
|
Liu J, Li J, Yang S, She Y, Li X, Jia Y. Phillyrin Inhibits Isoproterenol-Induced Cardiac Hypertrophy Via P38 and NF-κB Pathways. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221144581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiac hypertrophy (CH) is the main compensatory response to chronic heart stress and often progresses to a decompensation state potentially leading to heart failure. Phillyrin (PHI) is a novel compound derived from Forsythia, which has shown anti-inflammatory and anti-virus activities as well as renal protective effects on diabetic nephropathy. Therefore, we investigated the effects of PHI on CH induced by isoproterenol (ISO). Cardiac hypertrophy was induced by ISO in vivo, and the H9C2 cells were treated with ISO. PHI treatment alleviated CH in isoproterenol-induced mice in 7 and 14 days. Echocardiography showed that the PHI improved ISO-induced CH heart function and structure. PHI significantly decreased heart weight/body weight (HW/BW) and heart weight/tibia length (HW/TL) ratios and improved left ventricular (LV) function in ISO-treated mice. Hematoxylin and eosin staining revealed cardiomyocyte areas of the ISO group were significantly increased, and PHI was significantly reduced at 7 and 14 days, PHI-100 groups showed significantly better improvements than PHI-50. Sirius red staining indicated PHI significantly decreased collagen deposition in heart cross-sections induced by ISO, and PHI repressed ISO-induced cTn-I and NT-proBNP expression in mouse serum. In vitro data from H9C2 cells showed that PHI decreased cell areas and total cell protein levels in cells induced by ISO, whereas ANP, BNP, IL-6, and IL-1β expression was significantly inhibited by PHI. Also, PHI simultaneously inhibited P65 and P38 phosphorylation in vivo and in vitro. In conclusion, this study demonstrated the protective effect of PHI on CH in in vivo and in vitro, and this effect was related to the suppression of inflammation through the activation of the P38/NF-κB pathway.
Collapse
Affiliation(s)
- Juanjuan Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Jiahang Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Shengqian Yang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Yuanting She
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, ChongQing, China
| |
Collapse
|
42
|
Dong L, Teh DBL, Kennedy BK, Huang Z. Unraveling female reproductive senescence to enhance healthy longevity. Cell Res 2023; 33:11-29. [PMID: 36588114 PMCID: PMC9810745 DOI: 10.1038/s41422-022-00718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023] Open
Abstract
In a society where women often want successful careers and equal opportunities to men, the early nature of ovarian aging often forces women to make difficult life choices between career and family development. Fertility in women begins to decline after the age of 37 years and it is rare for pregnancies to occur after 45. This reproductive decline in women is inevitable and culminates in menopause, which is a major driver of age-related diseases. In a world where biomedical advances are leading to modifiable biological outcomes, it is time to focus on mitigating female reproductive senescence to maintain fertility and preserve age-related hormonal functions, with the goal of providing increased life choices and enhancing healthspan. To date, reproductive longevity research remains an understudied field. More needs to be done to unravel the biology of the ovarian follicles, which are the functional units of reproductive lifespan and are comprised of cell types including the oocyte (female gamete) and a group of specialized supporting somatic cells. Biological attempts to maintain the quality and quantity of follicles in animal models through manipulating pathways involved in aging can potentially prolong female reproductive lifespan and healthspan. Here, we summarize the molecular events driving ovarian aging and menopause and the interventional strategies to offset these events. Developing solutions to female reproductive senescence will open doors to discover ways to enhance true healthy longevity for both men and women.
Collapse
Affiliation(s)
- Lu Dong
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brian Keith Kennedy
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.
| |
Collapse
|
43
|
Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
44
|
Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol 2022; 13:1089214. [PMID: 36618930 PMCID: PMC9810635 DOI: 10.3389/fphar.2022.1089214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
As an endocrine hormone, fibroblast growth factor 21 (FGF21) plays a crucial role in regulating lipid, glucose, and energy metabolism. Endogenous FGF21 is generated by multiple cell types but acts on restricted effector tissues, including the brain, adipose tissue, liver, heart, and skeletal muscle. Intervention with FGF21 in rodents or non-human primates has shown significant pharmacological effects on a range of metabolic dysfunctions, including weight loss and improvement of hyperglycemia, hyperlipidemia, insulin resistance, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). Due to the poor pharmacokinetic and biophysical characteristics of native FGF21, long-acting FGF21 analogs and FGF21 receptor agonists have been developed for the treatment of metabolic dysfunction. Clinical trials of several FGF21-based drugs have been performed and shown good safety, tolerance, and efficacy. Here we review the actions of FGF21 and summarize the associated clinical trials in obesity, type 2 diabetes mellitus (T2DM), and NAFLD, to help understand and promote the development of efficient treatment for metabolic diseases via targeting FGF21.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| |
Collapse
|
45
|
Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A. FGF21-Sirtuin 3 Axis Confers the Protective Effects of Exercise Against Diabetic Cardiomyopathy by Governing Mitochondrial Integrity. Circulation 2022; 146:1537-1557. [PMID: 36134579 DOI: 10.1161/circulationaha.122.059631] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms. METHODS The global or hepatocyte-specific FGF21 knockout mice, cardiomyocyte-selective β-klotho (the obligatory co-receptor for FGF21) knockout mice, and their wild-type littermates were subjected to high-fat diet feeding and injection of streptozotocin to induce DCM, followed by a 6-week exercise intervention and assessment of cardiac functions. Cardiac mitochondrial structure and function were assessed by electron microscopy, enzymatic assays, and measurements of fatty acid oxidation and ATP production. Human induced pluripotent stem cell-derived cardiomyocytes were used to investigate the receptor and postreceptor signaling pathways conferring the protective effects of FGF21 against toxic lipids-induced mitochondrial dysfunction. RESULTS Treadmill exercise markedly induced cardiac expression of β-klotho and significantly attenuated diabetes-induced cardiac dysfunction in wild-type mice, accompanied by reduced mitochondrial damage and increased activities of mitochondrial enzymes in hearts. However, such cardioprotective benefits of exercise were largely abrogated in mice with global or hepatocyte-selective ablation of FGF21, or cardiomyocyte-specific deletion of β-klotho. Mechanistically, exercise enhanced the cardiac actions of FGF21 to induce the expression of the mitochondrial deacetylase SIRT3 by AMPK-evoked phosphorylation of FOXO3, thereby reversing diabetes-induced hyperacetylation and functional impairments of a cluster of mitochondrial enzymes. FGF21 prevented toxic lipids-induced mitochondrial dysfunction and oxidative stress by induction of the AMPK/FOXO3/SIRT3 signaling axis in human induced pluripotent stem cell-derived cardiomyocytes. Adeno-associated virus-mediated restoration of cardiac SIRT3 expression was sufficient to restore the responsiveness of diabetic FGF21 knockout mice to exercise in amelioration of mitochondrial dysfunction and DCM. CONCLUSIONS The FGF21-SIRT3 axis mediates the protective effects of exercise against DCM by preserving mitochondrial integrity and represents a potential therapeutic target for DCM. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03240978.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Lei Ying
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Kevin Ye
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada (K.Y.)
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Yin Cai
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Health Technology and Informatics, Hong Kong Polytechnic University, China (Y.C.)
| | - Xue Jiang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Qin Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Xingqun Yan
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Jie Liu
- Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Fuyu Duan
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada (G.S.)
| | - Connie Wai Hong Woo
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (Z.X.)
| | - Qizhou Lian
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Women and Children's Medical Center, Guangzhou Medical University, China (J.L., F.D., Q.L.)
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology (L.J., L.G., L.Y., L.S., R.Y., Y.L., Yao Wang, Y.C., X.J., Q.W., X.Y., B.L., C.W.H.W., Yu Wang, Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Medicine (L.J., L.G., L.S., R.Y., Y.L., Yao Wang, X.J., Q.W., X.Y., J.L., Z.X., Q.L., A.X.), University of Hong Kong, China.,Department of Pharmacology and Pharmacy (L.J., L.Y., B.L., C.W.H.W., Yu Wang, A.X.), University of Hong Kong, China
| |
Collapse
|
46
|
Pedersen AKN, Hage C, Jessen N, Mellbin L, Bjerre M. Sitagliptin reduces FAP-activity and increases intact FGF21 levels in patients with newly detected glucose abnormalities. Mol Cell Endocrinol 2022; 556:111738. [PMID: 35926756 DOI: 10.1016/j.mce.2022.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Fibroblast growth factor 21 (FGF21), a hormone with pleiotropic metabolic effects, is inactivated by fibroblast activation protein (FAP), a member of the dipeptidyl peptidase-IV (DPP-IV) family. We investigate if sitagliptin (DPP-IV inhibitor) inhibits FAP-activity and increases intact FGF21. METHODS Patients with impaired glucose metabolism were randomized to 100 mg sitagliptin (n = 34) or placebo (n = 37) treatment for 12 weeks. Plasma samples obtained at study entry and at 12-weeks were analysed for FAP-activity, FAP, total FGF21 and intact FGF21. RESULTS Sitagliptin significantly inhibited FAP-activity (497 ± 553 vs. 48 ± 712 RFU/min, p < 0.01) and correspondingly increased intact FGF21 (253 ± 182 vs 141 ± 80 ng/L, p < 0.01) compared to placebo in plasma. Sitagliptin dose-dependently inhibited the FAP-activity in vitro. Intact FGF21 was higher in patients obtaining a normal glucose tolerance regardless of treatment (p = 0.03). CONCLUSION A sitagliptin-induced increase of intact FGF21 may contribute to an improved metabolic effect in patients with impaired glucose metabolism.
Collapse
Affiliation(s)
- Anne K N Pedersen
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Camilla Hage
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark; Department of Biomedicine, Health, Aarhus University, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Denmark
| | - Linda Mellbin
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mette Bjerre
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Hung WC, Yu TH, Wang CP, Hsu CC, Lu YC, Wei CT, Chung FM, Lee YJ, Wu CC, Tang WH. Fibroblast growth factor 21 is associated with widening QRS complex and prolonged corrected QT interval in patients with stable angina. BMC Cardiovasc Disord 2022; 22:432. [PMID: 36180826 PMCID: PMC9523937 DOI: 10.1186/s12872-022-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/21/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is produced by cardiac cells, may acts in an autocrine manner, and was suggested to has a cardioprotective role in atherosclerosis. Wide QRS complex and heart rate-corrected QT interval (QTc interval) prolongation are associated to dangerous ventricular arrhythmias and cardiovascular disease mortality. Yet, the role of FGF21 in cardiac arrhythmia has never been studied. The aim of the study was to investigate the relationship between plasma FGF21 and the QRS duration and QTc interval in patients with stable angina. METHODS Three hundred twenty-one consecutive stable angina patients were investigated. Plasma FGF21 was measured through ELISA, and each subject underwent 12-lead electrocardiography. RESULTS FGF21 plasma levels were positively associated with the QRS duration (β = 0.190, P = 0.001) and QTc interval (β = 0.277, P < 0.0001). With increasing FGF21 tertiles, the patients had higher frequencies of wide QRS complex and prolonged QTc interval. After adjusting for patients' anthropometric parameters, the corresponding odd ratios (ORs) for wide QRS complex of the medium and high of FGF21 versus the low of FGF21 were 1.39 (95% CI 0.51-3.90) and 4.41 (95% CI 1.84-11.59), respectively, and p for trend was 0.001. Furthermore, multiple logistic regression analysis also showed the corresponding odd ratios (ORs) for prolonged QTc interval of the medium and high of FGF21 versus the low of FGF21 were 1.02 (95% CI 0.53-1.78) and 1.93 (95% CI 1.04-3.60) respectively with the p for trend of 0.037. In addition, age- and sex-adjusted FGF21 levels were positively associated with fasting glucose, HbA1c, creatinine, and adiponectin, but negatively associated with albumin, and the estimated glomerular filtration rate. CONCLUSIONS This study indicates that plasma FGF21 is associated with wide QRS complex and prolonged corrected QT interval in stable angina patients, further study is required to investigate the role of plasma FGF21 for the underlying pathogenesis.
Collapse
Affiliation(s)
- Wei-Chin Hung
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Teng-Hung Yu
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chao-Ping Wang
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chia-Chang Hsu
- grid.414686.90000 0004 1797 2180Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Yung-Chuan Lu
- grid.411447.30000 0004 0637 1806School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan ,grid.414686.90000 0004 1797 2180Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung, 82445 Taiwan
| | - Ching-Ting Wei
- grid.411447.30000 0004 0637 1806School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan ,grid.414686.90000 0004 1797 2180Division of General Surgery, Department of Surgery, E-Da Hospital, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806Department of Biomedical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806Department of Electrical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Fu-Mei Chung
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan
| | | | - Cheng-Ching Wu
- grid.414686.90000 0004 1797 2180Division of Cardiology, Department of Internal Medicine, E-Da Hospital, No. 1, Yi-Da Rd., Jiau-Shu Village, Yan-Chao Township, Kaohsiung, 82445 Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Wei-Hua Tang
- grid.278247.c0000 0004 0604 5314Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Yuli Branch, No. 91, Xinxing St., Yuli Township, Hualien County, 981002 Taiwan ,grid.260539.b0000 0001 2059 7017Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304 Taiwan
| |
Collapse
|
48
|
She QY, Li LJ, Liu MH, Tan RY, Zhong YW, Bao JF, Xie JD. Bibliometric analysis of fibroblast growth factor 21 research over the period 2000 to 2021. Front Pharmacol 2022; 13:1011008. [PMID: 36238554 PMCID: PMC9551462 DOI: 10.3389/fphar.2022.1011008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Fibroblast growth factor 21 (FGF-21) is an evolutionarily conserved protein that plays multiple roles in metabolic regulation. Over the past two decades, numerous studies have deepened our understanding of its various functions and its pharmacological value. Nevertheless, most clinical trials have not achieved the desired results, which raises issues regarding its clinical value. In this bibliometric analysis, we evaluated the state of FGF-21 research over the last 20 years and identified important topics, achievements, and potential future directions. Methods: Publications related to FGF-21 were collected from the Web of Science Core Collection-Science Citation Index Expanded. HistCite, VOSviewer, and CiteSpace were used for bibliometric analysis and visualization, including the analysis of annual publications, leading countries, active institutions and authors, core journals, co-cited references, and keywords. Results: Altogether, 2,490 publications related to FGF-21 were obtained. A total of 12,872 authors from 2,628 institutions in 77 countries or regions reported studies on FGF-21. The United States of America was the most influential country in FGF-21 research. Alexei Kharitonenkov, Steven A. Kliewer, and David J. Mangelsdorf were the most influential scholars, and endocrinology journals had a core status in the field. The physiological roles, clinical translation, and FGF-21-based drug development were the main topics of research, and future studies may concentrate on the central effects of FGF-21, FGF-21-based drug development, and the effects of FGF-21 on non-metabolic diseases. Conclusion: The peripheral metabolic effects of FGF-21, FGF-21-based drug development, and translational research on metabolic diseases are the three major topics in FGF-21 research, whereas the central metabolic effects of FGF-21 and the effects of FGF-21 on metabolic diseases are the emerging trends and may become the following hot topics in FGF-21 research.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Li-Juan Li
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Hong Liu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ru-Yu Tan
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Wen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jie-Dong Xie
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jie-Dong Xie,
| |
Collapse
|
49
|
Matsiukevich D, House SL, Weinheimer C, Kovacs A, Ornitz DM. Fibroblast growth factor receptor signaling in cardiomyocytes is protective in the acute phase following ischemia-reperfusion injury. Front Cardiovasc Med 2022; 9:1011167. [PMID: 36211556 PMCID: PMC9539275 DOI: 10.3389/fcvm.2022.1011167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are expressed in multiple cell types in the adult heart. Previous studies have shown a cardioprotective effect of some FGF ligands in cardiac ischemia-reperfusion (I/R) injury and a protective role for endothelial FGFRs in post-ischemic vascular remodeling. To determine the direct role FGFR signaling in cardiomyocytes in acute cardiac I/R injury, we inactivated Fgfr1 and Fgfr2 (CM-DCKO) or activated FGFR1 (CM-caFGFR1) in cardiomyocytes in adult mice prior to I/R injury. In the absence of injury, inactivation of Fgfr1 and Fgfr2 in adult cardiomyocytes had no effect on cardiac morphometry or function. When subjected to I/R injury, compared to controls, CM-DCKO mice had significantly increased myocyte death 1 day after reperfusion, and increased infarct size, cardiac dysfunction, and myocyte hypertrophy 7 days after reperfusion. No genotype-dependent effect was observed on post-ischemic cardiomyocyte cross-sectional area and vessel density in areas remote to the infarct. By contrast, transient activation of FGFR1 signaling in cardiomyocytes just prior to the onset of ischemia did not affect outcomes after cardiac I/R injury at 1 day and 7 days after reperfusion. These data demonstrate that endogenous cell-autonomous cardiomyocyte FGFR signaling supports the survival of cardiomyocytes in the acute phase following cardiac I/R injury and that this cardioprotection results in continued improved outcomes during cardiac remodeling. Combined with the established protective role of some FGF ligands and endothelial FGFR signaling in I/R injury, this study supports the development of therapeutic strategies that promote cardiomyocyte FGF signaling after I/R injury.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Stacey L. House
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Emergency Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Carla Weinheimer
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - David M. Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
50
|
Cecchini AL, Biscetti F, Rando MM, Nardella E, Pecorini G, Eraso LH, Dimuzio PJ, Gasbarrini A, Massetti M, Flex A. Dietary Risk Factors and Eating Behaviors in Peripheral Arterial Disease (PAD). Int J Mol Sci 2022; 23:10814. [PMID: 36142725 PMCID: PMC9504787 DOI: 10.3390/ijms231810814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary risk factors play a fundamental role in the prevention and progression of atherosclerosis and PAD (Peripheral Arterial Disease). The impact of nutrition, however, defined as the process of taking in food and using it for growth, metabolism and repair, remains undefined with regard to PAD. This article describes the interplay between nutrition and the development/progression of PAD. We reviewed 688 articles, including key articles, narrative and systematic reviews, meta-analyses and clinical studies. We analyzed the interaction between nutrition and PAD predictors, and subsequently created four descriptive tables to summarize the relationship between PAD, dietary risk factors and outcomes. We comprehensively reviewed the role of well-studied diets (Mediterranean, vegetarian/vegan, low-carbohydrate ketogenic and intermittent fasting diet) and prevalent eating behaviors (emotional and binge eating, night eating and sleeping disorders, anorexia, bulimia, skipping meals, home cooking and fast/ultra-processed food consumption) on the traditional risk factors of PAD. Moreover, we analyzed the interplay between PAD and nutritional status, nutrients, dietary patterns and eating habits. Dietary patterns and eating disorders affect the development and progression of PAD, as well as its disabling complications including major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Nutrition and dietary risk factor modification are important targets to reduce the risk of PAD as well as the subsequent development of MACE and MALE.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Elisabetta Nardella
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giovanni Pecorini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Gasbarrini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Massimo Massetti
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Andrea Flex
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|