1
|
Shetty NS, Othayoth V, Satyaprasad AU. Target-induced nanoparticle assemblies: a comprehensive review of strategies for nucleic acid functionalization, biosensing, and drug delivery applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3876-3901. [PMID: 40310289 DOI: 10.1039/d5ay00413f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Fundamental studies on nanoparticle superstructures or core-satellite assemblies and their interactions with biomolecules have led to advancements in nanobiotechnology. Consequently, some novel nucleic acid (NA) biosensing, diagnostics, and imaging approaches have been developed by functionalizing the surface of nanoparticles with target-specific analytes. For functionalization, multivalent nanoparticles are chosen over monovalent ones because they can enhance the concentration of probes on the nanoparticle surface and simultaneously bind to multiple target sites, leading to specific and sensitive detection, primarily in the case of target NAs with low-abundance target. Selection of appropriate satellite (shell) and core nanoparticles is crucial for building assemblies that can improve the resistance of DNA against serum degradation and nuclease activity by several folds compared with those of un-assembled particles. Structural modification of NPs via covalent ligation with DNA or miRNA using synthetic click chemistry approaches resulted in the formation of dimers/tetramers, which could ease the delivery of DNA-intercalating drugs and simultaneously sense target biomarkers in the cellular environment, showing the synergistic applications of multivalent assemblies. This review provides an overview of the design strategies and chemistries involved in the loading of nucleic acid probes onto the NP surface, synthesis of PEG ligands, and purification and characterization techniques for assemblies (dimer, trimer, and multimer). In addition, the applications of NP assemblies in biosensing miRNA, strategies and challenges involved in the intracellular detection of miRNA, colorimetric, SERS, and electrochemical techniques for bacterial/virus detection, and drug delivery applications are discussed. Finally, the advantages, challenges, and future perspectives in commercializing this technology are comprehensively elucidated.
Collapse
Affiliation(s)
- Nidhi S Shetty
- Department of Bio and Nanotechnology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Karnataka, India.
| | - Vaishnavi Othayoth
- Department of Bio and Nanotechnology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Karnataka, India.
| | - Akshath Uchangi Satyaprasad
- Department of Bio and Nanotechnology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Karnataka, India.
| |
Collapse
|
2
|
Wu J, Chen ZH, Xie Y, Fan Y. Advances in Lanthanide-Based NIR-IIb Probes for In Vivo Biomedical Imaging. SMALL METHODS 2025; 9:e2401462. [PMID: 39520332 DOI: 10.1002/smtd.202401462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The past decades have witnessed the significant development and practical interest of in vivo biomedical imaging technologies and optical materials in the second-near infrared (NIR-II, 1000-1700 nm) window. Imaging with the extended emission wavelength toward the long-wavelength end (NIR-IIb, 1500-1700 nm) further offers micrometer imaging resolution and centimeter tissue penetration depth by taking advantage of the much-reduced photon scattering and near-zero tissue autofluorescence background, which have become a very hot research area. This review focuses on the recent advances in the development of lanthanide-based NIR-IIb probes for in vivo biomedical applications. The progress including ratiometric imaging, multiplexed imaging for wide-field and microscopy, lifetime multiplexing and sensing, persistent luminescence, and multimodal imaging is summarized. Challenges and future directions concerning the investigation of the photophysical and photochemical properties of NIR-IIb probes, the selection of near-infrared cameras as well as the potential extension of the NIR-IIb imaging sub-window are pointed out. This review will inspire readers who have a strong interest in developing optical imaging technology and long-wavelength fluorescence probes for high-contrast in vivo biomedical applications.
Collapse
Affiliation(s)
- Jiaxin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Yang Xie
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Huang L, Lv F, Bin Y, Zhao J, Li C, Zhao S, Hu S, Zhang L. A Hydrogen Sulfide-Activated NIR-II Fluorescence/NIR-I Photoacoustic Dual-Ratiometric Nanoprobe With Unique Recognition Reaction for Precise Visual Diagnosis of Hepatitis Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501269. [PMID: 40270361 DOI: 10.1002/smll.202501269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Indexed: 04/25/2025]
Abstract
Hydrogen sulfide (H2S) is a vital gaseous signaling molecule that plays a central role in various physiological and pathological processes. Given the complementary advantages of fluorescence (FL) and photoacoustic (PA) imaging, there is a growing demand for dual-ratiometric probes that enable precise in vivo monitoring of H2S levels. In this study, the use of 2-mercapto-1,3,4-thiadiazole (MTD) as a novel recognition group of H2S is presented for the first time, following conjugation with cyanine dyes to obtain a new PA probe Cy-MTD. To achieve dual-ratiometric imaging, Cy-MTD is incorporated into down-conversion nanoparticle (DCNP), resulting in the creation of a pioneering NIR-II FL/NIR-I PA dual-ratiometric nanoprobe DCNP@Cy-MTD. Cy-MTD undergoes the blueshift in absorption from 840 to 670 nm after reaction with H2S, enabling NIR-I ratiometric PA imaging of H2S by measuring the ratio of PA signal at 670 and 840 nm (PA670/PA840). In addition, due to the strong absorption of Cy-MTD ≈840 nm and the overlapping between the absorption spectrum of Cy-MTD and 808 nm excitation band of DCNP, the 808 nm-excited FL emission (F1550 nm,808Ex) of DCNP in DCNP@Cy-MTD nanoprobe is quenched through the competitive absorption, while it is restored upon the interaction with H2S because of the blueshift in absorption of Cy-MTD. Using the stable FL emission of DCNP under 980 nm excitation (F1550 nm,980Ex) as the reference signal, NIR-II ratiometric FL imaging (F1550 nm,808Ex/F1550 nm,980Ex) of H2S is achieved. The dual-ratiometric response features of the DCNP@Cy-MTD nanoprobe offer a significant advancement over traditional single-signal or single-modality imaging techniques. By providing enhanced accuracy and reliability, this probe allows for the diagnosis of hepatitis by monitoring the H2S, surpassing the capabilities of conventional histopathological methods, which provides a new way for more effective diagnostic strategies for liver diseases.
Collapse
Affiliation(s)
- Lixian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fei Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yidong Bin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jingjin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Caiying Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shengqiang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
4
|
Su X, Liu Y, Zhong Y, Shangguan P, Liu J, Luo Z, Qi C, Guo J, Li X, Lin D, Wang G, Wang D, Han T, Wang J, Shi B, Tang BZ. A Brain-Targeting NIR-II Polymeric Phototheranostic Nanoplatform toward Orthotopic Drug-Resistant Glioblastoma. NANO LETTERS 2025; 25:3445-3454. [PMID: 39992704 DOI: 10.1021/acs.nanolett.4c05470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Glioblastoma is the most common and devastating brain tumor owing to its high invasiveness and high-frequency drug resistance. Near infrared-II (NIR-II) imaging-guided phototherapy based on polymer luminogens provides a promising remedy against drug-resistant glioma, but it is difficult to maximize photoenergy utilization. Herein, we designed a series of semiconducting polymers to boost the visualization and ablation of glioblastoma. By subtly engineering the side chains or substituents on the phenothiazine and thiophene moieties, an NIR-II polymer luminogen with high-quality fluorescence performance, good solubility, superior photothermal conversion, and balanced reactive oxygen species generation is achieved. The optimal polymer possesses a branched alkyl chain and tetraphenylethylene pendant to manipulate the equilibrium between the radiative and nonradiative energy-dissipating channels. High-sensitivity NIR-II imaging was used to monitor the blood-brain barrier penetration and glioma cell targeting of apolipoprotein E-modified polymer nanoparticles. The NIR irradiation triggers and maximizes the photon utilization in prominent photodynamic/photothermal synergistic therapy in orthotopic drug-resistant glioblastoma.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yisheng Liu
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, 475004, China
| | - Ping Shangguan
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zhengqun Luo
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Cai Qi
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Jincheng Guo
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Xi Li
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Danmin Lin
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, 475004, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ting Han
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiefei Wang
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Bingyang Shi
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| |
Collapse
|
5
|
Ding N, Zhang B, Hamed EM, Qin M, Ji L, Qi S, Li SFY, Wang Z. Aptamer-Driven Multifunctional Nanoplatform for Near-Infrared Fluorescence Imaging and Rapid In Situ Inactivation of Salmonella typhimurium. Anal Chem 2025; 97:1889-1899. [PMID: 39812678 DOI: 10.1021/acs.analchem.4c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Salmonella typhimurium (S. typhimurium) is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization in vivo. Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an S. typhimurium-specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH. The nanoplatform precisely targets S. typhimuriumvia aptamer recognition, promoting bacterial aggregation through nanoparticle sedimentation in an oscillatory system. Furthermore, the intelligent nanoplatform significantly enhances the sensitivity of S. typhimurium detection based on near-infrared (NIR) fluorescence signals, achieving a detection limit as low as 2 CFU mL-1. Additionally, in situ NIR irradiation was applied at the 30 min peak of fluorescence detection, enabling rapid and irreversible inactivation of S. typhimurium through the synergistic effects of photothermal and photodynamic effects. Importantly, in a mouse model of intestinal infection, the nanoplatform successfully detected early S. typhimurium colonization and achieved highly efficient in situ inactivation without adversely affecting the major organs. In conclusion, the nanoplatform achieved precise localized detection and in situ inactivation of S. typhimurium, offering valuable insights for disease surveillance and epidemiological studies, with promising implications for food safety and public health.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Bo Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mingwei Qin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Ji
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Wang X, Wu W, Yun B, Huang L, Chen ZH, Ming J, Zhai F, Zhang H, Zhang F. An Emerging Toolkit of Ho 3+ Sensitized Lanthanide Nanocrystals with NIR-II Excitation and Emission for in Vivo Bioimaging. J Am Chem Soc 2025; 147:2182-2192. [PMID: 39748521 DOI: 10.1021/jacs.4c16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Optical imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds great promise for biomedical detection due to reduced tissue scattering and autofluorescence. However, the rational design of NIR-II probes with superior excitation wavelengths to balance the effects of tissue scattering and water absorption remains a great challenge. To address this issue, here we developed a series of Ho3+-sensitized lanthanide (Ln) nanocrystals (NaYF4: Ho, Ln@NaYF4) excited at 1143 nm, featuring tunable emissions ranging from 1000 to 2200 nm for in vivo bioimaging. Precise core-shell engineering (β-NaYF4: Ho@NaYF4: Ln@NaYF4 and β-NaYF4: Ho/Yb@NaYbF4@NaYbF4: Ln@NaYF4) further endows the Ho3+-sensitized system with the capability of energy migration within interfaces, enabling more abundant visible and NIR-II emissions that are unattainable in co-doped structures due to detrimental cross relaxation. Tissue phantom studies demonstrated the superior tissue penetration ability of 1143 photons, especially in imaging experiments through the highly photon-scattering skull, where the fluorescence transmittance of 1143 nm excited nanocrystals was 15% and 10% higher than that of the conventional 808 and 980 excitation, respectively. By leveraging these Ho3+-sensitized nanomaterials with multiemission characteristics and well-selected lanthanide nanomaterials with crosstalk-free excitation, we achieved six-channel NIR-II in vivo imaging, enabling the simultaneous visualization of blood vessels, liver, spleen, stomach, intestine, subcutaneous tumors, and lymph nodes in mice. Our research provides new insights into the design of lanthanide nanocrystals with NIR-II excitation and emission and highlights the potential of these materials in in vivo multichannel detection.
Collapse
Affiliation(s)
- Xusheng Wang
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Wenxiao Wu
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Baofeng Yun
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Liwen Huang
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Zi-Han Chen
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jiang Ming
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Fuheng Zhai
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Hongxin Zhang
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Jacinto C, Silva WF, Garcia J, Zaragosa GP, Ilem CND, Sales TO, Santos HDA, Conde BIC, Barbosa HP, Malik S, Sharma SK. Nanoparticles based image-guided thermal therapy and temperature feedback. J Mater Chem B 2024; 13:54-102. [PMID: 39535040 DOI: 10.1039/d4tb01416b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanoparticles have emerged as versatile tools in the realm of thermal therapy, offering precise control and feedback mechanisms for targeted treatments. This review explores the intersection of nanotechnology and thermal therapy, focusing on the utilization of nanoparticles for image-guided interventions and temperature monitoring. Starting with an exploration of local temperature dynamics compared to whole-body responses, we delve into the landscape of nanomaterials and their pivotal role in nanomedicine. Various physical stimuli employed in therapy and imaging are scrutinized, laying the foundation for nanothermal therapies and the accompanying challenges. A comprehensive analysis of nanomaterial architecture ensues, delineating the functionalities of magnetic, plasmonic, and luminescent nanomaterials within the context of thermal therapies. Nano-design intricacies, including core-shell structures and monodisperse properties, are dissected for their impact on therapeutic efficacy. Furthermore, considerations in designing in vivo nanomaterials, such as hydrodynamic radii and core sizes at sub-tissue levels, are elucidated. The review then delves into specific modalities of thermally induced therapy, including magnetically induced hyperthermia and luminescent-based thermal treatments. Magnetic hyperthermia treatment is explored alongside its imaging and relaxometric properties, emphasizing the implications of imaging formulations on biotransformation and biodistribution. This review also provides an overview of the magnetic hyperthermia treatment using magnetic nanoparticles to induce localized heat in tissues. Similarly, optical and thermal imaging techniques utilizing luminescent nanomaterials are discussed, highlighting their potential for light-induced thermal therapy and cellular-level temperature monitoring. Finally, the application landscape of diagnosis and photothermal therapy (PTT) is surveyed, encompassing diverse areas such as cancer treatment, drug delivery, antibacterial therapy, and immunotherapy. The utility of nanothermometers in elucidating thermal relaxation dynamics as a diagnostic tool is underscored, alongside discussions on PTT hyperthermia protocols. Moreover, the advancements in nanoparticle magnetic imaging and implications of imaging formulations especially in creating positive MRI contrast agents are also presented. This comprehensive review offers insights into the evolving landscape of nanoparticle-based image-guided thermal therapies, promising advancements in precision medicine and targeted interventions, underscoring the importance of continued research in optimization for the full potential of magnetic hyperthermia to improve its efficacy and clinical translation.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Wagner F Silva
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Joel Garcia
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | - Gelo P Zaragosa
- Department of Chemistry, De La Salle University, Manila, Philippines.
| | | | - Tasso O Sales
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | - Harrisson D A Santos
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas, 57072-900, Maceió-AL, Brazil.
| | | | | | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans, 45067, France.
- Department of Biotechnology, Baba Farid College, Bathinda, 151001, India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
- Department of Physics, Federal University of Maranhão, São Luís, 65080-805, Brazil
| |
Collapse
|
8
|
Guo H, Pham NNT, Park JS, Lee SG. Investigation of the Structure and Optical Properties of Polymethine-Based NIR-II Fluorophores Using Many-Body Perturbation Theory: GW-BSE Approaches. J Phys Chem A 2024; 128:9664-9669. [PMID: 39447088 DOI: 10.1021/acs.jpca.4c06115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fluorescence imaging is a widely used technique for detecting pathophysiological microenvironments and guiding fluorescence-guided therapy owing to its noninvasiveness, high spatiotemporal resolution, ease of operation, and real-time monitoring capabilities. In particular, NIR-II materials are promising for fluorescence imaging applications because they exhibit reduced light scattering and absorption by biological tissues, enabling deeper imaging with improved spatial resolution and contrast compared to visible or first near-infrared imaging. NIR-II materials refer to those that emit in the second near-infrared region of the electromagnetic spectrum, spanning wavelengths from approximately 1000 to 1700 nm. The emission peaks of organic fluorophores within the NIR-II window are of particular interest due to their minimal biotoxicity, in vivo biocompatibility, and biodegradability. In this study, we investigated a new series of NIR-II fluorescent polymethine-based dyes and their NIR-II absorption properties using density functional theory and the GW-BSE approximation. Our calculated maximum absorption peak under the GW-BSE approximation showed good agreement with experimental results, demonstrating the potential of these dyes for NIR-II fluorescence imaging applications.
Collapse
Affiliation(s)
- Hengquan Guo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nguyet N T Pham
- University of Science, Vietnam National University, 227 Nguyen Van Cu, Ho Chi Minh City 700000, Viet Nam
| | - Jong S Park
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seung Geol Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
9
|
Nunez J, Mironov S, Wan B, Hazime A, Clark A, Akarichi C, Abdelfattah K, Korlakunta S, Mandell S, Arnoldo B, Chan R, Goverman J, Huebinger R, Park C, Evers B, Carlson D, Berenfeld O, Levi B. Novel multi-spectral short-wave infrared imaging for assessment of human burn wound depth. Wound Repair Regen 2024; 32:979-991. [PMID: 39323286 PMCID: PMC11584362 DOI: 10.1111/wrr.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Burn depth determination is critical for patient care but is currently lacking accuracy. Recent animal studies showed that Short Wave Infrared (SWIR) imaging can distinguish between superficial and deep burns. This is a first human study correlating reflectance of multiple SWIR bands using a SWIR assessment tool (SWAT) with burn depth classifications by surgeons and histology. Burns and adjacent normal skin in 11 patients with thermal injuries were imaged with visual and narrow bands centred at 1200, 1650, 1940 and 2250 nm and biopsies were taken from select areas. Reflectance intensities for each band in 273 regions of interest (ROI) were divided by the normal skin reflectance and combined into three Reflectance Indices (RIs). In addition, burns in ROIs and biopsies were classified by five surgeons and three pathologists, respectively, as superficial partial, deep partial, or full thickness. Results show that for burn depth increase classified by the surgeons, reflectance increased at 1200 and 2250, decreased at 1940, and didn't change at 1650 nm. In contrast, all three RIs increase with burn depth and predict the deep and full depths ROIs representing operable regions (Area Under Curve >0.6507, p < 0.0001). Pathologists' classification matched surgeons' classification of burn category only in eight of 21 biopsies (38.1%), but reflectance at all bands and one RI for all deep partial and full thickness biopsies were larger than in non-biopsy normal and superficial partial thickness ROIs (p < 0.0118). In conclusion, multi-spectral imaging with a new SWAT is a promising approach for evaluation of burn wound depth.
Collapse
Affiliation(s)
- Johanna Nunez
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Sergey Mironov
- Department of Internal Medicine—CardiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Bingchun Wan
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Alaa Hazime
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Audra Clark
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Chiaka Akarichi
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Kareem Abdelfattah
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Sneha Korlakunta
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Samuel Mandell
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Brett Arnoldo
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Rodney Chan
- Department of SurgerySan Antonio Military Medical CenterSan AntonioTexasUSA
| | - Jeremy Goverman
- Department of SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Ryan Huebinger
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Caroline Park
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Bret Evers
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Deborah Carlson
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Omer Berenfeld
- Department of Internal Medicine—CardiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis, Regeneration and TraumaUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
10
|
Qian Y, Huang-Fu ZC, Li H, Zhang T, Li X, Schmidt S, Fisher H, Brown JB, Harutyunyan A, Chen H, Chen G, Rao Y. Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth. JACS AU 2024; 4:3921-3930. [PMID: 39483221 PMCID: PMC11522907 DOI: 10.1021/jacsau.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Short-wave infrared (SWIR) imaging systems offer remarkable advantages, such as enhanced resolution and contrast, compared to their optical counterparts. However, broader applications demand improvements in performance, notably the elimination of cryogenic temperature requirements and cost reduction in manufacturing processes. In this manuscript, we present a new development in SWIR photodetection, exploiting the potential of metal halide perovskite materials. Our work introduces a cost-effective and easily fabricated SWIR photodetector with an ultrabroad detection range from 900 to 2500 nm, a room-temperature responsivity of 1.57 × 102 A/W, and a specific detectivity of 4.18 × 1010 Jones at 1310 nm. We then performed comprehensive static and time-resolved optical and electrical measurements under ambient conditions, complemented by extensive density functional theory simulations, validating the formation of heterojunctions within the intrinsic n-type and extrinsic p-type perovskite structures. The potential of our perovskite-based SWIR materials extends from photodetectors to photovoltaic cells and introduces a possibility for high SWIR responsivity at room temperature and atmospheric pressure, which promotes its economic efficiency.
Collapse
Affiliation(s)
- Yuqin Qian
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Zhi-Chao Huang-Fu
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Hao Li
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Xia Li
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Sydney Schmidt
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Haley Fisher
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Jesse B. Brown
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Avetik Harutyunyan
- Honda
Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Hanning Chen
- Texas
Advanced Computing Center, the University
of Texas at Austin, Austin, Texas 78758, United States
| | - Gugang Chen
- Honda
Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Yi Rao
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| |
Collapse
|
11
|
Sheikh T, Mir WJ, Alofi A, Skoroterski M, Zhou R, Nematulloev S, Hedhili MN, Hassine MB, Khan MS, Yorov KE, Hasanov BE, Liao H, Yang Y, Shamim A, Abulikemu M, Mohammed OF, Bakr OM. Surface-Reconstructed InAs Colloidal Nanorod Quantum Dots for Efficient Deep-Shortwave Infrared Emission and Photodetection. J Am Chem Soc 2024; 146:29094-29103. [PMID: 39385061 DOI: 10.1021/jacs.4c10755] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Shortwave infrared (SWIR) light emitters and detectors are crucial in numerous applications. Conventionally, SWIR devices rely on epitaxially grown narrow bandgap semiconductors, such as InGaAs, which are expensive to fabricate and difficult to integrate with silicon complementary metal-oxide-semiconductors (CMOS). Colloidal quantum dots (CQDs) have emerged as low-cost alternatives to epitaxially grown semiconductors, offering integration with CMOS through solution-processing methods. However, the predominant SWIR-active CQD systems rely on heavy-metal-containing compositions (PbS and HgTe), hindering the adoption of CQD SWIR technology. InAs CQDs are promising substitutes in SWIR applications. However, synthesizing SWIR-active InAs CQDs is challenging, often constraining them to the visible or near-infrared regions. To achieve SWIR bandgaps, large InAs CQDs are typically required; such CQDs are prone to having surface traps that quench photogenerated charge carriers, adversely affecting device performance. Here, we report a two-step synthesis of surface-passivated SWIR-active InAs/ZnSe core/shell colloidal nanorod quantum dots (CNQDs). These surface-passivated CNQDs are highly emissive and tunable over the entire technologically important region (1200-1800 nm) of the SWIR window with photoluminescence quantum yields as high as 60%. Using these SWIR-active InAs/ZnSe CNQDs, we demonstrated an SWIR-active InAs CQD photodetector, achieving a record high external quantum efficiency of ∼15% at ∼1450 nm and a low dark current of ∼10-2 mA/cm2.
Collapse
Affiliation(s)
- Tariq Sheikh
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wasim J Mir
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Abdulilah Alofi
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Maksim Skoroterski
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Renqian Zhou
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Saidkhodzha Nematulloev
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Nejib Hedhili
- KAUST Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Ben Hassine
- KAUST Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mudeha Shafat Khan
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Khursand E Yorov
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bashir E Hasanov
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hanguang Liao
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yiming Yang
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Atif Shamim
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mutalifu Abulikemu
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Center for Renewable Energy and Storage Technologies (CREST), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Zhong X, Patel A, Sun Y, Saeboe AM, Dennis AM. Multiplexed Shortwave Infrared Imaging Highlights Anatomical Structures in Mice. Angew Chem Int Ed Engl 2024; 63:e202410936. [PMID: 39014295 PMCID: PMC11473221 DOI: 10.1002/anie.202410936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/18/2024]
Abstract
Multiplexed fluorescence in vivo imaging remains challenging due to the attenuation and scattering of visible and traditional near infrared (NIR-I, 650-950 nm) wavelengths. Fluorescence imaging using shortwave infrared (SWIR, 1000-1700 nm, a.k.a. NIR-II) light enables deeper tissue penetration due to reduced tissue scattering as well as minimal background autofluorescence. SWIR-emitting semiconductor quantum dots (QDs) with tunable emission peaks and optical stability are powerful contrast agents, yet few imaging demonstrations exclusively use SWIR emission beyond two-color imaging schemes. In this study, we engineered three high quality lead sulfide/cadmium sulfide (PbS/CdS) core/shell QDs with distinct SWIR emission peaks ranging from 1100-1550 nm for simultaneous three-color imaging in mice. We first use the exceptional photostability of QDs to non-invasively track lymphatic drainage with longitudinal imaging, highlighting the detailed networks of lymphatic vessels with widefield imaging over a 2 hr period. We then perform multiplexed imaging with all three QDs to distinctly visualize the lymphatic system and spatially overlapping vasculature networks, including clearly distinguishing the liver and spleen. This work establishes optimized SWIR QDs for next generation multiplexed and longitudinal preclinical imaging, unlocking numerous opportunities for preclinical studies of disease progression, drug biodistribution, and cell trafficking dynamics in living organisms.
Collapse
Affiliation(s)
- Xingjian Zhong
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Amish Patel
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Yidan Sun
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Alexander M Saeboe
- Division of Material Science & Engineering, Boston University, Boston, MA, USA
| | - Allison M Dennis
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
13
|
Karabacak S, Çoban B, Yıldız AA, Yıldız ÜH. Near-Infrared Emissive Super Penetrating Conjugated Polymer Dots for Intratumoral Imaging in 3D Tumor Spheroid Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403398. [PMID: 39023182 PMCID: PMC11425279 DOI: 10.1002/advs.202403398] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/07/2024] [Indexed: 07/20/2024]
Abstract
This study describes the formation of single-chain polymer dots (Pdots) via ultrasonic emulsification of nonionic donor-acceptor-donor type (D-A-D) alkoxy thiophene-benzobisthiadiazole-based conjugated polymers (Poly BT) with amphiphilic cetyltrimethylammonium bromide (CTAB). The methodology yields Pdots with a high cationic surface charge (+56.5 mV ± 9.5) and average hydrodynamic radius of 12 nm. Optical characterization reveals that these Pdots emit near-infrared (NIR) light at a maximum wavelength of 860 nm owing to their conjugated polymer backbone consisting of D-A-D monomers. Both colloidal and optical properties of these Pdots make them promising fluorescence emissive probes for bioimaging applications. The significant advantage of positively charged Pdots is demonstrated in diffusion-limited mediums such as tissues, utilizing human epithelial breast adenocarcinoma, ATCC HTB-22 (MCF-7), human bone marrow neuroblastoma, ATCC CRL-2266 (SH-SY5Y), and rat adrenal gland pheochromocytoma, CRL-1721 (PC-12) tumor spheroid models. Fluorescence microscopy analysis of tumor spheroids from MCF-7, SH-SY5Y, and PC-12 cell lines reveals the intensity profile of Pdots, confirming extensive penetration into the central regions of the models. Moreover, a comparison with mitochondria staining dye reveals an overlap between the regions stained by Pdots and the dye in all three tumor spheroid models. These results suggest that single-chain D-A-D type Pdots, cationized via CTAB, exhibit long-range mean free path of penetration (≈1 µm) in dense mediums and tumors.
Collapse
Affiliation(s)
- Soner Karabacak
- Department of ChemistryIzmir Institute of TechnologyUrlaIzmir35430Turkey
| | - Başak Çoban
- Department of BioengineeringIzmir Institute of TechnologyUrlaIzmir35430Turkey
| | - Ahu Arslan Yıldız
- Department of BioengineeringIzmir Institute of TechnologyUrlaIzmir35430Turkey
| | - Ümit Hakan Yıldız
- Department of ChemistryIzmir Institute of TechnologyUrlaIzmir35430Turkey
| |
Collapse
|
14
|
Tuyen NTT, Tuan TQ, Toan LV, Tam LT, Pham VH. Synthesis of Up-Conversion CaTiO 3: Er 3+ Films on Titanium by Anodization and Hydrothermal Method for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3376. [PMID: 38998457 PMCID: PMC11243026 DOI: 10.3390/ma17133376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
The present study investigates the effects of Er3+ doping content on the microstructure and up-conversion emission properties of CaTiO3: Er3+ phosphors as a potential material in biomedical applications. The CaTiO3: x%Er3+ (x = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0%) films were synthesized on Ti substrates by a hydrothermal reaction at 200 °C for 24 h. The SEM image showed the formation of cubic nanorod CaTiO3: Er3+ films with a mean edge size value of (1-5) μm. When excited with 980 nm light, the CaTiO3: Er3+ films emitted a strong green band and a weak red band of Er3+ ions located at 543, 661, and 740 nm. The CaTiO3: Er3+ film exhibited excellent surface hydrophilicity with a contact angle of ~zero and good biocompatibility against baby hamster kidney (BHK) cells. CaTiO3: Er3+ films emerge as promising materials for different applications in the biomedical field.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Tuyen
- School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), No. 01 Dai Co Viet, Hanoi 100000, Vietnam
| | - Ta Quoc Tuan
- School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), No. 01 Dai Co Viet, Hanoi 100000, Vietnam
- Laboratory of Biomedical Materials, Hanoi University of Science and Technology (HUST), No. 01 Dai Co Viet, Hanoi 100000, Vietnam
| | - Le Van Toan
- School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), No. 01 Dai Co Viet, Hanoi 100000, Vietnam
- Department of Physics and Chemical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet Road, Hanoi 11917, Vietnam
| | - Le Thi Tam
- School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), No. 01 Dai Co Viet, Hanoi 100000, Vietnam
- Laboratory of Biomedical Materials, Hanoi University of Science and Technology (HUST), No. 01 Dai Co Viet, Hanoi 100000, Vietnam
| | - Vuong-Hung Pham
- School of Materials Science and Engineering, Hanoi University of Science and Technology (HUST), No. 01 Dai Co Viet, Hanoi 100000, Vietnam
- Laboratory of Biomedical Materials, Hanoi University of Science and Technology (HUST), No. 01 Dai Co Viet, Hanoi 100000, Vietnam
| |
Collapse
|
15
|
Li HH, Wang YK, Liao LS. Near-Infrared Luminescent Materials Incorporating Rare Earth/Transition Metal Ions: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403076. [PMID: 38733295 DOI: 10.1002/adma.202403076] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The spotlight has shifted to near-infrared (NIR) luminescent materials emitting beyond 1000 nm, with growing interest due to their unique characteristics. The ability of NIR-II emission (1000-1700 nm) to penetrate deeply and transmit independently positions these NIR luminescent materials for applications in optical-communication devices, bioimaging, and photodetectors. The combination of rare earth metals/transition metals with a variety of matrix materials provides a new platform for creating new chemical and physical properties for materials science and device applications. In this review, the recent advancements in NIR emission activated by rare earth and transition metal ions are summarized and their role in applications spanning bioimaging, sensing, and optoelectronics is illustrated. It started with various synthesis techniques and explored how rare earths/transition metals can be skillfully incorporated into various matrixes, thereby endowing them with unique characteristics. The discussion to strategies of enhancing excitation absorption and emission efficiency, spotlighting innovations like dye sensitization and surface plasmon resonance effects is then extended. Subsequently, a significant focus is placed on functionalization strategies and their applications. Finally, a comprehensive analysis of the challenges and proposed strategies for rare earth/transition metal ion-doped near-infrared luminescent materials, summarizing the insights of each section is provided.
Collapse
Affiliation(s)
- Hua-Hui Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR, Taipa, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Ya-Kun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Liang-Sheng Liao
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR, Taipa, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Liu X, Liu T, Tu L, Zuo J, Li J, Feng Y, Yao CJ. Enhancing NIR-II Upconversion Monochromatic Emission for Temperature Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308748. [PMID: 38282458 DOI: 10.1002/smll.202308748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The upconversion luminescence (UCL) in the second near-infrared window (NIR-II) is highly attractive due to its excellent performance in high-resolution bioimaging, anticounterfeiting, and temperature sensing. However, upconvertion nanoparticles (UCNPs) are normally emitted in visible light, potentially impacting the imaging quality. Here, a monochromatic Er3+-rich (NaErF4:x%Yb@NaYF4) nanoparticles with excitation at 1532 nm and emission at 978 nm is proposed, both situated in the NIR-II region. The proper proportion of Yb3+ ions doping has a positive effect on the NIR-II emission, by enhancing the cross relaxation efficiency and accelerating the energy transfer rate. Owing to the interaction between the Er3+ and Yb3+ is inhibited at low temperatures, the UCL emission intensities at visible and NIR-II regions show opposite trend with temperature changing, which establishes a fitting formula to derive temperature from the luminous intensity ratio, promoting the potential application of UCL in NIR-II regions for the temperature sensing.
Collapse
Affiliation(s)
- Xiaomeng Liu
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tongtong Liu
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Langping Tu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Jing Zuo
- Key Laboratory of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun, 130025, China
| | - Jiaqi Li
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yansong Feng
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chang-Jiang Yao
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
17
|
Kurahashi H, Umezawa M, Okubo K, Soga K. Pixel Screening in Lifetime-Based Temperature Mapping Using β-NaYF 4:Nd 3+,Yb 3+ by Time-Gated Near-Infrared Fluorescence Imaging on Deep Tissue in Live Mice. ACS APPLIED BIO MATERIALS 2024; 7:3821-3827. [PMID: 38787698 PMCID: PMC11190971 DOI: 10.1021/acsabm.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Near-infrared fluorescence (NIRF) thermometry is an emerging method for the noncontact measurement of in vivo deep temperatures. Fluorescence-lifetime-based methods are effective because they are unaffected by optical loss due to excitation or detection paths. Moreover, the physiological changes in body temperature in deep tissues and their pharmacological effects are yet to be fully explored. In this study, we investigated the potential application of the NIRF lifetime-based method for temperature measurement of in vivo deep tissues in the abdomen using rare-earth-based particle materials. β-NaYF4 particles codoped with Nd3+ and Yb3+ (excitation: 808 nm, emission: 980 nm) were used as NIRF thermometers, and their fluorescence decay curves were exponential. Slope linearity analysis (SLA), a screening method, was proposed to extract pixels with valid data. This method involves performing a linearity evaluation of the semilogarithmic plot of the decay curve collected at three delay times after cutting off the pulsed laser irradiation. After intragastric administration of the thermometer, the stomach temperature was monitored by using an NIRF time-gated imaging setup. Concurrently, a heater was attached to the lower abdomens of the mice under anesthesia. A decrease in the stomach temperature under anesthesia and its recovery via the heater indicated changes in the fluorescence lifetime of the thermometer placed inside the body. Thus, NaYF4:Nd3+/Yb3+ functions as a fluorescence thermometer that can measure in vivo temperature based on the temperature dependence of the fluorescence lifetime at 980 nm under 808 nm excitation. This study demonstrated the ability of a rare-earth-based NIRF thermometer to measure deep tissues in live mice, with the proposed SLA method for excluding the noisy deviations from the analysis for measuring temperature using the NIRF lifetime of a rare-earth-based thermometer.
Collapse
Affiliation(s)
- Hiroyuki Kurahashi
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| | - Masakazu Umezawa
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| | | | - Kohei Soga
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| |
Collapse
|
18
|
Chen HJ, Wang L, Zhu H, Wang ZG, Liu SL. NIR-II Fluorescence Imaging for In Vivo Quantitative Analysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28011-28028. [PMID: 38783516 DOI: 10.1021/acsami.4c04913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In vivo real-time qualitative and quantitative analysis is essential for the diagnosis and treatment of diseases such as tumors. Near-infrared-II (NIR-II, 1000-1700 nm) bioimaging is an emerging visualization modality based on fluorescent materials. The advantages of NIR-II region fluorescent materials in terms of reduced photon scattering and low tissue autofluorescence enable NIR-II bioimaging with high resolution and increasing depth of tissue penetration, and thus have great potential for in vivo qualitative and quantitative analysis. In this review, we first summarize recent advances in NIR-II imaging, including fluorescent probe selection, quantitative analysis strategies, and imaging. Then, we describe in detail representative applications to illustrate how NIR-II fluorescence imaging has become an important tool for in vivo quantitative analysis. Finally, we describe the future possibilities and challenges of NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
19
|
Chen X, Li J, Roy S, Ullah Z, Gu J, Huang H, Yu C, Wang X, Wang H, Zhang Y, Guo B. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy. Adv Healthc Mater 2024; 13:e2304506. [PMID: 38441392 DOI: 10.1002/adhm.202304506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/16/2024]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) is burgeoning because of its higher imaging fidelity in monitoring physiological and pathological processes than clinical visible/the second near-infrared window fluorescence imaging. Notably, the imaging fidelity is heavily dependent on fluorescence agents. So far, indocyanine green, one of the polymethine dyes, with good biocompatibility and renal clearance is the only dye approved by the Food and Drug Administration, but it shows relatively low NIR-II brightness. Importantly, tremendous efforts are devoted to synthesizing polymethine dyes for imaging preclinically and clinically. They have shown feasibility in the customization of structure and properties to fulfill various needs in imaging and therapy. Herein, a timely update on NIR-II polymethine dyes, with a special focus on molecular design strategies for fluorescent, photoacoustic, and multimodal imaging, is offered. Furthermore, the progress of polymethine dyes in sensing pathological biomarkers and even reporting drug release is illustrated. Moreover, the NIR-II fluorescence imaging-guided therapies with polymethine dyes are summarized regarding chemo-, photothermal, photodynamic, and multimodal approaches. In addition, artificial intelligence is pointed out for its potential to expedite dye development. This comprehensive review will inspire interest among a wide audience and offer a handbook for people with an interest in NIR-II polymethine dyes.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jieyan Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuejin Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Han Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Zhu B, Jonathan H. A Review of Image Sensors Used in Near-Infrared and Shortwave Infrared Fluorescence Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:3539. [PMID: 38894330 PMCID: PMC11175340 DOI: 10.3390/s24113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
To translate near-infrared (NIR) and shortwave infrared (SWIR) fluorescence imaging into the clinic, the paired imaging device needs to detect trace doses of fluorescent imaging agents. Except for the filtration scheme and excitation light source, the image sensor used will finally determine the detection limitations of NIR and SWIR fluorescence imaging systems. In this review, we investigate the current state-of-the-art image sensors used in NIR and SWIR fluorescence imaging systems and discuss the advantages and limitations of their characteristics, such as readout architecture and noise factors. Finally, the imaging performance of these image sensors is evaluated and compared.
Collapse
Affiliation(s)
- Banghe Zhu
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | |
Collapse
|
21
|
Pérez-Herráez I, Ferrera-González J, Zaballos-García E, González-Béjar M, Pérez-Prieto J. Raspberry-like Nanoheterostructures Comprising Glutathione-Capped Gold Nanoclusters Grown on the Lanthanide Nanoparticle Surface. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:4426-4436. [PMID: 38764750 PMCID: PMC11099914 DOI: 10.1021/acs.chemmater.3c03333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 05/21/2024]
Abstract
Bare lanthanide-doped nanoparticles (LnNPs), in particular, NaYF4:Yb3+,Tm3+ NPs (UCTm), have been seeded in situ with gold cations to be used in the subsequent growth of gold nanoclusters (AuNCs) in the presence of glutathione (GSH) to obtain a novel UCTm@AuNC nanoheterostructure (NHS) with a raspberry-like morphology. UCTm@AuNC displays unique optical properties (multiple absorption and emission wavelengths). Specifically, upon 350 nm excitation, it exhibits AuNC photoluminescence (PL) (500-1200 nm, λmax 650 nm) and Yb emission (λmax 980 nm); this is the first example of Yb sensitization in a UCTm@AuNC NHS. Moreover, under 980 nm excitation, it displays (i) upconverting PL of the UCTm (at the blue, red and NIR-I, ca. 800 nm, regions); (ii) two-photon PL of AuNC; and (iii) down-shifting PL of thulium (around 1470 nm). The occurrence of energy transfer from UCTm to AuNCs in the UCTm@AuNC NHS was evidenced by the drastic lengthening of the AuNC PL lifetime (τPL) (from few hundred nanoseconds to more than one hundred microseconds). Initial biological assessment of UCTm@AuNC NHSs in vitro revealed high biocompatibility and bioimaging capabilities upon near-infrared excitation.
Collapse
Affiliation(s)
- Irene Pérez-Herráez
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Juan Ferrera-González
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Elena Zaballos-García
- Department
of Organic Chemistry, Universitat de València, Av. Vicent Andrés Estellés
s/n, 46100 Burjassot, Valencia ,Spain
| | - María González-Béjar
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| | - Julia Pérez-Prieto
- Instituto
de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València, C/Catedrático José
Beltrán, 2, Paterna, Valencia 46980, Spain
| |
Collapse
|
22
|
Siebert JN, Shah JV, Tan MC, Riman RE, Pierce MC, Lattime EC, Ganapathy V, Moghe PV. Early Detection of Myeloid-Derived Suppressor Cells in the Lung Pre-Metastatic Niche by Shortwave Infrared Nanoprobes. Pharmaceutics 2024; 16:549. [PMID: 38675210 PMCID: PMC11053826 DOI: 10.3390/pharmaceutics16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression.
Collapse
Affiliation(s)
- Jake N. Siebert
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd., Singapore 487372, Singapore
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - Mark C. Pierce
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Alex’s Lemonade Stand Foundation for Childhood Cancer, 333 E. Lancaster Ave., #414, Wynnewood, PA 19096, USA
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
23
|
Swamy MMM, Murai Y, Monde K, Tsuboi S, Swamy AK, Jin T. Biocompatible and Water-Soluble Shortwave-Infrared (SWIR)-Emitting Cyanine-Based Fluorescent Probes for In Vivo Multiplexed Molecular Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17253-17266. [PMID: 38557012 DOI: 10.1021/acsami.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Extending molecular imaging into the shortwave-infrared (SWIR, 900-1400 nm) region provides deep tissue visualization of biomolecules in the living system resulting from the low tissue autofluorescence and scattering. Looking at the Food and Drug Administration-approved and clinical trial near-infrared (NIR) probes, only indocyanine green (ICG) and its analogues have been approved for biomedical applications. Excitation wavelength less than 800 nm limits these probes from deep tissue penetration and noninvasive fluorescence imaging. Herein, we present the synthesis of ICG-based π-conjugation-extended cyanine dyes, ICG-C9 and ICG-C11 as biocompatible, and water-soluble SWIR-emitting probes with emission wavelengths of 922 and 1010 nm in water, respectively. Also, ICG-, ICG-C9-, and ICG-C11-based fluorescent labeling agents have been synthesized for the development of SWIR molecular imaging probes. Using the fluorescence of ICG, ICG-C9, and ICG-C11, we demonstrate three-color SWIR fluorescence imaging of breast tumors by visualizing surface receptors (EGFR and HER2) and tumor vasculature in living mice. Furthermore, we demonstrate two-color SWIR fluorescence imaging of breast tumor apoptosis using an ICG-conjugated anticancer drug, Kadcyla and ICG-C9 or ICG-C11-conjugated annexin V. Finally, we show long-term (38 days) SWIR fluorescence imaging of breast tumor shrinkage induced by Kadcyla. This study provides a general strategy for multiplexed fluorescence molecular imaging with biocompatible and water-soluble SWIR-emitting cyanine probes.
Collapse
Affiliation(s)
- Mahadeva M M Swamy
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Yuta Murai
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Kenji Monde
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Setsuko Tsuboi
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | - Aravind K Swamy
- Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo 001-0021, Japan
| | - Takashi Jin
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| |
Collapse
|
24
|
Wang Q, Shangguan H, Yu H, Rong X, Zhou B, Tang Z, Li C, Liu S, Lu Y, Xu J. Fluorinated Hafnium and Zirconium Coenable the Tunable Biodegradability of Core-Multishell Heterogeneous Nanocrystals for Bioimaging. NANO LETTERS 2024; 24:2876-2884. [PMID: 38385324 DOI: 10.1021/acs.nanolett.3c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Upconversion (UC)/downconversion (DC)-luminescent lanthanide-doped nanocrystals (LDNCs) with near-infrared (NIR, 650-1700 nm) excitation have been gaining increasing popularity in bioimaging. However, conventional NIR-excited LDNCs cannot be degraded and eliminated eventually in vivo owing to intrinsic "rigid" lattices, thus constraining clinical applications. A biodegradability-tunable heterogeneous core-shell-shell luminescent LDNC of Na3HfF7:Yb,Er@Na3ZrF7:Yb,Er@CaF2:Yb,Zr (abbreviated as HZC) was developed and modified with oxidized sodium alginate (OSA) for multimode bioimaging. The dynamic "soft" lattice-Na3Hf(Zr)F7 host and the varying Zr4+ doping content in the outmoster CaF2 shell endowed HZC with tunable degradability. Through elaborated core-shell-shell coating, Yb3+/Er3+-coupled UC red and green and DC second near-infrared (NIR-II) emissions were, respectively, enhanced by 31.23-, 150.60-, and 19.42-fold when compared with core nanocrystals. HZC generated computed tomography (CT) imaging contrast effects, thus enabling NIR-II/CT/UC trimodal imaging. OSA modification not only ensured the exemplary biocompatibility of HZC but also enabled tumor-specific diagnosis. The findings would benefit the clinical imaging translation of LDNCs.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hang Shangguan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Hongtao Yu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xinli Rong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Boyi Zhou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhengyang Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yong Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- School of Laboratory Medicine Wannan Medical College, Wuhu, Anhui 241002, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
25
|
Gonzalez-Pato N, Blasi D, Nikolaidou DM, Bertocchi F, Cerdá J, Terenziani F, Ventosa N, Aragó J, Lapini A, Veciana J, Ratera I. Nanothermometer Based on Polychlorinated Trityl Radicals Showing Two-Photon Excitation and Emission in the Biological Transparency Window: Temperature Monitoring of Biological Tissues. SMALL METHODS 2024; 8:e2301060. [PMID: 37994387 DOI: 10.1002/smtd.202301060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Indexed: 11/24/2023]
Abstract
Nanothermometers are emerging probes as biomedical diagnostic tools. Especially appealing are nanoprobes using NIR light in the range of biological transparency window (BTW) since they have the advantages of a deeper penetration into biological tissues, better contrast, reduced phototoxicity and photobleaching. This article reports the preparation and characterization of organic nanoparticles (ONPs) doped with two polychlorinated trityl radicals (TTM and PTM), as well as studies of their electronic and optical properties. Such ONPs having inside isolated radical molecules and dimeric excimers, can be two-photon excited showing optimal properties for temperature sensing. Remarkably, in TTM-based ONPs the emission intensity of the isolated radical species is unaltered increasing temperature, while the excimer emission intensity decreases strongly being thereby able to monitor temperature changes with an excellent thermal absolute sensitivity of 0.6-3.7% K-1 in the temperature range of 278-328 K. The temperature dependence of the excimeric bands of ONPs are theoretically simulated by using electronic structure calculations and a vibronic Hamiltonian model. Finally, TTM-doped ONPs as ratiometric NIR-nanothermometers are tested with two-photon excitationwith enucleated pig eye sclera, as a real tissue model, obtaining a similar temperature sensitivity as in aqueous suspensions, demonstrating their potential as NIR nanothermometers for bio applications.
Collapse
Affiliation(s)
- Nerea Gonzalez-Pato
- Institut de Ciència de Materials de Barcelona (CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra, Barcelona, E-08193, Spain
| | - Davide Blasi
- Institut de Ciència de Materials de Barcelona (CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra, Barcelona, E-08193, Spain
- Department of Chemistry, University of Bari Aldo Moro, Bari, 70125, Italy
| | - Domna M Nikolaidou
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, Parma, 43124, Italy
| | - Francesco Bertocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, Parma, 43124, Italy
| | - Jesús Cerdá
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Francesca Terenziani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, Parma, 43124, Italy
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona (CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra, Barcelona, E-08193, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Andrea Lapini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, Parma, 43124, Italy
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino (Fi), 50019, Italy
- Istituto Nazionale di Ricerca Metrologica (INRIM) strada della Cacce 91, Torino, 10135, Italy
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra, Barcelona, E-08193, Spain
| | - Imma Ratera
- Institut de Ciència de Materials de Barcelona (CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra, Barcelona, E-08193, Spain
| |
Collapse
|
26
|
Zhu H, Ding X, Wang C, Cao M, Yu B, Cong H, Shen Y. Preparation of rare earth-doped nano-fluorescent materials in the second near-infrared region and their application in biological imaging. J Mater Chem B 2024; 12:1947-1972. [PMID: 38299679 DOI: 10.1039/d3tb01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Second near-infrared (NIR-II) fluorescence imaging (FLI) has gained widespread interest in the biomedical field because of its advantages of high sensitivity and high penetration depth. In particular, rare earth-doped nanoprobes (RENPs) have shown completely different physical and chemical properties from macroscopic substances owing to their unique size and structure. This paper reviews the synthesis methods and types of RENPs for NIR-II imaging, focusing on new methods to enhance the luminous intensity of RENPs and multi-band imaging and multi-mode imaging of RENPs in biological applications. This review also presents an overview of the challenges and future development prospects based on RENPs in NIR-II regional bioimaging.
Collapse
Affiliation(s)
- Hetong Zhu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xin Ding
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
27
|
Peng L, Wang Y, Ren Y, Wang Z, Cao P, Konstantatos G. InSb/InP Core-Shell Colloidal Quantum Dots for Sensitive and Fast Short-Wave Infrared Photodetectors. ACS NANO 2024. [PMID: 38305195 DOI: 10.1021/acsnano.3c12007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Colloidal quantum dot (CQD) technology is considered the main contender toward a low-cost high-performance optoelectronic technology platform for applications in the short-wave infrared (SWIR) to enable 3D imaging, LIDAR night vision, etc. in the consumer electronics and automotive markets. In order to unleash the full potential of this technology, there is a need for a material that is environmentally friendly, thus RoHS compliant, and possesses adequate optoelectronic properties to deliver high-performance devices. InSb CQDs hold great potential in view of their RoHS-compliant nature and─in principle─facile access to the SWIR. However, to date progress in realizing high-performance optoelectronic devices, including photodetectors (PDs), has been limited. Here, we have developed a synthesis method for producing size-tunable InSb CQDs with distinct excitonic peaks spanning a wide range from 900 to 1750 nm. To passivate the surface defects and enhance the photoluminescence (PL) efficiency of InSb CQDs, we further designed an InSb/InP core-shell structure. By employing the InSb/InP core-shell CQDs in a photodiode device stack, we report on robust InSb CQD SWIR photodetectors that exhibit an external quantum efficiency (EQE) of 25% at 1240 nm, a wide linear dynamic range exceeding 128 dB, a photoresponse time of 70 ns, and a specific detectivity of 4.4 × 1011 jones.
Collapse
Affiliation(s)
- Lucheng Peng
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Yongjie Wang
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Yurong Ren
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Zhuoran Wang
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Pengfei Cao
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Gerasimos Konstantatos
- ICFO-Insitut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudiats Avançats, Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
28
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
29
|
Shah JV, Siebert JN, Zhao X, He S, Riman RE, Tan MC, Pierce MC, Lattime EC, Ganapathy V, Moghe PV. Shortwave-Infrared-Emitting Nanoprobes for CD8 Targeting and In Vivo Imaging of Cytotoxic T Cells in Breast Cancer. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300092. [PMID: 39554690 PMCID: PMC11566364 DOI: 10.1002/anbr.202300092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 11/19/2024] Open
Abstract
Checkpoint immunotherapy has made great strides in the treatment of solid tumors, but many patients do not respond to immune checkpoint inhibitors. Identification of tumor-infiltrating cytotoxic T cells (CTLs) has the potential to stratify patients and monitor immunotherapy responses. In this study, the design of cluster of differentiation (CD8+) T cell-targeted nanoprobes that emit shortwave infrared (SWIR) light in the second tissue-transparent window for noninvasive, real-time imaging of CTLs in murine models of breast cancer is presented. SWIR-emitting rare-earth nanoparticles encapsulated in human serum albumin are conjugated with anti-CD8α to target CTLs with high specificity. CTL targeting is validated in vitro through binding of nanoprobes to primary mouse CTLs. The potential for the use of SWIR fluorescence intensity to determine CTL presence is validated in two syngeneic mammary fat pad tumor models, EMT6 and 4T1, which differ in immune infiltration. SWIR imaging using CD8-targeted nanoprobes successfully identifies the presence of CTLs in the more immunogenic EMT6 model, while imaging confirms the lack of substantial immune infiltration in the nonimmunogenic 4T1 model. In this work, the opportunity for SWIR imaging using CD8-targeted nanoprobes to assess CTL infiltration in tumors for the stratification and monitoring of responders to checkpoint immunotherapy is highlighted.
Collapse
Affiliation(s)
- Jay V. Shah
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Jake N. Siebert
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Xinyu Zhao
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Shuqing He
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Richard E. Riman
- Department of Materials Science and EngineeringRutgers University607 Taylor RdPiscatawayNJ08854USA
| | - Mei Chee Tan
- Engineering Product DevelopmentSingapore University of Technology and Design8 Somapah RdTampinesSingapore487372Singapore
| | - Mark C. Pierce
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Edmund C. Lattime
- Rutgers Cancer Institute of New Jersey195 Little Albany StNew BrunswickNJ08901USA
| | - Vidya Ganapathy
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
| | - Prabhas V. Moghe
- Department of Biomedical EngineeringRutgers University599 Taylor RdPiscatawayNJ08854USA
- Department of Chemical and Biochemical EngineeringRutgers University98 Brett RdPiscatawayNJ08854USA
| |
Collapse
|
30
|
Zhong X, Patel A, Sun Y, Saeboe AM, Dennis AM. Multiplexed Short-wave Infrared Imaging Highlights Anatomical Structures in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577849. [PMID: 38352582 PMCID: PMC10862713 DOI: 10.1101/2024.01.29.577849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
While multiplexed fluorescence imaging is frequently used for in vitro microscopy, extending the technique to whole animal imaging in vivo has remained challenging due to the attenuation and scattering of visible and traditional near infrared (NIR-I) wavelengths. Fluorescence imaging using short-wave infrared (SWIR, 1000 - 1700 nm, a.k.a. NIR-II) light enables deeper tissue penetration for preclinical imaging compared to previous methods due to reduced tissue scattering and minimal background autofluorescence in this optical window. Combining NIR-I excitation wavelengths with multiple distinct SWIR emission peaks presents a tremendous opportunity to distinguish multiple fluorophores with high precision for non-invasive, multiplexed anatomical imaging in small animal models. SWIR-emitting semiconductor quantum dots (QDs) with tunable emission peaks and optical stability have emerged as powerful contrast agents, but SWIR imaging demonstrations have yet to move beyond two-color imaging schemes. In this study, we engineered a set of three high quantum yield lead sulfide/cadmium sulfide (PbS/CdS) core/shell QDs with distinct SWIR emissions ranging from 1100 - 1550 nm and utilize these for simultaneous three-color imaging in mice. We first use QDs to non-invasively track lymphatic drainage, highlighting the detailed network of lymphatic vessels with high-resolution with a widefield imaging over a 2 hr period. We then perform multiplexed imaging with all three QDs to distinctly visualize the lymphatic system and spatially overlapping vasculature network. This work establishes optimized SWIR QDs for next-generation multiplexed preclinical imaging, moving beyond the capability of previous dual-labeling techniques. The capacity to discriminate several fluorescent labels through non-invasive NIR-I excitation and SWIR detection unlocks numerous opportunities for studies of disease progression, drug biodistribution, and cell trafficking dynamics in living organisms.
Collapse
Affiliation(s)
- Xingjian Zhong
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Amish Patel
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Yidan Sun
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Alexander M. Saeboe
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA
| | - Allison M. Dennis
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
31
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
32
|
Janeková H, Friedman HC, Russo M, Zyberaj M, Ahmed T, Hua AS, Sica AV, Caram JR, Štacko P. Deuteration of heptamethine cyanine dyes enhances their emission efficacy. Chem Commun (Camb) 2024; 60:1000-1003. [PMID: 38167671 PMCID: PMC10805072 DOI: 10.1039/d3cc05153f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
The design of bright short-wave infrared fluorophores remains a grand challenge. Here we investigate the impact of deuteration on the properties in a series of heptamethine dyes, the absorption of which spans near-infrared and SWIR regions. We demonstrate that it is a generally applicable strategy that leads to enhanced quantum yields of fluorescence, longer-lived singlet excited states and suppressed rates of non-radiative deactivation processes.
Collapse
Affiliation(s)
- Hana Janeková
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich 8057, Switzerland.
| | - Hannah C Friedman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Marina Russo
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich 8057, Switzerland.
| | - Mergime Zyberaj
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich 8057, Switzerland.
| | - Tasnim Ahmed
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Anthony V Sica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095-1569, USA.
| | - Peter Štacko
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
33
|
Fahad S, Li S, Zhai Y, Zhao C, Pikramenou Z, Wang M. Luminescence-Based Infrared Thermal Sensors: Comprehensive Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304237. [PMID: 37679096 DOI: 10.1002/smll.202304237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Indexed: 09/09/2023]
Abstract
Recent chronological breakthroughs in materials innovation, their fabrication, and structural designs for disparate applications have paved transformational ways to subversively digitalize infrared (IR) thermal imaging sensors from traditional to smart. The noninvasive IR thermal imaging sensors are at the cutting edge of developments, exploiting the abilities of nanomaterials to acquire arbitrary, targeted, and tunable responses suitable for integration with host materials and devices, intimately disintegrate variegated signals from the target onto depiction without any discomfort, eliminating motional artifacts and collects precise physiological and physiochemical information in natural contexts. Highlighting several typical examples from recent literature, this review article summarizes an accessible, critical, and authoritative summary of an emerging class of advancement in the modalities of nano and micro-scale materials and devices, their fabrication designs and applications in infrared thermal sensors. Introduction is begun covering the importance of IR sensors, followed by a survey on sensing capabilities of various nano and micro structural materials, their design architects, and then culminating an overview of their diverse application swaths. The review concludes with a stimulating frontier debate on the opportunities, difficulties, and future approaches in the vibrant sector of infrared thermal imaging sensors.
Collapse
Affiliation(s)
- Shah Fahad
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Song Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yufei Zhai
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Cong Zhao
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
34
|
Jiang Z, Yang Z, Li W. Self-Luminous Probe with One-Step Energy Conversion from Bioluminescence to NIR-IIb. Adv Healthc Mater 2023; 12:e2302089. [PMID: 37812813 DOI: 10.1002/adhm.202302089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Indexed: 10/11/2023]
Abstract
Self-luminous probes with near-infrared (NIR) emission are powerful tools for deep-penetration and autofluorescence-free imaging, owing to the joint optimization of both excitation and emission. However, the limited emission wavelength and requirement for multistep energy transfer limit its potency. In this study, the concept of direct wavelength conversion is established from visible light (vis) to NIR-IIb using an exquisitely designed sensitizer-activator ion pair. The manipulation of the doping hosts enables a pair of energy levels between the sensitizer and activator. Based on this a class of broadband vis-responsive nanocrystals with intense NIR-II emission is prepared. The stability and quantum yield (up to 7.4%) of the nanocrystals are further enhanced by ZnS passivation via coherent epitaxial growth. By coupling luciferase, the self-luminous probe can convert bioluminescence to NIR-IIb luminescence (>1500 nm) through a one-step energy transfer. A maximum penetrable thickness of 6 mm is achieved in the porcine tissue model. Collectively, the distinctive photon-conversion performance of this probe offers the prospect of high-resolution labeling of deep-seated lesions.
Collapse
Affiliation(s)
- Zhao Jiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhiwen Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanwan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
35
|
Ren F, Huang H, Yang H, Xia B, Ma Z, Zhang Y, Wu F, Li C, He T, Wang Q. Tailoring Near-Infrared-IIb Fluorescence of Thulium(III) by Nanocrystal Structure Engineering. NANO LETTERS 2023; 23:10058-10065. [PMID: 37877757 DOI: 10.1021/acs.nanolett.3c03543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Currently, mainstream lanthanide probes with fluorescence located in the second near-infrared subwindow of 1500-1700 nm (NIR-IIb) are predominantly Er(III)-based nanoparticles (NPs). Here we report a newly developed NIR-IIb fluorescent nanoprobe, α-Tm NP (cubic-phase NaYF4@NaYF4:Tm@NaYF4), with an emission at 1630 nm. We activate the 1630 nm emission of Tm(III) in α-Tm NP through the large spread of the Stark split sublevels induced by the crystal-field effect of the α-NaYF4 host. Further, we systematically investigated the effect of crystalline structure of the host NaYF4 NP (cubic phase (α) or hexagonal phase (β)), the type and concentrations of dopants (Yb(III), Tm(III), and Ca(II) ions) in the α-phase host, and the thicknesses of the interlayer and inert shell on the NIR-IIb fluorescence of Tm(III). The ultimate nanostructure presents a significant enhancement factor of the NIR-IIb photoluminescence intensity of Tm(III) up to ∼315. With this bright NIR-IIb fluorescent nanoprobe, we demonstrate high-spatial-resolution time-coursing imaging of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Feng Ren
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Haoying Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiwei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
36
|
Wang X, Li M, Zheng X, Sun B, Wang Y, Xu J, Han T, Ma S, Zhu S, Zhang S. Dye-Triplet-Sensitized Downshifting Nanoprobes with Ratiometric Dual-NIR-IIb Emission for Accurate In Vivo Detection. Anal Chem 2023; 95:15264-15275. [PMID: 37797318 DOI: 10.1021/acs.analchem.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Despite the emerging near-infrared-IIb (NIR-IIb, 1500-1700 nm) bioimaging significantly improving the in vivo penetration depth and resolution, quantitative detection with accuracy remains challenging due to its inhomogeneous fluorescence signal attenuation in biological tissue. Here, ratiometric dual-NIR-IIb in vivo detection with excitation wavelengths of 808 and 980 nm is presented using analyte-responsive dye-triplet-sensitized downshifting nanoprobes (DSNPs). NIR cyanine dye IR-808, a recognizer of biomarker hypochlorite (ClO-), is introduced to trigger a triplet energy transfer process from the dye to Er3+ ions of DSNPs under 808 nm excitation, facilitating the formation of an analyte-responsive 1525 nm NIR-IIb assay channel. Meanwhile, DSNPs also enable emitting intrinsic nonanalyte-dependent downshifting fluorescence at the same NIR-IIb window under 980 nm excitation, serving as a self-calibrated signal to alleviate the interference from the probe amount and depth. Due to the two detected emissions sharing identical light propagation and scattering, the ratiometric NIR-IIb signal is demonstrated to ignore the depth of penetration in biotissue. The arthritis lesions are distinguished from normal tissue using ratiometric probes, and the amount of ClO- can be accurately output by the established detection curves.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Mengfei Li
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yajun Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shengjie Ma
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
37
|
Zhu YY, Song L, Zhang YQ, Liu WL, Chen WL, Gao WL, Zhang LX, Wang JZ, Ming ZH, Zhang Y, Zhang GJ. Development of a Rare Earth Nanoprobe Enables In Vivo Real-Time Detection of Sentinel Lymph Node Metastasis of Breast Cancer Using NIR-IIb Imaging. Cancer Res 2023; 83:3428-3441. [PMID: 37540231 PMCID: PMC10570679 DOI: 10.1158/0008-5472.can-22-3432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Sentinel lymph node (SLN) biopsy plays a critical role in axillary staging of breast cancer. However, traditional SLN mapping does not accurately discern the presence or absence of metastatic disease. Detection of SLN metastasis largely hinges on examination of frozen sections or paraffin-embedded tissues post-SLN biopsy. To improve detection of SLN metastasis, we developed a second near-infrared (NIR-II) in vivo fluorescence imaging system, pairing erbium-based rare-earth nanoparticles (ErNP) with bright down-conversion fluorescence at 1,556 nm. To visualize SLNs bearing breast cancer, ErNPs were modified by balixafortide (ErNPs@POL6326), a peptide antagonist of the chemokine receptor CXCR4. The ErNPs@POL6326 probes readily drained into SLNs when delivered subcutaneously, entering metastatic breast tumor cells specifically via CXCR4-mediated endocytosis. NIR fluorescence signals increased significantly in tumor-positive versus tumor-negative SLNs, enabling accurate determination of SLN breast cancer metastasis. In a syngeneic mouse mammary tumor model and a human breast cancer xenograft model, sensitivity for SLN metastasis detection was 92.86% and 93.33%, respectively, and specificity was 96.15% and 96.08%, respectively. Of note, the probes accurately detected both macrometastases and micrometastases in SLNs. These results overall underscore the potential of ErNPs@POL6326 for real-time visualization of SLNs and in vivo screening for SLN metastasis. SIGNIFICANCE NIR-IIb imaging of a rare-earth nanoprobe that is specifically taken up by breast cancer cells can accurately detect breast cancer macrometastases and micrometastases in sentinel lymph nodes.
Collapse
Affiliation(s)
- Yuan-Yuan Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
| | - Liang Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
| | - Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
| | - Wen-Liang Gao
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
| | - Li-Xin Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
| | - Jia-Zheng Wang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
| | - Zi-He Ming
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), Xiamen, China
- Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiamen, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
Pluta JB, Guechaichia R, Vacher A, Bellec N, Cammas-Marion S, Camerel F. Investigations of the Photothermal Properties of a Series of Molecular Gold-bis(dithiolene) Complexes Absorbing in the NIR-III Region. Chemistry 2023; 29:e202301789. [PMID: 37417949 DOI: 10.1002/chem.202301789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
The photothermal properties of a series of neutral radical gold-bis(dithiolene) complexes absorbing in the near-infrared-III window (1550-1870 nm) have been investigated. This class of complexes was found to be good photothermal agents (PTAs) in toluene under 1600 nm laser irradiation with photothermal efficiencies around 40 and 60 % depending on the nature of the dithiolene ligand. To the best of our knowledge, these complexes are the first small molecular photothermal agents to absorb so far into the near infrared. To test their applicability in water, these hydrophobic complexes have been encapsulated into nanoparticles constituted by amphiphilic block-copolymers. Stable suspensions of polymeric nanoparticles (NPs) encapsulating the gold-bis(dithiolene) complexes have been prepared which show a diameter around 100 nm. The encapsulation rate was found to be strongly dependent on the nature of the dithiolene ligands. The photothermal properties of the aqueous suspensions containing gold-bis(dithiolene) complexes were then studied under 1600 nm laser irradiation. These studies demonstrate that water has strong photothermal activity in the NIR-III region that, cannot be overcome even with the addition of gold complexes displaying good photothermal properties.
Collapse
Affiliation(s)
- Jean-Baptiste Pluta
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, 35042, Rennes, France
| | - Romain Guechaichia
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, 35042, Rennes, France
| | - Antoine Vacher
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, 35042, Rennes, France
| | - Nathalie Bellec
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, 35042, Rennes, France
| | - Sandrine Cammas-Marion
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, 35042, Rennes, France
| | - Franck Camerel
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226, 35042, Rennes, France
| |
Collapse
|
39
|
Dunn B, Hanafi M, Hummel J, Cressman JR, Veneziano R, Chitnis PV. NIR-II Nanoprobes: A Review of Components-Based Approaches to Next-Generation Bioimaging Probes. Bioengineering (Basel) 2023; 10:954. [PMID: 37627839 PMCID: PMC10451329 DOI: 10.3390/bioengineering10080954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fluorescence and photoacoustic imaging techniques offer valuable insights into cell- and tissue-level processes. However, these optical imaging modalities are limited by scattering and absorption in tissue, resulting in the low-depth penetration of imaging. Contrast-enhanced imaging in the near-infrared window improves imaging penetration by taking advantage of reduced autofluorescence and scattering effects. Current contrast agents for fluorescence and photoacoustic imaging face several limitations from photostability and targeting specificity, highlighting the need for a novel imaging probe development. This review covers a broad range of near-infrared fluorescent and photoacoustic contrast agents, including organic dyes, polymers, and metallic nanostructures, focusing on their optical properties and applications in cellular and animal imaging. Similarly, we explore encapsulation and functionalization technologies toward building targeted, nanoscale imaging probes. Bioimaging applications such as angiography, tumor imaging, and the tracking of specific cell types are discussed. This review sheds light on recent advancements in fluorescent and photoacoustic nanoprobes in the near-infrared window. It serves as a valuable resource for researchers working in fields of biomedical imaging and nanotechnology, facilitating the development of innovative nanoprobes for improved diagnostic approaches in preclinical healthcare.
Collapse
Affiliation(s)
- Bryce Dunn
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - Marzieh Hanafi
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - John Hummel
- Department of Physics, George Mason University, Fairfax, VA 22030, USA
| | - John R. Cressman
- Department of Physics, George Mason University, Fairfax, VA 22030, USA
| | - Rémi Veneziano
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - Parag V. Chitnis
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| |
Collapse
|
40
|
Duan G, Zhang J, Wei Z, Wang X, Zeng J, Wu S, Hu C, Wen L. Intraoperative diagnosis of early lymphatic metastasis using neodymium-based rare-earth NIR-II fluorescence nanoprobe. NANOSCALE ADVANCES 2023; 5:4240-4249. [PMID: 37560436 PMCID: PMC10408585 DOI: 10.1039/d3na00254c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The high mortality of breast cancer is closely related to lymph node (LN) metastasis. Sentinel LNs (SLNs) are the first station where tumor cells metastasize through the lymphatic system. As such, achieving precise diagnosis of the early metastatic status of SLNs during surgery is of paramount importance for precision therapy of breast cancer. While invasive SLNs biopsy is the gold standard for evaluating the status of SLNs, its use is often time-consuming and may increase the risk of operation. It is still challenging to develop a means for rapid SLN metastasis diagnosis. Herein, NaGdF4:5%Nd@NaLuF4 rare earth nanoparticles (Gd:Nd-RENPs) with near-infrared-II (NIR-II) fluorescence and magnetic resonance imaging (MRI) properties were fabricated. With the nanoprobe, metastatic SLNs and lymph vessels (LVs) rapidly brighten and can be observed by the NIR-II imaging system, which is totally different from normal LNs and LVs. The remarkable contrast observed via NIR-II imaging serves to swiftly delineate metastatic SLNs from normal ones, subsequently guiding precise surgical resection of metastatic LNs in just 10 minutes. Furthermore, the consistency between the results obtained via MRI and NIR-II imaging further validates the dependability of this nanoprobe as a diagnostic tool for metastatic SLNs. Additionally, the Gd:Nd-RENPs exhibited good biocompatibility in vitro and in vivo. In this study, we demonstrated the advantages and prospects of NIR-II imaging for intraoperative early SLN metastasis assessment and shed light on the potential of the dual-modal Gd:Nd-RENPs as a nanoprobe.
Collapse
Affiliation(s)
- Guangxin Duan
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions Suzhou 215123 China
| | - Jingyu Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions Suzhou 215123 China
| | - Zhuxin Wei
- Department of Radiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University Suzhou 215001 Jiangsu China
- Department of MRI, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100037 China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions Suzhou 215123 China
- Suzhou Xinying Biomedical Technology Co. Ltd. Suzhou 215123 China
| | - Shuwang Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions Suzhou 215123 China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| | - Ling Wen
- Department of Radiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow University Suzhou 215001 Jiangsu China
- Department of Radiology, The First Affiliated Hospital of Soochow University Suzhou 215000 China
| |
Collapse
|
41
|
Qin X, Su M, Guo H, Peng B, Luo R, Ye J, Wang H. Functional biomaterials for the diagnosis and treatment of peritoneal surface malignancies. SMART MEDICINE 2023; 2:e20230013. [PMID: 39188342 PMCID: PMC11235712 DOI: 10.1002/smmd.20230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/03/2023] [Indexed: 08/28/2024]
Abstract
Peritoneal surface malignancies (PSM) can originate from tumors in many organs and are highly malignant, and difficult to diagnose and cure, posing a serious threat to the survival of patients. Although the diagnosis and treatment of PSM have made significant progress in the past two decades, numerous challenges remain. Recently, functionalized biomaterials have shown promise for PSM diagnosis and treatment. Hence, we review the progress of functionalized biomaterials for the diagnosis and treatment of PSM. We first introduce the classification and pathogenesis of PSM. We then discuss the applications of functionalized biomaterials for the diagnosis and treatment of PSM. In particular, we focus on functionalized biomaterials as drug carriers for the treatment of PSM, including chemotherapy, immunotherapy, targeted therapy, combination therapy, and other therapies. Finally, we summarized the current challenges and provided a perspective on the diagnosis and treatment of PSM.
Collapse
Affiliation(s)
- Xiusen Qin
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Mingli Su
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Department of Endoscopic SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huili Guo
- Department of Infectious DiseasesThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Binying Peng
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Rui Luo
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Junwen Ye
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| | - Hui Wang
- Department of General SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Institute of GastroenterologyGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Biomedical Innovation and Laboratory of Regenerative Medicine and BiomaterialsBiomedical Material Conversion and Evaluation Engineering Technology Research Center of Guangdong ProvinceGuangzhouChina
| |
Collapse
|
42
|
Zadokar A, Negi S, Kumar P, Bhargava B, Sharma R, Irfan M. Molecular insights into rare earth element (REE)-mediated phytotoxicity and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84829-84849. [PMID: 37138125 DOI: 10.1007/s11356-023-27299-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Rare earth elements (REEs) that include 15 lanthanides, scandium, and yttrium are a special class of elements due to their remarkable qualities such as magnetism, corrosion resistance, luminescence, and electroconductivity. Over the last few decades, the implication of REEs in agriculture has increased substantially, which was driven by rare earth element (REE)-based fertilizers to increase crop growth and yield. REEs regulate different physiological processes by modulating the cellular Ca2+ level, chlorophyll activities, and photosynthetic rate, promote the protective role of cell membranes, and increase the plant's ability to withstand various stresses and other environmental factors. However, the use of REEs in agriculture is not always beneficial because REEs regulate plant growth and development in dose-dependent manner and excessive usage of them negatively affects plants and agricultural yield. Moreover, increasing applications of REEs together with technological advancement is also a rising concern as they adversely impact all living organisms and disturb different ecosystems. Several animals, plants, microbes, and aquatic and terrestrial organisms are subject to acute and long-term ecotoxicological impacts of various REEs. This concise overview of REEs' phytotoxic effects and implications on human health offers a context for continuing to sew fabric scraps to this incomplete quilt's many layers and colors. This review deals with the applications of REEs in different fields, specifically agriculture, the molecular basis of REE-mediated phytotoxicity, and the consequences for human health.
Collapse
Affiliation(s)
- Ashwini Zadokar
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Bhavya Bhargava
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, -176061, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
43
|
Su X, Bao Z, Xie W, Wang D, Han T, Wang D, Tang BZ. Precise Planar-Twisted Molecular Engineering to Construct Semiconducting Polymers with Balanced Absorption and Quantum Yield for Efficient Phototheranostics. RESEARCH (WASHINGTON, D.C.) 2023; 6:0194. [PMID: 37503536 PMCID: PMC10370618 DOI: 10.34133/research.0194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Semiconducting polymers (SPs) have shown great feasibility as candidates for near-infrared-II (NIR-II) fluorescence imaging-navigated photothermal therapy due to their strong light-harvesting ability and flexible tunability. However, the fluorescence signal of traditional SPs tends to quench in their aggregate states owing to the strong π-π stacking, which can lead to the radiative decay pathway shutting down. To address this issue, aggregation-induced emission effect has been used as a rational tactic to boost the aggregate-state fluorescence of NIR-II emitters. In this contribution, we developed a precise molecular engineering tactic based on the block copolymerizations that integrate planar and twisted segments into one conjugated polymer backbone, providing great flexibility in tuning the photophysical properties and photothermal conversion capacity of SPs. Two monomers featured with twisted and planar architectures, respectively, were tactfully incorporated via a ternary copolymerization approach to produce a series of new SPs. The optimal copolymer (SP2) synchronously shows desirable absorption ability and good NIR-II quantum yield on the premise of maintaining typical aggregation-induced emission characteristics, resulting in balanced NIR-II fluorescence brightness and photothermal property. Water-dispersible nanoparticles fabricated from the optimal SP2 show efficient photothermal therapeutic effects both in vitro and in vivo. The in vivo investigation reveals the distinguished NIR-II fluorescence imaging performance of SP2 nanoparticles and their photothermal ablation toward tumor with prominent tumor accumulation ability and excellent biocompatibility.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
- School of Biomedical and Pharmaceutical Sciences,
Guangdong University of Technology, Guangzhou 510006, China
| | - Zhirong Bao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center,
Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Xie
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Deliang Wang
- Department of Materials Chemistry,
Huzhou University, Huzhou 313000, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering,
Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology,
The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
44
|
Arteaga Cardona F, Jain N, Popescu R, Busko D, Madirov E, Arús BA, Gerthsen D, De Backer A, Bals S, Bruns OT, Chmyrov A, Van Aert S, Richards BS, Hudry D. Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals. Nat Commun 2023; 14:4462. [PMID: 37491427 PMCID: PMC10368714 DOI: 10.1038/s41467-023-40031-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF4) or heterogeneous (CaF2) shell domains on optically-active α-NaYF4:Yb:Er (with and without Ce3+ co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm2; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.
Collapse
Affiliation(s)
| | - Noopur Jain
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Eduard Madirov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bernardo A Arús
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annick De Backer
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara Bals
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Andriy Chmyrov
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany.
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
| | - Sandra Van Aert
- EMAT, University of Antwerp, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
45
|
Miao S, Liang Y, Shi R, Wang W, Li Y, Wang XJ. Broadband Short-Wave Infrared-Emitting MgGa 2O 4:Cr 3+, Ni 2+ Phosphor with Near-Unity Internal Quantum Efficiency and High Thermal Stability for Light-Emitting Diode Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384930 DOI: 10.1021/acsami.3c05980] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Blue InGaN chip-pumped short-wave infrared (SWIR) emitters have aroused tremendous attention and shown emerging applications in diverse fields such as healthcare, retail, and agriculture. However, discovering blue light-emitting diode (LED)-pumped SWIR phosphors with a central emission wavelength over 1000 nm remains a significant challenge. Herein, we demonstrate the efficient broadband SWIR luminescence of Ni2+ by simultaneously incorporating Cr3+ and Ni2+ ions into the MgGa2O4 lattice, with Cr3+ as the sensitizer and Ni2+ as the emitter. Because of the strong blue light absorption of Cr3+ and high energy transfer efficiency to Ni2+, the obtained MgGa2O4:Cr3+, Ni2+ phosphors show intense SWIR luminescence with a peak wavelength at 1260 nm and a full width at half maximum (FWHM) of 222 nm under the excitation of blue light. The optimized SWIR phosphor presents an ultra-high SWIR photoluminescence quantum efficiency of 96.5% and outstanding luminescence thermal stability (67.9%@150 °C). A SWIR light source has been fabricated through a combination of the prepared MgGa2O4:Cr3+, Ni2+ phosphor and a commercial 450 nm blue LED chip, delivering a maximum SWIR radiant power of 14.9 mW at 150 mA input current. This work not only demonstrates the feasibility of developing broadband high-power SWIR emitters using converter technology but also presents new insights into the importance of SWIR technology.
Collapse
Affiliation(s)
- Shihai Miao
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yanjie Liang
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Ruiqi Shi
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Weili Wang
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yongfu Li
- Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xiao-Jun Wang
- Department of Physics, Georgia Southern University, Statesboro, Georgia 30460, United States
| |
Collapse
|
46
|
Singh AK, Malviya R, Prajapati B, Singh S, Yadav D, Kumar A. Nanotechnology-Aided Advancement in Combating the Cancer Metastasis. Pharmaceuticals (Basel) 2023; 16:899. [PMID: 37375846 PMCID: PMC10304141 DOI: 10.3390/ph16060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Modern medicine has been working to find a cure for cancer for almost a century, but thus far, they have not been very successful. Although cancer treatment has come a long way, more work has to be carried out to boost specificity and reduce systemic toxicity. The diagnostic industry is on the cusp of a technological revolution, and early diagnosis is essential for improving prognostic outlook and patient quality of life. In recent years, nanotechnology's use has expanded, demonstrating its efficacy in enhancing fields such as cancer treatment, radiation therapy, diagnostics, and imaging. Applications for nanomaterials are diverse, ranging from enhanced radiation adjuvants to more sensitive early detection instruments. Cancer, particularly when it has spread beyond the original site of cancer, is notoriously tough to combat. Many people die from metastatic cancer, which is why it remains a huge issue. Cancer cells go through a sequence of events known as the "metastatic cascade" throughout metastasis, which may be used to build anti-metastatic therapeutic techniques. Conventional treatments and diagnostics for metastasis have their drawbacks and hurdles that must be overcome. In this contribution, we explore in-depth the potential benefits that nanotechnology-aided methods might offer to the detection and treatment of metastatic illness, either alone or in conjunction with currently available conventional procedures. Anti-metastatic drugs, which can prevent or slow the spread of cancer throughout the body, can be more precisely targeted and developed with the help of nanotechnology. Furthermore, we talk about how nanotechnology is being applied to the treatment of patients with cancer metastases.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India; (A.K.S.); (D.Y.)
| | - Arvind Kumar
- Chandigarh Engineering College, Jhanjeri, Mohali 140307, India;
| |
Collapse
|
47
|
Ji C, Huang Y, Sun L, Geng H, Liu W, Grimes CA, Luo M, Feng X, Cai Q. Tracking of Intestinal Probiotics In Vivo by NIR-IIb Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20603-20612. [PMID: 37078734 DOI: 10.1021/acsami.2c20610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to accurately characterize microorganism distribution in the intestinal tract is helpful for understanding intrinsic mechanisms. Within the intestine, traditional optical probes used for microorganism labeling commonly suffer from a low imaging penetration depth and poor resolution. We report a novel observation tool useful for microbial research by labeling near-infrared-IIb (NIR-IIb, 1500-1700 nm) lanthanide nanomaterials NaGdF4:Yb3+,Er3+@NaGdF4,Nd3+ (Er@Nd NPs) onto the surface of Lactobacillus bulgaricus (L. bulgaricus) via EDC-NHS chemistry. We monitor microorganisms in tissue by two-photon excitation (TPE) microscopy and in vivo with NIR-IIb imaging. This dual-technique approach offers great potential for determining the distribution of transplanted bacteria in the intestinal tract with a higher spatiotemporal resolution.
Collapse
Affiliation(s)
- Chenhui Ji
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Hongchao Geng
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, Henan, China
| | - Wensheng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Craig A Grimes
- Flux Photon Corporation, Alpharetta, Georgia 30005, United States
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| |
Collapse
|
48
|
Lu J, He Y, Ma C, Ye Q, Yi H, Zheng Z, Yao J, Yang G. Ultrabroadband Imaging Based on Wafer-Scale Tellurene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211562. [PMID: 36893428 DOI: 10.1002/adma.202211562] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Indexed: 05/19/2023]
Abstract
High-resolution imaging is at the heart of the revolutionary breakthroughs of intelligent technologies, and it is established as an important approach toward high-sensitivity information extraction/storage. However, due to the incompatibility between non-silicon optoelectronic materials and traditional integrated circuits as well as the lack of competent photosensitive semiconductors in the infrared region, the development of ultrabroadband imaging is severely impeded. Herein, the monolithic integration of wafer-scale tellurene photoelectric functional units by exploiting room-temperature pulsed-laser deposition is realized. Taking advantage of the surface plasmon polaritons of tellurene, which results in the thermal perturbation promoted exciton separation, in situ formation of out-of-plane homojunction and negative expansion promoted carrier transport, as well as the band bending promoted electron-hole pair separation enabled by the unique interconnected nanostrip morphology, the tellurene photodetectors demonstrate wide-spectrum photoresponse from 370.6 to 2240 nm and unprecedented photosensitivity with the optimized responsivity, external quantum efficiency and detectivity of 2.7 × 107 A W-1 , 8.2 × 109 % and 4.5 × 1015 Jones. An ultrabroadband imager is demonstrated and high-resolution photoelectric imaging is realized. The proof-of-concept wafer-scale tellurene-based ultrabroadband photoelectric imaging system depicts a fascinating paradigm for the development of an advanced 2D imaging platform toward next-generation intelligent equipment.
Collapse
Affiliation(s)
- Jianting Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yan He
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511443, P. R. China
| | - Qiaojue Ye
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Huaxin Yi
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
49
|
Afshari MJ, Cheng X, Duan G, Duan R, Wu S, Zeng J, Gu Z, Gao M. Vision for Ratiometric Nanoprobes: In Vivo Noninvasive Visualization and Readout of Physiological Hallmarks. ACS NANO 2023; 17:7109-7134. [PMID: 37036400 DOI: 10.1021/acsnano.3c01641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lesion areas are distinguished from normal tissues surrounding them by distinct physiological characteristics. These features serve as biological hallmarks with which targeted biomedical imaging of the lesion sites can be achieved. Although tremendous efforts have been devoted to providing smart imaging probes with the capability of visualizing the physiological hallmarks at the molecular level, the majority of them are merely able to derive anatomical information from the tissues of interest, and thus are not suitable for taking part in in vivo quantification of the biomarkers. Recent advances in chemical construction of advanced ratiometric nanoprobes (RNPs) have enabled a horizon for quantitatively monitoring the biological abnormalities in vivo. In contrast to the conventional probes whose dependency of output on single-signal profiles restricts them from taking part in quantitative practices, RNPs are designed to provide information in two channels, affording a self-calibration opportunity to exclude the analyte-independent factors from the outputs and address the issue. Most of the conventional RNPs have encountered several challenges regarding the reliability and sufficiency of the obtained data for high-performance imaging. In this Review, we have summarized the recent progresses in developing highly advanced RNPs with the capabilities of deriving maximized information from the lesion areas of interest as well as adapting themselves to the complex biological systems in order to minimize microenvironmental-induced falsified signals. To provide a better outlook on the current advanced RNPs, nanoprobes based on optical, photoacoustic, and magnetic resonance imaging modalities for visualizing a wide range of analytes such as pH, reactive species, and different derivations of amino acids have been included. Furthermore, the physicochemical properties of the RNPs, the major constituents of the nanosystems and the analyte recognition mechanisms have been introduced. Moreover, the alterations in the values of the ratiometric signal in response to the analyte of interest as well as the time at which the highest value is achieved, have been included for most of RNPs discussed in this Review. Finally, the challenges as well as future perspectives in the field are discussed.
Collapse
Affiliation(s)
- Mohammad Javad Afshari
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Guangxin Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruixue Duan
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Shuwang Wu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianfeng Zeng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
50
|
Li T, Wu M, Wei Q, Xu D, He X, Wang J, Wu J, Chen L. Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules 2023; 24:1943-1979. [PMID: 37083404 DOI: 10.1021/acs.biomac.2c01446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Water-dispersible conjugated polymer nanoparticles (CPNs) have demonstrated great capabilities in biological applications, such as in vitro cell/subcellular imaging and biosensing, or in vivo tissue imaging and disease treatment. In this review, we summarized the recent advances of CPNs used for tumor imaging and treatment during the past five years. CPNs with different structures, which have been applied to in vivo solid tumor imaging (fluorescence, photoacoustic, and dual-modal) and treatment (phototherapy, drug carriers, and synergistic therapy), are discussed in detail. We also demonstrated the potential of CPNs as cancer theranostic nanoplatforms. Finally, we discussed current challenges and outlooks in this field.
Collapse
Affiliation(s)
- Tianyu Li
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengqi Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Qidong Wei
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, SAR, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|