1
|
Hernandez FJ. Nucleases: From Primitive Immune Defenders to Modern Biotechnology Tools. Immunology 2025; 174:279-286. [PMID: 39686519 DOI: 10.1111/imm.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The story of nucleases begins on the ancient battlefields of early Earth, where simple bacteria fought to survive against viral invaders. Nucleases are enzymes that degrade nucleic acids, with restriction endonucleases emerging as some of the earliest defenders, cutting foreign DNA to protect their bacteria hosts. However, bacteria sought more than just defence. They evolved the CRISPR-Cas system, an adaptive immune mechanism capable of remembering past invaders. The now-famous Cas9 nuclease, a key player in this system, has been harnessed for genome editing, revolutionising biotechnology. Over time, nucleases evolved from basic viral defence tools into complex regulators of immune function in higher organisms. In humans, DNases and RNases maintain immune balance by clearing cellular debris, preventing autoimmunity, and defending against pathogens. These enzymes have transformed from simple bacterial defenders to critical players in both human immunity and biotechnology. This review explores the evolutionary history of nucleases and their vital roles as protectors in the story of life's defence mechanisms.
Collapse
Affiliation(s)
- Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- Department of Bioengineering and Biosciences, TECNUN, Navarra University, Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Rai P, Fessler MB. Mechanisms and effects of activation of innate immunity by mitochondrial nucleic acids. Int Immunol 2025; 37:133-142. [PMID: 39213393 DOI: 10.1093/intimm/dxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, a growing number of roles have been identified for mitochondria in innate immunity. One principal mechanism is that the translocation of mitochondrial nucleic acid species from the mitochondrial matrix to the cytosol and endolysosomal lumen in response to an array of microbial and non-microbial environmental stressors has been found to serve as a second messenger event in the cell signaling of the innate immune response. Thus, mitochondrial DNA and RNA have been shown to access the cytosol through several regulated mechanisms involving remodeling of the mitochondrial inner and outer membranes and to access lysosomes via vesicular transport, thereby activating cytosolic [e.g. cyclic GMP-AMP synthase (cGAS), retinoic acid-inducible gene I (RIG-I)-like receptors], and endolysosomal (Toll-like receptor 7, 9) nucleic acid receptors that induce type I interferons and pro-inflammatory cytokines. In this mini-review, we discuss these molecular mechanisms of mitochondrial nucleic acid mislocalization and their roles in host defense, autoimmunity, and auto-inflammatory disorders. The emergent paradigm is one in which host-derived DNA interestingly serves as a signal amplifier in the innate immune response and also as an alarm signal for disturbances in organellar homeostasis. The apparent vast excess of mitochondria and mitochondrial DNA nucleoids per cell may thus serve to sensitize the cell response to stressors while ensuring an underlying reserve of intact mitochondria to sustain cellular metabolism. An improved understanding of these molecular mechanisms will hopefully afford future opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Prashant Rai
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Li LJ, Liang SY, Sun XY, Zhu J, Niu XY, Du XY, Huang YR, Liu RT. Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration. J Neuroinflammation 2025; 22:11. [PMID: 39833906 PMCID: PMC11745000 DOI: 10.1186/s12974-025-03333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al., Transl Neurodegener 13:39, 2024). Although it has been verified that DNase II participates in type I interferons (IFN-I) mediated autoinflammation and senescence in peripheral systems, the role of microglial DNase II in neuroinflammation and neurodegenerative diseases such as Alzheimer's disease (AD) is still unknown. METHODS The levels of microglial DNase II in triple transgenic AD mice (3xTg-AD) were measured by immunohistochemistry. The cognitive performance of microglial DNase II deficient WT and AD mice was determined using the Morris water maze test, Y-maze test, novel object recognition test and open filed test. To investigate the impact of microglial DNase II deficiency on microglial morphology, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and IFN-I pathway, neuroinflammation, synapses loss, amyloid pathology and tauopathy, the levels of cGAS-STING and IFN-I pathway related protein, gliosis and proinflammatory cytokines, synaptic protein, complement protein, Aβ levels, phosphorylated tau in the brains of the microglial DNase II deficient WT and AD mice were evaluated by immunolabeling, immunoblotting, q-PCR or ELISA. RESULTS We found that the levels of DNase II were significantly decreased in the microglia of 3xTg-AD mice. Microglial DNase II deficiency altered microglial morphology and transcriptional signatures, activated the cGAS-STING and IFN-I pathway, initiated neuroinflammation, led to synapse loss via complement-dependent pathway, increased Aβ levels and tauopathy, and induced cognitive decline. CONCLUSIONS Our study shows the effect of microglial DNase II deficiency and cytoplasmic accumulated dsDNA on neuroinflammation, and reveals the initiatory mechanism of AD pathology, suggesting that DNase II is a potential target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling-Jie Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Yu Liang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
| | - Jie Zhu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Xiao-Yu Du
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Ru Huang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
| |
Collapse
|
4
|
Goldbach-Mansky R, Alehashemi S, de Jesus AA. Emerging concepts and treatments in autoinflammatory interferonopathies and monogenic systemic lupus erythematosus. Nat Rev Rheumatol 2025; 21:22-45. [PMID: 39623155 DOI: 10.1038/s41584-024-01184-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/22/2024]
Abstract
Over the past two decades, the number of genetically defined autoinflammatory interferonopathies has steadily increased. Aicardi-Goutières syndrome and proteasome-associated autoinflammatory syndromes (PRAAS, also known as CANDLE) are caused by genetic defects that impair homeostatic intracellular nucleic acid and protein processing respectively. Research into these genetic defects revealed intracellular sensors that activate type I interferon production. In SAVI and COPA syndrome, genetic defects that cause chronic activation of the dinucleotide sensor stimulator of interferon genes (STING) share features of lung inflammation and fibrosis; and selected mutations that amplify interferon-α/β receptor signalling cause central nervous system manifestations resembling Aicardi-Goutières syndrome. Research into the monogenic causes of childhood-onset systemic lupus erythematosus (SLE) demonstrates the pathogenic role of autoantibodies to particle-bound extracellular nucleic acids that distinguishes monogenic SLE from the autoinflammatory interferonopathies. This Review introduces a classification for autoinflammatory interferonopathies and discusses the divergent and shared pathomechanisms of interferon production and signalling in these diseases. Early success with drugs that block type I interferon signalling, new insights into the roles of cytoplasmic DNA or RNA sensors, pathways in type I interferon production and organ-specific pathology of the autoinflammatory interferonopathies and monogenic SLE, reveal novel drug targets that could personalize treatment approaches.
Collapse
Affiliation(s)
- Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Zalghout S, Martinod K. Therapeutic potential of DNases in immunothrombosis: promising succor or uncertain future? J Thromb Haemost 2024:S1538-7836(24)00718-9. [PMID: 39667687 DOI: 10.1016/j.jtha.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
Sepsis, a life-threatening condition characterized by systemic inflammation and multiorgan dysfunction, is closely associated with the excessive formation of neutrophil extracellular traps (NETs) and the release of cell-free DNA. Both play a central role in sepsis progression, acting as major contributors to immunothrombosis and associated complications. Endogenous DNases play a pivotal role in degrading NETs and cell-free DNA, yet their activity is often dysregulated during thrombotic disease. Although exogenous DNase1 administration has shown potential in reducing NET burden and mitigating the detrimental effects of immunothrombosis, its therapeutic efficacy upon intravenous administration remains uncertain. The development of engineered DNase formulations and combination therapies may further enhance its therapeutic effectiveness by modifying its pharmacodynamic properties and avoiding the adverse effects associated with NET degradation, respectively. Although NETs are well-established targets of DNase1, it remains uncertain whether the positive effects of DNase1 on immunothrombosis are exclusively related to it's targeting of NETs or if other components contributing to immunothrombosis are also affected. This review examines the endogenous regulation of NETs in circulation and the therapeutic potential of DNases in immunothrombosis, underscoring the necessity for further investigation to optimize their clinical application.
Collapse
Affiliation(s)
- Sara Zalghout
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
6
|
Huang Z, Wei C, Xie H, Xiao X, Wang T, Zhang Y, Chen Y, Hei Z, Zhao T, Yao W. Treating acute lung injury through scavenging of cell-free DNA by cationic nanoparticles. Mater Today Bio 2024; 29:101360. [PMID: 39687793 PMCID: PMC11648789 DOI: 10.1016/j.mtbio.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome are life-threatening conditions induced by inflammatory responses, in which cell-free DNA (cfDNA) plays a pivotal role. This study investigated the therapeutic potential of biodegradable cationic nanoparticles (cNPs) in alleviating ALI. Using a mouse model of lipopolysaccharide-induced ALI, we examined the impact of intravenously administered cNPs. Our findings indicate that cNPs possess robust DNA binding capability, enhanced accumulation in inflamed lungs, and a favorable safety profile in vivo. Furthermore, cNPs attenuate the inflammatory response in LPS-induced ALI mice by scavenging cfDNA, mainly derived from neutrophil extracellular traps, and activating the macrophage-mediated cGAS-STING pathway. The findings suggest a potential treatment for ALI by targeting cfDNA with cNPs. This approach has demonstrated efficacy in mitigating lung injury and merits further exploration.
Collapse
Affiliation(s)
- Ziyan Huang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Cong Wei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hanbin Xie
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Xue Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tienan Wang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yihan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tianyu Zhao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| |
Collapse
|
7
|
Greiner-Tollersrud OK, Krausz M, Boehler V, Polyzou A, Seidl M, Spahiu A, Abdullah Z, Andryka-Cegielski K, Dominick FI, Huebscher K, Goschin A, Smulski CR, Trompouki E, Link R, Ebersbach H, Srinivas H, Marchant M, Sogkas G, Staab D, Vågbø C, Guerini D, Baasch S, Latz E, Hartmann G, Henneke P, Geiger R, Peng XP, Grimbacher B, Bartok E, Alseth I, Warncke M, Proietti M. ADA2 is a lysosomal deoxyadenosine deaminase acting on DNA involved in regulating TLR9-mediated immune sensing of DNA. Cell Rep 2024; 43:114899. [PMID: 39441717 DOI: 10.1016/j.celrep.2024.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Although adenosine deaminase 2 (ADA2) is considered an extracellular ADA, evidence questions the physiological relevance of this activity. Our study reveals that ADA2 localizes within the lysosomes, where it is targeted through modifications of its glycan structures. We show that ADA2 interacts with DNA molecules, altering their sequences by converting deoxyadenosine (dA) to deoxyinosine (dI). We characterize its DNA substrate preferences and provide data suggesting that DNA, rather than free adenosine, is its natural substrate. Finally, we demonstrate that dA-to-dI editing of DNA molecules and ADA2 regulate lysosomal immune sensing of nucleic acids (NAs) by modulating Toll-like receptor 9 (TLR9) activation. Our results describe a mechanism involved in the complex interplay between NA metabolism and immune response, possibly impacting ADA2 deficiency (DADA2) and other diseases involving this pathway, including autoimmune diseases, cancer, or infectious diseases.
Collapse
Affiliation(s)
| | - Máté Krausz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Vincent Boehler
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Aikaterini Polyzou
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Maximilian Seidl
- Institute of Pathology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Ambra Spahiu
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Zeinab Abdullah
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Bonn, Germany
| | | | | | - Katrin Huebscher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Institut für Forstentomologie und Waldschutz, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Goschin
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Cristian R Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | - Eirini Trompouki
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Regina Link
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Honnappa Srinivas
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Martine Marchant
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Georgios Sogkas
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST - Cluster of Excellence 2155, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dieter Staab
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Cathrine Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Danilo Guerini
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Eicke Latz
- Institute of Innate Immunity, Universitätsklinikum Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Experimental Hematology and Transfusion Medicine Bonn, Bonn, Germany
| | - Philippe Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Xiao P Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Eva Bartok
- Institute of Experimental Hematology and Transfusion Medicine Bonn, Bonn, Germany
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Max Warncke
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany; Department of Rheumatology and Clinical Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST - Cluster of Excellence 2155, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
8
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
9
|
Li Q, Gao C, Shen X, Xing D. Graphene oxide-functionalized molecular beacon for real-time interference-free detection of Ki-67 mRNA in living cells. Talanta 2024; 278:126538. [PMID: 39002264 DOI: 10.1016/j.talanta.2024.126538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Molecular beacons (MBs) based on hairpin-shaped oligonucleotides are captivating owing to their capability to enable effective real-time detection of cytosolic mRNA in living cells. However, DNase in the nucleus and lysosome could induce the degradation of oligonucleotides in MBs, leading to the generation of false-positive signals. Herein, a graphene oxide (GO) nanosheet was applied as a nanocarrier for MBs to greatly enhance the anti-interference of the easily designed nanoprobe. Advantageously, the absorption capacity of GO for MBs increased with the decrease in pH values, providing the MB-GO nanoprobe with the ability to detect the expression of cytosolic Ki-67 mRNA without interference from DNase Ⅱ in lysosomes. Moreover, the size of GO nanosheets was considerably higher than that of the nuclear pore complex (NPC), which prevented nanoprobes from transition through the NPCs, thereby avoiding the generation of false-positive signals in the nucleus. Altogether, the present work affords a convenient approach for the successful detection of Ki-67 mRNA expression in the cytosol without interference from DNase Ⅰ/Ⅱ in the nucleus/lysosome, which may be potentially further applied for the detection of other cytosolic RNAs.
Collapse
Affiliation(s)
- Qian Li
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Qingdao Cancer Institute, Qingdao, 266071, China.
| | - Chihao Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xin Shen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Dongming Xing
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Qingdao Cancer Institute, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Li LJ, Sun XY, Huang YR, Lu S, Xu YM, Yang J, Xie XX, Zhu J, Niu XY, Wang D, Liang SY, Du XY, Hou SJ, Yu XL, Liu RT. Neuronal double-stranded DNA accumulation induced by DNase II deficiency drives tau phosphorylation and neurodegeneration. Transl Neurodegener 2024; 13:39. [PMID: 39095921 PMCID: PMC11295666 DOI: 10.1186/s40035-024-00427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified. METHODS The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test. RESULTS The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits. CONCLUSIONS DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.
Collapse
Affiliation(s)
- Ling-Jie Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ya-Ru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuai Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Ming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xi-Xiu Xie
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Dan Wang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, 100081, China
| | - Shi-Yu Liang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yu Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Jie Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
11
|
Hao K, Gao KM, Strauss M, Subramanian S, Marshak-Rothstein A. IFNγ initiates TLR9-dependent autoimmune hepatitis in DNase II deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602775. [PMID: 39071327 PMCID: PMC11275780 DOI: 10.1101/2024.07.10.602775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Patients with biallelic hypomorphic mutation in DNASE2 develop systemic autoinflammation and early-onset liver fibrosis. Prior studies showed that Dnase2 -/- Ifnar -/- double knockout (DKO) mice develop Type I IFN-independent liver inflammation, but immune mechanisms were unclear. We now show that DKO mice recapitulate many features of human autoimmune hepatitis (AIH), including periportal and interstitial inflammation and fibrosis and elevated ALT. Infiltrating cells include CD8+ tissue resident memory T cells, type I innate lymphoid cells, and inflammatory monocyte/macrophage cells that replace the Kupffer cell pool. Importantly, TLR9 expression by bone marrow-derived cells is required for the the development of AIH. TLR9 is highly expressed by inflammatory myeloid cells but not long-lived Kupffer cells. Furthermore, the initial recruitment of TLR9 expressing monocytes and subsequent activation of lymphocytes requires IFNγ signaling. These findings highlight a critical role of feed forward loop between TLR9 expressing monocyte-lineage cells and IFNg producing lymphocytes in autoimmune hepatitis.
Collapse
|
12
|
Bérouti M, Lammens K, Heiss M, Hansbauer L, Bauernfried S, Stöckl J, Pinci F, Piseddu I, Greulich W, Wang M, Jung C, Fröhlich T, Carell T, Hopfner KP, Hornung V. Lysosomal endonuclease RNase T2 and PLD exonucleases cooperatively generate RNA ligands for TLR7 activation. Immunity 2024; 57:1482-1496.e8. [PMID: 38697119 PMCID: PMC11470960 DOI: 10.1016/j.immuni.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024]
Abstract
Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.
Collapse
Affiliation(s)
- Marleen Bérouti
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Katja Lammens
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Matthias Heiss
- Department of Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Larissa Hansbauer
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Bauernfried
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Jan Stöckl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Francesca Pinci
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ignazio Piseddu
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany; Department of Medicine II, University Hospital Munich, Munich, Germany
| | - Wilhelm Greulich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Meiyue Wang
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christophe Jung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Fröhlich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
13
|
Yuan M, Peng L, Huang D, Gavin A, Luan F, Tran J, Feng Z, Zhu X, Matteson J, Wilson IA, Nemazee D. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4. Structure 2024; 32:766-779.e7. [PMID: 38537643 PMCID: PMC11162324 DOI: 10.1016/j.str.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda Gavin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenny Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne Matteson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Tong AJ, Leylek R, Herzner AM, Rigas D, Wichner S, Blanchette C, Tahtinen S, Kemball CC, Mellman I, Haley B, Freund EC, Delamarre L. Nucleotide modifications enable rational design of TLR7-selective ligands by blocking RNase cleavage. J Exp Med 2024; 221:e20230341. [PMID: 38095631 PMCID: PMC10720541 DOI: 10.1084/jem.20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Toll-like receptors 7 (TLR7) and 8 (TLR8) each sense single-stranded RNA (ssRNA), but their activation results in different immune activation profiles. Attempts to selectively target either TLR7 or TLR8 have been hindered by their high degree of homology. However, recent studies revealed that TLR7 and TLR8 bind different ligands resulting from the processing of ssRNA by endolysosomal RNases. We demonstrate that by introducing precise 2' sugar-modified bases into oligoribonucleotides (ORNs) containing known TLR7 and TLR8 binding motifs, we could prevent RNase-mediated degradation into the monomeric uridine required for TLR8 activation while preserving TLR7 activation. Furthermore, a novel, optimized protocol for CRISPR-Cas9 knockout in primary human plasmacytoid dendritic cells showed that TLR7 activation is dependent on RNase processing of ORNs and revealed a previously undescribed role for RNase 6 in degrading ORNs into TLR ligands. Finally, 2' sugar-modified ORNs demonstrated robust innate immune activation in mice. Altogether, we identified a strategy for creating tunable TLR7-selective agonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ira Mellman
- Genentech, Inc., South San Francisco, CA, USA
| | | | | | | |
Collapse
|
16
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
17
|
Lee JC, Shirey RJ, Turner LD, Park H, Lairson LL, Janda KD. Discovery of PLD4 modulators by high-throughput screening and kinetic analysis. RESULTS IN CHEMISTRY 2024; 7:101349. [PMID: 38560090 PMCID: PMC10977906 DOI: 10.1016/j.rechem.2024.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Phospholipase D3 (PLD3) and D4 (PLD4) are endolysosomal exonucleases of ssDNA and ssRNA that regulate innate immunity. Polymorphisms of these enzymes are correlated with numerous human diseases, including Alzheimer's, rheumatoid arthritis, and systemic sclerosis. Pharmacological modulation of these immunoregulatory proteins may yield novel immunotherapies and adjuvants. A previous study reported a high-throughput screen (N = 17,952) that discovered a PLD3-selective activator and inhibitor, as well as a nonselective inhibitor, but failed to identify selective modulators of PLD4. However, modulators selective for PLD4 are therapeutically pertinent, since recent reports have shown that regulating this protein has direct implications in cancer and autoimmune diseases. Furthermore, the high expression of PLD4 in dendritic and myeloid cells, in comparison to the broader expression of PLD3, presents the opportunity for a cell-targeted immunotherapy. Here, we describe screening of an expended diversity library (N = 45,760) with an improved platform and report the discovery of one inhibitor and three activators selective for PLD4. Furthermore, kinetic modeling and structural analysis suggest mechanistic differences in the modulation of these hits. These findings further establish the utility of this screening platform and provide a set of chemical scaffolds to guide future small-molecule development for this novel immunoregulator target.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan J. Shirey
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lewis D. Turner
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke L. Lairson
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Miyake K, Shibata T, Fukui R, Murakami Y, Sato R, Hiranuma R. Endosomal Toll-Like Receptors as Therapeutic Targets for Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:97-108. [PMID: 38467975 DOI: 10.1007/978-981-99-9781-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nucleic acid (NA)-sensing Toll-like receptors (TLRs) reside in the endosomal compartment of innate immune cells, such as macrophages and dendritic cells. NAs transported to the endosomal compartment are degraded by DNases and RNases. Degradation products, including single-stranded DNA, oligoRNA, and nucleosides, are recognized by TLR7, TLR8, and TLR9 to drive the defense responses against pathogens. NA degradation influences endosomal TLR responses by generating and degrading TLR ligands. TLR ligand accumulation because of impaired NA degradation causes constitutive TLR activation, leading to autoinflammatory and autoimmune diseases. Furthermore, some genes associated with these diseases promote endosomal TLR responses. Therefore, endosomal TLRs are promising therapeutic targets for TLR-mediated inflammatory diseases, and novel drugs targeting TLRs are being developed.
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Hiranuma
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Gogate A, Belcourt J, Shah M, Wang AZ, Frankel A, Kolmel H, Chalon M, Stephen P, Kolli A, Tawfik SM, Jin J, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. Targeting the Liver with Nucleic Acid Therapeutics for the Treatment of Systemic Diseases of Liver Origin. Pharmacol Rev 2023; 76:49-89. [PMID: 37696583 PMCID: PMC10753797 DOI: 10.1124/pharmrev.123.000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Systemic diseases of liver origin (SDLO) are complex diseases in multiple organ systems, such as cardiovascular, musculoskeletal, endocrine, renal, respiratory, and sensory organ systems, caused by irregular liver metabolism and production of functional factors. Examples of such diseases discussed in this article include primary hyperoxaluria, familial hypercholesterolemia, acute hepatic porphyria, hereditary transthyretin amyloidosis, hemophilia, atherosclerotic cardiovascular diseases, α-1 antitrypsin deficiency-associated liver disease, and complement-mediated diseases. Nucleic acid therapeutics use nucleic acids and related compounds as therapeutic agents to alter gene expression for therapeutic purposes. The two most promising, fastest-growing classes of nucleic acid therapeutics are antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). For each listed SDLO disease, this article discusses epidemiology, symptoms, genetic causes, current treatment options, and advantages and disadvantages of nucleic acid therapeutics by either ASO or siRNA drugs approved or under development. Furthermore, challenges and future perspectives on adverse drug reactions and toxicity of ASO and siRNA drugs for the treatment of SDLO diseases are also discussed. In summary, this review article will highlight the clinical advantages of nucleic acid therapeutics in targeting the liver for the treatment of SDLO diseases. SIGNIFICANCE STATEMENT: Systemic diseases of liver origin (SDLO) contain rare and common complex diseases caused by irregular functions of the liver. Nucleic acid therapeutics have shown promising clinical advantages to treat SDLO. This article aims to provide the most updated information on targeting the liver with antisense oligonucleotides and small interfering RNA drugs. The generated knowledge may stimulate further investigations in this growing field of new therapeutic entities for the treatment of SDLO, which currently have no or limited options for treatment.
Collapse
Affiliation(s)
- Anagha Gogate
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jordyn Belcourt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Milan Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alicia Zongxun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alexis Frankel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Holly Kolmel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Matthew Chalon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Prajith Stephen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Aarush Kolli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Sherouk M Tawfik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
20
|
Yuan M, Peng L, Huang D, Gavin A, Luan F, Tran J, Feng Z, Zhu X, Matteson J, Wilson IA, Nemazee D. Structural and mechanistic insights into disease-associated endolysosomal exonucleases PLD3 and PLD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567917. [PMID: 38045427 PMCID: PMC10690185 DOI: 10.1101/2023.11.20.567917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a 'link-and-release' two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3' phosphistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- These authors contribute equally
- Present address: Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Amanda Gavin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangkun Luan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenny Tran
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeanne Matteson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Oda W, Umemura K, Ito K, Kawamoto Y, Takahashi Y, Takakura Y. Development of potent unmethylated CpG DNA hydrogel by introducing i-motifs into long single-stranded DNA. Int J Pharm 2023; 646:123438. [PMID: 37741558 DOI: 10.1016/j.ijpharm.2023.123438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) DNA is recognized by Toll-like receptor 9, expressed in the endosomes of immune cells, and induces the secretion of proinflammatory cytokines. CpG DNA is, therefore, expected to be used as vaccine adjuvants, but there are many obstacles for its therapeutic application, such as poor cellular uptake and biostability. Long single-stranded DNA (lssDNA) synthesized by rolling circle amplification can be a useful delivery carrier for CpG DNA because of its cellular uptake efficiency, but the immunostimulatory effect is transient because it is easily degraded in endosomes. To improve its stability, we constructed lssDNA which forms hydrogel by i-motifs in an acidic environment mimicking endosome, and incorporated CpG DNA into lssDNA (i-CpG-lssDNA). We synthesized lssDNA containing the optimized i-motif sequence, and confirmed the formation of a DNA hydrogel in an acidic environment. The i-CpG-lssDNA elicited a potent proinflammatory cytokine production in murine macrophages, compared to CpG DNA-containing lssDNA without i-motifs. Consistently, its intradermal administration induced potent inflammatory cytokines at the regional lymph nodes. These results suggested that i-CpG-lssDNA could serve as a novel type of adjuvant for the induction of a potent immune response.
Collapse
Affiliation(s)
- Wakana Oda
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keisuke Umemura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koichi Ito
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Kawamoto
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Pollak AJ, Zhao L, Crooke ST. Characterization of cooperative PS-oligo activation of human TLR9. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:832-844. [PMID: 37675184 PMCID: PMC10477407 DOI: 10.1016/j.omtn.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Single-stranded phosphorothioate oligonucleotides (PS-oligos) can activate TLR9, leading to an innate immune response. This can occur with PS-oligos containing unmethylated CpG sites, the canonical motif, or PS-oligos that do not contain those motifs (non-CpG). Structural evidence shows that TLR9 contains two PS-oligo binding sites, and recent data suggest that synergistic cooperative activation of TLR9 can be achieved by adding two separate PS-oligos to cells, each engaging with a separate site on TLR9 to enhance TLR9 activation as a pair. Here, we demonstrate and characterize this cooperativity phenomenon using PS-oligos in human cell lines, and we introduce several novel PS-oligo pairs (CpG and non-CpG pairs) that show cooperative activation. Indeed, we find that cooperative PS-oligos likely bind at different sites on TLR9. Interestingly, we find that PS-oligos that generate little TLR9 activation on their own can prime TLR9 to be activated by other PS-oligos. Finally, we determine that previous models of TLR9 activation cannot be used to fully explain data from systems using human TLR9 and PS-oligos. Overall, we reveal new details of TLR9 activation, but we also find that more work needs to be done to determine where certain PS-oligos are binding to TLR9.
Collapse
Affiliation(s)
| | - Luyi Zhao
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | |
Collapse
|
23
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
24
|
Lacey KA, Serpas L, Makita S, Wang Y, Rashidfarrokhi A, Soni C, Gonzalez S, Moreira A, Torres VJ, Reizis B. Secreted mammalian DNases protect against systemic bacterial infection by digesting biofilms. J Exp Med 2023; 220:e20221086. [PMID: 36928522 PMCID: PMC10037111 DOI: 10.1084/jem.20221086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular DNase DNASE1L3 maintains tolerance to self-DNA in humans and mice, whereas the role of its homolog DNASE1 remains controversial, and the overall function of secreted DNases in immunity is unclear. We report that deletion of murine DNASE1 neither caused autoreactivity in isolation nor exacerbated lupus-like disease in DNASE1L3-deficient mice. However, combined deficiency of DNASE1 and DNASE1L3 rendered mice susceptible to bloodstream infection with Staphylococcus aureus. DNASE1/DNASE1L3 double-deficient mice mounted a normal innate response to S. aureus and did not accumulate neutrophil extracellular traps (NETs). However, their kidneys manifested severe pathology, increased bacterial burden, and biofilm-like bacterial lesions that contained bacterial DNA and excluded neutrophils. Furthermore, systemic administration of recombinant DNASE1 protein during S. aureus infection rescued the mortality of DNase-deficient mice and ameliorated the disease in wild-type mice. Thus, DNASE1 and DNASE1L3 jointly facilitate the control of bacterial infection by digesting extracellular microbial DNA in biofilms, suggesting the original evolutionary function of secreted DNases as antimicrobial agents.
Collapse
Affiliation(s)
- Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sohei Makita
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Andre Moreira
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Xu Y, Nowsheen S, Deng M. DNA Repair Deficiency Regulates Immunity Response in Cancers: Molecular Mechanism and Approaches for Combining Immunotherapy. Cancers (Basel) 2023; 15:cancers15051619. [PMID: 36900418 PMCID: PMC10000854 DOI: 10.3390/cancers15051619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Defects in DNA repair pathways can lead to genomic instability in multiple tumor types, which contributes to tumor immunogenicity. Inhibition of DNA damage response (DDR) has been reported to increase tumor susceptibility to anticancer immunotherapy. However, the interplay between DDR and the immune signaling pathways remains unclear. In this review, we will discuss how a deficiency in DDR affects anti-tumor immunity, highlighting the cGAS-STING axis as an important link. We will also review the clinical trials that combine DDR inhibition and immune-oncology treatments. A better understanding of these pathways will help exploit cancer immunotherapy and DDR pathways to improve treatment outcomes for various cancers.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92122, USA
- Correspondence: (S.N.); (M.D.)
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.N.); (M.D.)
| |
Collapse
|
26
|
Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation. Nat Commun 2023; 14:108. [PMID: 36609505 PMCID: PMC9822926 DOI: 10.1038/s41467-022-35732-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Some forms of mitochondrial dysfunction induce sterile inflammation through mitochondrial DNA recognition by intracellular DNA sensors. However, the involvement of mitochondrial dynamics in mitigating such processes and their impact on muscle fitness remain unaddressed. Here we report that opposite mitochondrial morphologies induce distinct inflammatory signatures, caused by differential activation of DNA sensors TLR9 or cGAS. In the context of mitochondrial fragmentation, we demonstrate that mitochondria-endosome contacts mediated by the endosomal protein Rab5C are required in TLR9 activation in cells. Skeletal muscle mitochondrial fragmentation promotes TLR9-dependent inflammation, muscle atrophy, reduced physical performance and enhanced IL6 response to exercise, which improved upon chronic anti-inflammatory treatment. Taken together, our data demonstrate that mitochondrial dynamics is key in preventing sterile inflammatory responses, which precede the development of muscle atrophy and impaired physical performance. Thus, we propose the targeting of mitochondrial dynamics as an approach to treating disorders characterized by chronic inflammation and mitochondrial dysfunction.
Collapse
|
27
|
Wuebben C, Bartok E, Hartmann G. Innate sensing of mRNA vaccines. Curr Opin Immunol 2022; 79:102249. [PMID: 36334350 DOI: 10.1016/j.coi.2022.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023]
Abstract
With the recent success of mRNA vaccines and the approval of several RNA oligonucleotide therapeutics, RNA holds great promise for future drug development. The rise of RNA therapeutics has been enabled by the tremendous progress in our understanding of the sophisticated cellular mechanisms that disarm potentially dangerous exogenous RNA and safeguard RNA homeostasis. Exogenous RNA, such as an mRNA vaccine when injected, faces an intricate system of immune-sensing receptors, restriction factors, and nucleases referred to as nucleic acid immunity. A careful analysis of the functional interaction between the innate response to mRNA, the efficacy to translate the encoded protein antigen, and the quality of the resulting adaptive immunity bears great potential for further improvement of mRNA vaccines and RNA therapeutics for various clinical applications. In this review, we summarize the most recent efforts to advance mRNA vaccines by capitalizing on recent insight in innate RNA sensing.
Collapse
Affiliation(s)
- Christine Wuebben
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Campus Venusberg, Bonn, Germany
| | - Eva Bartok
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Campus Venusberg, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Campus Venusberg, Bonn, Germany; German Center of Infection Research (DZIF), site Bonn-Cologne, Germany.
| |
Collapse
|
28
|
Pollak AJ, Zhao L, Vickers TA, Huggins IJ, Liang XH, Crooke ST. Insights into innate immune activation via PS-ASO-protein-TLR9 interactions. Nucleic Acids Res 2022; 50:8107-8126. [PMID: 35848907 PMCID: PMC9371907 DOI: 10.1093/nar/gkac618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Non-CpG PS-ASOs can activate the innate immune system, leading to undesired outcomes. This response can vary—in part—as a function of 2′modifications and sequence. Here we investigated the molecular steps involved in the varied effects of PS-ASOs on the innate immune system. We found that pro-inflammatory PS-ASOs require TLR9 signaling based on the experimental systems used. However, the innate immunity of PS-ASOs does not correlate with their binding affinity with TLR9. Furthermore, the innate immune responses of pro-inflammatory PS-ASOs were reduced by coincubation with non-inflammatory PS-ASOs, suggesting that both pro-inflammatory and non-inflammatory PS-ASOs can interact with TLR9. We show that the kinetics of the PS-ASO innate immune responses can vary, which we speculate may be due to the existence of alternative PS-ASO binding sites on TLR9, leading to full, partial, or no activation of the pathway. In addition, we found that several extracellular proteins, including HMGB1, S100A8 and HRG, enhance the innate immune responses of PS-ASOs. Reduction of the binding affinity by reducing the PS content of PS-ASOs decreased innate immune responses, suggesting that PS-ASO–protein complexes may be sensed by TLR9. These findings thus provide critical information concerning how PS-ASOs can interact with and activate TLR9.
Collapse
Affiliation(s)
| | - Luyi Zhao
- Ionis Pharmaceuticals, Inc. Carlsbad, CA 92010, USA
| | | | | | | | | |
Collapse
|
29
|
Wamhoff EC, Romanov A, Huang H, Read BJ, Ginsburg E, Knappe GA, Kim HM, Farrell NP, Irvine DJ, Bathe M. Controlling Nuclease Degradation of Wireframe DNA Origami with Minor Groove Binders. ACS NANO 2022; 16:8954-8966. [PMID: 35640255 PMCID: PMC9649841 DOI: 10.1021/acsnano.1c11575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Viruslike particles (VLPs) fabricated using wireframe DNA origami are emerging as promising vaccine and gene therapeutic delivery platforms due to their programmable nature that offers independent control over their size and shape, as well as their site-specific functionalization. As materials that biodegrade in the presence of endonucleases, specifically DNase I and II, their utility for the targeting of cells, tissues, and organs depends on their stability in vivo. Here, we explore minor groove binders (MGBs) as specific endonuclease inhibitors to control the degradation half-life of wireframe DNA origami. Bare, unprotected DNA-VLPs composed of two-helix edges were found to be stable in fetal bovine serum under typical cell culture conditions and in human serum for 24 h but degraded within 3 h in mouse serum, suggesting species-specific endonuclease activity. Inhibiting endonucleases by incubating DNA-VLPs with diamidine-class MGBs increased their half-lives in mouse serum by more than 12 h, corroborated by protection against isolated DNase I and II. Our stabilization strategy was compatible with the functionalization of DNA-VLPs with HIV antigens, did not interfere with B-cell signaling activity of DNA-VLPs in vitro, and was nontoxic to B-cell lines. It was further found to be compatible with multiple wireframe DNA origami geometries and edge architectures. MGB protection is complementary to existing methods such as PEGylation and chemical cross-linking, offering a facile protocol to control DNase-mediated degradation rates for in vitro and possibly in vivo therapeutic and vaccine applications.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna Romanov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hellen Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benjamin J Read
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric Ginsburg
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Grant A Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyun Min Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Miyake K, Shibata T, Fukui R, Sato R, Saitoh SI, Murakami Y. Nucleic Acid Sensing by Toll-Like Receptors in the Endosomal Compartment. Front Immunol 2022; 13:941931. [PMID: 35812450 PMCID: PMC9259784 DOI: 10.3389/fimmu.2022.941931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptors (TLRs) respond to pathogen constituents, such as microbial lipids and nucleic acids (NAs). TLRs recognize NAs in endosomal compartments. Structural and functional studies have shown that recognition of NAs by TLRs depends on NA processing by RNases and DNases. DNase II-dependent DNA degradation is required for TLR9 responses to single-stranded DNAs, whereas RNase T2-dependent RNA degradation enables TLR7 and TLR8 to respond to nucleosides and oligoribonucleotides. In contrast, RNases and DNases negatively regulate TLR responses by degrading their ligands. RNase T2 negatively regulates TLR3 responses to degrading the TLR3 ligand double-stranded RNAs. Therefore, NA metabolism in the endosomal compartments affects the endosomal TLR responses. Dysregulation of NA metabolism in the endosomal compartment drives the TLR-dependent pathologies in human diseases.
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- *Correspondence: Kensuke Miyake,
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
31
|
Aslan E, Arslanyolu M. Discovery of deoxyribonuclease II-like proteins in bacteria. Mol Phylogenet Evol 2022; 174:107554. [PMID: 35714926 DOI: 10.1016/j.ympev.2022.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Deoxyribonuclease II (DNase II) is one of the earliest enzymes discovered in the history of biochemistry. Its role in apoptosis and development has been documented with great detail in eukaryotes. Prior in silico analyses showed its complete absence in bacterial genomes, with the exception of single bacterial genus: Burkholderia. It is therefore considered to be a eukaryotic enzyme. Here we show that the presence of DNase II is not limited to Burkholderia, as we find over one hundred DNase II-like sequences spanning 90 bacteria species belonging to 54 different genera and seven phyla. The majority of the significant hits (85%) come from Bacteroidetes and Proteobacteria phyla. Sequence analyses reveal that bacterial DNase II-like proteins possess a signature catalytic motif of eukaryotic DNase II. In phylogenetic analyses, we find that bacterial DNase II-like proteins are divided into two distinct clades. Our structural analyses reveal high levels of similarity between experimentally determined crystal structures of recombinant Burkholderia thailandensis DNase II and candidate bacterial DNase II-like proteins. We also biochemically show that Chromobacterium violaceum cell lysate possesses acidic DNase II-like activities. Collectively, our results indicate that DNase II has deeper evolutionary roots than previously thought. We argue that either some prokaryotic lineages have undergone losses of DNase II genes, resulting in rare conservation, or some lineages have acquired DNase II genes from eukaryotes through lateral gene transfer. We also discuss the possible involvement of DNase II as a part of an anti-phage defense system in bacteria.
Collapse
Affiliation(s)
- Erhan Aslan
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Iki Eylul Campus, 26555 Eskisehir, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunus Emre Campus, 26470 Eskisehir, Turkey
| |
Collapse
|
32
|
Macrophages disseminate pathogen associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes. Nat Commun 2022; 13:3072. [PMID: 35654768 PMCID: PMC9163141 DOI: 10.1038/s41467-022-30654-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Recognition of pathogen-or-damage-associated molecular patterns is critical to inflammation. However, most pathogen-or-damage-associated molecular patterns exist within intact microbes/cells and are typically part of non-diffusible, stable macromolecules that are not optimally immunostimulatory or available for immune detection. Partial digestion of microbes/cells following phagocytosis potentially generates new diffusible pathogen-or-damage-associated molecular patterns, however, our current understanding of phagosomal biology would have these molecules sequestered and destroyed within phagolysosomes. Here, we show the controlled release of partially-digested, soluble material from phagolysosomes of macrophages through transient, iterative fusion-fission events between mature phagolysosomes and the plasma membrane, a process we term eructophagy. Eructophagy is most active in proinflammatory macrophages and further induced by toll like receptor engagement. Eructophagy is mediated by genes encoding proteins required for autophagy and can activate vicinal cells by release of phagolysosomally-processed, partially-digested pathogen associated molecular patterns. We propose that eructophagy allows macrophages to amplify local inflammation through the processing and dissemination of pathogen-or-damage-associated molecular patterns. The detection of conserved motifs by pattern recognition receptors is a crucial component of the innate detection of pathogens and danger signals via conserved pattern recognition receptors. Here the authors define a pathway that transfers partially digested material from the phagolysosomal pathway of macrophages to release at the plasma membrane which is associated with enhanced inflammatory potential, by a process they introduce as eructophagy.
Collapse
|
33
|
Watts C. Lysosomes and lysosome‐related organelles in immune responses. FEBS Open Bio 2022; 12:678-693. [PMID: 35220694 PMCID: PMC8972042 DOI: 10.1002/2211-5463.13388] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The catabolic, degradative capacity of the endo‐lysosome system is put to good use in mammalian immune responses as is their recently established status as signaling platforms. From the ‘creative destruction’ of antigenic and ‘self’ material for antigen presentation to T cells to the re‐purposing of lysosomes as toxic exocytosable lysosome‐related organelles (granules) in leukocytes such as CD8 T cells and eosinophils, endo‐lysosomes are key players in host defense. Signaled responses to some pathogen products initiate in endo‐lysosomes and these organelles are emerging as important in distinct ways in the unique immunobiology of dendritic cells. Potential self‐inflicted toxicity from lysosomal and granule proteases is countered by expression of serpin and cystatin family members.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Signalling & Immunology School of Life Sciences University of Dundee Dundee DD1 5EH UK
| |
Collapse
|
34
|
Tong J, Zhang W, Chen Y, Yuan Q, Qin NN, Qu G. The Emerging Role of RNA Modifications in the Regulation of Antiviral Innate Immunity. Front Microbiol 2022; 13:845625. [PMID: 35185855 PMCID: PMC8851159 DOI: 10.3389/fmicb.2022.845625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Posttranscriptional modifications have been implicated in regulation of nearly all biological aspects of cellular RNAs, from stability, translation, splicing, nuclear export to localization. Chemical modifications also have been revealed for virus derived RNAs several decades before, along with the potential of their regulatory roles in virus infection. Due to the dynamic changes of RNA modifications during virus infection, illustrating the mechanisms of RNA epigenetic regulations remains a challenge. Nevertheless, many studies have indicated that these RNA epigenetic marks may directly regulate virus infection through antiviral innate immune responses. The present review summarizes the impacts of important epigenetic marks on viral RNAs, including N6-methyladenosine (m6A), 5-methylcytidine (m5C), 2ʹ-O-methylation (2ʹ-O-Methyl), and a few uncanonical nucleotides (A-to-I editing, pseudouridine), on antiviral innate immunity and relevant signaling pathways, while highlighting the significance of antiviral innate immune responses during virus infection.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuran Chen
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Qiaoling Yuan
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Ning-Ning Qin
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guosheng Qu
- College of Life Sciences, Hebei University, Baoding, China.,Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
35
|
Nakagawa T, Tanino T, Onishi M, Tofukuji S, Kanazawa T, Ishioka Y, Itoh T, Kugimiya A, Katayama K, Yamamoto T, Nagira M, Ishii KJ. S-540956, a CpG Oligonucleotide Annealed to a Complementary Strand With an Amphiphilic Chain Unit, Acts as a Potent Cancer Vaccine Adjuvant by Targeting Draining Lymph Nodes. Front Immunol 2022; 12:803090. [PMID: 35003132 PMCID: PMC8735836 DOI: 10.3389/fimmu.2021.803090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Robust induction of cancer-antigen-specific CD8+ T cells is essential for the success of cancer peptide vaccines, which are composed of a peptide derived from a cancer-specific antigen and an immune-potentiating adjuvant, such as a Toll-like receptor (TLR) agonist. Efficient delivery of a vaccine antigen and an adjuvant to antigen-presenting cells in the draining lymph nodes (LNs) holds key to maximize vaccine efficacy. Here, we developed S-540956, a novel TLR9-agonistic adjuvant consisting of B-type CpG ODN2006 (also known as CpG7909), annealed to its complementary sequence oligodeoxynucleotide (ODN) conjugated to a lipid; it could target both a cancer peptide antigen and a CpG-adjuvant in the draining LNs. S-540956 accumulation in the draining LNs and activation of plasmacytoid dendritic cells (pDCs) were significantly higher than that of ODN2006. Mechanistic analysis revealed that S-540956 enhanced the induction of MHC class I peptide-specific CD8+ T cell responses via TLR9 in a CD4+ T cell-independent manner. In mice, the therapeutic effect of S-540956-adjuvanted with a human papillomavirus (HPV)-E7 peptide vaccine against HPV-E7-expressing TC-1 tumors was significantly better than that of an ODN2006-adjuvanted vaccine. Our findings demonstrate a novel adjuvant discovery with the complementary strand conjugated to a lipid, which enabled draining LN targeting and increased ODN2006 accumulation in draining LNs, thereby enhancing the adjuvant effect. Our findings imply that S-540956 is a promising adjuvant for cancer peptide vaccines and has a high potential for applications in various vaccines, including recombinant protein vaccines.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Tetsuya Tanino
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Motoyasu Onishi
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Soichi Tofukuji
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takayuki Kanazawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Yukichi Ishioka
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeshi Itoh
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Akira Kugimiya
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Kazufumi Katayama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Morio Nagira
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Laboratory of Mock-up Vaccine Project, Center for Vaccine and Adjuvant Research (CVAR), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
36
|
Ogawa Y, Kinoshita M, Kawamura T, Shimada S. Intracellular TLRs of Mast Cells in Innate and Acquired Immunity. Handb Exp Pharmacol 2022; 276:133-159. [PMID: 34505203 DOI: 10.1007/164_2021_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
37
|
Ma HC, Zhu YJ, Zhou R, Yu YY, Xiao ZZ, Zhang HB. Lung cancer organoids, a promising model still with long way to go. Crit Rev Oncol Hematol 2022; 171:103610. [DOI: 10.1016/j.critrevonc.2022.103610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
|
38
|
Ribas A, Medina T, Kirkwood JM, Zakharia Y, Gonzalez R, Davar D, Chmielowski B, Campbell KM, Bao R, Kelley H, Morris A, Mauro D, Wooldridge JE, Luke JJ, Weiner GJ, Krieg AM, Milhem MM. Overcoming PD-1 Blockade Resistance with CpG-A Toll-Like Receptor 9 Agonist Vidutolimod in Patients with Metastatic Melanoma. Cancer Discov 2021; 11:2998-3007. [PMID: 34326162 PMCID: PMC8799774 DOI: 10.1158/2159-8290.cd-21-0425] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Patients with advanced melanoma that is resistant to PD-1 blockade therapy have limited treatment options. Vidutolimod (formerly CMP-001), a virus-like particle containing a CpG-A Toll-like receptor 9 (TLR9) agonist, may reverse PD-1 blockade resistance by triggering a strong IFN response to induce and attract antitumor T cells. In the dose-escalation part of this phase Ib study, vidutolimod was administered intratumorally at escalating doses with intravenous pembrolizumab to 44 patients with advanced melanoma who had progressive disease or stable disease on prior anti-PD-1 therapy. The combination of vidutolimod and pembrolizumab had a manageable safety profile, and durable responses were observed in 25% of patients, with tumor regression in both injected and noninjected lesions, including visceral lesions. Patients who responded to vidutolimod and pembrolizumab had noninflamed tumors at baseline and induction of an IFNγ gene signature following treatment, as well as increased systemic expression of the IFN-inducible chemokine CXCL10. SIGNIFICANCE In this phase Ib study in patients with advanced melanoma, intratumoral TLR9 agonist vidutolimod in combination with pembrolizumab had a manageable safety profile and showed promising clinical activity, supporting the further clinical development of vidutolimod to overcome PD-1 blockade resistance through induction of an IFN response. See related commentary by Sullivan, p. 2960. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Antoni Ribas
- University of California, Los Angeles, Los Angeles, California
| | | | - John M. Kirkwood
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Rene Gonzalez
- University of Colorado Cancer Center, Aurora, Colorado
| | - Diwakar Davar
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | | | - Riyue Bao
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Heather Kelley
- Checkmate Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Aaron Morris
- Checkmate Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - David Mauro
- Checkmate Pharmaceuticals, Inc., Cambridge, Massachusetts
| | | | - Jason J. Luke
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
39
|
Kettwig M, Ternka K, Wendland K, Krüger DM, Zampar S, Schob C, Franz J, Aich A, Winkler A, Sakib MS, Kaurani L, Epple R, Werner HB, Hakroush S, Kitz J, Prinz M, Bartok E, Hartmann G, Schröder S, Rehling P, Henneke M, Boretius S, Alia A, Wirths O, Fischer A, Stadelmann C, Nessler S, Gärtner J. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun 2021; 12:6530. [PMID: 34764281 PMCID: PMC8586222 DOI: 10.1038/s41467-021-26880-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Infantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pathophysiology. To date, pathophysiological studies have been hindered by the lack of mouse models recapitulating the neuroinflammatory encephalopathy found in patients. In this study, we generated Rnaset2-/- mice using CRISPR/Cas9-mediated genome editing. Rnaset2-/- mice demonstrate upregulation of interferon-stimulated genes and concurrent IFNAR1-dependent neuroinflammation, with infiltration of CD8+ effector memory T cells and inflammatory monocytes into the grey and white matter. Single nuclei RNA sequencing reveals homeostatic dysfunctions in glial cells and neurons and provide important insights into the mechanisms of hippocampal-accentuated brain atrophy and cognitive impairment. The Rnaset2-/- mice may allow the study of CNS damage associated with RNaseT2 deficiency and may be used for the investigation of potential therapies.
Collapse
Affiliation(s)
- Matthias Kettwig
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - Katharina Ternka
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Kristin Wendland
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Dennis Manfred Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Charlotte Schob
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Jonas Franz
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Anne Winkler
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Sadman Sakib
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Robert Epple
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Samy Hakroush
- Institute of Pathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
- Unit of Experimental Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Simone Schröder
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Marco Henneke
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
40
|
Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nat Commun 2021; 12:5874. [PMID: 34620855 PMCID: PMC8497607 DOI: 10.1038/s41467-021-26150-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Phospholipase D3 (PLD3) and PLD4 polymorphisms have been associated with several important inflammatory diseases. Here, we show that PLD3 and PLD4 digest ssRNA in addition to ssDNA as reported previously. Moreover, Pld3−/−Pld4−/− mice accumulate small ssRNAs and develop spontaneous fatal hemophagocytic lymphohistiocytosis (HLH) characterized by inflammatory liver damage and overproduction of Interferon (IFN)-γ. Pathology is rescued in Unc93b13d/3dPld3−/−Pld4−/− mice, which lack all endosomal TLR signaling; genetic codeficiency or antibody blockade of TLR9 or TLR7 ameliorates disease less effectively, suggesting that both RNA and DNA sensing by TLRs contributes to inflammation. IFN-γ made a minor contribution to pathology. Elevated type I IFN and some other remaining perturbations in Unc93b13d/3dPld3−/−Pld4−/− mice requires STING (Tmem173). Our results show that PLD3 and PLD4 regulate both endosomal TLR and cytoplasmic/STING nucleic acid sensing pathways and have implications for the treatment of nucleic acid-driven inflammatory disease. Loss of function polymorphisms of phospholipase D3 and D4 are associated with inflammatory diseases and their function is unclear. Here the authors show that PLD3/4 function as RNAses and deletion of these proteins in mice leads to accumulation of ssRNA which exacerbates inflammation through TLR signalling.
Collapse
|
41
|
Lind NA, Rael VE, Pestal K, Liu B, Barton GM. Regulation of the nucleic acid-sensing Toll-like receptors. Nat Rev Immunol 2021; 22:224-235. [PMID: 34272507 PMCID: PMC8283745 DOI: 10.1038/s41577-021-00577-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
Many of the ligands for Toll-like receptors (TLRs) are unique to microorganisms, such that receptor activation unequivocally indicates the presence of something foreign. However, a subset of TLRs recognizes nucleic acids, which are present in both the host and foreign microorganisms. This specificity enables broad recognition by virtue of the ubiquity of nucleic acids but also introduces the possibility of self-recognition and autoinflammatory or autoimmune disease. Defining the regulatory mechanisms required to ensure proper discrimination between foreign and self-nucleic acids by TLRs is an area of intense research. Progress over the past decade has revealed a complex array of regulatory mechanisms that ensure maintenance of this delicate balance. These regulatory mechanisms can be divided into a conceptual framework with four categories: compartmentalization, ligand availability, receptor expression and signal transduction. In this Review, we discuss our current understanding of each of these layers of regulation. Activation of nucleic acid-sensing Toll-like receptors is finely tuned to limit self-reactivity while maintaining recognition of foreign microorganisms. The authors describe recent progress made in defining the regulatory mechanisms that facilitate this delicate balance.
Collapse
Affiliation(s)
- Nicholas A Lind
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Victoria E Rael
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kathleen Pestal
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Bo Liu
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Gregory M Barton
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
42
|
de Oliveira Mann CC, Hornung V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur J Immunol 2021; 51:1897-1910. [PMID: 34138462 DOI: 10.1002/eji.202049116] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
Nucleic acids (NAs) represent one of the most important classes of molecules recognized by the innate immune system. However, NAs are not limited to pathogens, but are also present within the host. As such, the immune system has evolved an elaborate set of pathogen recognition receptors (PRRs) that employ various strategies to recognize distinct types of NAs, while reliably distinguishing between self and nonself. The here-employed strategies encompass the positioning of NA-sensing PRRs in certain subcellular compartments that potentially come in contact with pathogens but not host NAs, the existence of counterregulatory measures that keep endogenous NAs below a certain threshold, and also the specific identification of certain nonself patterns. Here, we review recent advances in the molecular mechanisms of NA recognition by TLRs, RLRs, and the cGAS-STING axis. We highlight the differences in NA-PRR interfaces that confer specificity and selectivity toward an NA ligand, as well as the NA-dependent induced conformational changes required for signal transduction.
Collapse
Affiliation(s)
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
43
|
Miyake K, Saitoh SI, Fukui R, Shibata T, Sato R, Murakami Y. Dynamic control of nucleic-acid-sensing Toll-like receptors by the endosomal compartment. Int Immunol 2021; 33:835-840. [PMID: 34223897 DOI: 10.1093/intimm/dxab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid (NA)-sensing Toll-like receptors (TLRs) are synthesized in the endoplasmic reticulum and mature with chaperones, such as Unc93B1 and the protein associated with TLR4 A (PRAT4A)-gp96 complex. The TLR-Unc93B1 complexes move to the endosomal compartment, where proteases such as cathepsins activate their responsiveness through proteolytic cleavage of the extracellular domain of TLRs. Without proteolytic cleavage, ligand-dependent dimerization of NA-sensing TLRs is prevented by the uncleaved loop in the extracellular domains. Additionally, the association of Unc93B1 inhibits ligand-dependent dimerization of TLR3 and TLR9 and, therefore, Unc93B1 is released from these TLRs before dimerization. Ligand-activated NA-sensing TLRs induce the production of proinflammatory cytokines and act on the endosomal compartment to initiate anterograde trafficking to the cell periphery for type I interferon production. In the endosomal compartment, DNA and RNA are degraded by DNases and RNases, respectively, generating degradation products. DNase 2A and RNase T2 generate ligands for TLR9 and TLR8, respectively. In this mechanism, DNases and RNases control innate immune responses to NAs in endosomal compartments. NA-sensing TLRs and the endosomal compartment work together to monitor environmental cues through endosomes and decide to launch innate immune responses.
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences & Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
44
|
Liu K, Sato R, Shibata T, Hiranuma R, Reuter T, Fukui R, Zhang Y, Ichinohe T, Ozawa M, Yoshida N, Latz E, Miyake K. Skewed endosomal RNA responses from TLR7 to TLR3 in RNase T2-deficient macrophages. Int Immunol 2021; 33:479-490. [PMID: 34161582 DOI: 10.1093/intimm/dxab033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/18/2021] [Indexed: 11/12/2022] Open
Abstract
RNase T2, a ubiquitously expressed RNase, degrades RNAs in the endosomal compartments. RNA sensors, double-stranded RNA (dsRNA)-sensing TLR3 and single-stranded RNA (ssRNA)-sensing TLR7, are localized in the endosomal compartment in mouse macrophages. We here studied the role of RNase T2 in TLR3 and TLR7 responses in macrophages. Macrophages expressed RNase T2 and a member of the RNase A family RNase 4. RNase T2 was also expressed in plasmacytoid and conventional dendritic cells. Treatment with dsRNAs or type I interferon (IFN) upregulated expression of RNase T2 but not RNase 4. RNase T2-deficiency in macrophages upregulated TLR3 responses but impaired TLR7 responses. Mechanistically, RNase T2 degraded both ds- and ssRNAs in vitro, and its mutants showed a positive correlation between RNA degradation and the rescue of altered TLR3 and TLR7 responses. H122A and C188R RNase T2 mutations, not H69A and E118V mutations, impaired both RNA degradation and the rescue of altered TLR3 and TLR7 responses. RNase T2 in bone marrow-derived macrophages was broadly distributed from early endosomes to lysosomes, and colocalized with the internalized TLR3 ligand poly(I:C). These results suggest that RNase T2-dependent RNA degradation in endosomes/lysosomes negatively and positively regulates TLR3 and TLR7 responses, respectively, in macrophages.
Collapse
Affiliation(s)
- Kaiwen Liu
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Ryosuke Hiranuma
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Tatjana Reuter
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan.,Institute of Innate Immunity, Biomedical Center, Venusberg-Campus, University of Bonn, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yun Zhang
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Takeshi Ichinohe
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Manabu Ozawa
- Laboratory of Development Genetics, Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Nobuaki Yoshida
- Laboratory of Development Genetics, Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Eicke Latz
- Institute of Innate Immunity, Biomedical Center, Venusberg-Campus, University of Bonn, 53127 Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.,Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01655, USA
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan.,Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
45
|
Santa P, Garreau A, Serpas L, Ferriere A, Blanco P, Soni C, Sisirak V. The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing. Front Immunol 2021; 12:629922. [PMID: 33717156 PMCID: PMC7952454 DOI: 10.3389/fimmu.2021.629922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
46
|
Zhou J, Deng GM. The role of bacterial DNA containing CpG motifs in diseases. J Leukoc Biol 2021; 109:991-998. [PMID: 33527516 DOI: 10.1002/jlb.3mr1220-748rrrrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterial DNA containing unmethylated CpG motifs can activate immune cells to release proinflammatory cytokines. Here, the role of bacterial DNA containing CpG motifs in diseases with a focus on arthritis is discussed. Our studies demonstrate that the intraarticular injection of bacterial DNA and oligodeoxynucleotides containing CpG motifs (CpG ODN) induced arthritis. The induction of arthritis involves the role of macrophages over other cells such as neutrophils, NK cells, and lymphocytes. TNF-α and TNFRI play an important role in the development of arthritis. NF-κB also plays a critical regulatory role in arthritis. Systemic anti-inflammatory treatment, along with antibiotic therapy, has beneficial effects on the course and the outcome of bacterial arthritis. Thus, future treatment strategies for bacterial arthritis should include attempts to minimizing bacterial growth while blocking the proinflammatory effects of the bacterial DNA. Significant therapeutic efficiency has also been shown by CpG ODN-mediated Th1 immune activation in mouse models of cancer, infectious disease, and allergy/asthma.
Collapse
Affiliation(s)
- Jiayuan Zhou
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Koo J, Hayashi M, Verneris MR, Lee-Sherick AB. Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Front Oncol 2020; 10:581107. [PMID: 33381449 PMCID: PMC7769312 DOI: 10.3389/fonc.2020.581107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
For many pediatric sarcoma patients, multi-modal therapy including chemotherapy, radiation, and surgery is sufficient to cure their disease. However, event-free and overall survival rates for patients with more advanced disease are grim, necessitating the development of novel therapeutic approaches. Within many pediatric sarcomas, the normal immune response, including recognition and destruction of cancer cells, is lost due to the highly immune suppressive tumor microenvironment (TME). In this setting, tumor cells evade immune detection and capitalize on the immune suppressed microenvironment, leading to unchecked proliferation and metastasis. Recent preclinical and clinical approaches are aimed at understanding this immune suppressive microenvironment and employing cancer immunotherapy in an attempt to overcome this, by renewing the ability of the immune system to recognize and destroy cancer cells. While there are several factors that drive the attenuation of immune responses in the sarcoma TME, one of the most remarkable are tumor associated macrophage (TAMs). TAMs suppress immune cytolytic function, promote tumor growth and metastases, and are generally associated with a poor prognosis in most pediatric sarcoma subtypes. In this review, we summarize the mechanisms underlying TAM-facilitated immune evasion and tumorigenesis and discuss the potential therapeutic application of TAM-focused drugs in the treatment of pediatric sarcomas.
Collapse
Affiliation(s)
- Jane Koo
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Masanori Hayashi
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Michael R Verneris
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| | - Alisa B Lee-Sherick
- Department of Pediatric Hematology/Oncology/Bone Marrow Transplant, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
48
|
Cappel C, Gonzalez AC, Damme M. Quantification and characterization of the 5' exonuclease activity of the lysosomal nuclease PLD3 by a novel cell-based assay. J Biol Chem 2020; 296:100152. [PMID: 33288674 PMCID: PMC7857491 DOI: 10.1074/jbc.ra120.015867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 01/09/2023] Open
Abstract
Phospholipase D3 (PLD3) and phospholipase D4 (PLD4), the most recently described lysosomal nucleases, are associated with Alzheimer’s disease, spinocerebellar ataxia, and systemic lupus erythematosus. They exhibit 5′ exonuclease activity on single-stranded DNA, hydrolyzing it at the acidic pH associated with the lysosome. However, their full cellular function is inadequately understood. To examine these enzymes, we developed a robust and automatable cell-based assay based on fluorophore- and fluorescence-quencher-coupled oligonucleotides for the quantitative determination of acidic 5′ exonuclease activity. We validated the assay under knockout and PLD-overexpression conditions and then applied it to characterize PLD3 and PLD4 biochemically. Our experiments revealed PLD3 as the principal acid 5′ exonuclease in HeLa cells, where it showed a markedly higher specific activity compared with PLD4. We further used our newly developed assay to determine the substrate specificity and inhibitory profile of PLD3 and found that proteolytic processing of PLD3 is dispensable for its hydrolytic activity. We followed the expression, proteolytic processing, and intracellular distribution of genetic PLD3 variants previously associated with Alzheimer’s disease and investigated each variant's effect on the 5′ nuclease activity of PLD3, finding that some variants lead to reduced activity, but others not. The development of a PLD3/4-specific biochemical assay will be instrumental in understanding better both nucleases and their incompletely understood roles in vitro and in vivo.
Collapse
Affiliation(s)
- Cedric Cappel
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Markus Damme
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany.
| |
Collapse
|
49
|
Chen M, Hu S, Li Y, Jiang TT, Jin H, Feng L. Targeting nuclear acid-mediated immunity in cancer immune checkpoint inhibitor therapies. Signal Transduct Target Ther 2020; 5:270. [PMID: 33214545 PMCID: PMC7677403 DOI: 10.1038/s41392-020-00347-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy especially immune checkpoint inhibition has achieved unprecedented successes in cancer treatment. However, there are many patients who failed to benefit from these therapies, highlighting the need for new combinations to increase the clinical efficacy of immune checkpoint inhibitors. In this review, we summarized the latest discoveries on the combination of nucleic acid-sensing immunity and immune checkpoint inhibitors in cancer immunotherapy. Given the critical role of nuclear acid-mediated immunity in maintaining the activation of T cell function, it seems that harnessing the nuclear acid-mediated immunity opens up new strategies to enhance the effect of immune checkpoint inhibitors for tumor control.
Collapse
Affiliation(s)
- Miaoqin Chen
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Shiman Hu
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Yiling Li
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Ting Ting Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, 310016, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key lab of Biotherapy in Zhejiang Province, Cancer Institute of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
50
|
Ostendorf T, Zillinger T, Andryka K, Schlee-Guimaraes TM, Schmitz S, Marx S, Bayrak K, Linke R, Salgert S, Wegner J, Grasser T, Bauersachs S, Soltesz L, Hübner MP, Nastaly M, Coch C, Kettwig M, Roehl I, Henneke M, Hoerauf A, Barchet W, Gärtner J, Schlee M, Hartmann G, Bartok E. Immune Sensing of Synthetic, Bacterial, and Protozoan RNA by Toll-like Receptor 8 Requires Coordinated Processing by RNase T2 and RNase 2. Immunity 2020; 52:591-605.e6. [PMID: 32294405 DOI: 10.1016/j.immuni.2020.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/24/2020] [Accepted: 03/18/2020] [Indexed: 01/13/2023]
Abstract
Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.
Collapse
Affiliation(s)
- Thomas Ostendorf
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katarzyna Andryka
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Saskia Schmitz
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Samira Marx
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Kübra Bayrak
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Rebecca Linke
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Sarah Salgert
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Julia Wegner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Tatjana Grasser
- Axolabs GmbH, Fritz-Hornschuch-Strasse 9, 95326 Kulmbach, Germany
| | - Sonja Bauersachs
- Axolabs GmbH, Fritz-Hornschuch-Strasse 9, 95326 Kulmbach, Germany
| | - Leon Soltesz
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Marc P Hübner
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Maximilian Nastaly
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Christoph Coch
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Miltenyi Biotech, Biomedicine Division, Bergisch Gladbach, Germany
| | - Matthias Kettwig
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Ingo Roehl
- Axolabs GmbH, Fritz-Hornschuch-Strasse 9, 95326 Kulmbach, Germany
| | - Marco Henneke
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Winfried Barchet
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Martin Schlee
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Gunther Hartmann
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Eva Bartok
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|