1
|
Chu CH, Su CH, Hsiao YH, Yu CC, Liao YC, Mao PC, Chen JS, Sun HS. Overexpression of TIAM2S, a Critical Regulator for the Hippocampal-Medial Prefrontal Cortex Network, Progresses Age-Related Spatial Memory Impairment. J Gerontol A Biol Sci Med Sci 2024; 79:glae191. [PMID: 39093820 DOI: 10.1093/gerona/glae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 08/04/2024] Open
Abstract
TIAM Rac1-associated GEF 2 short-form protein (TIAM2S) is abundant in specific brain tissues, especially in the hippocampus, a brain region critical for processing and consolidation of spatial memory. However, how TIAM2S plasticizes the microstructure and circuits of the hippocampus to shape spatial memory as a neuroplastic regulator during aging remains to be determined. In this study, transgenic mice overexpressing human TIAM2S protein (TIAM2S-TG mice) were included, and interdisciplinary approaches, such as spatial memory tests and multiparametric magnetic resonance imaging sequences, were conducted to determine the role and the mechanism of TIAM2S in age-related spatial memory deficits. Despite no changes in their neural and glial markers and neuropathological hallmark expression of the hippocampus, behavioral tests showed that the TIAM2S-TG mice, and not wild-type (WT) mice, developed spatial memory impairment at 18 months old. The T2-weighted and diffusion tensor image analyses were performed to further study the possible role of TIAM2S overexpression in altering the hippocampal structure or neuronal circlets of the mice, increasing their vulnerability to developing spatial memory deficits during aging. The results revealed that the 12-month-old TIAM2S-TG mice had hippocampal dysplasticity, with larger volume, increased fiber numbers, and changed mean fractional anisotropy compared to those in the age-matched WT mice. The fiber tractography analysis exhibited significantly attenuated structural connectivity between the hippocampus and medial prefrontal cortex in the TIAM2S-TG mice. In conclusion, overexpression of TIAM2S, a detrimental factor affecting hippocampus plasticity, causes attenuation of the connectivity within hippocampus-mPFC circuits, leading to age-related spatial memory impairment.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chun Liao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pin-Cheng Mao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Shing Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Trevisan AJ, Han K, Chapman P, Kulkarni AS, Hinton JM, Ramirez C, Klein I, Gatto G, Gabitto MI, Menon V, Bikoff JB. The transcriptomic landscape of spinal V1 interneurons reveals a role for En1 in specific elements of motor output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613279. [PMID: 39345580 PMCID: PMC11429899 DOI: 10.1101/2024.09.18.613279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neural circuits in the spinal cord are composed of diverse sets of interneurons that play crucial roles in shaping motor output. Despite progress in revealing the cellular architecture of the spinal cord, the extent of cell type heterogeneity within interneuron populations remains unclear. Here, we present a single-nucleus transcriptomic atlas of spinal V1 interneurons across postnatal development. We find that the core molecular taxonomy distinguishing neonatal V1 interneurons perdures into adulthood, suggesting conservation of function across development. Moreover, we identify a key role for En1, a transcription factor that marks the V1 population, in specifying one unique subset of V1Pou6f2 interneurons. Loss of En1 selectively disrupts the frequency of rhythmic locomotor output but does not disrupt flexion/extension limb movement. Beyond serving as a molecular resource for this neuronal population, our study highlights how deep neuronal profiling provides an entry point for functional studies of specialized cell types in motor output.
Collapse
Affiliation(s)
- Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Katie Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Anand S. Kulkarni
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jennifer M. Hinton
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Ines Klein
- Department of Neurology, University Hospital of Cologne, Cologne, 50937, Germany
| | - Graziana Gatto
- Department of Neurology, University Hospital of Cologne, Cologne, 50937, Germany
| | - Mariano I. Gabitto
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Statistics, University of Washington, Seattle, WA, 98109, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, 10033, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
- Lead Contact
| |
Collapse
|
3
|
Kesdiren E, Martens H, Brand F, Werfel L, Wedekind L, Trowe MO, Schmitz J, Hennies I, Geffers R, Gucev Z, Seeman T, Schmidt S, Tasic V, Fasano L, Bräsen JH, Kispert A, Christians A, Haffner D, Weber RG. Heterozygous variants in the teashirt zinc finger homeobox 3 (TSHZ3) gene in human congenital anomalies of the kidney and urinary tract. Eur J Hum Genet 2024:10.1038/s41431-024-01710-y. [PMID: 39420202 DOI: 10.1038/s41431-024-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Around 180 genes have been associated with congenital anomalies of the kidney and urinary tract (CAKUT) in mice, and represent promising novel candidate genes for human CAKUT. In whole-exome sequencing data of two siblings with genetically unresolved multicystic dysplastic kidneys (MCDK), prioritizing variants in murine CAKUT-associated genes yielded a rare variant in the teashirt zinc finger homeobox 3 (TSHZ3) gene. Therefore, the role of TSHZ3 in human CAKUT was assessed. Twelve CAKUT patients from 9/301 (3%) families carried five different rare heterozygous TSHZ3 missense variants predicted to be deleterious. CAKUT patients with versus without TSHZ3 variants were more likely to present with hydronephrosis, hydroureter, ureteropelvic junction obstruction, MCDK, and with genital anomalies, developmental delay, overlapping with the previously described phenotypes in Tshz3-mutant mice and patients with heterozygous 19q12-q13.11 deletions encompassing the TSHZ3 locus. Comparable with Tshz3-mutant mice, the smooth muscle layer was disorganized in the renal pelvis and thinner in the proximal ureter of the nephrectomy specimen of a TSHZ3 variant carrier compared to controls. TSHZ3 was expressed in the human fetal kidney, and strongly at embryonic day 11.5-14.5 in mesenchymal compartments of the murine ureter, kidney, and bladder. TSHZ3 variants in a 5' region were more frequent in CAKUT patients than in gnomAD samples (p < 0.001). Mutant TSHZ3 harboring N-terminal variants showed significantly altered SOX9 and/or myocardin binding, possibly adversely affecting smooth muscle differentiation. Our results provide evidence that heterozygous TSHZ3 variants are associated with human CAKUT, particularly MCDK, hydronephrosis, and hydroureter, and, inconsistently, with specific extrarenal features, including genital anomalies.
Collapse
Affiliation(s)
- Esra Kesdiren
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Lukas Wedekind
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Jessica Schmitz
- Nephropathology, Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zoran Gucev
- Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Pediatrics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Sonja Schmidt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Velibor Tasic
- Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM UMR7288, Marseille, France
| | - Jan H Bräsen
- Nephropathology, Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Hakizimana O, Hitayezu J, Uyisenga JP, Onohuean H, Palmeira L, Bours V, Alagbonsi AI, Uwineza A. Genetic etiology of autism spectrum disorder in the African population: a scoping review. Front Genet 2024; 15:1431093. [PMID: 39391062 PMCID: PMC11464363 DOI: 10.3389/fgene.2024.1431093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by significant impairments in social, communicative, and behavioral abilities. However, only a limited number of studies address the genetic basis of ASD in the African population. This study aims to document the genes associated with ASD in Africa and the techniques used to identify them. Additionally, genes identified elsewhere but not yet in Africa are also noted. Methods Online databases such as Wiley Online Library, PubMed, and Africa Journal Online were used. The review was conducted using the keyword related to genetic and genomic ASD study in the African population. Result In this scoping review, 40 genetic studies on ASD in Africa were reviewed. The Egyptian and South African populations were the most studied, with 25 and 5 studies, respectively. Countries with fewer studies included Tunisia (4), East African countries (3), Libya (1), Nigeria (1), and Morocco (1). Some 61 genes responsible for ASD were identified in the African population: 26 were identified using a polymerase chain reaction (PCR)-based method, 22 were identified using sequencing technologies, and 12 genes and one de novo chromosomal aberration were identified through other techniques. No African study identified any ASD gene with genome-wide association studies (GWAS). Notably, at least 20 ASD risk genes reported in non-African countries were yet to be confirmed in Africa's population. Conclusion There are insufficient genetic studies on ASD in the African population, with sample size being a major limitation in most genetic association studies, leading to inconclusive results. Thus, there is a need to conduct more studies with large sample sizes to identify other genes associated with ASD in Africa's population using high-throughput sequencing technology.
Collapse
Affiliation(s)
- Olivier Hakizimana
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Janvier Hitayezu
- Department of Pediatrics, University Teaching Hospital of Kigali (CHUK), Kigali, Rwanda
| | - Jeanne P. Uyisenga
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Bushenyi, Uganda
| | - Leonor Palmeira
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Vincent Bours
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Abdullateef Isiaka Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Annette Uwineza
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
5
|
Martz J, Shelton MA, Langen TJ, Srinivasan S, Seney ML, Kentner AC. Peripubertal antagonism of corticotropin-releasing factor receptor 1 results in sustained, sex-specific changes in behavioral plasticity and the transcriptomic profile of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607957. [PMID: 39185241 PMCID: PMC11343213 DOI: 10.1101/2024.08.14.607957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions. To investigate this further, we administered a CRFR1 antagonist (CRFR1a), R121919, to young adolescent male and female rats across 4 days. Following each treatment, rats were tested for locomotion, social behavior, mechanical allodynia, or PPI of the acoustic startle reflex. Acute CRFR1 blockade immediately reduced PPI in peripubertal males, but not females. In adulthood, each assay was repeated without CRFR1a exposure to test for long-term effects of the adolescent treatment, with males continuing to experience deficits in PPI, while females displayed altered locomotion, PPI, and social behavior. The amygdala was collected to measure long-term effects on gene expression in pathways related to neural plasticity and neurodevelopmental disorders. Relative expression of cannabinoid type 1 receptors (CB1R), which mediate sensorimotor and HPA function, was also measured. In the adult amygdala, peripubertal CRFR1a induced alterations in pathways related to neural plasticity and stress in males and lower expression of CB1R protein in females. Understanding how acute exposure to neuropharmacological agents can have sustained impacts on brain and behavior, in the absence of further exposures, has important clinical implications for adolescent psychiatric treatment protocols.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Micah A. Shelton
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219
| | - Tristen J. Langen
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Sakhi Srinivasan
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive Pittsburgh, PA, 15219
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| |
Collapse
|
6
|
Lopes FM, Grenier C, Jarvis BW, Al Mahdy S, Lène-McKay A, Gurney AM, Newman WG, Waddington SN, Woolf AS, Roberts NA. Human HPSE2 gene transfer ameliorates bladder pathophysiology in a mutant mouse model of urofacial syndrome. eLife 2024; 13:RP91828. [PMID: 38990208 PMCID: PMC11239176 DOI: 10.7554/elife.91828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Rare early-onset lower urinary tract disorders include defects of functional maturation of the bladder. Current treatments do not target the primary pathobiology of these diseases. Some have a monogenic basis, such as urofacial, or Ochoa, syndrome (UFS). Here, the bladder does not empty fully because of incomplete relaxation of its outflow tract, and subsequent urosepsis can cause kidney failure. UFS is associated with biallelic variants of HPSE2, encoding heparanase-2. This protein is detected in pelvic ganglia, autonomic relay stations that innervate the bladder and control voiding. Bladder outflow tracts of Hpse2 mutant mice display impaired neurogenic relaxation. We hypothesized that HPSE2 gene transfer soon after birth would ameliorate this defect and explored an adeno-associated viral (AAV) vector-based approach. AAV9/HPSE2, carrying human HPSE2 driven by CAG, was administered intravenously into neonatal mice. In the third postnatal week, transgene transduction and expression were sought, and ex vivo myography was undertaken to measure bladder function. In mice administered AAV9/HPSE2, the viral genome was detected in pelvic ganglia. Human HPSE2 was expressed and heparanase-2 became detectable in pelvic ganglia of treated mutant mice. On autopsy, wild-type mice had empty bladders, whereas bladders were uniformly distended in mutant mice, a defect ameliorated by AAV9/HPSE2 treatment. Therapeutically, AAV9/HPSE2 significantly ameliorated impaired neurogenic relaxation of Hpse2 mutant bladder outflow tracts. Impaired neurogenic contractility of mutant detrusor smooth muscle was also significantly improved. These results constitute first steps towards curing UFS, a clinically devastating genetic disease featuring a bladder autonomic neuropathy.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Celine Grenier
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Benjamin W Jarvis
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Sara Al Mahdy
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adrian Lène-McKay
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alison M Gurney
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Division of Evolution Infection and Genomics, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Simon N Waddington
- Maternal & Fetal Medicine, EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, United Kingdom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Geistlinger L, Mirzayi C, Zohra F, Azhar R, Elsafoury S, Grieve C, Wokaty J, Gamboa-Tuz SD, Sengupta P, Hecht I, Ravikrishnan A, Gonçalves RS, Franzosa E, Raman K, Carey V, Dowd JB, Jones HE, Davis S, Segata N, Huttenhower C, Waldron L. BugSigDB captures patterns of differential abundance across a broad range of host-associated microbial signatures. Nat Biotechnol 2024; 42:790-802. [PMID: 37697152 PMCID: PMC11098749 DOI: 10.1038/s41587-023-01872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/20/2023] [Indexed: 09/13/2023]
Abstract
The literature of human and other host-associated microbiome studies is expanding rapidly, but systematic comparisons among published results of host-associated microbiome signatures of differential abundance remain difficult. We present BugSigDB, a community-editable database of manually curated microbial signatures from published differential abundance studies accompanied by information on study geography, health outcomes, host body site and experimental, epidemiological and statistical methods using controlled vocabulary. The initial release of the database contains >2,500 manually curated signatures from >600 published studies on three host species, enabling high-throughput analysis of signature similarity, taxon enrichment, co-occurrence and coexclusion and consensus signatures. These data allow assessment of microbiome differential abundance within and across experimental conditions, environments or body sites. Database-wide analysis reveals experimental conditions with the highest level of consistency in signatures reported by independent studies and identifies commonalities among disease-associated signatures, including frequent introgression of oral pathobionts into the gut.
Collapse
Affiliation(s)
- Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Chloe Mirzayi
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Fatima Zohra
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Rimsha Azhar
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Shaimaa Elsafoury
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Clare Grieve
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Jennifer Wokaty
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Samuel David Gamboa-Tuz
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | | | - Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Rafael S Gonçalves
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Eric Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Vincent Carey
- Channing Division of Network Medicine, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Jennifer B Dowd
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Heidi E Jones
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Sean Davis
- Departments of Biomedical Informatics and Medicine, University of Colorado Anschutz School of Medicine, Denver, CO, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Istituto Europeo di Oncologia (IEO) IRCSS, Milan, Italy
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA.
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA.
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
8
|
Kumar S, Bhushan B, Kumar A, Panigrahi M, Bharati J, Kumari S, Kaiho K, Banik S, Karthikeyan A, Chaudhary R, Gaur GK, Dutt T. Elucidation of novel SNPs affecting immune response to classical swine fever vaccination in pigs using immunogenomics approach. Vet Res Commun 2024; 48:941-953. [PMID: 38017322 DOI: 10.1007/s11259-023-10262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The host genetic makeup plays a significant role in causing the within-breed variation among individuals after vaccination. The present study was undertaken to elucidate the genetic basis of differential immune response between high and low responder Landlly (Landrace X Ghurrah) piglets vis-à-vis CSF vaccination. For the purpose, E2 antibody response against CSF vaccination was estimated in sampled animals on the day of vaccination and 21-day post-vaccination as a measure of humoral immune response. Double-digestion restriction associated DNA (ddRAD) sequencing was undertaken on 96 randomly chosen Landlly piglets using Illumina HiSeq platform. SNP markers were called using standard methodology. Genome-wide association study (GWAS) was undertaken in PLINK program to identify the informative SNP markers significantly associated with differential immune response. The results revealed significant SNPs associated with E2 antibody response against CSF vaccination. The genome-wide informative SNPs for the humoral immune response against CSF vaccination were located on SSC10, SSC17, SSC9, SSC2, SSC3 and SSC6. The overlapping and flanking genes (500Kb upstream and downstream) of significant SNPs were CYB5R1, PCMTD2, WT1, IL9R, CD101, TMEM64, TLR6, PIGG, ADIPOR1, PRSS37, EIF3M, and DNAJC24. Functional enrichment and annotation analysis were undertaken for these genes in order to gain maximum insights into the association of these genes with immune system functionality in pigs. The genetic makeup was associated with differential immune response against CSF vaccination in Landlly piglets while the identified informative SNPs may be used as suitable markers for determining variation in host immune response against CSF vaccination in pigs.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India.
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India.
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India.
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Jaya Bharati
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Soni Kumari
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Kaisa Kaiho
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Santanu Banik
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - A Karthikeyan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Rajni Chaudhary
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - G K Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| |
Collapse
|
9
|
Gefen AM, Zaritsky JJ. Review of childhood genetic nephrolithiasis and nephrocalcinosis. Front Genet 2024; 15:1381174. [PMID: 38606357 PMCID: PMC11007102 DOI: 10.3389/fgene.2024.1381174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nephrolithiasis (NL) is a common condition worldwide. The incidence of NL and nephrocalcinosis (NC) has been increasing, along with their associated morbidity and economic burden. The etiology of NL and NC is multifactorial and includes both environmental components and genetic components, with multiple studies showing high heritability. Causative gene variants have been detected in up to 32% of children with NL and NC. Children with NL and NC are genotypically heterogenous, but often phenotypically relatively homogenous, and there are subsequently little data on the predictors of genetic childhood NL and NC. Most genetic diseases associated with NL and NC are secondary to hypercalciuria, including those secondary to hypercalcemia, renal phosphate wasting, renal magnesium wasting, distal renal tubular acidosis (RTA), proximal tubulopathies, mixed or variable tubulopathies, Bartter syndrome, hyperaldosteronism and pseudohyperaldosteronism, and hyperparathyroidism and hypoparathyroidism. The remaining minority of genetic diseases associated with NL and NC are secondary to hyperoxaluria, cystinuria, hyperuricosuria, xanthinuria, other metabolic disorders, and multifactorial etiologies. Genome-wide association studies (GWAS) in adults have identified multiple polygenic traits associated with NL and NC, often involving genes that are involved in calcium, phosphorus, magnesium, and vitamin D homeostasis. Compared to adults, there is a relative paucity of studies in children with NL and NC. This review aims to focus on the genetic component of NL and NC in children.
Collapse
Affiliation(s)
- Ashley M. Gefen
- Phoenix Children’s Hospital, Department of Pediatrics, Division of Nephrology, Phoenix, AZ, United States
| | | |
Collapse
|
10
|
Zoller JA, Parasyraki E, Lu AT, Haghani A, Niehrs C, Horvath S. DNA methylation clocks for clawed frogs reveal evolutionary conservation of epigenetic aging. GeroScience 2024; 46:945-960. [PMID: 37270437 PMCID: PMC10828168 DOI: 10.1007/s11357-023-00840-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
To address how conserved DNA methylation-based epigenetic aging is in diverse branches of the tree of life, we generated DNA methylation data from African clawed frogs (Xenopus laevis) and Western clawed frogs (Xenopus tropicalis) and built multiple epigenetic clocks. Dual species clocks were developed that apply to both humans and frogs (human-clawed frog clocks), supporting that epigenetic aging processes are evolutionary conserved outside mammals. Highly conserved positively age-related CpGs are located in neural-developmental genes such as uncx, tfap2d as well as nr4a2 implicated in age-associated disease. We conclude that signatures of epigenetic aging are evolutionary conserved between frogs and mammals and that the associated genes relate to neural processes, altogether opening opportunities to employ Xenopus as a model organism to study aging.
Collapse
Affiliation(s)
- Joseph A Zoller
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.
- German Cancer Research Center (DKFZ), Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Steve Horvath
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| |
Collapse
|
11
|
Ward SK, Wadley A, Tsai CHA, Benke PJ, Emrick L, Fisher K, Houck KM, Dai H, Guillen Sacoto MJ, Craigen W, Glaser K, Murdock DR, Rohena L, Diderich KEM, Bruggenwirth HT, Lee B, Bacino C, Burrage LC, Rosenfeld JA. De novo missense variants in ZBTB47 are associated with developmental delays, hypotonia, seizures, gait abnormalities, and variable movement abnormalities. Am J Med Genet A 2024; 194:17-30. [PMID: 37743782 PMCID: PMC11221546 DOI: 10.1002/ajmg.a.63399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The collection of known genetic etiologies of neurodevelopmental disorders continues to increase, including several syndromes associated with defects in zinc finger protein transcription factors (ZNFs) that vary in clinical severity from mild learning disabilities and developmental delay to refractory seizures and severe autism spectrum disorder. Here we describe a new neurodevelopmental disorder associated with variants in ZBTB47 (also known as ZNF651), which encodes zinc finger and BTB domain-containing protein 47. Exome sequencing (ES) was performed for five unrelated patients with neurodevelopmental disorders. All five patients are heterozygous for a de novo missense variant in ZBTB47, with p.(Glu680Gly) (c.2039A>G) detected in one patient and p.(Glu477Lys) (c.1429G>A) identified in the other four patients. Both variants impact conserved amino acid residues. Bioinformatic analysis of each variant is consistent with pathogenicity. We present five unrelated patients with de novo missense variants in ZBTB47 and a phenotype characterized by developmental delay with intellectual disability, seizures, hypotonia, gait abnormalities, and variable movement abnormalities. We propose that these variants in ZBTB47 are the basis of a new neurodevelopmental disorder.
Collapse
Affiliation(s)
- Scott K Ward
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandrea Wadley
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Chun-Hui Anne Tsai
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - Lisa Emrick
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Kristen Fisher
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Kimberly M Houck
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | | | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Kimberly Glaser
- Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
- Invitae, San Francisco, California, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Luis Rohena
- Department of Pediatrics, Division of Medical Genetics, San Antonio Military Medical Center, San Antonio, Texas, USA
- Department of Pediatrics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Carlos Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, USA
| |
Collapse
|
12
|
Wang X, Delgado J, Marchesotti S, Kojovic N, Sperdin HF, Rihs TA, Schaer M, Giraud AL. Speech Reception in Young Children with Autism Is Selectively Indexed by a Neural Oscillation Coupling Anomaly. J Neurosci 2023; 43:6779-6795. [PMID: 37607822 PMCID: PMC10552944 DOI: 10.1523/jneurosci.0112-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 08/24/2023] Open
Abstract
Communication difficulties are one of the core criteria in diagnosing autism spectrum disorder (ASD), and are often characterized by speech reception difficulties, whose biological underpinnings are not yet identified. This deficit could denote atypical neuronal ensemble activity, as reflected by neural oscillations. Atypical cross-frequency oscillation coupling, in particular, could disrupt the joint tracking and prediction of dynamic acoustic stimuli, a dual process that is essential for speech comprehension. Whether such oscillatory anomalies already exist in very young children with ASD, and with what specificity they relate to individual language reception capacity is unknown. We collected neural activity data using electroencephalography (EEG) in 64 very young children with and without ASD (mean age 3; 17 females, 47 males) while they were exposed to naturalistic-continuous speech. EEG power of frequency bands typically associated with phrase-level chunking (δ, 1-3 Hz), phonemic encoding (low-γ, 25-35 Hz), and top-down control (β, 12-20 Hz) were markedly reduced in ASD relative to typically developing (TD) children. Speech neural tracking by δ and θ (4-8 Hz) oscillations was also weaker in ASD compared with TD children. After controlling gaze-pattern differences, we found that the classical θ/γ coupling was replaced by an atypical β/γ coupling in children with ASD. This anomaly was the single most specific predictor of individual speech reception difficulties in ASD children. These findings suggest that early interventions (e.g., neurostimulation) targeting the disruption of β/γ coupling and the upregulation of θ/γ coupling could improve speech processing coordination in young children with ASD and help them engage in oral interactions.SIGNIFICANCE STATEMENT Very young children already present marked alterations of neural oscillatory activity in response to natural speech at the time of autism spectrum disorder (ASD) diagnosis. Hierarchical processing of phonemic-range and syllabic-range information (θ/γ coupling) is disrupted in ASD children. Abnormal bottom-up (low-γ) and top-down (low-β) coordination specifically predicts speech reception deficits in very young ASD children, and no other cognitive deficit.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France, 75012
| | - Jaime Delgado
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Silvia Marchesotti
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Nada Kojovic
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Holger Franz Sperdin
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Marie Schaer
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Anne-Lise Giraud
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France, 75012
| |
Collapse
|
13
|
Nano PR, Fazzari E, Azizad D, Nguyen CV, Wang S, Kan RL, Wick B, Haeussler M, Bhaduri A. A Meta-Atlas of the Developing Human Cortex Identifies Modules Driving Cell Subtype Specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557406. [PMID: 37745597 PMCID: PMC10515829 DOI: 10.1101/2023.09.12.557406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Human brain development requires the generation of hundreds of diverse cell types, a process targeted by recent single-cell transcriptomic profiling efforts. Through a meta-analysis of seven of these published datasets, we have generated 225 meta-modules - gene co-expression networks that can describe mechanisms underlying cortical development. Several meta-modules have potential roles in both establishing and refining cortical cell type identities, and we validated their spatiotemporal expression in primary human cortical tissues. These include meta-module 20, associated with FEZF2+ deep layer neurons. Half of meta-module 20 genes are putative FEZF2 targets, including TSHZ3, a transcription factor associated with neurodevelopmental disorders. Human cortical organoid experiments validated that both factors are necessary for deep layer neuron specification. Importantly, subtle manipulations of these factors drive slight changes in meta-module activity that cascade into strong differences in cell fate - demonstrating how of our meta-atlas can engender further mechanistic analyses of cortical fate specification.
Collapse
|
14
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
15
|
Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, Sullivan PF, Hindle AG, Andrews G, Armstrong JC, Bianchi M, Breit AM, Diekhans M, Fanter C, Foley NM, Goodman DB, Goodman L, Keough KC, Kirilenko B, Kowalczyk A, Lawless C, Lind AL, Meadows JRS, Moreira LR, Redlich RW, Ryan L, Swofford R, Valenzuela A, Wagner F, Wallerman O, Brown AR, Damas J, Fan K, Gatesy J, Grimshaw J, Johnson J, Kozyrev SV, Lawler AJ, Marinescu VD, Morrill KM, Osmanski A, Paulat NS, Phan BN, Reilly SK, Schäffer DE, Steiner C, Supple MA, Wilder AP, Wirthlin ME, Xue JR, Birren BW, Gazal S, Hubley RM, Koepfli KP, Marques-Bonet T, Meyer WK, Nweeia M, Sabeti PC, Shapiro B, Smit AFA, Springer MS, Teeling EC, Weng Z, Hiller M, Levesque DL, Lewin HA, Murphy WJ, Navarro A, Paten B, Pollard KS, Ray DA, Ruf I, Ryder OA, Pfenning AR, Lindblad-Toh K, Karlsson EK. Evolutionary constraint and innovation across hundreds of placental mammals. Science 2023; 380:eabn3943. [PMID: 37104599 PMCID: PMC10250106 DOI: 10.1126/science.abn3943] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/16/2022] [Indexed: 04/29/2023]
Abstract
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
Collapse
Affiliation(s)
- Matthew J. Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Irene M. Kaplow
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Michael X. Dong
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Allyson G. Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Gregory Andrews
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Joel C. Armstrong
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matteo Bianchi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Ana M. Breit
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Mark Diekhans
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Cornelia Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Nicole M. Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel B. Goodman
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Kathleen C. Keough
- Fauna Bio, Inc., Emeryville, CA 94608, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Bogdan Kirilenko
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Amanda Kowalczyk
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Colleen Lawless
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Abigail L. Lind
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Lucas R. Moreira
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ruby W. Redlich
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Louise Ryan
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Alejandro Valenzuela
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Franziska Wagner
- Museum of Zoology, Senckenberg Natural History Collections Dresden, 01109 Dresden, Germany
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Ashley R. Brown
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joana Damas
- The Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Jenna Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Sergey V. Kozyrev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Voichita D. Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Kathleen M. Morrill
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Austin Osmanski
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - BaDoi N. Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven K. Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cynthia Steiner
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Megan A. Supple
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Aryn P. Wilder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James R. Xue
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven Gazal
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg 197101, Russia
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
| | - Tomas Marques-Bonet
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Martin Nweeia
- Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Vertebrate Zoology, Canadian Museum of Nature, Ottawa, Ontario K2P 2R1, Canada
- Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002, USA
- Narwhal Genome Initiative, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Mark S. Springer
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | | | - Harris A. Lewin
- The Genome Center, University of California Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
- John Muir Institute for the Environment, University of California Davis, Davis, CA 95616, USA
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Arcadi Navarro
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
- CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Benedict Paten
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katherine S. Pollard
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Irina Ruf
- Division of Messel Research and Mammalogy, Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt am Main, Germany
| | - Oliver A. Ryder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
- Department of Evolution, Behavior and Ecology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92039, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Mazón-Cabrera R, Liesenborgs J, Brône B, Vandormael P, Somers V. Novel maternal autoantibodies in autism spectrum disorder: Implications for screening and diagnosis. Front Neurosci 2023; 17:1067833. [PMID: 36816132 PMCID: PMC9932693 DOI: 10.3389/fnins.2023.1067833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder for which early recognition is a major challenge. Autoantibodies against fetal brain antigens have been found in the blood of mothers of children with ASD (m-ASD) and can be transferred to the fetus where they can impact neurodevelopment by binding to fetal brain proteins. This study aims to identify novel maternal autoantibodies reactive against human fetal brain antigens, and explore their use as biomarkers for ASD screening and diagnosis. Methods A custom-made human fetal brain cDNA phage display library was constructed, and screened for antibody reactivity in m-ASD samples from the Simons Simplex Collection (SSC) of the Simons Foundation Autism Research Initiative (SFARI). Antibody reactivity against 6 identified antigens was determined in plasma samples of 238 m-ASD and 90 mothers with typically developing children (m-TD). Results We identified antibodies to 6 novel University Hasselt (UH)-ASD antigens, including three novel m-ASD autoantigens, i.e., ribosomal protein L23 (RPL23), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and calmodulin-regulated spectrin-associated protein 3 (CAMSAP3). Antibody reactivity against a panel of four of these targets was found in 16% of m-ASD samples, compared to 4% in m-TD samples (p = 0.0049). Discussion Maternal antibodies against 4 UH-ASD antigens could therefore provide a novel tool to support the diagnosis of ASD in a subset of individuals.
Collapse
Affiliation(s)
- Rut Mazón-Cabrera
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Transnational University Limburg, Diepenbeek, Belgium
| | - Jori Liesenborgs
- Expertise Centre for Digital Media, UHasselt, Transnational University Limburg, Diepenbeek, Belgium
| | - Bert Brône
- Department of Neurosciences, Biomedical Research Institute, UHasselt, Transnational University Limburg, Diepenbeek, Belgium
| | - Patrick Vandormael
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Transnational University Limburg, Diepenbeek, Belgium
| | - Veerle Somers
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt, Transnational University Limburg, Diepenbeek, Belgium,*Correspondence: Veerle Somers,
| |
Collapse
|
17
|
Koshy A, Mathieux E, Stüder F, Bramoulle A, Lieb M, Colombo BM, Gronemeyer H, Mendoza-Parra MA. Synergistic activation of RARβ and RARγ nuclear receptors restores cell specialization during stem cell differentiation by hijacking RARα-controlled programs. Life Sci Alliance 2023; 6:6/2/e202201627. [PMID: 36446525 PMCID: PMC9711859 DOI: 10.26508/lsa.202201627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
How cells respond to different external cues to develop along defined cell lineages to form complex tissues is a major question in systems biology. Here, we investigated the potential of retinoic acid receptor (RAR)-selective synthetic agonists to activate the gene regulatory programs driving cell specialization during nervous tissue formation from embryonic carcinoma (P19) and mouse embryonic (E14) stem cells. Specifically, we found that the synergistic activation of the RARβ and RARγ by selective ligands (BMS641 or BMS961) induces cell maturation to specialized neuronal subtypes, and to astrocytes and oligodendrocyte precursors. Using RAR isotype knockout lines exposed to RAR-specific agonists, interrogated by global transcriptome landscaping and in silico modeling of transcription regulatory signal propagation, revealed major RARα-driven gene programs essential for optimal neuronal cell specialization and hijacked by the synergistic activation of the RARβ and RARγ receptors. Overall, this study provides a systems biology view of the gene programs accounting for the previously observed redundancy between RARs, paving the way toward their potential use for directing cell specialization during nervous tissue formation.
Collapse
Affiliation(s)
- Aysis Koshy
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Elodie Mathieux
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - François Stüder
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Aude Bramoulle
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Michele Lieb
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Bruno Maria Colombo
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| |
Collapse
|
18
|
Linke AC, Chen B, Olson L, Ibarra C, Fong C, Reynolds S, Apostol M, Kinnear M, Müller RA, Fishman I. Sleep Problems in Preschoolers With Autism Spectrum Disorder Are Associated With Sensory Sensitivities and Thalamocortical Overconnectivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:21-31. [PMID: 34343726 PMCID: PMC9826645 DOI: 10.1016/j.bpsc.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Projections between the thalamus and sensory cortices are established early in development and play an important role in regulating sleep as well as in relaying sensory information to the cortex. Atypical thalamocortical functional connectivity frequently observed in children with autism spectrum disorder (ASD) might therefore be linked to sensory and sleep problems common in ASD. METHODS Here, we investigated the relationship between auditory-thalamic functional connectivity measured during natural sleep functional magnetic resonance imaging, sleep problems, and sound sensitivities in 70 toddlers and preschoolers (1.5-5 years old) with ASD compared with a matched group of 46 typically developing children. RESULTS In children with ASD, sleep problems and sensory sensitivities were positively correlated, and increased sleep latency was associated with overconnectivity between the thalamus and auditory cortex in a subsample with high-quality magnetic resonance imaging data (n = 29). In addition, auditory cortex blood oxygen level-dependent signal amplitude was elevated in children with ASD, potentially reflecting reduced sensory gating or a lack of auditory habituation during natural sleep. CONCLUSIONS These findings indicate that atypical thalamocortical functional connectivity can be detected early in development and may play a crucial role in sleep problems and sensory sensitivities in ASD.
Collapse
Affiliation(s)
- Annika Carola Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.
| | - Bosi Chen
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Lindsay Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Cynthia Ibarra
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Chris Fong
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Sarah Reynolds
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Michael Apostol
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Mikaela Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; SDSU Center for Autism and Developmental Disorders, San Diego, California
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; SDSU Center for Autism and Developmental Disorders, San Diego, California
| |
Collapse
|
19
|
Feichtinger RG, Preisel M, Steinbrücker K, Brugger K, Radda A, Wortmann SB, Mayr JA. A TSHZ3 Frame-Shift Variant Causes Neurodevelopmental and Renal Disorder Consistent with Previously Described Proximal Chromosome 19q13.11 Deletion Syndrome. Genes (Basel) 2022; 13:genes13122191. [PMID: 36553458 PMCID: PMC9778592 DOI: 10.3390/genes13122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Heterozygous deletions at 19q12-q13.11 affecting TSHZ3, the teashirt zinc finger homeobox 3, have been associated with intellectual disability and behavioural issues, congenital anomalies of the kidney and urinary tract (CAKUT), and postnatal growth retardation in humans and mice. TSHZ3 encodes a transcription factor regulating the development of neurons but is ubiquitously expressed. Using exome sequencing, we identified a heterozygous frameshift variant c.119_120dup p.Pro41SerfsTer79 in TSHZ3 in a 7-year-old girl with intellectual disability, behavioural issues, pyelocaliceal dilatation, and mild urethral stenosis. The variant was present on the paternal TSHZ3 allele. The DNA from the father was not available for testing. This is the first report of a heterozygous point mutation in TSHZ3 causing the same phenotype as reported for monoallelic deletions in the same region. This confirms TSHZ3 as a novel disease gene for neurodevelopmental disorder in combination with behavioural issues and CAKUT.
Collapse
Affiliation(s)
- René G. Feichtinger
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Martin Preisel
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Katja Steinbrücker
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Karin Brugger
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Alexandra Radda
- Department of Pediatrics, Hospital Villach, 9500 Villach, Austria
| | - Saskia B. Wortmann
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| | - Johannes A. Mayr
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| |
Collapse
|
20
|
Caubit X, Gubellini P, Roubertoux PL, Carlier M, Molitor J, Chabbert D, Metwaly M, Salin P, Fatmi A, Belaidouni Y, Brosse L, Kerkerian-Le Goff L, Fasano L. Targeted Tshz3 deletion in corticostriatal circuit components segregates core autistic behaviors. Transl Psychiatry 2022; 12:106. [PMID: 35292625 PMCID: PMC8924251 DOI: 10.1038/s41398-022-01865-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/15/2023] Open
Abstract
We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells. In the striatum, TSHZ3 is expressed in all SCINs, while its expression is absent or partial in the other main brain cholinergic systems. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and impaired plasticity at corticostriatal synapses, with neither cortical neuron loss nor abnormal layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.
Collapse
Affiliation(s)
- Xavier Caubit
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Paolo Gubellini
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pierre L. Roubertoux
- grid.5399.60000 0001 2176 4817Aix-Marseille Univ, INSERM, MMG, UMR1251 Marseille, France
| | - Michèle Carlier
- grid.463724.00000 0004 0385 2989Aix-Marseille Univ, CNRS, LPC, UMR7290 Marseille, France
| | - Jordan Molitor
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Dorian Chabbert
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Mehdi Metwaly
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pascal Salin
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Ahmed Fatmi
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Yasmine Belaidouni
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Lucie Brosse
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | | | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France.
| |
Collapse
|
21
|
Sanchez-Martin I, Magalhães P, Ranjzad P, Fatmi A, Richard F, Manh TPV, Saurin AJ, Feuillet G, Denis C, Woolf AS, Schanstra JP, Zürbig P, Caubit X, Fasano L. Haploinsufficiency of the mouse Tshz3 gene leads to kidney defects. Hum Mol Genet 2021; 31:1921-1945. [PMID: 34919690 DOI: 10.1093/hmg/ddab362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Renal tract defects and autism spectrum disorder (ASD) deficits represent the phenotypic core of the 19q12 deletion syndrome caused by the loss of one copy of the TSHZ3 gene. While a proportion of Tshz3 heterozygous (Tshz3+/lacZ) mice display ureteral defects, no kidney defects have been reported in these mice. The purpose of this study was to characterize the expression of Tshz3 in adult kidney as well as the renal consequences of embryonic haploinsufficiency of Tshz3 by analyzing the morphology and function of Tshz3 heterozygous adult kidney. Here, we described Tshz3 expression in the smooth muscle and stromal cells lining the renal pelvis, the papilla and glomerular endothelial cells (GEnCs) of the adult kidney as well as in the proximal nephron tubules in neonatal mice. Histological analysis showed that Tshz3+/lacZ adult kidney had an average of 29% fewer glomeruli than wild type kidney. Transmission electron microscopy (TEM) of Tshz3+/lacZ glomeruli revealed a reduced thickness of the glomerular basement membrane and a larger foot process width. Compared to wild type, Tshz3+/lacZ mice showed lower blood urea, phosphates, magnesium and potassium at 2 months of age. At the molecular level, transcriptome analysis identified differentially expressed genes related to inflammatory processes in Tshz3+/lacZ compare to wild type (WT; control) adult kidneys. Lastly, analysis of the urinary peptidome revealed 33 peptides associated with Tshz3+/lacZ adult mice. These results provide the first evidence that in the mouse Tshz3 haploinsufficiency leads to cellular, molecular and functional abnormalities in the adult mouse kidney.
Collapse
Affiliation(s)
| | | | - Parisa Ranjzad
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Ahmed Fatmi
- Aix Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France
| | | | - Thien Phong Vu Manh
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | | | - Xavier Caubit
- Aix Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France
| | - Laurent Fasano
- Aix Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France
| |
Collapse
|
22
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
23
|
Nadeem MS, Hosawi S, Alshehri S, Ghoneim MM, Imam SS, Murtaza BN, Kazmi I. Symptomatic, Genetic, and Mechanistic Overlaps between Autism and Alzheimer's Disease. Biomolecules 2021; 11:1635. [PMID: 34827633 PMCID: PMC8615882 DOI: 10.3390/biom11111635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Autism spectrum disorder (ASD) and Alzheimer's disease (AD) are neurodevelopmental and neurodegenerative disorders affecting two opposite ends of life span, i.e., childhood and old age. Both disorders pose a cumulative threat to human health, with the rate of incidences increasing considerably worldwide. In the context of recent developments, we aimed to review correlated symptoms and genetics, and overlapping aspects in the mechanisms of the pathogenesis of ASD and AD. Dementia, insomnia, and weak neuromuscular interaction, as well as communicative and cognitive impairments, are shared symptoms. A number of genes and proteins linked with both disorders have been tabulated, including MECP2, ADNP, SCN2A, NLGN, SHANK, PTEN, RELN, and FMR1. Theories about the role of neuron development, processing, connectivity, and levels of neurotransmitters in both disorders have been discussed. Based on the recent literature, the roles of FMRP (Fragile X mental retardation protein), hnRNPC (heterogeneous ribonucleoprotein-C), IRP (Iron regulatory proteins), miRNAs (MicroRNAs), and α-, β0, and γ-secretases in the posttranscriptional regulation of cellular synthesis and processing of APP (amyloid-β precursor protein) have been elaborated to describe the parallel and overlapping routes and mechanisms of ASD and AD pathogenesis. However, the interactive role of genetic and environmental factors, oxidative and metal ion stress, mutations in the associated genes, and alterations in the related cellular pathways in the development of ASD and AD needs further investigation.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.S.N.); (S.H.)
| |
Collapse
|
24
|
Zhou Y, Wang S, Yin X, Gao G, Wang Q, Zhi Q, Han Y, Kuang Y. TSHZ3 functions as a tumor suppressor by DNA methylation in colorectal cancer. Clin Res Hepatol Gastroenterol 2021; 45:101725. [PMID: 34089916 DOI: 10.1016/j.clinre.2021.101725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Teashirt zinc finger homeobox 3 (TSHZ3) is currently reported to be aberrantly expressed in several tumors, but the detailed functions and epigenetic mechanisms of TSHZ3 in colorectal cancer (CRC) remain unclear. MATERIALS AND METHODS In this study, the TSHZ3 expression in 118 CRC and normal adjacent tissues (NATs) was evaluated, and the methylation status of the TSZH3 promoter region in CRC tissues and cell lines was also analyzed. RESULTS The results of PCR analysis showed that TSHZ3 was significantly down-regulated in CRC tissues, and patients with low TSHZ3 levels had a poorer 5-year overall survival (OS) rate. Analyzing the promoter sequence (-1000∼0) by MethPrimer, TSHZ3 promoter was found to harbor abundant of CpG islands. The methylation specific PCR (MSP) analysis presented a relatively hypermethylated status of THSZ3 promoter in CRC samples. The data of MSP and bisulfite sequencing PCR (BSP) also confirmed that CpG sites of TSHZ3 promoter were methylated in CRC cells, and the DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) could effectively restored the TSHZ3 expression in vitro. Functionally, the proliferation, apoptosis and metastasis of CRC cells were regulated by TSZH3 over-expression, and the suppressing effects of TSHZ3 in CRC were also confirmed in a xenograft mouse model. CONLUSIONS Our results indicated that promoter methylation was one of the mechanisms contributing to the down-regulation of TSHZ3 in CRC, and TSZH3 might served as a potential tumor suppressor gene in the development and progression of CRC.
Collapse
Affiliation(s)
- Youxin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Sentai Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuequn Yin
- Department of Anesthesia Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital, Wujiang, Jiangsu, 215228, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
25
|
Lopes FM, Woolf AS, Roberts NA. Envisioning treating genetically-defined urinary tract malformations with viral vector-mediated gene therapy. J Pediatr Urol 2021; 17:610-620. [PMID: 34312114 DOI: 10.1016/j.jpurol.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022]
Abstract
Human urinary tract malformations can cause dysfunctional voiding, urosepsis and kidney failure. Other affected individuals, with severe phenotypes on fetal ultrasound screening, undergo elective termination. Currently, there exist no specific treatments that target the primary biological disease mechanisms that generate these urinary tract malformations. Historically, the pathogenesis of human urinary tract malformations has been obscure. It is now established that some such individuals have defined monogenic causes for their disease. In health, the implicated genes are expressed in either differentiating urinary tract smooth muscle cells, urothelial cells or peripheral nerve cells supplying the bladder. The phenotypes arising from mutations of these genes include megabladder, congenital functional bladder outflow obstruction, and vesicoureteric reflux. We contend that these genetic and molecular insights can now inform the design of novel therapies involving viral vector-mediated gene transfer. Indeed, this technology is being used to treat individuals with early onset monogenic disease outside the urinary tract, such as spinal muscular atrophy. Moreover, it has been contended that human fetal gene therapy, which may be necessary to ameliorate developmental defects, could become a reality in the coming decades. We suggest that viral vector-mediated gene therapies should first be tested in existing mouse models with similar monogenic and anatomical aberrations as found in people with urinary tract malformations. Indeed, gene transfer protocols have been successfully pioneered in newborn and fetal mice to treat non-urinary tract diseases. If similar strategies were successful in animals with urinary tract malformations, this would pave the way for personalized and potentially curative treatments for people with urinary tract malformations.
Collapse
Affiliation(s)
- Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| |
Collapse
|
26
|
Major AT, Estermann MA, Roly ZY, Smith CA. An evo-devo perspective of the female reproductive tract. Biol Reprod 2021; 106:9-23. [PMID: 34494091 DOI: 10.1093/biolre/ioab166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/22/2023] Open
Abstract
The vertebrate female reproductive tract has undergone considerable diversification over evolution, having become physiologically adapted to different reproductive strategies. This review considers the female reproductive tract from the perspective of evolutionary developmental biology (evo-devo). Very little is known about how the evolution of this organ system has been driven at the molecular level. In most vertebrates, the female reproductive tract develops from paired embryonic tubes, the Müllerian ducts. We propose that formation of the Müllerian duct is a conserved process that has involved co-option of genes and molecular pathways involved in tubulogenesis in the adjacent mesonephric kidney and Wolffian duct. Downstream of this conservation, genetic regulatory divergence has occurred, generating diversity in duct structure. Plasticity of the Hox gene code and wnt signaling, in particular, may underlie morphological variation of the uterus in mammals, and evolution of the vagina. This developmental plasticity in Hox and Wnt activity may also apply to other vertebrates, generating the morphological diversity of female reproductive tracts evident today.
Collapse
Affiliation(s)
- Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800. Australia
| | - Martin A Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800. Australia
| | - Zahida Y Roly
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800. Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800. Australia
| |
Collapse
|
27
|
Caubit X, Arbeille E, Chabbert D, Desprez F, Messak I, Fatmi A, Habermann B, Gubellini P, Fasano L. Camk2a-Cre and Tshz3 Expression in Mouse Striatal Cholinergic Interneurons: Implications for Autism Spectrum Disorder. Front Genet 2021; 12:683959. [PMID: 34349780 PMCID: PMC8328143 DOI: 10.3389/fgene.2021.683959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Camk2a-Cre mice have been widely used to study the postnatal function of several genes in forebrain projection neurons, including cortical projection neurons (CPNs) and striatal medium-sized spiny neurons (MSNs). We linked heterozygous deletion of TSHZ3/Tshz3 gene to autism spectrum disorder (ASD) and used Camk2a-Cre mice to investigate the postnatal function of Tshz3, which is expressed by CPNs but not MSNs. Recently, single-cell transcriptomics of the adult mouse striatum revealed the expression of Camk2a in interneurons and showed Tshz3 expression in striatal cholinergic interneurons (SCINs), which are attracting increasing interest in the field of ASD. These data and the phenotypic similarity between the mice with Tshz3 haploinsufficiency and Camk2a-Cre-dependent conditional deletion of Tshz3 (Camk2a-cKO) prompted us to better characterize the expression of Tshz3 and the activity of Camk2a-Cre transgene in the striatum. Here, we show that the great majority of Tshz3-expressing cells are SCINs and that all SCINs express Tshz3. Using lineage tracing, we demonstrate that the Camk2a-Cre transgene is expressed in the SCIN lineage where it can efficiently elicit the deletion of the Tshz3-floxed allele. Moreover, transcriptomic and bioinformatic analysis in Camk2a-cKO mice showed dysregulated striatal expression of a number of genes, including genes whose human orthologues are associated with ASD and synaptic signaling. These findings identifying the expression of the Camk2a-Cre transgene in SCINs lineage lead to a reappraisal of the interpretation of experiments using Camk2a-Cre-dependent gene manipulations. They are also useful to decipher the cellular and molecular substrates of the ASD-related behavioral abnormalities observed in Tshz3 mouse models.
Collapse
Affiliation(s)
- Xavier Caubit
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Elise Arbeille
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Dorian Chabbert
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Florence Desprez
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Imane Messak
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Ahmed Fatmi
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Bianca Habermann
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Paolo Gubellini
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Laurent Fasano
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
28
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
29
|
Peng W, Tu G, Zhao Z, He B, Cai Q, Zhang P, Peng X, Shi S, Wang X. DNA methylome and transcriptome analysis established a model of four differentially methylated positions (DMPs) as a diagnostic marker in esophageal adenocarcinoma early detection. PeerJ 2021; 9:e11355. [PMID: 34012728 PMCID: PMC8109010 DOI: 10.7717/peerj.11355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal carcinogenesis involves in alterations of DNA methylation and gene transcription. This study profiled genomic DNA methylome vs. gene expression using transcriptome data on esophageal adenocarcinoma (EAC) tissues from the online databases in order to identify methylation biomarkers in EAC early diagnosis. Materials and Methods The DNA methylome and transcriptome data were downloaded from the UCSC Xena, Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) databases and then bioinformatically analyzed for the differentially methylated positions (DMPs) vs. gene expression between EAC and normal tissues. The highly methylated DMPs vs. reduced gene expression in EAC were selected and then stratified with those of the corresponding normal blood samples and other common human cancers to construct an EAC-specific diagnostic model. The usefulness of this model was further verified in other three GEO datasets of EAC tissues. Result A total of 841 DMPs were associated with expression of 320 genes, some of which were aberrantly methylated in EAC tissues. Further analysis showed that four (cg07589773, cg10474350, cg13011388 and cg15208375 mapped to gene IKZF1, HOXA7, EFS and TSHZ3, respectively) of these 841 DMPs could form and establish a diagnostic model after stratified them with the corresponding normal blood samples and other common human cancers. The data were further validated in other three GEO datasets on EAC tissues in early EAC diagnosis. Conclusion This study revealed a diagnostic model of four genes methylation to diagnose EAC early. Further study will confirm the usefulness of this model in a prospective EAC cases.
Collapse
Affiliation(s)
- Weilin Peng
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Guangxu Tu
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Boxue He
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Pengfei Zhang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Xiong Peng
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Shuai Shi
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Liu SJ, Magill ST, Vasudevan HN, Hilz S, Villanueva-Meyer JE, Lastella S, Daggubati V, Spatz J, Choudhury A, Orr BA, Demaree B, Seo K, Ferris SP, Abate AR, Oberheim Bush NA, Bollen AW, McDermott MW, Costello JF, Raleigh DR. Multiplatform Molecular Profiling Reveals Epigenomic Intratumor Heterogeneity in Ependymoma. Cell Rep 2021; 30:1300-1309.e5. [PMID: 32023450 PMCID: PMC7313374 DOI: 10.1016/j.celrep.2020.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/19/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
Ependymomas exist within distinct genetic subgroups, but the molecular diversity within individual ependymomas is unknown. We perform multiplatform molecular profiling of 6 spatially distinct samples from an ependymoma with C11orf95-RELA fusion. DNA methylation and RNA sequencing distinguish clusters of samples according to neuronal development gene expression programs that could also be delineated by differences in magnetic resonance blood perfusion. Exome sequencing and phylogenetic analysis reveal epigenomic intratumor heterogeneity and suggest that chromosomal structural alterations may precede accumulation of single-nucleotide variants during ependymoma tumorigenesis. In sum, these findings shed light on the oncogenesis and intratumor heterogeneity of ependymoma. Tumor heterogeneity poses a barrier to cancer treatment. Liu etal. investigate radiographically distinct regions of an ependymoma tumor using transcriptomic, genetic, and epigenomic profiling and discover axes of gene expression programs that recapitulate normal brain development in addition to phylogenies that shed light on the tumorigenesis of ependymoma.
Collapse
Affiliation(s)
- S John Liu
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephen T Magill
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sydney Lastella
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikas Daggubati
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jordan Spatz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin Demaree
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sean P Ferris
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael W McDermott
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Disruption of NEUROD2 causes a neurodevelopmental syndrome with autistic features via cell-autonomous defects in forebrain glutamatergic neurons. Mol Psychiatry 2021; 26:6125-6148. [PMID: 34188164 PMCID: PMC8760061 DOI: 10.1038/s41380-021-01179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.
Collapse
|
32
|
Abstract
Neurodevelopmental impairments have been recognised as a major association of paediatric kidney disease and bladder dysfunction, presenting challenges to clinicians and families to provide reasonable adjustments in order to allow access to investigations and treatments. Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterised by impairments in social interaction/communication and repetitive sensory-motor behaviours. Mental health, learning and physical co-morbidities are common. There is emerging evidence that ASD and kidney disease have some overlaps with genetic copy number variants and environmental factors contributing to shared pathogenesis. Prevalence rates of ASD in kidney disease are currently not known. A high index of suspicion of underlying ASD is required when a young person presents with communication difficulties, anxiety or behaviour that challenges, which should then trigger referral for a neurodevelopmental and behavioural assessment. We discuss practical approaches for providing care, which include understanding methods of communication and sensory, behavioural and environmental adaptations.
Collapse
|
33
|
Wolfe MB, Schagat TL, Paulsen MT, Magnuson B, Ljungman M, Park D, Zhang C, Campbell ZT, Goldstrohm AC, Freddolino PL. Principles of mRNA control by human PUM proteins elucidated from multimodal experiments and integrative data analysis. RNA (NEW YORK, N.Y.) 2020; 26:1680-1703. [PMID: 32753408 PMCID: PMC7566576 DOI: 10.1261/rna.077362.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 05/27/2023]
Abstract
The human PUF-family proteins, PUM1 and PUM2, posttranscriptionally regulate gene expression by binding to a PUM recognition element (PRE) in the 3'-UTR of target mRNAs. Hundreds of PUM1/2 targets have been identified from changes in steady-state RNA levels; however, prior studies could not differentiate between the contributions of changes in transcription and RNA decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to depletion of PUM1/2, showing that human PUM proteins regulate expression almost exclusively by changing RNA stability. We also applied an in vitro selection workflow to precisely identify the binding preferences of PUM1 and PUM2. By integrating our results with prior knowledge, we developed a "rulebook" of key contextual features that differentiate functional versus nonfunctional PREs, allowing us to train machine learning models that accurately predict the functional regulation of RNA targets by the human PUM proteins.
Collapse
Affiliation(s)
- Michael B Wolfe
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daeyoon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Chi Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
34
|
Trajanoska K, Seppala LJ, Medina-Gomez C, Hsu YH, Zhou S, van Schoor NM, de Groot LCPGM, Karasik D, Richards JB, Kiel DP, Uitterlinden AG, Perry JRB, van der Velde N, Day FR, Rivadeneira F. Genetic basis of falling risk susceptibility in the UK Biobank Study. Commun Biol 2020; 3:543. [PMID: 32999390 PMCID: PMC7527955 DOI: 10.1038/s42003-020-01256-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
Both extrinsic and intrinsic factors predispose older people to fall. We performed a genome-wide association analysis to investigate how much of an individual’s fall susceptibility can be attributed to genetics in 89,076 cases and 362,103 controls from the UK Biobank Study. The analysis revealed a small, but significant SNP-based heritability (2.7%) and identified three novel fall-associated loci (Pcombined ≤ 5 × 10−8). Polygenic risk scores in two independent settings showed patterns of polygenic inheritance. Risk of falling had positive genetic correlations with fractures, identifying for the first time a pathway independent of bone mineral density. There were also positive genetic correlations with insomnia, neuroticism, depressive symptoms, and different medications. Negative genetic correlations were identified with muscle strength, intelligence and subjective well-being. Brain, and in particular cerebellum tissue, showed the highest gene expression enrichment for fall-associated variants. Overall, despite the highly heterogenic nature underlying fall risk, a proportion of the susceptibility can be attributed to genetics. Katerina Trajanoska et al. report a genome-wide association study of self-reported falls in UK Biobank participants. They identify three novel fall-associated loci and find that risk of falling shows patterns of polygenic inheritance and a SNP-based heritability of 2.7%.
Collapse
Affiliation(s)
- Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lotta J Seppala
- Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Broad Institute of MIT and Harvard, Boston, MA, USA.,Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| | - Sirui Zhou
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands
| | - Lisette C P G M de Groot
- Wageningen University, Division of Human Nutrition, PO-box 17, 6700 AA, Wageningen, The Netherlands
| | - David Karasik
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - J Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Departments of Medicine and Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Broad Institute of MIT and Harvard, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - John R B Perry
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nathalie van der Velde
- Department of Internal Medicine, Section of Geriatric Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Felix R Day
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Guo Y, Chung W, Zhu Z, Shan Z, Li J, Liu S, Liang L. Genome-Wide Assessment for Resting Heart Rate and Shared Genetics With Cardiometabolic Traits and Type 2 Diabetes. J Am Coll Cardiol 2020; 74:2162-2174. [PMID: 31648709 DOI: 10.1016/j.jacc.2019.08.1055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/24/2019] [Accepted: 08/05/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND High resting heart rate (RHR) occurs in parallel with type 2 diabetes (T2D) and metabolic disorders, implying shared etiology between them. However, it is unknown if they are causally related, and no study has been conducted to investigate the shared mechanisms underlying these associations. OBJECTIVES The objective of this study was to understand the genetic basis of the association between resting heart rate and cardiometabolic disorders/T2D. METHODS This study examined the genetic correlation, causality, and shared genetics between RHR and T2D using LD Score regression, generalized summary data-based Mendelian randomization, and transcriptome wide association scan (TWAS) in UK Biobank data (n = 428,250) and summary-level data for T2D (74,124 cases and 824,006 control subjects) and 8 cardiometabolic traits (sample size ranges from 51,750 to 236,231). RESULTS Significant genetic correlation between RHR and T2D (rg = 0.22; 95% confidence interval: 0.18 to 0.26; p = 1.99 × 10-22), and 6 cardiometabolic traits (fasting insulin, fasting glucose, waist-hip ratio, triglycerides, high-density lipoprotein, and body mass index; rg range -0.12 to 0.24; all p < 0.05) were observed. RHR has significant estimated causal effect on T2D (odds ratio: 1.12 per 10-beats/min increment; p = 7.79 × 10-11) and weaker causal estimates from T2D to RHR (0.32 beats/min per doubling increment in T2D prevalence; p = 6.14 × 10-54). Sensitivity analysis by controlling for the included cardiometabolic traits did not modify the relationship between RHR and T2D. TWAS found locus chr2q23.3 (rs1260326) was highly pleiotropic among RHR, cardiometabolic traits, and T2D, and identified 7 genes (SMARCAD1, RP11-53O19.3, CTC-498M16.4, PDE8B, AKTIP, KDM4B, and TSHZ3) that were statistically independent and shared between RHR and T2D in tissues from the nervous and cardiovascular systems. These shared genes suggested the involvement of epigenetic regulation of energy and glucose metabolism, and AKT activation-related telomere dysfunction and vascular endothelial aging in the shared etiologies between RHR and T2D. Finally, FADS1 was found to be shared among RHR, fasting glucose, high-density lipoprotein, and triglycerides. CONCLUSIONS These findings provide evidence of significant genetic correlations and causation between RHR and T2D/cardiometabolic traits, advance our understanding of RHR, and provide insight into shared etiology for high RHR and T2D.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zhilei Shan
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Simin Liu
- Departments of Epidemiology, Medicine, and Center for Global Cardiometabolic Health (CGCH), Brown University, Providence, Rhode Island
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
36
|
Milh M, Roubertoux P, Biba N, Chavany J, Spiga Ghata A, Fulachier C, Collins SC, Wagner C, Roux JC, Yalcin B, Félix MS, Molinari F, Lenck-Santini PP, Villard L. A knock-in mouse model for KCNQ2-related epileptic encephalopathy displays spontaneous generalized seizures and cognitive impairment. Epilepsia 2020; 61:868-878. [PMID: 32239694 PMCID: PMC7317210 DOI: 10.1111/epi.16494] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
Objective Early onset epileptic encephalopathy with suppression‐burst is one of the most severe epilepsy phenotypes in human patients. A significant proportion of cases have a genetic origin, and the most frequently mutated gene is KCNQ2, encoding Kv7.2, a voltage‐dependent potassium channel subunit, leading to so‐called KCNQ2‐related epileptic encephalopathy (KCNQ2‐REE). To study the pathophysiology of KCNQ2‐REE in detail and to provide a relevant preclinical model, we generated and described a knock‐in mouse model carrying the recurrent p.(Thr274Met) variant. Methods We introduced the p.(Thr274Met) variant by homologous recombination in embryonic stem cells, injected into C57Bl/6N blastocysts and implanted in pseudopregnant mice. Mice were then bred with 129Sv Cre‐deleter to generate heterozygous mice carrying the p.(Thr274Met), and animals were maintained on the 129Sv genetic background. We studied the development of this new model and performed in vivo electroencephalographic (EEG) recordings, neuroanatomical studies at different time points, and multiple behavioral tests. Results The Kcnq2Thr274Met/+ mice are viable and display generalized spontaneous seizures first observed between postnatal day 20 (P20) and P30. In vivo EEG recordings show that the paroxysmal events observed macroscopically are epileptic seizures. The brain of the Kcnq2Thr274Met/+ animals does not display major structural defects, similar to humans, and their body weight is normal. Kcnq2Thr274Met/+ mice have a reduced life span, with a peak of unexpected death occurring for 25% of the animals by 3 months of age. Epileptic seizures were generally not observed when animals grew older. Behavioral characterization reveals important deficits in spatial learning and memory in adults but no gross abnormality during early neurosensory development. Significance Taken together, our results indicate that we have generated a relevant model to study the pathophysiology of KCNQ2‐related epileptic encephalopathy and perform preclinical research for that devastating and currently intractable disease.
Collapse
Affiliation(s)
- Mathieu Milh
- Aix Marseille Univ, Inserm, MMG, Marseille, France.,Department of Pediatric Neurology, La Timone Children's Hospital, Marseille, France
| | | | - Najoua Biba
- Aix-Marseille University, Inmed, Inserm, U1249, Marseille, France
| | - Julie Chavany
- Aix Marseille Univ, Inserm, MMG, Marseille, France.,Department of Pediatric Neurology, La Timone Children's Hospital, Marseille, France
| | | | | | | | | | | | | | | | - Florence Molinari
- Aix Marseille Univ, Inserm, MMG, Marseille, France.,Aix-Marseille University, Inmed, Inserm, U1249, Marseille, France
| | | | - Laurent Villard
- Aix Marseille Univ, Inserm, MMG, Marseille, France.,Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
| |
Collapse
|
37
|
Kast RJ, Wu HH, Levitt P. Developmental Connectivity and Molecular Phenotypes of Unique Cortical Projection Neurons that Express a Synapse-Associated Receptor Tyrosine Kinase. Cereb Cortex 2020; 29:189-201. [PMID: 29190358 DOI: 10.1093/cercor/bhx318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
The complex circuitry and cell-type diversity of the cerebral cortex are required for its high-level functions. The mechanisms underlying the diversification of cortical neurons during prenatal development have received substantial attention, but understanding of neuronal heterogeneity is more limited during later periods of cortical circuit maturation. To address this knowledge gap, connectivity analysis and molecular phenotyping of cortical neuron subtypes that express the developing synapse-enriched MET receptor tyrosine kinase were performed. Experiments used a MetGFP transgenic mouse line, combined with coexpression analysis of class-specific molecular markers and retrograde connectivity mapping. The results reveal that MET is expressed by a minor subset of subcerebral and a larger number of intratelencephalic projection neurons. Remarkably, MET is excluded from most layer 6 corticothalamic neurons. These findings are particularly relevant for understanding the maturation of discrete cortical circuits, given converging evidence that MET influences dendritic elaboration and glutamatergic synapse maturation. The data suggest that classically defined cortical projection classes can be further subdivided based on molecular characteristics that likely influence synaptic maturation and circuit wiring. Additionally, given that MET is classified as a high confidence autism risk gene, the data suggest that projection neuron subpopulations may be differentially vulnerable to disorder-associated genetic variation.
Collapse
Affiliation(s)
- Ryan J Kast
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.,Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,The Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hsiao-Huei Wu
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,The Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.,Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,The Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Al-Naama N, Mackeh R, Kino T. C 2H 2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front Neurol 2020; 11:32. [PMID: 32117005 PMCID: PMC7034409 DOI: 10.3389/fneur.2020.00032] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions manifested with intellectual disability, autistic features, psychiatric problems, motor dysfunction, and/or genetic/chromosomal abnormalities. They are associated with skewed neurogenesis and brain development, in part through dysfunction of the neural stem cells (NSCs) where abnormal transcriptional regulation on key genes play significant roles. Recent accumulated evidence highlights C2H2-type zinc finger proteins (C2H2-ZNFs), the largest transcription factor family in humans, as important targets for the pathologic processes associated with NDDs. In this review, we identified their significant accumulation (74 C2H2-ZNFs: ~10% of all human member proteins) in brain physiology and pathology. Specifically, we discuss their physiologic contribution to brain development, particularly focusing on their actions in NSCs. We then explain their pathologic implications in various forms of NDDs, such as morphological brain abnormalities, intellectual disabilities, and psychiatric disorders. We found an important tendency that poly-ZNFs and KRAB-ZNFs tend to be involved in the diseases that compromise gross brain structure and human-specific higher-order functions, respectively. This may be consistent with their characteristic appearance in the course of species evolution and corresponding contribution to these brain activities.
Collapse
Affiliation(s)
- Njoud Al-Naama
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
39
|
Chu CH, Chen JS, Chuang PC, Su CH, Chan YL, Yang YJ, Chiang YT, Su YY, Gean PW, Sun HS. TIAM2S as a novel regulator for serotonin level enhances brain plasticity and locomotion behavior. FASEB J 2020; 34:3267-3288. [PMID: 31908036 DOI: 10.1096/fj.201901323r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 11/11/2022]
Abstract
TIAM2S, the short form of human T-cell lymphoma invasion and metastasis 2, can have oncogenic effects when aberrantly expressed in the liver or lungs. However, it is also abundant in healthy, non-neoplastic brain tissue, in which its primary function is still unknown. Here, we examined the neurobiological and behavioral significance of human TIAM2S using the human brain protein panels, a human NT2/D1-derived neuronal cell line model (NT2/N), and transgenic mice that overexpress human TIAM2S (TIAM2S-TG). Our data reveal that TIAM2S exists primarily in neurons of the restricted brain areas around the limbic system and in well-differentiated NT2/N cells. Functional studies revealed that TIAM2S has no guanine nucleotide exchange factor (GEF) activity and is mainly located in the nucleus. Furthermore, whole-transcriptome and enrichment analysis with total RNA sequencing revealed that TIAM2S-knockdown (TIAM2S-KD) was strongly associated with the cellular processes of the brain structural development and differentiation, serotonin-related signaling, and the diseases markers representing neurobehavioral developmental disorders. Moreover, TIAM2S-KD cells display decreased neurite outgrowth and reduced serotonin levels. Moreover, TIAM2S overexpressing TG mice show increased number and length of serotonergic fibers at early postnatal stage, results in higher serotonin levels at both the serum and brain regions, and higher neuroplasticity and hyperlocomotion in latter adulthood. Taken together, our results illustrate the non-oncogenic functions of human TIAM2S and demonstrate that TIAM2S is a novel regulator of serotonin level, brain neuroplasticity, and locomotion behavior.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Shing Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Chan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Ju Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ya Su
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
40
|
Cellular and molecular characterization of multiplex autism in human induced pluripotent stem cell-derived neurons. Mol Autism 2019; 10:51. [PMID: 31893020 PMCID: PMC6936127 DOI: 10.1186/s13229-019-0306-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with pronounced heritability in the general population. This is largely attributable to the effects of polygenic susceptibility, with inherited liability exhibiting distinct sex differences in phenotypic expression. Attempts to model ASD in human cellular systems have principally involved rare de novo mutations associated with ASD phenocopies. However, by definition, these models are not representative of polygenic liability, which accounts for the vast share of population-attributable risk. Methods Here, we performed what is, to our knowledge, the first attempt to model multiplex autism using patient-derived induced pluripotent stem cells (iPSCs) in a family manifesting incremental degrees of phenotypic expression of inherited liability (absent, intermediate, severe). The family members share an inherited variant of uncertain significance (VUS) in GPD2, a gene that was previously associated with developmental disability but here is insufficient by itself to cause ASD. iPSCs from three first-degree relatives and an unrelated control were differentiated into both cortical excitatory (cExN) and cortical inhibitory (cIN) neurons, and cellular phenotyping and transcriptomic analysis were conducted. Results cExN neurospheres from the two affected individuals were reduced in size, compared to those derived from unaffected related and unrelated individuals. This reduction was, at least in part, due to increased apoptosis of cells from affected individuals upon initiation of cExN neural induction. Likewise, cIN neural progenitor cells from affected individuals exhibited increased apoptosis, compared to both unaffected individuals. Transcriptomic analysis of both cExN and cIN neural progenitor cells revealed distinct molecular signatures associated with affectation, including the misregulation of suites of genes associated with neural development, neuronal function, and behavior, as well as altered expression of ASD risk-associated genes. Conclusions We have provided evidence of morphological, physiological, and transcriptomic signatures of polygenic liability to ASD from an analysis of cellular models derived from a multiplex autism family. ASD is commonly inherited on the basis of additive genetic liability. Therefore, identifying convergent cellular and molecular phenotypes resulting from polygenic and monogenic susceptibility may provide a critical bridge for determining which of the disparate effects of rare highly deleterious mutations might also apply to common autistic syndromes.
Collapse
|
41
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
42
|
Duan W, Wang K, Duan Y, Chu X, Ma R, Hu P, Xiong B. Integrated Transcriptome Analyses Revealed Key Target Genes in Mouse Models of Autism. Autism Res 2019; 13:352-368. [PMID: 31743624 DOI: 10.1002/aur.2240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
Genetic mutations are the major pathogenic factor of Autism Spectrum Disorder (ASD). In recent years, more and more ASD risk genes have been revealed, among which there are a group of transcriptional regulators. Considering the similarity of the core clinical phenotypes, it is possible that these different factors may regulate the expression levels of certain key targets. Identification of these targets could facilitate the understanding of the etiology and developing of novel diagnostic and therapeutic methods. Therefore, we performed integrated transcriptome analyses of RNA-Seq and microarray data in multiple ASD mouse models and identified a number of common downstream genes in various brain regions, many of which are related to the structure and function of the synapse components or drug addiction. We then established protein-protein interaction networks of the overlapped targets and isolated the hub genes by 11 algorithms based on the topological structure of the networks, including Sdc4, Vegfa, and Cp in the Cortex-Adult subgroup, Gria1 in the Cortex-Juvenile subgroup, and Kdr, S1pr1, Ubc, Grm2, Grin2b, Nrxn1, Pdyn, Grin3a, Itgam, Grin2a, Gabra2, and Camk4 in the Hippocampus-Adult subgroup, many of which have been associated with ASD in previous studies. Finally, we cross compared our results with human brain transcriptional data sets and verified several key candidates, which may play important role in the pathology process of ASD, including SDC4, CP, S1PR1, UBC, PDYN, GRIN2A, GABRA2, and CAMK4. In summary, by integrated bioinformatics analysis, we have identified a series of potentially important molecules for future ASD research. Autism Res 2020, 13: 352-368. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Abnormal transcriptional regulation accounts for a significant portion of Autism Spectrum Disorder. In this study, we performed transcriptome analyses of mouse models to identify common downstream targets of transcriptional regulators involved in ASD. We identified several recurrent target genes that are close related to the common pathological process of ASD, including SDC4, CP, S1PR1, UBC, PDYN, GRM2, NRXN1, GRIN3A, ITGAM, GRIN2A, GABRA2, and CAMK4. These results provide potentially important targets for understanding the molecular mechanism of ASD.
Collapse
Affiliation(s)
- Weicheng Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xufeng Chu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ruoyun Ma
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
43
|
Roubertoux PL, Tordjman S, Caubit X, di Cristopharo J, Ghata A, Fasano L, Kerkerian-Le Goff L, Gubellini P, Carlier M. Construct Validity and Cross Validity of a Test Battery Modeling Autism Spectrum Disorder (ASD) in Mice. Behav Genet 2019; 50:26-40. [PMID: 31542842 DOI: 10.1007/s10519-019-09970-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
Modeling in other organism species is one of the crucial stages in ascertaining the association between gene and psychiatric disorder. Testing Autism Spectrum Disorder (ASD) in mice is very popular but construct validity of the batteries is not available. We presented here the first factor analysis of a behavioral model of ASD-like in mice coupled with empirical validation. We defined fourteen measures aligning mouse-behavior measures with the criteria defined by DSM-5 for the diagnostic of ASD. Sixty-five mice belonging to a heterogeneous pool of genotypes were tested. Reliability coefficients vary from .68 to .81. The factor analysis resulted in a three- factor solution in line with DSM criteria: social behavior, stereotypy and narrowness of the field of interest. The empirical validation with mice sharing a haplo-insufficiency of the zinc-finger transcription factor TSHZ3/Tshz3 associated with ASD shows the discriminant power of the highly loaded items.
Collapse
Affiliation(s)
| | - Sylvie Tordjman
- Paris Descartes Univ, CNRS, LPP, Paris, France
- Rennes 1 Univ, PHUPEA, Rennes, France
| | | | | | | | | | | | | | - Michèle Carlier
- Aix Marseille Univ, CNRS, LPC, Marseille, France.
- Aix-Marseille Université CNRS UMR 7290 Psychologie Cognitive, Fédération de Recherche 3C - Comportement Cerveau Cognition, Case D, Bât 9 - St Charles, 3 Place Victor Hugo, 13003, Marseille, France.
| |
Collapse
|
44
|
Chabbert D, Caubit X, Roubertoux PL, Carlier M, Habermann B, Jacq B, Salin P, Metwaly M, Frahm C, Fatmi A, Garratt AN, Severac D, Dubois E, Kerkerian-Le Goff L, Fasano L, Gubellini P. Postnatal Tshz3 Deletion Drives Altered Corticostriatal Function and Autism Spectrum Disorder-like Behavior. Biol Psychiatry 2019; 86:274-285. [PMID: 31060802 DOI: 10.1016/j.biopsych.2019.03.974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed at gaining more insight into "when" and "where" TSHZ3 is required for the proper development of the brain, and its deficiency crucial for developing this ASD syndrome. METHODS We generated and characterized a novel mouse model of conditional Tshz3 deletion, obtained by crossing Tshz3flox/flox with CaMKIIalpha-Cre mice, in which Tshz3 is deleted in CPNs from postnatal day 2 to 3 onward. We characterized these mice by a multilevel approach combining genetics, cell biology, electrophysiology, behavioral testing, and bioinformatics. RESULTS These conditional Tshz3 knockout mice exhibit altered cortical expression of more than 1000 genes, ∼50% of which have their human orthologue involved in ASD, in particular genes encoding for glutamatergic synapse components. Consistently, we detected electrophysiological and synaptic changes in CPNs and impaired corticostriatal transmission and plasticity. Furthermore, these mice showed strong ASD-like behavioral deficits. CONCLUSIONS Our study reveals a crucial postnatal role of TSHZ3 in the development and functioning of the corticostriatal circuitry and provides evidence that dysfunction in these circuits might be determinant for ASD pathogenesis. Our conditional Tshz3 knockout mouse constitutes a novel ASD model, opening the possibility for an early postnatal therapeutic window for the syndrome linked to TSHZ3 haploinsufficiency.
Collapse
Affiliation(s)
| | | | | | | | - Bianca Habermann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; Aix Marseille Univ, INSERM, TAGC, Marseille, France
| | - Bernard Jacq
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascal Salin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | | | - Ahmed Fatmi
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Alistair N Garratt
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité University Hospital Berlin, Berlin, Germany
| | - Dany Severac
- Univ Montpellier, CNRS, INSERM, MGX, Montpellier, France
| | - Emeric Dubois
- Univ Montpellier, CNRS, INSERM, MGX, Montpellier, France
| | | | | | | |
Collapse
|
45
|
Du X, Diao Y, Liu H, Li S. MsDBP: Exploring DNA-Binding Proteins by Integrating Multiscale Sequence Information via Chou’s Five-Step Rule. J Proteome Res 2019; 18:3119-3132. [DOI: 10.1021/acs.jproteome.9b00226] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiuquan Du
- The School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Yanyu Diao
- The School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Heng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuo Li
- Department of Medical Imaging, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
46
|
Fasano L, Sanchez-Martin I, Caubit X. Analysis of the Teashirt Target Genes in Ureteric Bud Development. Methods Mol Biol 2019; 1926:223-232. [PMID: 30742275 DOI: 10.1007/978-1-4939-9021-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Microarrays and RNA-seq (RNA sequencing) are powerful techniques to assess transcript abundance in biological samples and to improve our understanding of the relationship between genotype and phenotype. Tshz3+/- heterozygous mouse is a model for a human 19q12 syndrome characterized by autistic traits and renal tract defects (Caubit et al., Nat Genet 48:1359-1369, 2016). To unravel renal tract pathological mechanisms, we took advantage of Tshz3 mouse and performed comparative genome-wide expression profiling on embryonic ureter and/or kidney.
Collapse
Affiliation(s)
- Laurent Fasano
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| | | | - Xavier Caubit
- Aix Marseille University, CNRS, IBDM, Marseille, France
| |
Collapse
|
47
|
Kuo HY, Liu FC. Synaptic Wiring of Corticostriatal Circuits in Basal Ganglia: Insights into the Pathogenesis of Neuropsychiatric Disorders. eNeuro 2019; 6:ENEURO.0076-19.2019. [PMID: 31097624 PMCID: PMC6553570 DOI: 10.1523/eneuro.0076-19.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
The striatum is a key hub in the basal ganglia for processing neural information from the sensory, motor, and limbic cortices. The massive and diverse cortical inputs entering the striatum allow the basal ganglia to perform a repertoire of neurological functions ranging from basic level of motor control to high level of cognition. The heterogeneity of the corticostriatal circuits, however, also renders the system susceptible to a repertoire of neurological diseases. Clinical and animal model studies have indicated that defective development of the corticostriatal circuits is linked to various neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD), Tourette syndrome, obsessive-compulsive disorder (OCD), autism spectrum disorder (ASD), and schizophrenia. Importantly, many neuropsychiatric disease-risk genes have been found to form the molecular building blocks of the circuit wiring at the synaptic level. It is therefore imperative to understand how corticostriatal connectivity is established during development. Here, we review the construction during development of these corticostriatal circuits at the synaptic level, which should provide important insights into the pathogenesis of neuropsychiatric disorders related to the basal ganglia and help the development of appropriate therapies for these diseases.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
48
|
Abstract
The ability to explant and then maintain embryonic tissues in organ culture makes it feasible to study the growth and differentiation of whole organs, or parts or combinations of them, in three dimensions. Moreover, the possible effects of biochemical manipulations or mutations can be explored by visualizing a growing organ. The mammalian renal tract comprises the kidney, ureter, and urinary bladder, and the focus of this chapter is organ culture of the embryonic mouse ureter in serum-free defined medium. Over the culture period, rudiments grow in length, smooth muscle differentiates, and the ureters then undergo peristalsis in a proximal to distal direction.
Collapse
Affiliation(s)
- Filipa M Lopes
- Faculty of Biology Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Adrian S Woolf
- Faculty of Biology Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
49
|
Woolf AS, Lopes FM, Ranjzad P, Roberts NA. Congenital Disorders of the Human Urinary Tract: Recent Insights From Genetic and Molecular Studies. Front Pediatr 2019; 7:136. [PMID: 31032239 PMCID: PMC6470263 DOI: 10.3389/fped.2019.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
The urinary tract comprises the renal pelvis, the ureter, the urinary bladder, and the urethra. The tract acts as a functional unit, first propelling urine from the kidney to the bladder, then storing it at low pressure inside the bladder which intermittently and completely voids urine through the urethra. Congenital diseases of these structures can lead to a range of diseases sometimes associated with fetal losses or kidney failure in childhood and later in life. In some of these disorders, parts of the urinary tract are severely malformed. In other cases, the organs appear grossly intact yet they have functional deficits that compromise health. Human studies are beginning to indicate monogenic causes for some of these diseases. Here, the implicated genes can encode smooth muscle, neural or urothelial molecules, or transcription factors that regulate their expression. Furthermore, certain animal models are informative about how such molecules control the development and functional differentiation of the urinary tract. In future, novel therapies, including those based on gene transfer and stem cell technologies, may be used to treat these diseases to complement conventional pharmacological and surgical clinical therapies.
Collapse
Affiliation(s)
- Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Parisa Ranjzad
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
50
|
Li M, Santpere G, Kawasawa YI, Evgrafov OV, Gulden FO, Pochareddy S, Sunkin SM, Li Z, Shin Y, Zhu Y, Sousa AMM, Werling DM, Kitchen RR, Kang HJ, Pletikos M, Choi J, Muchnik S, Xu X, Wang D, Lorente-Galdos B, Liu S, Giusti-Rodríguez P, Won H, de Leeuw CA, Pardiñas AF, Hu M, Jin F, Li Y, Owen MJ, O’Donovan MC, Walters JTR, Posthuma D, Reimers MA, Levitt P, Weinberger DR, Hyde TM, Kleinman JE, Geschwind DH, Hawrylycz MJ, State MW, Sanders SJ, Sullivan PF, Gerstein MB, Lein ES, Knowles JA, Sestan N. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 2018; 362:eaat7615. [PMID: 30545854 PMCID: PMC6413317 DOI: 10.1126/science.aat7615] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
To broaden our understanding of human neurodevelopment, we profiled transcriptomic and epigenomic landscapes across brain regions and/or cell types for the entire span of prenatal and postnatal development. Integrative analysis revealed temporal, regional, sex, and cell type-specific dynamics. We observed a global transcriptomic cup-shaped pattern, characterized by a late fetal transition associated with sharply decreased regional differences and changes in cellular composition and maturation, followed by a reversal in childhood-adolescence, and accompanied by epigenomic reorganizations. Analysis of gene coexpression modules revealed relationships with epigenomic regulation and neurodevelopmental processes. Genes with genetic associations to brain-based traits and neuropsychiatric disorders (including MEF2C, SATB2, SOX5, TCF4, and TSHZ3) converged in a small number of modules and distinct cell types, revealing insights into neurodevelopment and the genomic basis of neuropsychiatric risks.
Collapse
Affiliation(s)
- Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Yuka Imamura Kawasawa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Oleg V. Evgrafov
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn NY, USA
| | - Forrest O. Gulden
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sirisha Pochareddy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | | | - Zhen Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Yurae Shin
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- National Research Foundation of Korea, Daejeon, South Korea
| | - Ying Zhu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - André M. M. Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Donna M. Werling
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Robert R. Kitchen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Hyo Jung Kang
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Mihovil Pletikos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, MA, USA
| | - Jinmyung Choi
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sydney Muchnik
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Xuming Xu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Daifeng Wang
- Department of Biomedical Informatics Stony Brook University, NY, USA
| | - Belen Lorente-Galdos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Shuang Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | | | - Hyejung Won
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christiaan A. de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Antonio F. Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Fulai Jin
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH, USA
| | - Yun Li
- Department of Genetics and Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael C. O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T. R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Mark A. Reimers
- Neuroscience Program and Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Pat Levitt
- Department of Pediatrics, Institute for the Developing Mind Keck School of Medicine of USC, Los Angeles, CA, USA
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Daniel H. Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Matthew W. State
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J. Sanders
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mark B. Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| | - Ed S. Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - James A. Knowles
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn NY, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|